JP2010193104A - クロック生成回路 - Google Patents

クロック生成回路 Download PDF

Info

Publication number
JP2010193104A
JP2010193104A JP2009034490A JP2009034490A JP2010193104A JP 2010193104 A JP2010193104 A JP 2010193104A JP 2009034490 A JP2009034490 A JP 2009034490A JP 2009034490 A JP2009034490 A JP 2009034490A JP 2010193104 A JP2010193104 A JP 2010193104A
Authority
JP
Japan
Prior art keywords
differential
signal
terminal
input
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009034490A
Other languages
English (en)
Other versions
JP5257122B2 (ja
Inventor
Daisuke Yamazaki
大輔 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2009034490A priority Critical patent/JP5257122B2/ja
Publication of JP2010193104A publication Critical patent/JP2010193104A/ja
Application granted granted Critical
Publication of JP5257122B2 publication Critical patent/JP5257122B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Logic Circuits (AREA)

Abstract

【課題】正常な差動クロック信号を生成することができるクロック生成回路を提供することを課題とする。
【解決手段】イネーブル端子にネゲート信号が入力される場合にはレベルが固定された第2の差動クロック信号を出力する入力バッファ回路(101)と、第2の差動クロック信号に同期して、第3の差動クロック信号を出力する第1のラッチ回路(102)と、第2の差動クロック信号の反転信号に同期して、第4の差動クロック信号を出力する第2のラッチ回路(103)と、第4の差動クロック信号をバッファリングし、第6の差動クロック信号を出力する第2の出力バッファ回路(105)と、第6の差動クロック信号が同相信号である場合には、入力バッファ回路のイネーブル端子にネゲート信号を出力する第1の異常モード検出器(112)とを有するクロック生成回路が提供される。
【選択図】図5

Description

本発明は、クロック生成回路に関し、特にWiMAX及びS3G等の高いRF周波数の無線通信を取り扱うトランシーバの変調に用いることができるクロック生成回路に関する。
クロック生成回路は、WiMAX及びS3G等の高いRF周波数の無線通信を取り扱うトランシーバにて変調を行う際に用いられる。クロック生成回路としては、直交性を求められるクロックは低速に抑え、直交でなくても良いクロックでRFに変換するダブルコンヴァージョン方式が主流であった。しかし、低コスト化への要求から、高速の直交クロックを必要とするダイレクトコンヴァージョン方式へのニーズが高まっている。
特開2007−243617号公報には、クロック信号を分周して出力する分周回路に、出力信号の信号レベルを強制的に固定する設定入力端子を設け、前記設定入力端子に信号レベルの入力をすることにより、強制的に前記出力信号が固定される第1分周回路と、前記第1分周回路の前記設定入力端子と同じ信号レベルの入力をすることにより、強制的に前記出力信号と異なる信号レベルに固定される前記第2分周回路と、前記第1分周回路と前記第2分周回路から前記出力信号を入力し、前記出力信号の信号レベルを比較し、同じであるか異なるかを判断して、前記設定入力端子へ出力する同相検出回路と、を具備することを特徴とする差動分周回路が開示されている。
また、特開2000−36729号公報には、無線信号の受信回路やコンピュータの処理回路などの内部で、入力された信号をその周期の1/4、位相にして90°の遅延になるように出力する遅延回路が開示されている。
特開2007−243617号公報 特開2000−36729号公報
クロック生成回路は、直交した高速差動クロック信号を生成する場合、差動クロック信号が同相信号になってしまう異常モードに陥ることがある。
本発明の目的は、正常な差動クロック信号を生成することができるクロック生成回路を提供することである。
本発明の一観点によれば、イネーブル端子、第1の差動入力端子及び第1の差動出力端子を有し、イネーブル端子にアサート信号が入力される場合には、前記第1の差動入力端子に入力される第1の差動クロック信号をバッファリングし、前記第1の差動出力端子から第2の差動クロック信号を出力し、イネーブル端子にネゲート信号が入力される場合には、前記第1の差動出力端子から一方がハイレベル、他方がローレベルに固定された第2の差動クロック信号を出力する入力バッファ回路と、第1の差動クロック端子、第2の差動入力端子及び第2の差動出力端子を有し、前記第1の差動クロック端子に入力される前記第2の差動クロック信号に同期して、前記第2の差動入力端子に入力される差動クロック信号をラッチし、前記第2の差動出力端子から第3の差動クロック信号を出力する第1のラッチ回路と、第2の差動クロック端子、第3の差動入力端子及び第3の差動出力端子を有し、前記第2の差動クロック端子に入力される前記第2の差動クロック信号の反転信号に同期して、前記第3の差動入力端子に入力される差動クロック信号をラッチし、前記第3の差動出力端子から第4の差動クロック信号を出力する第2のラッチ回路と、第4の差動入力端子及び第4の差動出力端子を有し、前記第4の差動入力端子に入力される前記第3の差動クロック信号をバッファリングし、前記第4の差動出力端子から第5の差動クロック信号を出力する第1の出力バッファ回路と、第5の差動入力端子及び第5の差動出力端子を有し、前記第5の差動入力端子に入力される前記第4の差動クロック信号をバッファリングし、前記第5の差動出力端子から第6の差動クロック信号を出力する第2の出力バッファ回路と、前記第5の差動クロック信号が逆相信号又は前記第6の差動クロック信号が逆相信号である場合には、前記入力バッファ回路の前記イネーブル端子にアサート信号を出力し、前記第5の差動クロック信号が同相信号又は前記第6の差動クロック信号が同相信号である場合には、前記入力バッファ回路の前記イネーブル端子にネゲート信号を出力する第1の異常モード検出器とを有し、前記第1のラッチ回路の前記第2の差動入力端子は、前記第2のラッチ回路が出力する前記第4の差動クロック信号の反転信号を入力し、前記第2のラッチ回路の前記第3の差動入力端子は、前記第1のラッチ回路が出力する前記第3の差動クロック信号を入力することを特徴とするクロック生成回路が提供される。
差動クロック信号が同相信号になってしまった場合には、第1の異常モード検出器により、正常な差動クロック信号に回復することができる。
クロック生成回路の構成例を示す図である。 図2(A)〜(C)は第2の差動クロック信号が6GHzの場合の異常モード期間及び正常モード期間を示すタイミングチャートである。 図3(A)〜(C)は第2の差動クロック信号が6.5GHzの場合の異常モード期間を示すタイミングチャートである。 図4(A)〜(C)は第2の差動クロック信号が6.5GHzの場合の正常モード期間を示すタイミングチャートである。 本発明の第1の実施形態によるクロック生成回路の構成例を示す図である。 図5の入力バッファ回路の構成例を示す回路図である。 図5の第1のラッチ回路及び第2のラッチ回路の構成例を示す回路図である。 図5の第1の出力バッファ回路及び第2の出力バッファ回路の構成例を示す回路図である。 図5の第1の異常モード検出器及び第2の異常モード検出器の構成例を示す回路図である。 図10(A)〜(E)は第2の差動クロック信号が6.5GHzの場合の異常モード期間、モード移行期間及び正常モード期間を示すタイミングチャートである。 図11(A)〜(E)は第2の差動クロック信号が10GHzの場合の異常モード期間、モード移行期間及び正常モード期間を示すタイミングチャートである。 本発明の第2の実施形態によるクロック生成回路内の第1の異常モード検出器及び第2の異常モード検出器の構成例を示す回路図である。
(参考技術)
図1はクロック生成回路の構成例を示す図であり、図4(A)〜(C)はクロック生成回路の正常動作を示すタイミングチャートである。
入力バッファ回路101は、差動イネーブル端子EN,ENXには差動イネーブル信号EN1,EN1Xが入力され、第1の差動入力端子in,inxには第1の差動クロック信号ck0,ck0xが入力され、第1の差動出力端子out,outxから第2の差動クロック信号ck1,ck1xを出力する。差動イネーブル信号EN1,EN1Xは相互に位相が反転した差動信号、第1の差動クロック信号ck0,ck0xも相互に位相が反転した差動信号、第2の差動クロック信号ck1,ck1xも相互に位相が反転した差動信号である。
第1のラッチ回路102は、第1の差動クロック端子ck,ckxには第2の差動クロック信号ck1,ck1xが入力され、第2の差動入力端子in,inxには第4の差動クロック信号q1,q1xの反転信号が入力され、第2の差動出力端子out,outxから第3の差動クロック信号i1,i1xを出力する。第3の差動クロック信号i1,i1xは、第2の差動クロック信号ck1,ck1xに対して周期が2倍になる。
第2のラッチ回路103は、第2の差動クロック端子ck,ckxには第2の差動クロック信号ck1,ck1xの反転信号が入力され、第3の差動入力端子in,inxには第3の差動クロック信号i1,i1xが入力され、第3の差動出力端子out,outxから第4の差動クロック信号q1,q1xを出力する。第4の差動クロック信号q1,q1xは、第2の差動クロック信号ck1,ck1xに対して周期が2倍になり、第3の差動クロック信号i1,i1xに対して、位相が90度遅れている。信号i1は0度の信号、信号q1は90度の信号、信号i1xは180度の信号、信号q1xは270度の信号である。
第1の出力バッファ回路104は、第4の差動入力端子in,inxには第3の差動クロック信号i1,i1xが入力され、第4の差動出力端子out,outxから第5の差動クロック信号iout,ioutxを出力する。
第2の出力バッファ回路105は、第5の差動入力端子in,inxには第4の差動クロック信号q1,q1xが入力され、第5の差動出力端子out,outxから第6の差動クロック信号qout,qoutxを出力する。
しかし、CMOSインバータを用いてクロック生成回路を構成すると、正常モードと異常モードが存在する。図1のクロック生成回路をシミュレーションした場合を図2(A)〜(C)、図3(A)〜(C)、図4(A)〜(C)に示す。
図2(A)〜(C)は、第2の差動クロック信号ck1,ck1xが6GHzの場合の異常モード期間T1及び正常モード期間T2を示すタイミングチャートである。正常モード期間T2では、図4(A)〜(C)と同様に、第3の差動クロック信号i1,i1x及び第4の差動クロック信号q1,q1xは、それぞれ相互に位相が反転した正常な差動信号である。これに対して、異常モード期間T1では、第3の差動クロック信号i1,i1x及び第4の差動クロック信号q1,q1xは、それぞれ相互に位相が同相の異常な信号である。異常モード期間T1において、クロック発生開始から1ns後にノイズNSを入力すると、ノイズNSをトリガとして、やがて正常モード期間T2に移行する。
図3(A)〜(C)は、第2の差動クロック信号ck1,ck1xが6.5GHzの場合の異常モード期間T1を示すタイミングチャートである。異常モード期間T1では、第3の差動クロック信号i1,i1x及び第4の差動クロック信号q1,q1xは、それぞれ相互に位相が同相の異常な信号である。図3(A)〜(C)の場合は、図2(A)〜(C)の場合よりも第2の差動クロック信号ck1,ck1xが高周波数であるため、異常モード期間T1において、クロック発生開始から1ns後にノイズNSを入力しても、異常モード期間T1を維持し、正常モード期間T2に移行することができない。
図4(A)〜(C)は、第2の差動クロック信号ck1,ck1xが6.5GHzの場合の正常モード期間T2を示すタイミングチャートである。正常モード期間T2では、第3の差動クロック信号i1,i1x及び第4の差動クロック信号q1,q1xは、それぞれ相互に位相が反転した正常な差動信号である。図4(A)〜(C)の場合は、図3(A)〜(C)の場合と同様に、第2の差動クロック信号ck1,ck1xが高周波数である。しかし、初期状態において、正常モード期間T2になれば、そのまま正常モード期間T2を維持する。
図2(A)〜(C)の低速動作では、異常モード期間T1にあってもわずかなノイズNSをトリガとして正常モード期間T1に復帰することができる。しかし、図3(A)〜(C)の高速動作では、正常モード期間T2に復帰することができない。
図2(A)〜(C)のクロック周波数が6GHzであれば、最初に異常モード期間T1にあっても、小さなノイズNSをきっかけに、異常モード期間T1を脱し、正常モード期間T2に移行できる。しかし、図3(A)〜(C)のように、クロック周波数が6.5GHzまで上がると、ノイズNSが入っても、異常モード期間T1を抜け出すことができない。また、図4(A)〜(C)のように、初期状態で正常モード期間T2であれば、そのまま正常に動作するが、何かの拍子に異常モード期間T1に入った場合に、正常モード期間T2に復帰できないので、その周波数で使用することはできなくなる。
以下、差動クロック信号が高周波数の場合にも、異常モード期間T1から正常モード期間T2に回復することができるクロック生成回路を説明する。
(第1の実施形態)
図5は本発明の第1の実施形態によるクロック生成回路の構成例を示す図であり、図10(A)〜(E)は図5のクロック生成回路の動作例を示すタイミングチャートである。
入力バッファ回路101は、差動イネーブル端子EN,ENXには差動イネーブル信号が入力され、第1の差動入力端子in,inxには第1の差動クロック信号ck0,ck0xが入力され、第1の差動出力端子out,outxから第2の差動クロック信号ck1,ck1xを出力する。
入力バッファ回路101は、差動イネーブル端子EN,ENX、第1の差動入力端子in,inx及び第1の差動出力端子out,outxを有し、差動イネーブル端子EN,ENXにアサート信号(端子ENにハイレベル信号、端子ENXにローレベル信号)が入力される場合には、第1の差動入力端子in,inxに入力される第1の差動クロック信号ck0,ck0xをバッファリングし、第1の差動出力端子out,outxから第2の差動クロック信号ck1,ck1xを出力し、差動イネーブル端子EN,ENXにネゲート信号(端子ENにローレベル信号、端子ENXにハイレベル信号)が入力される場合には、第1の差動出力端子out,outxから一方がハイレベル、他方がローレベルに固定された第2の差動クロック信号ck1,ck1xを出力する。例えば、図10(A)の異常モード期間T1では、信号ck1がハイレベルに固定され、信号ck1xがローレベルに固定される。
図10(A)〜(E)の正常モード期間T2に示すように、第1の差動クロック信号ck0,ck0xは相互に位相が反転した差動信号、第2の差動クロック信号ck1,ck1xも相互に位相が反転した差動信号である。第2の差動クロック信号ck1,ck1xは、第1の差動クロック信号ck0,ck0xに対して周期が同じである。入力バッファ回路101の構成は、後に図6を参照しながら説明する。
第1のラッチ回路102は、第1の差動クロック端子ck,ckxには第2の差動クロック信号ck1,ck1xが入力され、第2の差動入力端子in,inxには第4の差動クロック信号q1,q1xの反転信号が入力され、第2の差動出力端子out,outxから第3の差動クロック信号i1,i1xを出力する。
第1のラッチ回路102は、第1の差動クロック端子ck,ckx、第2の差動入力端子in,inx及び第2の差動出力端子out,outxを有し、第1の差動クロック端子ck,ckxに入力される第2の差動クロック信号ck1,ck1xに同期して、第2の差動入力端子in,inxに入力される第4の差動クロック信号q1,q1xの反転信号をラッチし、第2の差動出力端子out,outxから第3の差動クロック信号i1,i1xを出力する。
第1のラッチ回路102は、クロック信号ck1の立ち上がりエッジに同期して、第4の差動クロック信号q1,q1xをラッチし、第3の差動クロック信号i1,i1xを出力する。図10(A)〜(E)の正常モード期間T2に示すように、第3の差動クロック信号i1,i1xは、相互に位相が反転した差動信号であり、第2の差動クロック信号ck1,ck1xに対して周期が2倍になる。第1のラッチ回路102の構成は、後に図7を参照しながら説明する。
第2のラッチ回路103は、第2の差動クロック端子ck,ckxには第2の差動クロック信号ck1,ck1xの反転信号が入力され、第3の差動入力端子in,inxには第3の差動クロック信号i1,i1xが入力され、第3の差動出力端子out,outxから第4の差動クロック信号q1,q1xを出力する。
第2のラッチ回路103は、第2の差動クロック端子ck,ckx、第3の差動入力端子in,inx及び第3の差動出力端子out,outxを有し、第2の差動クロック端子ck,ckxに入力される第2の差動クロック信号ck1,ck1xの反転信号に同期して、第3の差動入力端子in,inxに入力される第3の差動クロック信号i1,i1xをラッチし、第3の差動出力端子out,outxから第4の差動クロック信号q1,q1xを出力する。
第2のラッチ回路103は、クロック信号ck1xの立ち上がりエッジに同期して、第3の差動クロック信号i1,i1xをラッチし、第4の差動クロック信号q1,q1xを出力する。図10(A)〜(E)の正常モード期間T2に示すように、第4の差動クロック信号q1,q1xは、相互に位相が反転した差動信号であり、第2の差動クロック信号ck1,ck1xに対して周期が2倍になる。また、第4の差動クロック信号q1,q1xは、第3の差動クロック信号i1,i1xに対して、位相が90度遅れている。信号i1は0度の信号、信号q1は90度の信号、信号i1xは180度の信号、信号q1xは270度の信号である。第2のラッチ回路103の構成は、後に図7を参照しながら説明する。
第1のラッチ回路102の第2の差動入力端子in,inxは、第2のラッチ回路103が出力する第4の差動クロック信号q1,q1xの反転信号を入力する。第2のラッチ回路103の第3の差動入力端子in,inxは、第1のラッチ回路102が出力する第3の差動クロック信号i1,i1xを入力する。
第1の出力バッファ回路104は、第4の差動入力端子in,inxには第3の差動クロック信号i1,i1xが入力され、第4の差動出力端子out,outxから第5の差動クロック信号iout,ioutxを出力する。
第1の出力バッファ回路104は、第4の差動入力端子in,inx及び第4の差動出力端子out,outxを有し、第4の差動入力端子in,inxに入力される第3の差動クロック信号i1,i1xをバッファリングし、第4の差動出力端子out,outxから第5の差動クロック信号iout,ioutxを出力する。第5の差動クロック信号iout,ioutxは、相互に位相が反転した差動信号であり、第3の差動クロック信号i1,i1xに対して周期が同じである。第1の出力バッファ回路104の構成は、後に図8を参照しながら説明する。
第2の出力バッファ回路105は、第5の差動入力端子in,inxには第4の差動クロック信号q1,q1xが入力され、第5の差動出力端子out,outxから第6の差動クロック信号qout,qoutxを出力する。
第2の出力バッファ回路105は、第5の差動入力端子in,inx及び第5の差動出力端子out,outxを有し、第5の差動入力端子in,inxに入力される第4の差動クロック信号q1,q1xをバッファリングし、第5の差動出力端子out,outxから第6の差動クロック信号qout,qoutxを出力する。図10(A)〜(E)の正常モード期間T2に示すように、第6の差動クロック信号qout,qoutxは、相互に位相が反転した差動信号であり、第4の差動クロック信号q1,q1xに対して周期が同じである。第2の出力バッファ回路105の構成は、後に図8を参照しながら説明する。
クロック生成回路は、直交クロック信号iout,ioutx,qout,qoutxを生成することができる。第6の差動クロック信号qout,qoutxは、第5の差動クロック信号iout,ioutxに対して、位相が90度遅れた信号である。信号ioutは0度の信号、信号qoutは90度の信号、信号ioutxは180度の信号、信号qoutxは270度の信号である。
第1の異常モード検出器112は、第6の差動入力端子IN1,IN2には第6の差動クロック信号qout,qoutxが入力され、第6の差動出力端子ENO,ENOXから差動異常モード検出信号を出力する。
第1の異常モード検出器112は、正常モード期間T2のように第6の差動クロック信号qout,qoutxが逆相信号である場合には、出力端子ENOからハイレベル信号を出力し、出力端子ENOXからローレベル信号を出力し、異常モード期間T1のように第6の差動クロック信号qout,qoutxが同相信号である場合には、出力端子ENOからローレベル信号を出力し、出力端子ENOXからハイレベル信号を出力する。第1の異常モード検出器112の構成は、後に図9を参照しながら説明する。
差動イネーブル信号EN1,EN1Xは、相互に位相が反転した差動信号である。クロック生成回路が差動クロック信号を生成するときには、信号EN1がハイレベル信号、信号EN1Xがローレベル信号になる。クロック生成回路が差動クロック信号を生成しないときには、信号EN1がローレベル信号、信号EN1Xがハイレベル信号になる。
論理積(AND)回路113及び論理和(OR)回路114は、論理回路である。論理積回路113は、第1の異常モード検出器112の出力端子ENOの出力信号及びイネーブル信号EN1の論理積信号を、入力バッファ回路101のイネーブル端子ENに出力する。すなわち、イネーブル信号EN1がハイレベル信号であるときには、第1の異常モード検出器112の出力端子ENOがハイレベル信号を出力すれば、論理積回路113はハイレベル信号を出力し、第1の異常モード検出器112の出力端子ENOがローレベル信号を出力すれば、論理積回路113はローレベル信号を出力する。
論理和回路114は、第1の異常モード検出器112の出力端子ENOXの出力信号及びイネーブル信号EN1Xの論理和信号を、入力バッファ回路101のイネーブル端子ENXに出力する。すなわち、イネーブル信号EN1Xがローレベル信号であるときには、第1の異常モード検出器112の出力端子ENOXがローレベル信号を出力すれば、論理和回路114はローレベル信号を出力し、第1の異常モード検出器112の出力端子ENOXがハイレベル信号を出力すれば、論理和回路114はハイレベル信号を出力する。
正常モード期間T2において、第1の異常モード検出器112の出力端子ENOがハイレベル信号を出力し、出力端子ENOXがローレベル信号を出力するときには、入力バッファ回路101は、第1の差動クロック信号ck0,ck0xをバッファリングし、第2の差動クロック信号ck1,ck1xを出力する。
また、異常モード期間T1において、第1の異常モード検出器112の出力端子ENOがローレベル信号を出力し、出力端子ENOXがハイレベル信号を出力するときには、入力バッファ回路101は、出力クロック信号ck1をハイレベルに固定し、出力クロック信号ck1xをローレベルに固定する。
レベルを固定することにより、クロック生成回路の動作周波数が低くなるので、異常モード期間T1からモード移行期間T3を介して正常モード期間T2に移行することができる。
第2の異常モード検出器111は、第1の異常モード検出器112と同等の構成を有するダミーのための回路である。第2の異常モード検出器111の差動入力端子は、第1の出力バッファ回路104の第4の差動出力端子out,outxに接続される。第2の異常モード検出器111の構成は後に図9を参照しながら説明する。第2の異常モード検出器111は、クロック生成回路の動作に関係しないダミー回路である。ただし、第2の異常モード検出器111を第1の出力バッファ回路104に接続することにより、第1の出力バッファ回路104の後段に接続される寄生容量と第2の出力バッファ回路105の後段に接続される寄生容量を同じにすることができる。これにより、第1の出力バッファ回路104の遅延時間と第2の出力バッファ回路105の遅延時間とを同じにすることができ、正常な直交クロック信号iout,ioutx,qout,qoutxを生成することができる。
なお、第1の異常モード検出器112を第1の出力バッファ回路104に接続し、第2の異常モード検出器111を第2の出力バッファ回路105に接続してもよい。また、論理積回路113及び論理和回路114を省略し、異常モード検出器112の出力端子ENOが直接、入力バッファ回路101のイネーブル端子ENに信号を出力し、異常モード検出器112の出力端子ENOXが直接、入力バッファ回路101のイネーブル端子ENXに信号を出力するようにしてもよい。また、第1の異常モード検出器112は、差動出力端子ENO,ENOXから出力する代わりに、出力端子ENOのみからシングルエンド信号を出力するようにしてもよい。
第1の異常モード検出器112は、第5の差動クロック信号iout,ioutxが逆相信号又は第6の差動クロック信号qout,qoutxが逆相信号である場合には、入力バッファ回路101のイネーブル端子ENにアサート信号(端子ENにハイレベル信号)を出力し、第5の差動クロック信号iout,ioutxが同相信号又は第6の差動クロック信号qout,qoutxが同相信号である場合には、入力バッファ回路101のイネーブル端子ENにネゲート信号(端子ENにローレベル信号)を出力する。
第1の出力バッファ回路104の第4の差動出力端子out,outx及び第2の出力バッファ回路105の第5の差動出力端子out,outxは、一方が第1の異常モード検出器112に接続され、他方が第2の異常モード検出器111に接続される。
論理回路113は、第1の異常モード検出器112の出力端子ENOの信号がアサート信号(ハイレベル信号)であり、かつイネーブル信号EN1がアサート信号(ハイレベル信号)である場合に、入力バッファ回路101のイネーブル端子ENにアサート信号(ハイレベル信号)を出力し、それ以外の場合には入力バッファ回路101のイネーブル端子ENにネゲート信号(ローレベル信号)を出力する。
図6は、図5の入力バッファ回路101の構成例を示す回路図である。pチャネル電界効果トランジスタ601は、ソースが電源電圧ノードに接続され、ゲートがイネーブル端子ENXに接続され、ドレインがpチャネル電界効果トランジスタ602のソースに接続される。pチャネル電界効果トランジスタ602は、ゲートが入力端子inに接続され、ドレインがインバータ611の入力端子に接続される。nチャネル電界効果トランジスタ603は、ドレインがインバータ611の入力端子に接続され、ゲートが入力端子inに接続され、ソースがnチャネル電界効果トランジスタ604のドレインに接続される。nチャネル電界効果トランジスタ604は、ゲートがイネーブル端子ENに接続され、ソースが基準電位ノード(グランド電位ノード)に接続される。
pチャネル電界効果トランジスタ605は、ソースが電源電圧ノードに接続され、ゲートがイネーブル端子ENXに接続され、ドレインがpチャネル電界効果トランジスタ606のソースに接続される。pチャネル電界効果トランジスタ606は、ゲートが入力端子inxに接続され、ドレインがインバータ612の入力端子に接続される。nチャネル電界効果トランジスタ607は、ドレインがインバータ612の入力端子に接続され、ゲートが入力端子inxに接続され、ソースがnチャネル電界効果トランジスタ608のドレインに接続される。nチャネル電界効果トランジスタ608は、ゲートがイネーブル端子ENに接続され、ソースが基準電位ノードに接続される。
nチャネル電界効果トランジスタ609は、ドレインがインバータ611の入力端子に接続され、ゲートがイネーブル端子ENXに接続され、ソースが基準電位ノードに接続される。pチャネル電界効果トランジスタ610は、ソースが電源電圧ノードに接続され、ゲートがイネーブル端子ENに接続され、ドレインがインバータ612の入力端子に接続される。
インバータ611の出力端子は、インバータ615の入力端子に接続される。インバータ612の出力端子は、インバータ616の入力端子に接続される。インバータ613は、入力端子がインバータ612の出力端子に接続され、出力端子がインバータ615の入力端子に接続される。インバータ614は、入力端子がインバータ611の出力端子に接続され、出力端子がインバータ616の入力端子に接続される。
インバータ615の出力端子は、インバータ619の入力端子に接続される。インバータ616の出力端子は、インバータ620の入力端子に接続される。インバータ617は、入力端子がインバータ616の出力端子に接続され、出力端子がインバータ619の入力端子に接続される。インバータ618は、入力端子がインバータ615の出力端子に接続され、出力端子がインバータ620の入力端子に接続される。
インバータ619の出力端子は、出力端子outに接続される。インバータ620の出力端子は、出力端子outxに接続される。
入力バッファ回路101は、イネーブル端子ENがハイレベル、イネーブル端子ENXがローレベルであるときには、入力端子in,inxに入力される第1の差動クロック信号ck0、ck0xをバッファリングし、出力端子out,outxから第2の差動クロック信号ck1,ck1xを出力する。
また、入力バッファ回路101は、イネーブル端子ENがローレベル、イネーブル端子ENXがハイレベルであるときには、出力端子outの信号ck1をハイレベルに固定し、出力端子outxの信号ck1xをローレベルに固定する。
図7は、図5の第1のラッチ回路102及び第2のラッチ回路103の構成例を示す回路図である。pチャネル電界効果トランジスタ701は、ソースが電源電圧ノードに接続され、ゲートがクロック端子ckxに接続され、ドレインがpチャネル電界効果トランジスタ702のソースに接続される。pチャネル電界効果トランジスタ702は、ゲートが入力端子inに接続され、ドレインが入力端子inxに接続される。nチャネル電界効果トランジスタ703は、ドレインが入力端子inxに接続され、ゲートが入力端子inに接続され、ソースがnチャネル電界効果トランジスタ704のドレインに接続される。nチャネル電界効果トランジスタ704は、ゲートがクロック端子ckに接続され、ソースが基準電位ノード(グランド電位ノード)に接続される。
pチャネル電界効果トランジスタ705は、ソースが電源電圧ノードに接続され、ゲートがクロック端子ckxに接続され、ドレインがpチャネル電界効果トランジスタ706のソースに接続される。pチャネル電界効果トランジスタ706は、ゲートが入力端子inxに接続され、ドレインが入力端子inに接続される。nチャネル電界効果トランジスタ707は、ドレインが入力端子inに接続され、ゲートが入力端子inxに接続され、ソースがnチャネル電界効果トランジスタ708のドレインに接続される。nチャネル電界効果トランジスタ708は、ゲートがクロック端子ckに接続され、ソースが基準電位ノードに接続される。
pチャネル電界効果トランジスタ709は、ソースが電源電圧ノードに接続され、ゲートがクロック端子ckxに接続され、ドレインがpチャネル電界効果トランジスタ710のソースに接続される。pチャネル電界効果トランジスタ710は、ゲートが入力端子inxに接続され、ドレインが出力端子outに接続される。nチャネル電界効果トランジスタ711は、ドレインが出力端子outに接続され、ゲートが入力端子inxに接続され、ソースがnチャネル電界効果トランジスタ712のドレインに接続される。nチャネル電界効果トランジスタ712は、ゲートがクロック端子ckに接続され、ソースが基準電位ノードに接続される。
pチャネル電界効果トランジスタ713は、ソースが電源電圧ノードに接続され、ゲートがクロック端子ckxに接続され、ドレインがpチャネル電界効果トランジスタ714のソースに接続される。pチャネル電界効果トランジスタ714は、ゲートが入力端子inに接続され、ドレインが出力端子outxに接続される。nチャネル電界効果トランジスタ715は、ドレインが出力端子outxに接続され、ゲートが入力端子inに接続され、ソースがnチャネル電界効果トランジスタ716のドレインに接続される。nチャネル電界効果トランジスタ716は、ゲートがクロック端子ckに接続され、ソースが基準電位ノードに接続される。
第1のラッチ回路102及び第2のラッチ回路103は、それぞれ、クロック端子ckに入力される信号の立ち上がりエッジに同期して、差動入力端子in,inxに入力される差動クロック信号をラッチし、出力端子out,outxから差動クロック信号を出力する。
図8は、図5の第1の出力バッファ回路104及び第2の出力バッファ回路105の構成例を示す回路図である。インバータ801は、入力端子が入力端子inに接続され、出力端子がインバータ802の入力端子に接続される。インバータ803は、入力端子が入力端子inxに接続され、出力端子がインバータ804の入力端子に接続される。
インバータ802の出力端子は、インバータ807の入力端子に接続される。インバータ804の出力端子は、インバータ808の入力端子に接続される。インバータ805は、入力端子がインバータ804の出力端子に接続され、出力端子がインバータ807の入力端子に接続される。インバータ806は、入力端子がインバータ802の出力端子に接続され、出力端子がインバータ808の入力端子に接続される。
インバータ807の出力端子は、インバータ811の入力端子に接続される。インバータ808の出力端子は、インバータ812の入力端子に接続される。インバータ809は、入力端子がインバータ808の出力端子に接続され、出力端子がインバータ811の入力端子に接続される。インバータ810は、入力端子がインバータ807の出力端子に接続され、出力端子がインバータ812の入力端子に接続される。
インバータ811の出力端子は、出力端子outに接続される。インバータ812の出力端子は、出力端子outxに接続される。
第1の出力バッファ回路104及び第2の出力バッファ回路105は、それぞれ、入力端子in,inxに入力される差動クロック信号をバッファリングし、出力端子out,outxから差動クロック信号を出力する。
図9は、図5の第1の異常モード検出器112及び第2の異常モード検出器111の構成例を示す回路図である。排他的論理和(EX−OR)回路901は、入力端子IN1の信号及び入力端子IN2の信号の排他的論理和信号を出力端子ENOに出力し、否定排他的論理和信号を出力端子ENOXに出力する。入力端子IN1及びIN2が共にローレベルである場合及び共にハイレベルである場合には、出力端子ENOがローレベル、出力端子ENOXがハイレベルになる。入力端子IN1及びIN2の一方がハイレベル、他方がローレベルである場合には、出力端子ENOがハイレベル、出力端子ENOXがローレベルになる。
すなわち、第1の異常モード検出器112は、入力端子IN1及びIN2の信号が逆相信号である場合には、出力端子ENOからハイレベル信号を出力し、出力端子ENOXからローレベル信号を出力し、入力端子IN1及びIN2の信号が同相信号である場合には、出力端子ENOからローレベル信号を出力し、出力端子ENOXからハイレベル信号を出力する。
以上のように、第1の異常モード検出器112は、第2の出力バッファ回路105の出力差動クロック信号qout,qoutxから異常モード期間T1を検出し、これを入力バッファ回路101の差動イネーブル端子EN,ENXに入力することにより、異常モード期間T1から脱出するようにする。この構成では、ラッチ回路102又は103に第1の異常モード検出器112を接続する場合に比べ、ラッチ回路102及び103に寄生容量が付加されたり、ラッチ回路102及び103に特別な機能を追加する必要がないので、高速性を維持でき、かつコストを低減できるという利点がある。
図10(A)〜(E)及び図11(A)〜(E)は、図5のクロック生成回路をシミュレーションした結果を示す。
図10(A)〜(E)は、第2の差動クロック信号ck1,ck1xが6.5GHzの場合の異常モード期間T1、モード移行期間T3及び正常モード期間T2を示すタイミングチャートである。異常モード期間T1では、第3の差動クロック信号i1,i1x及び第4の差動クロック信号q1,q1xは、それぞれ相互に位相が同相の異常な信号である。この時、第1の異常検出器112は、出力端子ENOからローレベル信号を出力し、出力端子ENOXからハイレベル信号を出力する。すると、入力バッファ回路101は、信号ck1をハイレベルに固定し、信号ck1xをローレベルに固定する。すると、モード移行期間T3を経て正常モード期間T2に移行する。正常モード期間T2では、第3の差動クロック信号i1,i1x及び第4の差動クロック信号q1,q1xは、それぞれ相互に位相が反転した正常な差動信号になる。
以上のように、異常モード期間T1では、第2の出力バッファ回路105の出力差動クロック信号qout,qoutxが同じレベルになる。第1の異常モード検出器112は、この異常モードを検出する。すると、入力バッファ回路101は、出力信号ck1、ck1xの一方をハイレベル、他方をローレベルに固定する。ラッチ回路102及び103へのクロック端子にハイレベル及びローレベルに固定されたクロック信号が入力される。すなわち、無限に遅いクロック信号が入力されたことと同じであり、わずかなノイズの発生で正常モード期間T2に移行することができる。正常モード期間T2になれば、入力バッファ回路101は、第1の差動クロック信号ck0,ck0xをバッファリングした第2の差動クロック信号ck1,ck1xを出力するようになり、直交したクロック信号iout,ioutx,qout,qoutxを生成することができる。
図11(A)〜(E)は、第2の差動クロック信号ck1,ck1xが10GHzの場合の異常モード期間T1、モード移行期間T3及び正常モード期間T2を示すタイミングチャートである。10GHzの高周波数の場合にも、図10(A)〜(E)の場合と同様に、異常モード期間T1において異常モードを検出することにより、モード移行期間T3を経て、正常モード期間T2に移行することができる。
図1のクロック生成回路は、図3(A)〜(C)に示すように、6.5GHz以上の周波数で異常モード期間T1からの脱出ができなくなるため、動作限界は6.5GHz未満である。これに対し、図5のクロック生成回路は、図11(A)〜(E)に示すように、10GHzでも動作できることをシミュレーションで確認できたため、図1のクロック生成回路に対して、1.5倍以上の効果が得られている。
(第2の実施形態)
図12は、本発明の第2の実施形態によるクロック生成回路内の第1の異常モード検出器112及び第2の異常モード検出器111の構成例を示す回路図である。本実施形態は、第1の実施形態に対して、第1の異常モード検出器112及び第2の異常モード検出器111の構成のみが異なる。以下、本実施形態が第1の実施形態と異なる点を説明する。
第1の異常モード検出器112及び第2の異常モード検出器111の構成を説明する。第1のpチャネル電界効果トランジスタ1201は、ゲートに入力差動クロック信号のうちの一方の信号が入力端子IN1から入力され、ソースが抵抗1209を介して電源電圧ノードに接続される。第1のnチャネル電界効果トランジスタ1202は、ゲートが第1のpチャネル電界効果トランジスタ1201のゲートに接続され、ドレインが第1のpチャネル電界効果トランジスタ1201のドレインに接続され、ソースが基準電位ノードに接続される。
第2のpチャネル電界効果トランジスタ1203は、ゲートに入力差動クロック信号のうちの他方の信号が入力端子IN2から入力され、ソースが抵抗1209を介して電源電圧ノードに接続される。第2のnチャネル電界効果トランジスタ1204は、ゲートが第2のpチャネル電界効果トランジスタ1203のゲートに接続され、ドレインが第2のpチャネル電界効果トランジスタ1203のドレインに接続され、ソースが基準電位ノードに接続される。
第3のpチャネル電界効果トランジスタ1205は、ソースが抵抗1209を介して電源電圧ノードに接続され、ゲートが第1のpチャネル電界効果トランジスタ1201のドレインに接続され、ドレインが第2のpチャネル電界効果トランジスタ1203のドレインに接続される。第3のnチャネル電界効果トランジスタ1206は、ソースが基準電位ノードに接続され、ゲートが第1のpチャネル電界効果トランジスタ1201のドレインに接続され、ドレインが第2のpチャネル電界効果トランジスタ1203のドレインに接続される。
第4のpチャネル電界効果トランジスタ1207は、ソースが抵抗1209を介して電源電圧ノードに接続され、ゲートが第2のpチャネル電界効果トランジスタ1203のドレインに接続され、ドレインが第1のpチャネル電界効果トランジスタ1201のドレインに接続される。第4のnチャネル電界効果トランジスタ1208は、ソースが基準電位ノードに接続され、ゲートが第2のpチャネル電界効果トランジスタ1203のドレインに接続され、ドレインが第1のpチャネル電界効果トランジスタ1201のドレインに接続される。
比較器1210は、第1のpチャネル電界効果トランジスタ1201及び第2のpチャネル電界効果トランジスタ1203のソースの相互接続点の電圧と閾値電圧Vrefとを比較し、その比較結果信号を出力端子ENO及びENOXから論理回路113及び114を介して入力バッファ回路101のイネーブル端子EN,ENXに出力する。
入力端子IN1及びIN2が共にローレベルの場合、及び共にハイレベルの場合には、比較器1210の+端子の電圧がローレベルになり、出力端子ENOはローレベルを出力し、出力端子ENOXはハイレベルを出力する。
また、入力端子IN1及びIN2の一方がハイレベル、他方がローレベルの場合には、比較器1210の+端子の電圧がハイレベルになり、出力端子ENOはハイレベルを出力し、出力端子ENOXはローレベルを出力する。
なお、第1の異常モード検出器112は、入力端子IN1及びIN2の信号が同相信号であるか否かを検出するものである。したがって、入力端子IN1及びIN2を逆に接続してもよい。すなわち、入力端子IN1をトランジスタ1203及び1204のゲートに接続し、入力端子IN2をトランジスタ1201及び1202のゲートに接続してもよい。その場合も、同じ結果が得られる。
本実施形態では、異常モード検出器111及び112は、それぞれ、クロスカップルインバータと消費電流検知器との組み合わせにより構成することができる。トランジスタ1201,1202、トランジスタ1203,1204、トランジスタ1205,1206、及びトランジスタ1207,1208は、それぞれインバータを構成する。
以上のように、第1及び第2の実施形態のクロック生成回路は、差動クロック信号が同相信号になってしまった場合には、第1の異常モード検出器112により、正常な差動クロック信号に回復することができる。
なお、上記実施形態は、何れも本発明を実施するにあたっての具体化の例を示したものに過ぎず、これらによって本発明の技術的範囲が限定的に解釈されてはならないものである。すなわち、本発明はその技術思想、又はその主要な特徴から逸脱することなく、様々な形で実施することができる。
本発明の実施形態は、例えば以下のように種々の適用が可能である。
(付記1)
イネーブル端子、第1の差動入力端子及び第1の差動出力端子を有し、イネーブル端子にアサート信号が入力される場合には、前記第1の差動入力端子に入力される第1の差動クロック信号をバッファリングし、前記第1の差動出力端子から第2の差動クロック信号を出力し、イネーブル端子にネゲート信号が入力される場合には、前記第1の差動出力端子から一方がハイレベル、他方がローレベルに固定された第2の差動クロック信号を出力する入力バッファ回路と、
第1の差動クロック端子、第2の差動入力端子及び第2の差動出力端子を有し、前記第1の差動クロック端子に入力される前記第2の差動クロック信号に同期して、前記第2の差動入力端子に入力される差動クロック信号をラッチし、前記第2の差動出力端子から第3の差動クロック信号を出力する第1のラッチ回路と、
第2の差動クロック端子、第3の差動入力端子及び第3の差動出力端子を有し、前記第2の差動クロック端子に入力される前記第2の差動クロック信号の反転信号に同期して、前記第3の差動入力端子に入力される差動クロック信号をラッチし、前記第3の差動出力端子から第4の差動クロック信号を出力する第2のラッチ回路と、
第4の差動入力端子及び第4の差動出力端子を有し、前記第4の差動入力端子に入力される前記第3の差動クロック信号をバッファリングし、前記第4の差動出力端子から第5の差動クロック信号を出力する第1の出力バッファ回路と、
第5の差動入力端子及び第5の差動出力端子を有し、前記第5の差動入力端子に入力される前記第4の差動クロック信号をバッファリングし、前記第5の差動出力端子から第6の差動クロック信号を出力する第2の出力バッファ回路と、
前記第5の差動クロック信号が逆相信号又は前記第6の差動クロック信号が逆相信号である場合には、前記入力バッファ回路の前記イネーブル端子にアサート信号を出力し、前記第5の差動クロック信号が同相信号又は前記第6の差動クロック信号が同相信号である場合には、前記入力バッファ回路の前記イネーブル端子にネゲート信号を出力する第1の異常モード検出器とを有し、
前記第1のラッチ回路の前記第2の差動入力端子は、前記第2のラッチ回路が出力する前記第4の差動クロック信号の反転信号を入力し、
前記第2のラッチ回路の前記第3の差動入力端子は、前記第1のラッチ回路が出力する前記第3の差動クロック信号を入力することを特徴とするクロック生成回路。
(付記2)
さらに、前記第1の異常モード検出器と同等の構成を有するダミーのための第2の異常モード検出器を有し、
前記第1の出力バッファ回路の前記第4の差動出力端子及び前記第2の出力バッファ回路の前記第5の差動出力端子は、一方が前記第1の異常モード検出器に接続され、他方が前記第2の異常モード検出器に接続されることを特徴とする付記1記載のクロック生成回路。
(付記3)
前記第1の異常モード検出器は、排他的論理和回路を有することを特徴とする付記1又は2記載のクロック生成回路。
(付記4)
前記第1の異常モード検出器は、クロスカップルインバータ及び消費電流検知器とを有することを特徴とする付記1又は2記載のクロック生成回路。
(付記5)
前記第1の異常モード検出器は、
入力端子に入力差動クロック信号のうちの一方の信号が入力され、ソースが抵抗を介して電源電圧ノードに接続される第1のpチャネル電界効果トランジスタと、
ゲートが前記第1のpチャネル電界効果トランジスタのゲートに接続され、ドレインが前記第1のpチャネル電界効果トランジスタのドレインに接続され、ソースが基準電位ノードに接続される第1のnチャネル電界効果トランジスタと、
ゲートに前記入力差動クロック信号のうちの他方の信号が入力され、ソースが前記抵抗を介して前記電源電圧ノードに接続される第2のpチャネル電界効果トランジスタと、
ゲートが前記第2のpチャネル電界効果トランジスタのゲートに接続され、ドレインが前記第2のpチャネル電界効果トランジスタのドレインに接続され、ソースが基準電位ノードに接続される第2のnチャネル電界効果トランジスタと、
前記第1及び前記第2のpチャネル電界効果トランジスタのソースの相互接続点の電圧と閾値電圧とを比較し、その比較結果信号を前記入力バッファ回路の前記イネーブル端子に出力する比較器とを有することを特徴とする付記4記載のクロック生成回路。
(付記6)
さらに、前記第1の異常モード検出器の出力信号がアサート信号であり、かつイネーブル信号がアサート信号である場合に、前記入力バッファ回路の前記イネーブル端子にアサート信号を出力し、それ以外の場合には前記入力バッファ回路の前記イネーブル端子にネゲート信号を出力する論理回路を有することを特徴とする付記1〜5のいずれか1項に記載のクロック生成回路。
(付記7)
前記第1の異常モード検出器は差動信号を出力し、前記イネーブル信号は差動信号であり、前記論理回路は差動信号を前記入力バッファ回路の前記イネーブル端子に出力することを特徴とする付記6記載のクロック生成回路。
101 入力バッファ回路
102 第1のラッチ回路
103 第2のラッチ回路
104 第1の出力バッファ回路
105 第2の出力バッファ回路
111 第2の異常モード検出器
112 第1の異常モード検出器
113 論理積回路
114 論理和回路

Claims (5)

  1. イネーブル端子、第1の差動入力端子及び第1の差動出力端子を有し、イネーブル端子にアサート信号が入力される場合には、前記第1の差動入力端子に入力される第1の差動クロック信号をバッファリングし、前記第1の差動出力端子から第2の差動クロック信号を出力し、イネーブル端子にネゲート信号が入力される場合には、前記第1の差動出力端子から一方がハイレベル、他方がローレベルに固定された第2の差動クロック信号を出力する入力バッファ回路と、
    第1の差動クロック端子、第2の差動入力端子及び第2の差動出力端子を有し、前記第1の差動クロック端子に入力される前記第2の差動クロック信号に同期して、前記第2の差動入力端子に入力される差動クロック信号をラッチし、前記第2の差動出力端子から第3の差動クロック信号を出力する第1のラッチ回路と、
    第2の差動クロック端子、第3の差動入力端子及び第3の差動出力端子を有し、前記第2の差動クロック端子に入力される前記第2の差動クロック信号の反転信号に同期して、前記第3の差動入力端子に入力される差動クロック信号をラッチし、前記第3の差動出力端子から第4の差動クロック信号を出力する第2のラッチ回路と、
    第4の差動入力端子及び第4の差動出力端子を有し、前記第4の差動入力端子に入力される前記第3の差動クロック信号をバッファリングし、前記第4の差動出力端子から第5の差動クロック信号を出力する第1の出力バッファ回路と、
    第5の差動入力端子及び第5の差動出力端子を有し、前記第5の差動入力端子に入力される前記第4の差動クロック信号をバッファリングし、前記第5の差動出力端子から第6の差動クロック信号を出力する第2の出力バッファ回路と、
    前記第5の差動クロック信号が逆相信号又は前記第6の差動クロック信号が逆相信号である場合には、前記入力バッファ回路の前記イネーブル端子にアサート信号を出力し、前記第5の差動クロック信号が同相信号又は前記第6の差動クロック信号が同相信号である場合には、前記入力バッファ回路の前記イネーブル端子にネゲート信号を出力する第1の異常モード検出器とを有し、
    前記第1のラッチ回路の前記第2の差動入力端子は、前記第2のラッチ回路が出力する前記第4の差動クロック信号の反転信号を入力し、
    前記第2のラッチ回路の前記第3の差動入力端子は、前記第1のラッチ回路が出力する前記第3の差動クロック信号を入力することを特徴とするクロック生成回路。
  2. さらに、前記第1の異常モード検出器と同等の構成を有するダミーのための第2の異常モード検出器を有し、
    前記第1の出力バッファ回路の前記第4の差動出力端子及び前記第2の出力バッファ回路の前記第5の差動出力端子は、一方が前記第1の異常モード検出器に接続され、他方が前記第2の異常モード検出器に接続されることを特徴とする請求項1記載のクロック生成回路。
  3. 前記第1の異常モード検出器は、排他的論理和回路を有することを特徴とする請求項1又は2記載のクロック生成回路。
  4. 前記第1の異常モード検出器は、クロスカップルインバータ及び消費電流検知器とを有することを特徴とする請求項1又は2記載のクロック生成回路。
  5. さらに、前記第1の異常モード検出器の出力信号がアサート信号であり、かつイネーブル信号がアサート信号である場合に、前記入力バッファ回路の前記イネーブル端子にアサート信号を出力し、それ以外の場合には前記入力バッファ回路の前記イネーブル端子にネゲート信号を出力する論理回路を有することを特徴とする請求項1〜4のいずれか1項に記載のクロック生成回路。
JP2009034490A 2009-02-17 2009-02-17 クロック生成回路 Expired - Fee Related JP5257122B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009034490A JP5257122B2 (ja) 2009-02-17 2009-02-17 クロック生成回路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009034490A JP5257122B2 (ja) 2009-02-17 2009-02-17 クロック生成回路

Publications (2)

Publication Number Publication Date
JP2010193104A true JP2010193104A (ja) 2010-09-02
JP5257122B2 JP5257122B2 (ja) 2013-08-07

Family

ID=42818680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009034490A Expired - Fee Related JP5257122B2 (ja) 2009-02-17 2009-02-17 クロック生成回路

Country Status (1)

Country Link
JP (1) JP5257122B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018515991A (ja) * 2015-05-18 2018-06-14 クアルコム,インコーポレイテッド レプリカバイアス印加を用いる高速ac結合インバータベースバッファ

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220056657A (ko) 2020-10-28 2022-05-06 주식회사 엘지화학 아크릴로니트릴 이량체의 제조 방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04298115A (ja) * 1991-03-27 1992-10-21 Matsushita Electric Ind Co Ltd フリップフロップ回路
JPH0888545A (ja) * 1994-09-19 1996-04-02 Fujitsu Ltd デューティ比補正方法および装置
JP2005347838A (ja) * 2004-05-31 2005-12-15 Toshiba Corp 半導体集積回路
JP2006033058A (ja) * 2004-07-12 2006-02-02 Matsushita Electric Ind Co Ltd クロック供給回路

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04298115A (ja) * 1991-03-27 1992-10-21 Matsushita Electric Ind Co Ltd フリップフロップ回路
JPH0888545A (ja) * 1994-09-19 1996-04-02 Fujitsu Ltd デューティ比補正方法および装置
JP2005347838A (ja) * 2004-05-31 2005-12-15 Toshiba Corp 半導体集積回路
JP2006033058A (ja) * 2004-07-12 2006-02-02 Matsushita Electric Ind Co Ltd クロック供給回路

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018515991A (ja) * 2015-05-18 2018-06-14 クアルコム,インコーポレイテッド レプリカバイアス印加を用いる高速ac結合インバータベースバッファ

Also Published As

Publication number Publication date
JP5257122B2 (ja) 2013-08-07

Similar Documents

Publication Publication Date Title
US8232844B2 (en) Synchronous oscillator, clock recovery apparatus, clock distribution circuit, and multi-mode injection circuit
US9172385B2 (en) Timing adjustment circuit and semiconductor integrated circuit device
US9154117B2 (en) Pulse generation in dual supply systems
US10447251B2 (en) Power efficient high speed latch circuits and systems
US20090122936A1 (en) Method and circuit for dynamically changing the frequency of clock signals
US9250612B2 (en) System and method for a time-to-digital converter
WO2018113668A1 (en) Wide capture range reference-less frequency detector
US20150381154A1 (en) Flip-flop circuit
US8054103B1 (en) Synchronous clock multiplexing and output-enable
JP5257122B2 (ja) クロック生成回路
KR20160076214A (ko) 반도체 장치
JP7218289B2 (ja) クロックイネーブラ回路
JP6056632B2 (ja) データ保持回路、及び、半導体集積回路装置
KR100853862B1 (ko) 지연 고정 루프 기반의 주파수 체배기
Liang et al. A 30fJ/b current-biased inverter based RO TRNG with high temperature and supply voltage stabilities
JP5385449B2 (ja) ゲート電圧制御発振器およびクロックデータ再生回路
US9479147B2 (en) Synchroniser flip-flop
JP2009290775A (ja) リタイミング回路及び分周システム
KR102692980B1 (ko) Pvt 변동에 둔감하고 상승/하강 에지들이 동일한 직교위상 클록 생성을 위한 신규한 지연 셀
JP2010252012A (ja) 半導体集積回路およびその動作方法
JP2009194560A (ja) 分周回路
JP2007166441A (ja) センスアンプ回路
Yang et al. A low power 120-to-520Mb/s clock and data recovery circuit for PWM signaling scheme
US20100045389A1 (en) Ring oscillator
Jitendra Study of Synchronizers

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111006

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130326

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130408

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160502

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees