JP2010177081A - 燃料電池 - Google Patents

燃料電池 Download PDF

Info

Publication number
JP2010177081A
JP2010177081A JP2009019415A JP2009019415A JP2010177081A JP 2010177081 A JP2010177081 A JP 2010177081A JP 2009019415 A JP2009019415 A JP 2009019415A JP 2009019415 A JP2009019415 A JP 2009019415A JP 2010177081 A JP2010177081 A JP 2010177081A
Authority
JP
Japan
Prior art keywords
fuel cell
electrolyte membrane
catalyst layer
electrolyte
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009019415A
Other languages
English (en)
Other versions
JP5636631B2 (ja
Inventor
Koichiro Ikeda
晃一郎 池田
Shigeki Hasegawa
茂樹 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2009019415A priority Critical patent/JP5636631B2/ja
Publication of JP2010177081A publication Critical patent/JP2010177081A/ja
Application granted granted Critical
Publication of JP5636631B2 publication Critical patent/JP5636631B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

【課題】燃料電池運転中のセル温度が水の沸点近くであっても燃料電池のドライアップをし難くすることを目的とする。
【解決手段】燃料電池であって、電解質膜20と、前記電解質膜の表面に配置される触媒層30と、を備え、前記触媒層30は空隙300を有し、前記空隙300の量が1.0mL/m2より多く5.6mL/m2以下であり、前記電解質膜の水の透過性が0.10mg/(min・cm2・kPa)よりも大きい、燃料電池。
【選択図】図10

Description

本発明は、燃料電池に関し、特に燃料電池用の触媒層に関する。
燃料電池の電解質膜の両面には、電気化学反応を促進するための触媒層が形成されている。ここで、触媒層として、触媒中の直径60〜1000nmの大きさの空孔の容積を0.15から0.25cm3/gとした燃料電池が知られている(例えば特許文献1)。
特開2003−151564号公報
しかし、湿度の低いカソードガスを燃料電池に供給すると共に、燃料電池のセル温度を水の沸点である100℃前後で運転させようとすると、カソードで生成した生成水が、触媒層から大量に蒸発する。そのため、燃料電池がドライアップし易く、燃料電池の発電の継続が困難になり易いという問題があった。
本発明は上記課題の少なくとも1つを解決し、燃料電池運転中のセル温度が水の沸点近くであっても燃料電池のドライアップをし難くすることを目的とする。
本発明は、上述の課題の少なくとも一部を解決するためになされたものであり、以下の形態又は適用例として実現することが可能である。
[適用例1]
燃料電池であって、電解質膜と、前記電解質膜の表面に配置される触媒層と、を備え、前記触媒層は空隙を有し、前記空隙の量が1.0mL/m2より多く5.6mL/m2以下であり、前記電解質膜の水の透過性が0.1mg/(min・cm2・kPa)よりも大きい、燃料電池。
この適用例によれば、燃料電池運転中のセル温度が水の沸点近くであっても燃料電池のドライアップをし難くすることが可能である。
[適用例2]
適用例1に記載の燃料電池において、前記燃料電池は、水の沸点付近で運転する、燃料電池。
[適用例3]
適用例1または適用例2に記載の燃料電池において、前記空隙の量が1.7mL/m2以上5.6mL/m2以下である、燃料電池。
この適用例の条件によれば、ドライアップをより起こりにくくすることが可能である。
[適用例4]
適用例1から適用例3のいずれかに記載の燃料電池において、前記電解質膜の水透過性が0.15mg/(min・cm2・kPa)以上である、燃料電池。
この適用例の条件によれば、ドライアップをより起こりにくくすることが可能である。
[適用例5]
請求項1から請求項4のいずれかに記載の燃料電池において、前記空隙の量は、前記空隙に繊維が充填されることにより、前記値に調整されている、燃料電池。
なお、本発明は、種々の形態で実現することが可能であり、例えば、燃料電池の他、燃料電池システム、燃料電池用触媒層およびその製造方法等、様々な形態で実現することができる。
本発明の実施例に用いられる燃料電池の断面を模式的に示す説明図である。 触媒層近傍の構成を模式的に示す説明図である。 本実施例の効果を模式的に示す説明図である。 空隙の大きさを小さくする方法の一例を示したものである。 サンプル1〜17の特徴と各サンプルの性能を示す表である。 電解質膜測定装置を模式的に示す説明図である。 発電継続評価装置を模式的に示す説明図である。 水銀圧入法を用いて求めた空隙の量を示す説明図である。 カソード触媒層用インクに含まれるコロイド粒子の径の分布を示す説明図である。 触媒層単位面積当たりの空隙量と電解質膜における水の透過性能と発電維持可能の有無を説明する説明図である。
図1は、本発明の実施例に用いられる燃料電池の断面を模式的に示す説明図である。燃料電池10は、電解質膜20と、触媒層30と、ガス拡散層35と、セパレータ40と、ガスケット45と、を備える。電解質膜20は、アノード側で生成されたプロトンを、カソード側に移動させるための膜である。また、電解質膜20は、カソード、アノード間で水を移動させるためにも用いられる。電解質膜20として、例えば、パーフルオロカーボンスルホン酸ポリマなどのフッ素系樹脂や炭化水素系樹脂からなるプロトン伝導性のイオン交換膜を用いることが可能である。
触媒層30は、電解質膜20の表面に形成されている。触媒層30の触媒として、例えば、白金触媒や、あるいは白金と他の金属とからなる白金合金触媒を用いることが可能である。触媒は、例えばカーボン粒子上に担持され、電解質膜20の表面に塗布されて、触媒層30を形成している。
ガス拡散層35は、電解質膜20の両面に配置されている。ガス拡散層35として、カーボン不織布を用いたカーボンクロスやカーボンペーパーを用いることが可能である。また、ガス拡散層35として、金属製や樹脂製の多孔体を用いることも可能である。セパレータ40は、ガス拡散層35の外側に配置されている。セパレータ40として、例えば、金属性の平板を用いることが可能である。フレーム45は、電解質膜20の外縁部に形成され、電解質膜20を支持している。フレーム45は、例えば、樹脂やゴムなどにより形成されている。
図2は、触媒層近傍の構成を模式的に示す説明図である。触媒層30は、触媒粒子100と、電解質200とを備える。触媒粒子100は、白金(Pt)などの触媒がカーボン粒子などの担体に担持されたものである。電解質200は、例えば、パーフルオロカーボンスルホン酸ポリマなどのフッ素系樹脂や炭化水素系樹脂からなり、プロトン伝導性を有している。電解質200は、その中に触媒粒子100を含んでいる点で電解質膜20と異なる。また、電解質200と、電解質膜20とは、イオン交換容量が異なっていてもよい。電解質200は、多数の空孔300(「空隙300」とも呼ぶ。)を有する。空隙300を介して、反応ガスが触媒粒子100に供給される。
電解質200内の空隙300では、燃料電池の電気化学反応により生じた水400が蒸発する。空隙300の量は、水400の蒸発速度に大きな影響を与える。すなわち、空隙300の量が多ければ、水400は蒸発し易くなる。そのため、空隙300の量が多いと、燃料電池がドライアップし易くなり、燃料電池の効率を低下させる。特に、燃料電池10を水の沸点近傍で運転させる場合、空隙300の量は少ない方が好ましい。
図3は、本実施例の効果を模式的に示す説明図である。図3では、触媒粒子100と電解質200を固体相として、同じハッチングを付している。本実施例では、空隙300の量を少なくして、水400の蒸発を抑制し、燃料電池がドライアップしないようにしている。
本願出願人は、様々な条件で膜電極接合体を作成して、空隙量、気孔率、水の透過性を調べた。さらに、生成した膜電極接合体を用いて、燃料電池の発電の継続性を調べた。その結果、空隙300の量が、1.0mL/m2より大きく、5.6mL/m2以下であれば、『燃料電池の運転温度が水の沸点、且つ反応ガスを加湿しない』という条件で、燃料電池の発電の長時間の継続が可能である。なお、より好ましい条件は、空隙の量が、1.7mL/m2以上5.6mL/m2以下である。なお、「空隙の量」の単位は、触媒層の1m2当たりの空隙の体積である。
空隙300の量を少なくするためには、様々な方法がある。一例としては、触媒層30の形成条件、すなわち、触媒粒子100や電解質200の組成や生成条件を変えて、空隙300の量を調整する方法や、触媒層30を形成した後、空隙300に繊維を充填して、空隙300の量を調整する方法を用いることが可能である。
図4は、空隙の大きさを小さくする方法の一例を示したものである。この実施例では、空隙300にカーボンナノチューブ500の繊維を充填している。これにより、空隙300の一部がカーボンナノチューブ500により埋められるので、空隙300の量を少なくすることが可能である。このように、空隙に、カーボンナノチューブなどの繊維を充填することにより、空隙300の量を、1.0mL/m2より多く、5.6mL/m2以下の範囲や、1.7mL/m2以上5.6mL/m2以下の範囲に調整しても、燃料電池10の発電を長時間継続することが可能である。
また、本願出願人は、燃料電池の発電の継続性には、電解質膜20の透水性も影響があることを見いだした。すなわち、本実施例では、空隙300の量を少なくしているため、逆に、フラッディングが起こり易い傾向がある。したがって、電解質膜20を介して水をアノード側に移動させることが好ましい。電解質膜20の透水性が、0.10mg/(min・cm2・kPa)(=1.0mg/(min・m2・Pa))よりも大きければ、燃料電池の発電を長時間継続することが可能である。また、より好ましくい条件は、電解質膜20の透水性が、0.15mg/(min・cm2・kPa)以上という条件である。
[実験例]
図5は、サンプル1〜17の特徴と各サンプルの性能を示す表である。なお、各サンプルの調製と性能試験は、以下のように行った。
[サンプル1]
(1)電解質溶液L1の調製
スルホン酸基を有するパーフルオロカーボン重合体を水とアルコールの混合溶媒に溶かして、電解質溶液L1を作成した、このとき、電解質のイオン交換容量が1.45meq/gとなるように調整した。
(2)電解質膜M1の形成
電解質溶液L1を平板上に塗布して乾燥させて、電解質膜M1を得た。
(3)電解質膜の水の透過性の評価
図6は、電解質膜測定装置を模式的に示す説明図である。電解質膜測定装置50は、電解質膜設置部60と、液水加圧部70と、透過水量測定部80とを備える。電解質膜設置部60は、電解質膜20と液水容器65とを備える。液水容器65と液水加圧部70との間、液水容器65と透過水量測定部80との間は、パイプ90により接続されている。電解質膜20は、液水容器65の中に配置され、液水加圧部70側と、透過水量測定部80側とに分離している。電解質膜測定装置50では、液水加圧部70を用いて加圧すると、液水が電解質膜20を通り抜けて、透過水量測定部80側に移動する。移動した水量は、透過水量測定部80を用いて測定される。
水の透過速度の測定手順は、以下の通りである。
(a)電解質膜設置部60と液水容器65内の液水の温度を90℃に設定した。
(b)次に、液水加圧部70を用いて電解質膜20の液水加圧部70側に一定圧力を印加した。
(c)この状態で、透過水量測定部80を用いて、電解質膜30の透過水量測定部80の液水の増加量を、一定時間毎に測定した。
(d)こうして得られた液水の増加量の時間変化を用いて、液水の透過速度を求めた。
(e)液水加圧部70を用いて印加する圧力を変えて、(b)から(d)までを繰り返した。
(f)各圧力における液水の透過速度を用い、圧力に対する液水の透過性(速度の変化率)を求めた(図5の表の「水の透過性能」)。
(4)カソード触媒層用インクC1の調製
電解質溶液L1と、Pt触媒を担持したカーボンブラック(全重量に対するPtの重量比50%)とを混合し、カソード触媒層用インクC1を調製した。なお、電解質と触媒を担持したカーボンブラックの重量比が、25:75となるように調製した。
(5)アノード触媒層用インクA1の調製
電解質溶液L1と、Pt触媒を担持したカーボンブラック(全重量に対するPtの重量比50%)とを混合し、アノード触媒用インクA1を調製した。なお、電解質と触媒を担持したカーボンブラックの重量比が、33:67になるように調製した。
(6)膜電極接合体MEA1の作成
電解質膜M1上にカソード触媒層用インクC1とアノード触媒用インクA1を塗布して触媒層30が形成された膜電極接合体MEA1を形成した。このとき、カソード極については、単位面積当たりのPtの量が0.5mg/cm2(=5g/m2)となるように塗布した。また、アノード極については、単位面積当たりのPtの量が0.2mg/cm2(=2g/m2)となるように塗布した。
(7)ガス拡散層G1
ガス拡散層G1として、撥水性のカーボンペーパーを撥水性のカーボン粉末層(カーボンブラックと、ポリテトラフルオロエチレンの混合物)で目詰めしたものを用いた。なおガス拡散層G1の厚さは、300μmであった。また、その、透水開始圧(透水が開始される圧力)は150kPaであった。
(8)発電継続評価装置
図7は、発電継続評価装置を模式的に示す説明図である。発電継続評価装置600は、評価セル650と、LCRメーター680と、燃料ガス供給部700と酸化ガス供給部800とを備える。評価セル650は、膜電極接合体MEA1と、ガス拡散層G1と、集電板670を備える。ガス拡散層G1は、膜電極接合体MEA1の両側に配置され、集電板670は、ガス拡散層G1の外側に配置されている。集電板670には、LCRメーター680が接続されている。LCRメーター680は、膜電極接合体MEA1に発生する電圧を測定する。
燃料ガス供給部700は、燃料ガスタンク710と、ガス流量制御部720と、加湿器730と、これらを接続する配管740と、3方バルブ750と、を備える。燃料ガス供給部700は、配管740により、評価セル650のアノード側に接続されている。加湿器730は、2つの3方バルブ750により配管740に接続されている。これらの2つの3方バルブ750を切り替えることによって、膜電極接合体MEA1に、加湿した燃料ガスを供給したり、あるいは、加湿されていない湿度0%の燃料ガスを供給することが可能である。
酸化ガス供給部800は、酸化ガスタンク810と、ガス流量制御部820と、加湿器830と、これらを接続する配管840と、3方バルブ850と、を備える。酸化ガス供給部800の構成は燃料ガス供給部700の構成と同じであるため、燃料ガス供給部700の各構成を示す符号に100を加えた符号を各構成に付して説明を省略する。
(9)発電維持の評価1
(a)評価セル650の温度を100℃とし、電流密度が、1.0A/cm2となるように、酸化ガスとして、化学量論比150%、ゲージ圧100kPaの空気を供給し、燃料ガスとして、化学量論比250%、ゲージ圧100kPaの水素ガスを供給して、発電させた。このとき、両極の露点が80℃になるように酸化ガス、燃料ガスの湿度を調整した。図5に示すα=250%は、燃料ガスの化学両論比を示している。
(b)この湿度下で発電が安定した後、3方バルブ750、850を切り替えて両極に供給する反応ガスをドライガスに切り替えた。
(c)ドライガスに切り替えた後、継続的な発電(約1時間)が維持できたか否かにより評価を行った。
(10)発電維持の評価2
燃料ガスの化学量論比を200%とし、他の条件は発電維持の評価1と同様にした。図5に示すα=200%は、燃料ガスの化学両論比を示している。
(11)触媒層の空隙量、平均細孔径、気孔率の測定
触媒層30の空隙の量は、水銀圧入法を用いて行った。水銀圧入法を用いる場合、Washburnの式で示される、
D=−4γcosθ/P
の関係がある。ここで、Pは印加圧力、γは水銀の表面張力(=480mN/m)、θは水銀と細孔壁との接触角(=140度)、Dは細孔の直径である。ある圧力Pをかけると、細孔の直径がD以上の孔に水銀が浸入する。このときの浸入容積を測定し、積算すれば、細孔(空隙)の量を求めることが可能である。また、細孔の直径Dと水銀の浸入容積から、細孔を球とみなして各直径における細孔の数を求め、この値から平均細孔径を求めた。また、触媒層30の空隙を除いた部分に含まれる電解質と触媒粒子の重さ、及び電解質と触媒粒子の密度から触媒層30の空隙を除いた部分の体積を求め、触媒層30中の空隙300の比率(気孔率)を求めた。
図8は、水銀圧入法を用いて求めた空隙の量を示す説明図である。ハッチングで示した部分が、空隙300の総量を示している。
サンプル1と電解質膜の生成条件を変えたサンプル2〜17を作成して、サンプル1と同様に評価を行った。
[サンプル2]
(1)電解質溶液L2の調製
スルホン酸基を有するパーフルオロカーボン重合体を水とアルコールの混合溶媒に溶かして、電解質溶液L2を作成した、このとき、電解質のイオン交換容量が0.90meq/gとなるように調整した。
(2)カソード触媒層用インクC2の調製
電解質溶液L2と、Pt触媒を担持したカーボンブラック(全重量に対するPtの重量比50%)とを混合し、カソード触媒層用インクC2を調製した。なお、電解質と触媒担持カーボンの重量比が、25:75となるように調製した。
(3)他の条件
他の条件は、サンプル1と同様である。
[サンプル3]
(1)電解質溶液L3の調製
スルホン酸基を有するパーフルオロカーボン重合体を水とアルコールの混合溶媒に溶かして、電解質溶液L3を作成した、このとき、電解質のイオン交換容量が1.33meq/gとなるように調整した。
(2)カソード触媒層用インクC3の調製
電解質溶液L3と、Pt触媒を担持したカーボンブラック(全重量に対するPtの重量比50%)とを混合し、カソード触媒層用インクC3を調製した。なお、電解質と触媒担持カーボンの重量比が、25:75となるように調製した。
(3)他の条件
他の条件は、サンプル1と同様である。
[サンプル4]
(1)膜電極接合体MEA2の作成
電解質膜M1上にカソード触媒層用インクC1とアノード触媒用インクA1を塗布して触媒層30が形成された膜電極接合体MEA2を形成した。このとき、カソード極については、単位面積当たりのPtの量が1.0mg/cm2(10g/m2)となるように塗布した。また、アノード極については、単位面積当たりのPtの量が0.2mg/cm2(2g/m2)となるように塗布した。
(2)他の条件
他の条件は、サンプル1と同様である。
[サンプル5]
(1)電解質膜M2の形成
電解質溶液L3を平板上に塗布して乾燥させて、電解質膜M2を得た。
(2)他の条件
他の条件は、サンプル1と同様である。
[サンプル6]
(1)電解質膜M3の形成
電解質溶液L2を平板上に塗布して乾燥させて、電解質膜M3を得た。
(2)他の条件
他の条件は、サンプル1と同様である。
[サンプル7]
(1)電解質膜M1’の形成
電解質溶液L1を平板上に塗布して乾燥させて、電解質膜M1’を得た。このとき、電解質膜M1’の厚さがサンプル1の電解質膜M1の2倍になるように電解質膜M1’の厚さを調製した。
(2)他の条件
他の条件は、サンプル1と同様である。
[サンプル8]
(1)カソード触媒層用インクC4の調製
電解質溶液L1と、Pt触媒を担持したカーボンブラック(全重量に対するPtの重量比50%)とを混合し、カソード触媒層用インクC4を調製した。なお、電解質と触媒担持カーボンの重量比が、30:70となるように調製した。
(2)他の条件
他の条件は、サンプル1と同様である。
[サンプル9]
(1)電解質膜M2の形成
電解質溶液L3を平板上に塗布して乾燥させて、電解質膜M2を得た。
(2)他の条件
他の条件は、サンプル8と同様である。
[サンプル10]
(1)カソード触媒層用インクC5の調製
電解質溶液L3と、Pt触媒を担持したカーボンブラック(全重量に対するPtの重量比50%)とを混合し、カソード触媒層用インクを調製した。なお、電解質と触媒担持カーボンの重量比は25:75とした。カソード触媒層用インクは、インク粒子を含んでいる。インク粒子は、コロイド粒子であり、触媒を担持したカーボン粒子と、カーボン粒子の周りを囲っている電解質を有している。超音波を用いて、コロイド粒子を約0.1μmとなるまで解砕し、解砕後2日間静置して、カソード触媒層用インクC5を調製した。図9は、カソード触媒層用インクに含まれるコロイド粒子の径の分布を示す説明図である。解砕されたコロイド粒子の一部が凝集し、カソード触媒層用インクC5に含まれるコロイド粒子の径の分布については、約0.1μmと約0.4μmの大きさで、ピークが見られた。
(2)他の条件
他の条件は、サンプル1と同様である。
[サンプル11]
(1)カソード触媒層用インクC6の調製
電解質溶液L3と、Pt触媒を担持したカーボンブラック(全重量に対するPtの重量比50%)とを混合し、カソード触媒層用インクを調製した。なお、電解質と触媒担持カーボンの重量比は20:80とした。この後、超音波を用いて、触媒を担持したカーボン粒子を解砕し、解砕後2日間静置して、カソード触媒層用インクC6を調製した。
(2)他の条件
他の条件は、サンプル1と同様である。
[サンプル12]
(1)カソード触媒層用インクC7の調製
電解質溶液L2と、Pt触媒を担持したカーボンブラック(全重量に対するPtの重量比80%)とを混合し、カソード触媒層用インクを調製した。なお、電解質と触媒担持カーボンの重量比が、10:90となるように調製した。
(2)他の条件
他の条件は、サンプル1と同様である。
[サンプル13]
(1)電解質膜M2の形成
電解質溶液L3を平板上に塗布して乾燥させて、電解質膜M2を得た。
(2)他の条件
他の条件は、サンプル12と同様である。
[サンプル14]
(1)カソード触媒層用インクC8の調製
電解質溶液L1と、Pt触媒を担持したカーボンブラック(全重量に対するPtの重量比80%)とを混合し、カソード触媒層用インクC8を調製した。なお、電解質と触媒担持カーボンの重量比は25:75とした。
(2)他の条件
他の条件は、サンプル12と同様である。
[サンプル15]
(1)カソード触媒層用インクC8の調製
電解質溶液L1と、白金ブラックとを混合し、カソード触媒層用インクC9を調製した。なお、電解質と白金の重量比が、5:95となるように調製した。
(2)他の条件
他の条件は、サンプル1と同様である。
[サンプル16]
(1)カーボンナノチューブの作成
カーボンペーパー上にカーボンナノチューブ精製用触媒(例えばニッケル、鉄)を担持させ、原料ガス(例えばアセチレン)を供給して、カーボンペーパー上にカーボンナノチューブを、垂直配向させながら、生成させた。
(2)膜電極接合体MEA3の作成
電解質膜M1上にカソード触媒層用インクC2とアノード触媒用インクA1を塗布して触媒層30が形成された膜電極接合体MEA3を形成した。このとき、カソード極については、単位面積当たりのPtの量が0.5mg/cm2(5g/m2)となるように塗布した。また、アノード極については、単位面積当たりのPtの量が0.2mg/cm2(2g/m2)となるように塗布した。
(3)膜電極接合体MEA3へのカーボンナノチューブの嵌入
膜電極接合体MEA3のカソード側の触媒層30にカーボンナノチューブが配向したカーボンペーパーを1MPaの荷重で押し当て、カソード側の触媒層30の空隙にカーボンナノチューブを嵌入させた。
(4)他の条件
他の条件は、サンプル1と同様である。
[サンプル17]
(1)電解質膜M2’の形成
電解質溶液L3を平板上に塗布して乾燥させて、電解質膜M2’を得た。このとき、電解質膜M2’の厚さがサンプル1の電解質膜M1の1/2倍になるように調製した。
(2)他の条件
他の条件は、サンプル1と同様である。
図5は、各サンプルの評価結果を示している。100℃における発電の長時間の維持が可能か否かについては、触媒層単位面積当たりの空隙量と、電解質膜の水の透過性能が影響を与えており、細孔(空隙)の大きさや、気孔率は影響を与えていないことがわかった。
図10は、触媒層単位面積当たりの空隙量と、電解質膜における水の透過性能と、発電維持可能の有無を説明する説明図である。発電維持が可能な領域は、空隙300の量が1.0mL/m2より多く5.6mL/m2以下であり、電解質膜20の水の透過性が0.10mg/(min・cm2・kPa)よりも大きい範囲である。空隙300の範囲については1.7mL/m2以上5.6mL/m2以下の範囲がより好ましい。また、電解質膜20の水の透過性の範囲については、0.15mg/(min・cm2・kPa)以上の範囲が、より好ましい。
空隙の量が5.6mL/m2より大きい場合には、温度100℃では、水の蒸発速度が速いため、ドライアップし易く、発電を維持できない場合がある。また、空隙の量が1.0mL/m2以下の場合には、反応に必要な反応ガスが十分に供給されないため、発電が維持できない場合がある。なお、本明細書では、空隙の量を、触媒層の単位面積当たりの空隙の体積で規定している。これを触媒層の単位容積当たりの空隙の体積で規定すると、触媒層30の厚さにより、触媒層30に含まれる空隙300の絶対量が異なる。すなわち、触媒層30を厚くすると、空隙300の絶対量が増えるため、蒸発速度が速くなって、ドライアップし易くなる。触媒層の空隙量の単位としては、触媒層全体における水の蒸発速度との相関が高い単位を採用することが好ましく、そのためには、触媒層30の単位面積当たりの空隙300の量を規定するのが妥当である。
空隙300の量を調製するためには、様々な方法がある。例えば、サンプル1〜3の結果を見ればわかるように、電解質200のイオン交換容量を調整することにより、調製することが可能である。電解質200のイオン交換容量を大きくすると、空隙の量が少なくなる。また、インク粒子の粒度を調製してもよい(サンプル3、10の比較)。この場合、インク粒子を細かく砕くと空隙の量が少なくなる。ここで、インク粒子とは、触媒粒子100と電解質200とが集まって凝集したものである。
また、空隙300の量は、触媒粒子100と電解質200(図2)を調製するだけでなく、図4に示すように、空隙300にカーボンナノチューブのような繊維を埋めて調製してもよい。
また、本実施例では、触媒層30において、水の蒸発を抑制している。したがって、カソードでは、水あまりの状態になりやすい。そのため、カソードにおける電気化学反応により生じた生成水を速やかにアノードに移動させる必要がある。そのためには、電解質膜20の水の透過性が高い必要がある。本実施例の結果から、電解質膜20の水の透過性が0.10mg/(min・cm2・kPa)よりも大きければよく、0.15mg/(min・cm2・kPa)以上であればより好ましい。
以上、いくつかの実施例に基づいて本発明の実施の形態について説明してきたが、上記した発明の実施の形態は、本発明の理解を容易にするためのものであり、本発明を限定するものではない。本発明は、その趣旨並びに特許請求の範囲を逸脱することなく、変更、改良され得るとともに、本発明にはその等価物が含まれることはもちろんである。
10…燃料電池
20…電解質膜
30…触媒層
35…ガス拡散層
40…セパレータ
45…フレーム
50…電解質膜測定装置
60…電解質膜設置部
65…液水容器
70…液水加圧部
80…透過水量測定部
90…パイプ
100…触媒粒子
150…化学量論比
200…電解質
250…化学量論比
300…空孔(空隙)
400…水
500…カーボンナノチューブ
600…発電継続評価装置
650…評価セル
670…集電板
700…燃料ガス供給部
710…燃料ガスタンク
720…ガス流量制御部
730…加湿器
740…配管
800…酸化ガス供給部
810…酸化ガスタンク
820…ガス流量制御部
830…加湿器
840…配管

Claims (5)

  1. 燃料電池であって、
    電解質膜と、
    前記電解質膜の表面に配置される触媒層と、
    を備え、
    前記触媒層は空隙を有し、
    前記空隙の量が1.0mL/m2より多く5.6mL/m2以下であり、
    前記電解質膜の水の透過性が0.10mg/(min・cm2・kPa)よりも大きい、
    燃料電池。
  2. 請求項1に記載の燃料電池において、
    前記燃料電池は、水の沸点付近で運転する、燃料電池。
  3. 請求項1または請求項2に記載の燃料電池において、
    前記空隙の量が1.7mL/m2以上5.6mL/m2以下である、燃料電池。
  4. 請求項1から請求項3のいずれかに記載の燃料電池において、
    前記電解質膜の水透過性が0.15mg/(min・cm2・kPa)以上である、燃料電池。
  5. 請求項1から請求項4のいずれかに記載の燃料電池において、
    前記空隙の量は、前記空隙に繊維が充填されることにより、前記値に調整されている、燃料電池。
JP2009019415A 2009-01-30 2009-01-30 燃料電池 Active JP5636631B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009019415A JP5636631B2 (ja) 2009-01-30 2009-01-30 燃料電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009019415A JP5636631B2 (ja) 2009-01-30 2009-01-30 燃料電池

Publications (2)

Publication Number Publication Date
JP2010177081A true JP2010177081A (ja) 2010-08-12
JP5636631B2 JP5636631B2 (ja) 2014-12-10

Family

ID=42707805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009019415A Active JP5636631B2 (ja) 2009-01-30 2009-01-30 燃料電池

Country Status (1)

Country Link
JP (1) JP5636631B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013020762A (ja) * 2011-07-08 2013-01-31 Honda Motor Co Ltd 電解質膜・電極接合体及びその製造方法
JP2013206717A (ja) * 2012-03-28 2013-10-07 Honda Motor Co Ltd 燃料電池の拡散層構造
JP2014082076A (ja) * 2012-10-16 2014-05-08 Toyota Motor Corp 拡散層の生産方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005026174A (ja) * 2003-07-01 2005-01-27 Honda Motor Co Ltd 固体高分子形燃料電池
JP2006120506A (ja) * 2004-10-22 2006-05-11 Honda Motor Co Ltd 固体高分子型燃料電池
JP2007179951A (ja) * 2005-12-28 2007-07-12 Equos Research Co Ltd 燃料電池用電極及びその製造方法
JP2007527103A (ja) * 2004-03-05 2007-09-20 ユミコア・アクチエンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト 膜電極ユニット
JP2008186798A (ja) * 2007-01-31 2008-08-14 Nissan Motor Co Ltd 電解質膜−電極接合体

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005026174A (ja) * 2003-07-01 2005-01-27 Honda Motor Co Ltd 固体高分子形燃料電池
JP2007527103A (ja) * 2004-03-05 2007-09-20 ユミコア・アクチエンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト 膜電極ユニット
JP2006120506A (ja) * 2004-10-22 2006-05-11 Honda Motor Co Ltd 固体高分子型燃料電池
JP2007179951A (ja) * 2005-12-28 2007-07-12 Equos Research Co Ltd 燃料電池用電極及びその製造方法
JP2008186798A (ja) * 2007-01-31 2008-08-14 Nissan Motor Co Ltd 電解質膜−電極接合体

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013020762A (ja) * 2011-07-08 2013-01-31 Honda Motor Co Ltd 電解質膜・電極接合体及びその製造方法
JP2013206717A (ja) * 2012-03-28 2013-10-07 Honda Motor Co Ltd 燃料電池の拡散層構造
JP2014082076A (ja) * 2012-10-16 2014-05-08 Toyota Motor Corp 拡散層の生産方法

Also Published As

Publication number Publication date
JP5636631B2 (ja) 2014-12-10

Similar Documents

Publication Publication Date Title
Hwang et al. Influence of properties of gas diffusion layers on the performance of polymer electrolyte-based unitized reversible fuel cells
Kitahara et al. Gas diffusion layers coated with a microporous layer containing hydrophilic carbon nanotubes for performance enhancement of polymer electrolyte fuel cells under both low and high humidity conditions
Wang et al. Micro-porous layer with composite carbon black for PEM fuel cells
Zainoodin et al. High power direct methanol fuel cell with a porous carbon nanofiber anode layer
Xie et al. Carbon nanotubes grown in situ on carbon paper as a microporous layer for proton exchange membrane fuel cells
Park et al. Understanding the mechanism of membrane electrode assembly degradation by carbon corrosion by analyzing the microstructural changes in the cathode catalyst layers and polarization losses in proton exchange membrane fuel cell
JP5298566B2 (ja) 膜電極接合体
JP5021292B2 (ja) 燃料電池
JP5458503B2 (ja) 電解質膜−電極接合体の製造方法
JP2009252359A (ja) 燃料電池
Lin et al. Effect of pore size distribution in the gas diffusion layer adjusted by composite carbon black on fuel cell performance
JP2017517107A (ja) 膜電極接合体
Kim et al. Effects of the microstructure and powder compositions of a micro-porous layer for the anode on the performance of high concentration methanol fuel cell
JP2016100262A (ja) 固体高分子形燃料電池用触媒
Wan et al. Mechanism of improving oxygen transport resistance of polytetrafluoroethylene in catalyst layer for polymer electrolyte fuel cells
Orfanidi et al. Mitigation strategy towards stabilizing the Electrochemical Interface under high CO and H2O containing reformate gas feed
Song et al. Rational design of carbon network structure in microporous layer toward enhanced mass transport of proton exchange membrane fuel cell
Wang et al. Effects of the carbon black properties in gas diffusion layer on the performance of proton exchange membrane fuel cells
Chen et al. Structural design of microporous layer to mitigate carbon corrosion in proton exchange membrane fuel cells
Zhang et al. A metallic gas diffusion layer and porous media flow field for proton exchange membrane fuel cells
JP5636631B2 (ja) 燃料電池
US20190074522A1 (en) Catalyst electrode layer, membrane-electrode assembly, and fuel cell
JP2008071631A (ja) 燃料電池用触媒構造体、膜電極接合体、燃料電池
JP2007214019A (ja) 燃料電池用膜電極接合体および燃料電池用ガス拡散層
Song et al. Bimodal effect on mass transport of proton exchange membrane fuel cells by regulating the content of whisker-like carbon nanotubes in microporous layer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140924

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141007

R151 Written notification of patent or utility model registration

Ref document number: 5636631

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151