JP2010172158A - 二次電池の充電装置 - Google Patents

二次電池の充電装置 Download PDF

Info

Publication number
JP2010172158A
JP2010172158A JP2009014236A JP2009014236A JP2010172158A JP 2010172158 A JP2010172158 A JP 2010172158A JP 2009014236 A JP2009014236 A JP 2009014236A JP 2009014236 A JP2009014236 A JP 2009014236A JP 2010172158 A JP2010172158 A JP 2010172158A
Authority
JP
Japan
Prior art keywords
charging
temperature
current value
current
circuit unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009014236A
Other languages
English (en)
Other versions
JP5310026B2 (ja
Inventor
Keisuke Takahashi
恵輔 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2009014236A priority Critical patent/JP5310026B2/ja
Publication of JP2010172158A publication Critical patent/JP2010172158A/ja
Application granted granted Critical
Publication of JP5310026B2 publication Critical patent/JP5310026B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

【課題】充電電流制御用トランジスタの温度が設定温度を超える時間を極力短くできると共に、充電時間を短くできる二次電池の充電装置を得る。
【解決手段】充電電流制御トランジスタQ1の温度Tが所定の温度T1以上になった場合は一旦充電を停止するようにしたことから、速やかに充電電流制御トランジスタQ1の温度を低下させることができるため、充電電流制御トランジスタQ1が所定の温度T1を超えている時間を極めて短くすることができ、充電電流制御トランジスタQ1の温度Tが所定の温度T1未満に戻った場合は、充電電流制御トランジスタQ1の温度Tが所定の温度T1よりもやや低い温度を保つような電流値が、充電電流制御トランジスタQ1の温度Tの温度上昇速度に応じて選択され、該選択された電流値で定電流充電を再開するようにして、充電時間も短くすることができるようにした。
【選択図】図1

Description

本発明は、二次電池の充電装置に関し、特に充電電流制御トランジスタの発熱を抑制し、しかも急速充電が可能な二次電池の充電装置に関する。
携帯電話等の携帯電子機器では電源に二次電池を使用するものが増えており、しかも二次電池とその充電回路を機器に内蔵し、ACアダプタを接続するだけで内蔵する二次電池を充電するものが一般的になっている。
ACアダプタで内蔵二次電池を充電する際、充電回路で使用している充電電流制御トランジスタが発熱する。この発熱温度が高くなると、携帯電子機器の外カバーの温度が上昇し、充電しながら携帯電子機器を使用していると、高温による不快感を覚えたりする場合もあった。更に前記発熱温度が高くなると、前記外カバーに使用しているプラスチック樹脂に不具合を発生させる場合もあった。
このため、前記充電電流制御トランジスタの温度検出を行い、前記充電電流制御トランジスタの温度が所定の温度以上になると、充電を停止したり、充電電流を小さくしたりすることによって温度上昇を抑える技術が開発されている。
例えば、第1の方法では、スイッチング回路が所定温度以上になると、該スイッチング回路への制御信号をラッチすると共にスイッチング回路をオフして充電を停止するようにした(例えば、特許文献1参照。)。
また、第2の方法では、充電電流制御トランジスタの温度が所定の温度以上になった場合は、充電電流を減らして、充電電流制御トランジスタの温度を下げるようにした(例えば、特許文献2参照。)。この制御によれば、充電器の温度が上限温度に達した後は低下するか、最悪の場合でも上限温度を維持するにとどまり、充電電流をカットしないことから、充電時間を従来よりも短縮させることができる。
また、第3の方法では、充電電流制御用トランジスタの温度が設定温度以上になると、充電電流を減少させ、充電電流制御用トランジスタの温度が設定温度を維持するように充電電流の制御を行った(例えば、特許文献3参照。)。
しかし、前記第1の方法では、スイッチング回路の温度が所定の温度以上になった場合は充電を停止してしまい、再度電源を入れ直すまでは充電を再開しないため、スイッチング回路の温度が低下しても充電が再開されず、いつまで経っても充電が完了しないという問題があった。
また、前記第2の方法では、充電電流制御トランジスタの温度は、充電電流だけではなく、周囲温度の影響にも大きく左右される。すなわち、冬場で周囲温度が10℃以下のように低い場合と、真夏で機器内の温度が40℃を超える場合とでは、充電電流制御トランジスタの温度を所定の温度に維持するための電流値が大きく異なる。このため、どのような温度環境下でも確実に充電電流制御トランジスタの温度が所定の温度を下回るような電流にすると充電電流が小さくなり、満充電までの時間が長くなるという問題があった。
また、前記第3の方法では、充電電流制御用トランジスタの温度が設定温度を維持するように充電電流の制御を行うため、充電時間を短くすることはできる。しかし、充電電流の変化に対して、充電電流制御用トランジスタの温度変化はかなりの時間遅れがあることから、充電電流制御用トランジスタの温度が設定温度を超えている時間が長くなっていた。このため、充電電流制御用トランジスタの寿命が短くなったり、機器の温度が設定温度以上に上昇したりしていた。これを防ぐには、充電電流制御用トランジスタの温度変化を見込んで、設定温度自体を下げなくてはならず、結局充電時間も長くなるという問題があった。
本発明は、このような問題を解決するためになされたものであり、充電電流制御用トランジスタの温度が設定温度を超える時間を極力短くすることができると共に、充電時間を短くすることができる二次電池の充電装置を得ることを目的とする。
この発明に係る充電装置は、二次電池の充電を行う充電装置において、
入力電源と前記二次電池との間に設けられた充電電流制御トランジスタと、
該充電電流制御トランジスタの温度検出を行い、検出した温度に応じた信号を生成して出力する温度検出回路部と、
前記充電電流制御トランジスタの動作制御を行って、前記二次電池に対して、設定された電流値で充電を行う定電流充電と、設定された電圧値で充電を行う定電圧充電とを行う充電回路部と、
前記二次電池の電池電圧値、前記二次電池への充電電流値及び前記温度検出回路部からの出力信号に応じて、前記定電流充電時の充電電流値及び前記定電圧充電時の充電電圧値をそれぞれ前記充電回路部に設定する制御回路部と、
を備え、
前記制御回路部は、前記二次電池に対して所定の第1電流値で充電を行っているときに、前記温度検出回路部の出力信号から前記充電電流制御トランジスタの温度が所定の温度以上になったことを検出すると、前記充電回路部に対して前記二次電池への充電を停止させると共に、前記第1電流値で充電を行っていたときの前記充電電流制御トランジスタの温度上昇速度を求め、前記充電電流制御トランジスタの温度が前記所定の温度未満に戻ると、前記充電回路部に対して、前記二次電池に供給する充電電流を前記第1電流値よりも小さい前記温度上昇速度に応じた第2電流値に設定するものである。
具体的には、前記制御回路部は、前記温度上昇速度が速いほど小さい電流値になるように前記第2電流値を設定するようにした。
また、前記制御回路部は、前記第2電流値で前記二次電池を充電した際に前記充電電流制御トランジスタの温度が前記所定の温度よりも低い温度になると予想される電流値に前記第2電流値を設定するようにした。
また、この発明に係る充電装置は、二次電池の充電を行う充電装置において、
入力電源と前記二次電池との間に設けられた充電電流制御トランジスタと、
該充電電流制御トランジスタの温度検出を行い、検出した温度に応じた信号を生成して出力する温度検出回路部と、
前記充電電流制御トランジスタの動作制御を行って、前記二次電池に対して、設定された電流値で充電を行う定電流充電と、設定された電圧値で充電を行う定電圧充電とを行う充電回路部と、
前記二次電池の電池電圧値、前記二次電池への充電電流値及び前記温度検出回路部からの出力信号に応じて、前記定電流充電時の充電電流値及び前記定電圧充電時の充電電圧値をそれぞれ前記充電回路部に設定する制御回路部と、
を備え、
前記制御回路部は、前記二次電池に対して所定の第1電流値で充電を行っているときに、前記温度検出回路部の出力信号から前記充電電流制御トランジスタの温度が所定の温度以上になったことを検出すると、前記第1電流値で充電を行っていたときの前記充電電流制御トランジスタの温度上昇速度を求め、前記充電回路部に対して、前記二次電池に供給する充電電流を前記第1電流値よりも小さい前記温度上昇速度に応じた第2電流値に設定するものである。
具体的には、前記制御回路部、前記温度上昇速度が速いほど小さい電流値になるように前記第2電流値を設定するようにした。
また、前記制御回路部は、前記第2電流値で前記二次電池を充電した際に前記充電電流制御トランジスタの温度が前記所定の温度よりも低い温度になると予想される電流値に前記第2電流値を設定するようにした。
また、前記制御回路部は、前記充電電流を前記第2電流値に設定した後、所定の時間が経過しても前記温度検出回路部の出力信号から前記充電電流制御トランジスタの温度が前記所定の温度以上であることを検出すると、前記充電回路部に対して前記充電電流制御トランジスタをオフさせて前記二次電池への充電を停止させ、前記充電電流制御トランジスタの温度が前記所定の温度未満に低下した時点で、前記充電電流制御トランジスタの温度低下速度を求め、前記充電回路部に対して、前記充電電流を前記第2電流値よりも小さい該温度低下速度に応じた第3電流値に設定するようにした。
この場合、前記制御回路部は、前記温度低下速度が速いほど大きい電流値になるように前記第3電流値を設定するようにした。
また、前記制御回路部は、前記第3電流値で前記二次電池を充電した際に前記充電電流制御トランジスタの温度が前記所定の温度よりも低い温度になると予想される電流値に前記第3電流値を設定するようにした。
本発明の充電装置によれば、充電電流制御トランジスタの温度が所定の温度以上になった場合は一旦充電を停止するようにしたことから、速やかに充電電流制御トランジスタの温度を低下させることができるため、充電電流制御トランジスタが所定の温度以上になっている時間を極めて短くすることができる。また、充電電流制御トランジスタの温度が前記所定の温度未満に戻った場合は、充電電流制御トランジスタの温度が前記所定の温度に近い温度を保つような第2電流値が温度上昇速度に応じて設定され、該設定された第2電流値で定電流充電を再開するようにしたことから、充電時間を短くすることができる。
また、本発明の充電装置によれば、充電電流制御トランジスタの温度が所定の温度以上になった場合は、充電を停止させずに充電電流制御トランジスタの温度上昇速度に応じて、充電電流制御トランジスタの温度が前記所定の温度よりもやや低くなると予測される第2電流値が設定され充電を継続するようにしたことから、より一層充電時間の短縮を図ることができる。更に、このように第2電流値を設定しても充電電流制御トランジスタの温度が前記所定の温度未満に低下しない場合は、一旦充電を停止して、充電電流制御トランジスタの温度低下速度に応じた第3電流値で充電を再開するようにしたことから、充電電流制御トランジスタの温度が前記所定の温度を超えている時間を短くすることができる。
本発明の第1の実施の形態における充電装置の回路構成例を示した図である。 図1の充電装置1の動作例を示したフローチャートである。 図2のフローチャートの動作を示したタイミングチャートである。 本発明の第2の実施の形態における充電装置の動作例を示したフローチャートである。 図4のフローチャートの動作を示したタイミングチャートである。 図4のフローチャートの動作を示したタイミングチャートである。
次に、図面に示す実施の形態に基づいて、本発明を詳細に説明する。
第1の実施の形態.
図1は、本発明の第1の実施の形態における充電装置の回路構成例を示した図である。
図1において、充電装置1は、ACアダプタ20から供給される直流電圧Vddを電源にして二次電池21の充電を行うものであり、電池接続端子Batに接続された二次電池21に対して、定電流−定電圧充電を行う。ACアダプタ20は、交流電圧を所定の直流電圧Vddに変換して、充電装置1の電源入力端子INに供給する。また、二次電池21は、リチウムイオン電池等で構成され、携帯機器内に内蔵された電池パックをなしている。
充電装置1は、PNPトランジスタからなる充電電流制御トランジスタQ1、温度センサ2、アンプ3、AD変換回路4、制御回路5、演算増幅回路6,7、充電電流検出回路8、電池電圧検出回路9、NMOSトランジスタM1,M2及び抵抗Rs,R1で構成されている。なお、温度センサ2、アンプ3及びAD変換回路4は温度検出回路部を、演算増幅回路6,7、NMOSトランジスタM1,M2及び抵抗R1は充電回路部を、制御回路5、充電電流検出回路8、電池電圧検出回路9及び抵抗Rsは制御回路部をそれぞれなす。
温度センサ2は充電電流制御トランジスタQ1の近傍に配置され、充電電流制御トランジスタQ1の温度検出を行う。温度センサ2の出力信号は、アンプ3に入力され、アンプ3で所定のレベルに増幅される。アンプ3の出力信号は、AD変換回路4でデジタル信号に変換されて制御回路5に入力される。
充電電流制御トランジスタQ1において、エミッタは電源入力端子INに接続され、コレクタは充電電流検出用の抵抗Rsを介して電池接続端子Batに接続されており、ベースはNMOSトランジスタM1のドレインに接続されている。NMOSトランジスタM1のドレインと電源入力端子INとの間には抵抗R1が接続され、NMOSトランジスタM1のドレインは電源電圧Vddにプルアップされている。NMOSトランジスタM1のソースはNMOSトランジスタM2のドレインに接続され、NMOSトランジスタM1のゲートは演算増幅回路6の出力端に接続されている。演算増幅回路6において、非反転入力端は制御回路5に接続され、反転入力端には電池電圧検出回路9の出力信号が入力されている。
NMOSトランジスタM2のソースは接地電圧GNDに接続され、NMOSトランジスタM2のゲートは演算増幅回路7の出力端に接続されている。演算増幅回路7において、非反転入力端は制御回路5に接続され、反転入力端には充電電流検出回路8の出力信号が入力されている。
抵抗Rsの両端は、充電電流検出回路8に接続され、充電電流検出回路8の出力端は、演算増幅回路7の反転入力端と制御回路5にそれぞれ接続されている。また、電池接続端子Batは電池電圧検出回路9に接続され、電池電圧検出回路9の出力端は、演算増幅回路6の反転入力端と制御回路5にそれぞれ接続されている。
制御回路5は、演算増幅回路6の非反転入力端に、充電電圧を設定するための参照電圧Vr1を、演算増幅回路7の非反転入力端に、充電電流を設定するための参照電圧Vr2をそれぞれ出力している。
このような構成において、二次電池21の電圧が低く、電池電圧検出回路9から出力された電圧が、制御回路5から出力されている参照電圧Vr1よりも小さい場合、演算増幅回路6の出力信号はハイレベルになり、NMOSトランジスタM1はオンする。また、演算増幅回路7は、充電電流検出回路8の出力電圧が参照電圧Vr2よりも小さい場合は、NMOSトランジスタM2のゲート電圧を上昇させるため、NMOSトランジスタM2のインピーダンスが低下して充電電流制御トランジスタQ1のベース電流が増加し、充電電流が増加する。
逆に、充電電流検出回路8の出力電圧が参照電圧Vr2以上である場合は、NMOSトランジスタM2のゲート電圧を低下してNMOSトランジスタM2のインピーダンスが増加し、充電電流制御トランジスタQ1のベース電流が減少するため充電電流も減少する。演算増幅回路7は、充電電流検出回路8の出力電圧が参照電圧Vr2に等しくなるように充電電流を制御することから、該充電電流は参照電圧Vr2で設定される定電流になる。
充電が進んで二次電池21の電圧が参照電圧Vr1に近づくと、演算増幅回路6の出力電圧が低下し、NMOSトランジスタM1のインピーダンスが増加する。すると、充電電流制御トランジスタQ1のベース電流が減少するため、充電電流も減少する。
充電電流が減少すると、充電電流検出回路8の出力電圧が低下して、参照電圧Vr2よりも小さくなる。すると、演算増幅回路7の出力信号はハイレベルになり、NMOSトランジスタM2はオンする。このため、二次電池21は参照電圧Vr1で決まる定電圧で充電されることになる。
制御回路5は、このような定電圧充電中に、充電電流が所定の電流値未満になると、満充電と判断して充電動作を終了させる。充電を終了させるときは、例えば、参照電圧Vr1が電池電圧検出回路9の出力電圧よりも小さい電圧になるようにすればよい。すると、演算増幅回路6の出力信号はローレベルになるため、NMOSトランジスタM1がオフして充電電流制御トランジスタQ1のベース電流を遮断し、充電電流制御トランジスタQ1がオフすることから、充電電流は流れなくなる。
図2は、図1の充電装置1の動作例を示したフローチャートである。なお、図2では、充電電流制御トランジスタQ1の温度制御に関する部分だけを示しており、前記のような充電制御に伴う電圧検出や電流検出のルーチン、及び充電完了等の工程は省略している。
図2において、充電を開始するとステップS1で、所定の第1電流値の定電流で充電を行い、該第1電流値は、通常、二次電池21を急速充電することができる最も大きい電流値、又は充電電流制御トランジスタQ1の最大コレクタ電流に近い電流値のいずれか小さい方の電流値に設定されている。
次に、ステップS2で、制御回路5は、AD変換回路4から送られてくる充電電流制御トランジスタQ1の温度Tを示した電圧を定期的に読み込む。次に、ステップS3で、制御回路5は、読み込んだ温度Tが所定の温度T1以上であるか否かを判断する。ステップS3で、読み込んだ温度Tが所定の温度T1未満であれば(NO)、ステップS2に戻り、温度Tの読み込みを繰り返す。すなわち、充電完了まで、読み込んだ温度Tが所定の温度T1以上に上がらなかった場合は、ステップS4以降に進むことはない。ステップS3で、読み込んだ温度Tが所定の温度T1以上になると、ステップS4に進み、制御回路5は充電を停止させる。該充電の停止は、前記のように、制御回路5から出力される参照電圧Vr1を、電池電圧検出回路9から出力される電圧よりも小さい電圧になるように設定すればよい。
制御回路5は、充電を停止させると直ちにステップS5で、充電を停止させる前の温度Tの上昇速度を求める。次に、制御回路5は、ステップS6で、充電電流制御トランジスタQ1の温度Tを読み込み、ステップS7で充電電流制御トランジスタQ1の温度Tが所定の温度T1未満に戻ったかどうかを判定する。充電電流制御トランジスタQ1の温度Tが所定の温度T1未満に戻るまでは、ステップS6の温度測定を繰り返す。
ステップS7で充電電流制御トランジスタQ1の温度Tが所定の温度T1未満になる(NO)と、制御回路5は、ステップS8で第1電流値よりも小さい第2電流値で充電動作を再開させる。このとき、制御回路5は、ステップS5で求めた温度上昇速度に応じて第2電流値を選択し、該温度上昇速度が速いほど第2電流値は小さく、該温度上昇速度が遅くなるにしたがって大きな第2電流値を選択する。更に、制御回路5は、充電電流制御トランジスタQ1の温度Tが所定の温度T1よりもやや低い温度になるような第2電流値を選択する。なお、制御回路5は、参照電圧Vr2を設定することにより充電電流の設定を行う。
制御回路5は、ステップS8の処理を行った後、ステップS2に戻り、充電電流制御トランジスタQ1の温度Tを測定し、以下、ステップS3〜S8の動作を繰り返す。すなわち、ステップS2で測定した温度Tが所定の温度T1以上にならなければ、ステップS8で設定した第2電流値による定電流充電を継続させる。また、制御回路5は、第2電流値でも充電電流制御トランジスタQ1の温度Tが所定の温度T1を超えた場合は、ステップS4〜S8の処理を行い、前回の第2電流値より小さい新たな第2電流値を設定して定電流充電を行わせる。
図3は、図2のフローチャートで示した動作を示したタイミングチャートである。なお、図3では、実線で示したグラフが温度上昇速度の最も速い場合であり、破線で示したグラフが次に速い場合であり、以下、1点鎖線、2点鎖線の順に温度上昇速度が遅くなっている。
図3において、実線で示した最も温度上昇速度が速い場合は、時刻t1で充電電流制御トランジスタQ1の温度Tが所定の温度T1以上になる。すると、充電が停止されるので、充電電流は第1電流値i1から0Aになる。しかし、充電電流が0Aになっても充電電流制御トランジスタQ1の温度Tは直ぐには低下しないので、更に少し上昇してから低下する。時刻t2で温度Tが所定の温度T1未満になると、第1電流値i1よりも小さい第2電流値i4で充電が再開される。第2電流値i4は、この電流値で充電を行った場合に、充電電流制御トランジスタQ1の温度Tが所定の温度T1よりもやや低い温度に保たれると予想される電流値をなしている。
次に、破線で示した2番目に温度上昇速度が速い場合は、充電電流制御トランジスタQ1の温度Tが時刻t3で所定の温度T1以上になり、時刻t3で充電が停止される。この場合は、温度上昇速度が実線の場合よりも遅いため、充電停止後の充電電流制御トランジスタQ1の温度上昇は実線の場合よりも小さいことから、実線の場合よりも早い時刻t4で充電電流制御トランジスタQ1の温度Tが所定の温度T1未満に戻る。すると、今度は実線の場合よりも大きい第2電流値i3で定電流充電が再開される。第2電流値i3も、この電流値で充電を行った場合に、充電電流制御トランジスタQ1の温度Tが所定の温度T1よりもやや低い温度に保たれると予想される電流値をなしている。
破線の場合に、充電再開後の第2電流値を実線の場合より大きい電流値i3にすることができるのは、充電時における充電電流制御トランジスタQ1の温度上昇速度が遅いほど、周囲温度が低いか、又はACアダプタ20の出力電圧Vddが小さいと考えられる。このような条件では、充電電流制御トランジスタQ1の温度Tが所定の温度T1になる充電電流値をより大きくすることができる。
1点鎖線で示した場合は、充電電流制御トランジスタQ1の温度上昇速度が更に遅いため、充電停止時間は時刻t5〜t6までと更に短くなり、充電再開後の第2電流値を更に大きくすることができ、電流値i2になる。言うまでもなく、2点鎖線で示すように、所定の温度T1に達しない場合は第1電流値i1で充電が継続される。
このように、本第1の実施の形態における充電装置は、充電電流制御トランジスタQ1の温度Tが所定の温度T1以上になった場合は一旦充電を停止するようにしたことから、速やかに充電電流制御トランジスタQ1の温度を低下させることができ、充電電流制御トランジスタQ1が所定の温度T1を超えている時間を極めて短くすることができる。
また、充電電流制御トランジスタQ1の温度Tが所定の温度T1未満に戻った場合は、充電電流制御トランジスタQ1の温度Tが所定の温度T1よりもやや低い温度を保つような電流値が、充電電流制御トランジスタQ1の温度Tの温度上昇速度に応じて選択され、該選択された電流値で定電流充電を再開するようにしたことから、充電時間も短くすることができる。
第2の実施の形態.
図4は、本発明の第2の実施の形態における充電装置の動作例を示したフローチャートである。なお、本発明の第2の実施の形態における充電装置の回路構成例を示した図は、図1と同様であることから省略し、図1を参照しながら、図4の動作について説明する。また、図4においても、温度制御に関する部分だけを示しており、前記のような充電制御に伴う電圧検出や電流検出のルーチン、及び充電完了等の工程は省略している。
図4において、充電開始のステップS1〜S3までは図2の場合と同じである。ステップS3で、充電電流制御トランジスタQ1の温度Tが所定の温度T1以上になると(YES)、制御回路5は、ステップS4で、充電電流制御トランジスタQ1の温度上昇速度を求め、ステップS5で該温度上昇速度に応じた第2電流値で充電を行わせる。
次に、制御回路5は、ステップS6で所定の時間経過後、ステップS7で充電電流制御トランジスタQ1の温度Tを測定する。制御回路5は、ステップS8で温度Tが所定の温度T1未満になっている場合は(NO)、ステップS2に戻り、ステップS2に戻った場合は、前記ステップS3〜S8の動作を繰り返す。制御回路5は、ステップS3で温度Tが所定の温度T1以上にならなければ(NO)、ステップS5で変更した第2電流値での定電流充電を継続させる。制御回路5は、ステップS5で設定した第2電流値でもステップS3で温度Tが所定の温度T1以上になった場合は(YES)、再びステップS5で第2電流値を更に小さい電流値に設定し直す。すなわち、ステップS5の動作が行われるたびに第2電流値が小さくなる。
次に、ステップS8で温度Tが所定の温度T1以上である場合(YES)、制御回路5は、充電電流制御トランジスタQ1の温度Tを急速に低下させるために、ステップS9で一旦充電を停止させる。制御回路5は、ステップS10で温度Tを測定し、ステップS11で温度Tが所定の温度T1未満になるまでステップS10の温度測定を繰り返す。ステップS11で温度Tが所定の温度T1未満になると(NO)、制御回路5は、ステップS12で温度Tの低下速度を求め、ステップS13で該温度低下速度に応じた第3電流値で充電を再開する。制御回路5は、該第3電流値においても、前記した第2電流値と同様、充電電流制御トランジスタQ1の温度Tが所定の温度T1よりもやや低い温度に保たれると予想される電流値を選択する。制御回路5は、ステップS13の処理を行った後は、ステップS2に戻り、以下前記のようなルーチンを繰り返して行う。
図5及び図6は、図4のフローチャートで示した動作を示したタイミングチャートである。
図5は、図4のフローチャートのステップS1〜S8までの動作を示しており、ステップS8で充電電流制御トランジスタQ1の温度Tが所定の温度T1以上にならなかった場合を示している。図5においても、実線で示したグラフが温度上昇速度が最も速い場合を示しており、以下破線、1点鎖線の順に温度上昇速度が遅くなっている。
図6は、充電電流制御トランジスタQ1の温度TがステップS8で所定の温度T1以上になった場合を示しており、実線が温度Tの低下速度が最も速い場合を示しており、以下破線、1点鎖線の順に温度低下速度が遅くなっている。なお、実際には時刻t2までの実線の部分は前記温度低下速度ごとに異なるが、説明を簡単にするために、図6では1つにまとめて示している。
まず図5について説明する。図5において、温度上昇速度が最も速い実線の場合は、時刻t1で充電電流制御トランジスタQ1の温度Tが所定の温度T1以上になる。すると、充電電流は第1電流値i1から前記温度上昇速度に応じて選択された第2電流値i4に変更される。第2電流値は温度上昇速度が遅いほど大きい電流値になるように選択され、破線の場合は、第2電流値が電流値i4よりも大きい電流値i3になり、1点鎖線の場合は、第2電流値が更に大きい電流値i2になる。
しかし、選択した第2電流値に充電電流をした後、周囲温度の変化や、ACアダプタ20の出力電圧変動等の要因により、ステップS6で所定の時間が経過しても、ステップS8で温度Tが所定の温度T1未満にならない場合、図6のようになる。なお、図6では所定の温度T1付近の状態を拡大して示している。
図6の時刻t1で温度Tが所定の温度T1以上になると、充電電流は第1電流値i1よりも小さい第2電流値i5に変更される。しかし、所定の時間が経過した時刻t2になっても温度Tが所定の温度T1以上ある場合は、ステップS9で述べたように充電を停止する。すると温度Tは低下して、実線の場合は時刻t3で所定の温度T1未満になり、この場合、第3電流値i6で充電が再開される。また、温度低下速度が次に速い破線の場合は、時刻t4で温度Tが所定の温度T1未満になる。この場合は、電流値i6よりも小さい電流値i7を第3電流値として充電が再開される。更に遅い1点鎖線の場合は、時刻t5で所定の温度T1未満になり、この場合は、電流値i7より更に小さい電流値i8を第3電流値として充電を再開する。
温度の低下速度も周囲温度に影響を受け、周囲温度が低いほど速く温度が低下するため、所定の温度T1に近い温度で充電できる電流は大きくなる。
このように、本第2の実施の形態における充電装置は、充電電流制御トランジスタQ1の温度Tが所定の温度T1以上になった場合は、充電を停止させずに、充電電流制御トランジスタQ1の温度上昇速度に応じて、充電電流制御トランジスタQ1の温度が所定の温度T1よりもやや小さくなると予測される第2電流値に変更して充電を継続するようにしたことから、より充電時間の短縮を図ることができる。更に、第2電流値でも温度Tが所定の温度T1未満に下がらない場合は、一旦充電を停止して温度低下速度に応じた第3電流値で充電を再開するようにしたため、充電電流制御トランジスタQ1が所定の温度T1を超えている時間を短くすることができる。
1 充電装置
2 温度センサ
3 アンプ
4 AD変換回路
5 制御回路
6,7 演算増幅回路
8 充電電流検出回路
9 電池電圧検出回路
20 ACアダプタ
21 二次電池、
Q1 充電電流制御トランジスタ
M1,M2 NMOSトランジスタ
Rs,R1 抵抗
特許第3728920号公報 特開2005−102453号公報 特開2008−141907号公報

Claims (9)

  1. 二次電池の充電を行う充電装置において、
    入力電源と前記二次電池との間に設けられた充電電流制御トランジスタと、
    該充電電流制御トランジスタの温度検出を行い、検出した温度に応じた信号を生成して出力する温度検出回路部と、
    前記充電電流制御トランジスタの動作制御を行って、前記二次電池に対して、設定された電流値で充電を行う定電流充電と、設定された電圧値で充電を行う定電圧充電とを行う充電回路部と、
    前記二次電池の電池電圧値、前記二次電池への充電電流値及び前記温度検出回路部からの出力信号に応じて、前記定電流充電時の充電電流値及び前記定電圧充電時の充電電圧値をそれぞれ前記充電回路部に設定する制御回路部と、
    を備え、
    前記制御回路部は、前記二次電池に対して所定の第1電流値で充電を行っているときに、前記温度検出回路部の出力信号から前記充電電流制御トランジスタの温度が所定の温度以上になったことを検出すると、前記充電回路部に対して前記二次電池への充電を停止させると共に、前記第1電流値で充電を行っていたときの前記充電電流制御トランジスタの温度上昇速度を求め、前記充電電流制御トランジスタの温度が前記所定の温度未満に戻ると、前記充電回路部に対して、前記二次電池に供給する充電電流を前記第1電流値よりも小さい前記温度上昇速度に応じた第2電流値に設定することを特徴とする充電装置。
  2. 前記制御回路部は、前記温度上昇速度が速いほど小さい電流値になるように前記第2電流値を設定することを特徴とする請求項1記載の充電装置。
  3. 前記制御回路部は、前記第2電流値で前記二次電池を充電した際に前記充電電流制御トランジスタの温度が前記所定の温度よりも低い温度になると予想される電流値に前記第2電流値を設定することを特徴とする請求項1又は2記載の充電装置。
  4. 二次電池の充電を行う充電装置において、
    入力電源と前記二次電池との間に設けられた充電電流制御トランジスタと、
    該充電電流制御トランジスタの温度検出を行い、検出した温度に応じた信号を生成して出力する温度検出回路部と、
    前記充電電流制御トランジスタの動作制御を行って、前記二次電池に対して、設定された電流値で充電を行う定電流充電と、設定された電圧値で充電を行う定電圧充電とを行う充電回路部と、
    前記二次電池の電池電圧値、前記二次電池への充電電流値及び前記温度検出回路部からの出力信号に応じて、前記定電流充電時の充電電流値及び前記定電圧充電時の充電電圧値をそれぞれ前記充電回路部に設定する制御回路部と、
    を備え、
    前記制御回路部は、前記二次電池に対して所定の第1電流値で充電を行っているときに、前記温度検出回路部の出力信号から前記充電電流制御トランジスタの温度が所定の温度以上になったことを検出すると、前記第1電流値で充電を行っていたときの前記充電電流制御トランジスタの温度上昇速度を求め、前記充電回路部に対して、前記二次電池に供給する充電電流を前記第1電流値よりも小さい前記温度上昇速度に応じた第2電流値に設定することを特徴とする充電装置。
  5. 前記制御回路部、前記温度上昇速度が速いほど小さい電流値になるように前記第2電流値を設定することを特徴とする請求項4記載の充電装置。
  6. 前記制御回路部は、前記第2電流値で前記二次電池を充電した際に前記充電電流制御トランジスタの温度が前記所定の温度よりも低い温度になると予想される電流値に前記第2電流値を設定することを特徴とする請求項4又は5記載の充電装置。
  7. 前記制御回路部は、前記充電電流を前記第2電流値に設定した後、所定の時間が経過しても前記温度検出回路部の出力信号から前記充電電流制御トランジスタの温度が前記所定の温度以上であることを検出すると、前記充電回路部に対して前記充電電流制御トランジスタをオフさせて前記二次電池への充電を停止させ、前記充電電流制御トランジスタの温度が前記所定の温度未満に低下した時点で、前記充電電流制御トランジスタの温度低下速度を求め、前記充電回路部に対して、前記充電電流を前記第2電流値よりも小さい該温度低下速度に応じた第3電流値に設定することを特徴とする請求項4、5又は6記載の充電装置。
  8. 前記制御回路部は、前記温度低下速度が速いほど大きい電流値になるように前記第3電流値を設定することを特徴とする請求項7記載の充電装置。
  9. 前記制御回路部は、前記第3電流値で前記二次電池を充電した際に前記充電電流制御トランジスタの温度が前記所定の温度よりも低い温度になると予想される電流値に前記第3電流値を設定することを特徴とする請求項7又は8記載の充電装置。
JP2009014236A 2009-01-26 2009-01-26 二次電池の充電装置 Expired - Fee Related JP5310026B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009014236A JP5310026B2 (ja) 2009-01-26 2009-01-26 二次電池の充電装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009014236A JP5310026B2 (ja) 2009-01-26 2009-01-26 二次電池の充電装置

Publications (2)

Publication Number Publication Date
JP2010172158A true JP2010172158A (ja) 2010-08-05
JP5310026B2 JP5310026B2 (ja) 2013-10-09

Family

ID=42703721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009014236A Expired - Fee Related JP5310026B2 (ja) 2009-01-26 2009-01-26 二次電池の充電装置

Country Status (1)

Country Link
JP (1) JP5310026B2 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2976416A1 (fr) * 2011-06-09 2012-12-14 Accumulateurs Fixes Systeme de regulation de la charge d'une batterie
KR20160135658A (ko) * 2015-05-18 2016-11-28 에스아이아이 세미컨덕터 가부시키가이샤 정전류 충전 장치
KR101683181B1 (ko) * 2015-11-16 2016-12-08 주식회사 투엠아이 열적 안전성을 고려한 배터리의 급속 충전 시스템 및 방법
US10433805B2 (en) 2014-09-03 2019-10-08 Shimadzu Corporation X-ray imaging apparatus for rounds
WO2023017959A1 (ko) * 2021-08-12 2023-02-16 삼성전자 주식회사 내부 온도에 기초한 배터리 충전을 위한 전자 장치

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10341540A (ja) * 1997-06-09 1998-12-22 Toyota Autom Loom Works Ltd 電池の充電制御装置
JPH11289656A (ja) * 1998-04-02 1999-10-19 Mitsumi Electric Co Ltd 非常保護回路及び温度検出回路
JP2005102453A (ja) * 2003-09-26 2005-04-14 Araco Corp 蓄電池の充電制御装置
JP2008141907A (ja) * 2006-12-05 2008-06-19 Matsushita Electric Ind Co Ltd 温度保護機能付充電装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10341540A (ja) * 1997-06-09 1998-12-22 Toyota Autom Loom Works Ltd 電池の充電制御装置
JPH11289656A (ja) * 1998-04-02 1999-10-19 Mitsumi Electric Co Ltd 非常保護回路及び温度検出回路
JP2005102453A (ja) * 2003-09-26 2005-04-14 Araco Corp 蓄電池の充電制御装置
JP2008141907A (ja) * 2006-12-05 2008-06-19 Matsushita Electric Ind Co Ltd 温度保護機能付充電装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2976416A1 (fr) * 2011-06-09 2012-12-14 Accumulateurs Fixes Systeme de regulation de la charge d'une batterie
US10433805B2 (en) 2014-09-03 2019-10-08 Shimadzu Corporation X-ray imaging apparatus for rounds
KR20160135658A (ko) * 2015-05-18 2016-11-28 에스아이아이 세미컨덕터 가부시키가이샤 정전류 충전 장치
KR102528629B1 (ko) 2015-05-18 2023-05-03 에이블릭 가부시키가이샤 정전류 충전 장치
KR101683181B1 (ko) * 2015-11-16 2016-12-08 주식회사 투엠아이 열적 안전성을 고려한 배터리의 급속 충전 시스템 및 방법
WO2023017959A1 (ko) * 2021-08-12 2023-02-16 삼성전자 주식회사 내부 온도에 기초한 배터리 충전을 위한 전자 장치

Also Published As

Publication number Publication date
JP5310026B2 (ja) 2013-10-09

Similar Documents

Publication Publication Date Title
JP4976323B2 (ja) 充電制御回路
US9142985B2 (en) Battery charger for portable electronic equipment
JP5310026B2 (ja) 二次電池の充電装置
CN110085934B (zh) 一种终端电池的充电方法及移动终端
JP2006115654A (ja) 充電制御回路、充電制御方法、及び該充電制御回路が設けられた電子機器
JP6231883B2 (ja) 電子機器及び電子機器充電システム
JP2007329997A (ja) 充電回路、充電回路の動作制御方法及び電源装置
TWI566499B (zh) 充電方法及其適用之充電裝置
JP2006223030A (ja) 充電制御回路及び充電装置
JP2007234252A (ja) 充電装置
KR101683603B1 (ko) 배터리 팩의 셀 밸런싱을 위한 장치 및 이를 위한 방법
EP2615714A1 (en) Method and system for battery charging control of a terminal
JP2009219221A (ja) 充電装置
JP5054003B2 (ja) バッテリ駆動機器、負荷制御方法、集積回路及び負荷制御プログラム
TWI332303B (en) Multi charging current control circuit and method thereof
JP2007020245A (ja) 充電回路及びその充電回路を備えた半導体装置
WO2014154044A1 (zh) 一种电子设备的智能充电方法及装置
JP2011017619A (ja) 電池パック、半導体装置、携帯機器、通知方法、通知プログラム
JP2010022118A (ja) 充電装置
JP2005278302A (ja) 充電装置及び充電方法
TW201422463A (zh) 電動車輛的電能管理裝置和方法
JP2006340586A (ja) 携帯端末及び携帯端末の充電制御方法
WO2017020592A1 (zh) 一种放电方法、终端设备和计算机存储介质
JP2007089276A (ja) 充電回路
JP2010178496A (ja) 電池パックおよび電池電圧制御回路

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130617

LAPS Cancellation because of no payment of annual fees