JP2010163287A - METHOD FOR PRODUCING GaAs SINGLE CRYSTAL - Google Patents

METHOD FOR PRODUCING GaAs SINGLE CRYSTAL Download PDF

Info

Publication number
JP2010163287A
JP2010163287A JP2009004314A JP2009004314A JP2010163287A JP 2010163287 A JP2010163287 A JP 2010163287A JP 2009004314 A JP2009004314 A JP 2009004314A JP 2009004314 A JP2009004314 A JP 2009004314A JP 2010163287 A JP2010163287 A JP 2010163287A
Authority
JP
Japan
Prior art keywords
crucible
single crystal
gaas
gaas single
pulling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009004314A
Other languages
Japanese (ja)
Inventor
Shinji Yabuki
伸司 矢吹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2009004314A priority Critical patent/JP2010163287A/en
Publication of JP2010163287A publication Critical patent/JP2010163287A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a GaAs single crystal for improving the yield of the acquisition number of wafers, by appropriately controlling the rotation number of a crucible and the pulling speed of a pulling shaft. <P>SOLUTION: The crucible 5 storing a GaAs raw material and boron trioxide as a sealant is placed in a chamber 2 charged with inert gas. The crucible 5 is heated by a heater 8 to produce a GaAs melt 9 in the crucible 5. A seed crystal 7 attached to the lower end of a pulling shaft 3 is brought into contact with the GaAs melt 9 and the seed crystal 7 is pulled while rotating the crucible 5 to produce a GaAs single crystal 10. The rotation number n [rpm] of the crucible 5 and the pulling speed V [mm/h] of the pulling shaft 3 are controlled to satisfy 28≥n≥5.89e<SP>0.07V</SP>. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、液体封止引き上げ法(Liquid Encapsulated Czochralski法;以下LEC法
と称する)によるGaAs単結晶の製造方法に関するものである。
The present invention relates to a method for producing a GaAs single crystal by a liquid encapsulated Czochralski method (hereinafter referred to as LEC method).

一般に、揮発性元素を含むIII−V族化合物半導体単結晶(GaAs、InP等)や、II−VI族化合物半導体単結晶(ZnS、ZnSe等)の製造方法として、LEC法が用いられている。
LEC法では、不活性ガスを充填したチャンバ内で、原料と封止剤とを収納したルツボをヒータにより加熱して、原料と封止剤とを溶融させ、原料融液の表面を液体封止剤で覆い、原料融液に種結晶を接触させた後、ルツボを回転させながら種結晶を引き上げることにより、単結晶を成長させている(例えば、特許文献1ないし6参照)。
Generally, the LEC method is used as a method for producing a group III-V compound semiconductor single crystal (GaAs, InP, etc.) or a group II-VI compound semiconductor single crystal (ZnS, ZnSe, etc.) containing a volatile element.
In the LEC method, a crucible containing a raw material and a sealing agent is heated by a heater in a chamber filled with an inert gas to melt the raw material and the sealing agent, and the surface of the raw material melt is liquid sealed. After covering with the agent and bringing the seed crystal into contact with the raw material melt, the single crystal is grown by pulling up the seed crystal while rotating the crucible (see, for example, Patent Documents 1 to 6).

LEC法によってGaAs単結晶を製造する際に、結晶成長過程における固液界面の形状がGaAs融液側に凹形状であると、固液界面に垂直に伝播する性質をもった転位が集積して多結晶化するという問題がある。したがって、固液界面の形状がGaAs融液側に凸形状となるように制御する必要がある。   When manufacturing a GaAs single crystal by the LEC method, if the shape of the solid-liquid interface in the crystal growth process is concave on the GaAs melt side, dislocations with the property of propagating perpendicularly to the solid-liquid interface will accumulate. There is a problem of polycrystallization. Therefore, it is necessary to control the shape of the solid-liquid interface so that it is convex toward the GaAs melt side.

特開平06−56582号公報Japanese Patent Laid-Open No. 06-56582 特開平09−77590号公報Japanese Patent Laid-Open No. 09-77590 特開平09−142997号公報Japanese Patent Application Laid-Open No. 09-142997 特開2002−20193号公報JP 2002-20193 A 特開2004−10467号公報JP 2004-10467 A 特開2004−10469号公報JP 2004-10469 A

上述したように、GaAs単結晶の製造に当たっては、固液界面の形状をGaAs融液側に凸形状となるように、ルツボ内のGaAs融液の温度分布を制御する必要がある。この制御方法の一つとして、GaAs単結晶及びルツボの回転数の最適化が挙げられる。しかしながら、この最適化の条件については、GaAs融液の温度分布の状態把握が困難であることから、未だ結論が出ていない。   As described above, when manufacturing a GaAs single crystal, it is necessary to control the temperature distribution of the GaAs melt in the crucible so that the shape of the solid-liquid interface is convex toward the GaAs melt. One of the control methods is optimization of the rotation speed of the GaAs single crystal and the crucible. However, this optimization condition has not yet been concluded because it is difficult to grasp the temperature distribution of the GaAs melt.

また、GaAs単結晶の引上速度も固液界面の形状を決定するパラメータの一つである。一般的に、引上速度が遅いほど凝固熱の放熱に有利に働くため、固液界面は凸形状になりやすい。しかし、引上速度が遅ければスループットの面で不利となることから、引上速度についてもルツボの回転数と同様に最適化の条件に結論は出ていない。   The pulling speed of the GaAs single crystal is also one of the parameters that determine the shape of the solid-liquid interface. In general, the slower the pulling speed, the more advantageous it is for heat radiation of solidification heat, and the solid-liquid interface tends to be convex. However, if the pull-up speed is slow, it is disadvantageous in terms of throughput, so the conclusion about the pull-up speed as well as the rotation speed of the crucible has not been reached.

本発明は、ルツボの回転数と引上軸の引上速度とを適切に制御することにより、ウエハ取得枚数の歩留の向上を図ったGaAs単結晶の製造方法を提供することにある。   It is an object of the present invention to provide a method for producing a GaAs single crystal that improves the yield of the number of wafers acquired by appropriately controlling the number of rotations of the crucible and the pulling speed of the pulling shaft.

上記課題を解決するために、本発明は次のように構成されている。
本発明の第1の態様は、不活性ガスを充填したチャンバ内に、GaAs原料と封止剤を収納したルツボを設置し、ヒータにより前記ルツボ加熱し、前記GaAs原料と前記封止
剤とを溶融させた後、GaAs融液に引上軸に取り付けた種結晶を接触させ、前記ルツボを回転させながら前記種結晶を引き上げてGaAs単結晶を成長させるGaAs単結晶の製造方法において、前記ルツボの回転数n〔rpm〕と前記引上軸の引上速度V〔mm/h〕との関係が、28≧n≧5.89e0.07VであるGaAs単結晶の製造方法である。
In order to solve the above problems, the present invention is configured as follows.
In the first aspect of the present invention, a crucible containing a GaAs raw material and a sealing agent is placed in a chamber filled with an inert gas, the crucible is heated by a heater, and the GaAs raw material and the sealing agent are combined. In the method for producing a GaAs single crystal, after the melting, the seed crystal attached to the pulling shaft is brought into contact with the GaAs melt, and the seed crystal is pulled up while the crucible is rotated to grow the GaAs single crystal. In this GaAs single crystal manufacturing method, the relationship between the rotational speed n [rpm] and the pulling speed V [mm / h] of the pulling shaft is 28 ≧ n ≧ 5.89e 0.07V .

本発明の第2の態様は、第1の態様のGaAs単結晶の製造方法において、前記GaAs単結晶が、当該GaAs単結晶から得られるウエハサイズ径が100mm以上となる結晶径を有する。   According to a second aspect of the present invention, in the method for producing a GaAs single crystal according to the first aspect, the GaAs single crystal has a crystal diameter such that a wafer size diameter obtained from the GaAs single crystal is 100 mm or more.

本発明によれば、GaAs単結晶からのウエハ取得枚数の歩留を向上させることができる。   According to the present invention, the yield of the number of wafers obtained from a GaAs single crystal can be improved.

本発明の実施形態に係るGaAs単結晶の製造方法に用いた製造装置の概略構成図である。It is a schematic block diagram of the manufacturing apparatus used for the manufacturing method of the GaAs single crystal which concerns on embodiment of this invention. GaAs単結晶の成長過程における固液界面での熱収支を説明するための模式図である。It is a schematic diagram for demonstrating the heat balance in the solid-liquid interface in the growth process of a GaAs single crystal. 引上軸の引上速度とルツボの回転数とウエハ取得枚数の歩留との関係を示すグラフである。It is a graph which shows the relationship between the pulling-up speed of a pulling-up axis | shaft, the rotation speed of a crucible, and the yield of a wafer acquisition number. 図3においてウエハ取得枚数の歩留が80%を満足するときの、引上軸の引上速度とルツボの回転数の測定データ、及びこの測定データを近似する近似曲線を示すグラフである。FIG. 4 is a graph showing measurement data of the pulling speed of the pulling shaft and the number of rotations of the crucible when the yield of the number of wafers acquired satisfies 80% in FIG. 3, and an approximate curve approximating this measurement data.

上述したように、GaAs単結晶成長における問題として、転位の集積による結晶の多結晶化という問題がある。現在、この問題により結晶からのウエハ取得歩留は80%程度に留まっている。転位は結晶と融液の境界面である固液界面に垂直に伝播する性質があり、固液界面が融液側に凹形状であると転位の集積が起こる。よって、転位の集積を防止する為には、結晶成長中の固液界面が常に融液側に凸形状となるように制御する必要がある。
また、この固液界面の凸度と転位の集積には、これまでの調査研究により凸度が大きいほど転位の集積が発生しにくいという相関関係がある事がわかっている。固液界面の形状は、熱流に対して垂直に形成される。よって、固液界面を凸形状とするには、固液界面で発生した凝固熱を、結晶を通じて結晶外部へ放熱する事で達成できる。また、固液界面の凸度を増す為には、より多く凝固熱を放熱できるように、結晶成長炉であるチャンバ内の温度条件を調節する必要がある。
As described above, as a problem in GaAs single crystal growth, there is a problem of crystal polycrystallization due to accumulation of dislocations. At present, due to this problem, the yield of obtaining wafers from crystals remains at about 80%. Dislocations have the property of propagating perpendicularly to the solid-liquid interface, which is the interface between the crystal and the melt. If the solid-liquid interface is concave on the melt side, dislocations accumulate. Therefore, in order to prevent the accumulation of dislocations, it is necessary to control so that the solid-liquid interface during crystal growth always has a convex shape on the melt side.
In addition, it is known from the investigations so far that the degree of convexity at the solid-liquid interface and the accumulation of dislocations have a correlation that the higher the degree of convexity, the less likely the accumulation of dislocations occurs. The shape of the solid-liquid interface is formed perpendicular to the heat flow. Therefore, to make the solid-liquid interface convex, it can be achieved by radiating the heat of solidification generated at the solid-liquid interface to the outside of the crystal through the crystal. Further, in order to increase the convexity of the solid-liquid interface, it is necessary to adjust the temperature conditions in the chamber which is a crystal growth furnace so that more solidification heat can be dissipated.

ここで、図2を用いて固液界面での熱収支を説明する。図2はGaAs単結晶の成長過程における固液界面での熱収支を説明するための模式図である。   Here, the heat balance at the solid-liquid interface will be described with reference to FIG. FIG. 2 is a schematic diagram for explaining the heat balance at the solid-liquid interface during the growth process of a GaAs single crystal.

ルツボ5を加熱し、ルツボ5内で溶融され液体封止材6で覆われたGaAs融液9に種結晶7を接触させ、ルツボ5を回転させながら引上軸3を引き上げてGaAs単結晶10を成長させる。
熱量Q1はGaAs融液9から固液界面11に流入する流入熱であり、熱量Q2は固液界面11で発生する凝固熱であり、熱量Q3は固液界面11から既に固化したGaAs単結晶10に移動して放熱される熱量である。これらの熱量の間には、
Q1+Q2=Q3
の関係式が成り立つ。ここで、熱量Q1の大きさはGaAs融液9の温度勾配によって決
まると考えられる。また、熱量Q3の大きさは固化したGaAs単結晶10内の温度勾配によって決まると考えられる。
上述の関係式から、固液界面の凸度を増す為に、より多くの凝固熱Q2を放熱する方法の一つとして、熱量Q3を増加させる、つまり固化したGaAs単結晶10の温度勾配を大きくする方法がある。
また、別の方法として、熱量Q1を低減させる、つまりGaAs融液9中の垂直方向(ルツボの深さ方向)の温度勾配を小さくする方法が考えられる。
The crucible 5 is heated, the seed crystal 7 is brought into contact with the GaAs melt 9 melted in the crucible 5 and covered with the liquid sealing material 6, and the pulling shaft 3 is pulled up while rotating the crucible 5 to pull up the GaAs single crystal 10. Grow.
The amount of heat Q1 is the inflow heat flowing from the GaAs melt 9 into the solid-liquid interface 11, the amount of heat Q2 is the solidification heat generated at the solid-liquid interface 11, and the amount of heat Q3 is the GaAs single crystal 10 already solidified from the solid-liquid interface 11. This is the amount of heat that is transferred to Between these calories,
Q1 + Q2 = Q3
The following relational expression holds. Here, it is considered that the magnitude of the heat quantity Q1 is determined by the temperature gradient of the GaAs melt 9. The magnitude of the heat quantity Q3 is considered to be determined by the temperature gradient in the solidified GaAs single crystal 10.
From the above relational expression, in order to increase the degree of convexity of the solid-liquid interface, as one method of releasing more solidification heat Q2, the amount of heat Q3 is increased, that is, the temperature gradient of the solidified GaAs single crystal 10 is increased. There is a way to do it.
Another possible method is to reduce the amount of heat Q1, that is, to reduce the temperature gradient in the vertical direction (crucible depth direction) in the GaAs melt 9.

従来、熱量Q3の増加、つまりGaAs単結晶10の温度勾配を大きくする方法として、GaAs単結晶10の冷却化を促進したチャンバ2内構造を採る方法があり、改善の効果が得られている。しかし、極端にGaAs単結晶10の冷却を促進すると、結晶にスリップ転位が発生するという弊害があるため、無制限に結晶の冷却を促進する方法は採れない。   Conventionally, as a method of increasing the amount of heat Q3, that is, increasing the temperature gradient of the GaAs single crystal 10, there is a method of adopting a structure in the chamber 2 that promotes cooling of the GaAs single crystal 10, and an improvement effect is obtained. However, if the cooling of the GaAs single crystal 10 is extremely promoted, slip dislocations are generated in the crystal, and therefore an unlimited method for promoting the cooling of the crystal cannot be adopted.

一方、熱量Q1の低減、つまりGaAs融液9中の垂直方向(ルツボの深さ方向)の温度勾配を小さくする方法を実現するためには、固液界面11近傍の温度が極力低くなるようにGaAs融液9の温度分布を制御する必要がある。これまでの研究により、ルツボ5の回転によってもたらされるGaAs融液9の強制対流が、GaAs融液9の温度分布に影響している事が分かりつつある。一般的には、ルツボ5の回転数を増やすに従って自然対流の影響が減り、ルツボ5中央部から外周部にかけてのGaAs融液9の温度勾配が急峻になる。つまり、ルツボ5の中央部付近の温度が低くなる。しかしながら、GaAs融液9の温度分布を実際に測定することが困難である事から、その詳細は未だ不明な点が多い。   On the other hand, in order to realize a method of reducing the amount of heat Q1, that is, a method of reducing the temperature gradient in the vertical direction (crucible depth direction) in the GaAs melt 9, the temperature near the solid-liquid interface 11 is made as low as possible. It is necessary to control the temperature distribution of the GaAs melt 9. From previous studies, it has been found that the forced convection of the GaAs melt 9 caused by the rotation of the crucible 5 affects the temperature distribution of the GaAs melt 9. In general, as the number of rotations of the crucible 5 is increased, the influence of natural convection decreases, and the temperature gradient of the GaAs melt 9 from the center to the outer periphery of the crucible 5 becomes steep. That is, the temperature near the center of the crucible 5 is lowered. However, since it is difficult to actually measure the temperature distribution of the GaAs melt 9, the details are still unclear.

また、引上軸3の引上速度を変化させると単位時間当たりの固化量が変化する。つまり、凝固熱Q2に変化が起こることとなる。よって、引上軸3の引上速度は固液界面11の形状の凸化制御において重要なパラメータの一つである。   Further, when the pulling speed of the pulling shaft 3 is changed, the solidification amount per unit time is changed. That is, a change occurs in the solidification heat Q2. Therefore, the pulling-up speed of the pulling-up shaft 3 is one of the important parameters in controlling the convexity of the shape of the solid-liquid interface 11.

以上の事から、ルツボの回転数及び引上軸の引上速度の設定は、単結晶を製造する際の重要なパラメータとなる。しかしながら、GaAs融液の温度分布の測定が困難である事から、これらの設定についての最適化の条件は十分に把握されているとは言い難い状況である。
過去の知見から、固液界面の凸化にはルツボの回転数を増加させる事が有効な方法である事は分かっている。しかし、引上速度に対して何処までルツボの回転数を増加させれば良いかが明確ではなかった。
そこで、本発明者らは、種々の引上速度V〔mm/h〕に対してルツボの回転数n〔rpm〕を幾つに設定すれば、結晶からのウエハ取得枚数の歩留が向上するかを割り出す実験を実施した(図3参照)。その結果、
n≧5.89e0.07V(eは自然対数の底)
という関係式を見出した(図4参照)。
さらに、ルツボの回転数が28〔rpm〕を越えると、高速回転に伴うルツボ軸の偏芯の増加により、ウエハ取得枚数の歩留が低下することがわかった。また、28〔rpm〕を越える高速回転を続けると、ルツボ軸に取り付けられているチャンバ内圧力の抑止部(シール部)の磨耗によるチャンバ内ガスの漏洩等の装置の機械的不具合が発生し、生産が困難な状況になることがわかった。
これらの事から、ルツボの回転数n〔rpm〕と引上軸の引上速度V〔mm/h〕との関係が
28≧n≧5.89e0.07V
を満足するように設定するのがよいとの知見を得た。
この知見を基に、以下に、本発明に係るGaAs単結晶の製造方法の具体的な実施形態
を説明する。
From the above, the setting of the number of rotations of the crucible and the pulling speed of the pulling shaft is an important parameter when producing a single crystal. However, since it is difficult to measure the temperature distribution of the GaAs melt, it is difficult to say that the optimization conditions for these settings are sufficiently understood.
From past knowledge, it is known that increasing the number of rotations of the crucible is an effective method for convexing the solid-liquid interface. However, it was not clear how far the crucible rotation speed should be increased with respect to the pulling speed.
Therefore, the present inventors have set how many crucible rotation speeds n [rpm] with respect to various pulling speeds V [mm / h], so that the yield of the number of wafers obtained from the crystal can be improved. An experiment was conducted to determine (see FIG. 3). as a result,
n ≧ 5.89e 0.07V (e is the base of natural logarithm)
Was found (see FIG. 4).
Furthermore, it was found that when the crucible rotation speed exceeds 28 [rpm], the yield of the number of wafers acquired decreases due to an increase in the eccentricity of the crucible shaft accompanying high-speed rotation. Further, if the high-speed rotation exceeding 28 [rpm] is continued, mechanical troubles of the apparatus such as leakage of gas in the chamber due to wear of the chamber pressure suppression part (seal part) attached to the crucible shaft occur, Production turned out to be difficult.
From these facts, the relationship between the crucible rotation speed n [rpm] and the pull-up shaft pull-up speed V [mm / h] is 28 ≧ n ≧ 5.89e 0.07 V
The knowledge that it is good to set to satisfy is obtained.
Based on this knowledge, a specific embodiment of the method for producing a GaAs single crystal according to the present invention will be described below.

本発明の実施形態に係るGaAs単結晶の製造方法について、図1を用いて説明する。図1は、本実施形態に係るGaAs単結晶の製造方法に用いた製造装置の概略構成図である。   A method for producing a GaAs single crystal according to an embodiment of the present invention will be described with reference to FIG. FIG. 1 is a schematic configuration diagram of a manufacturing apparatus used in a GaAs single crystal manufacturing method according to the present embodiment.

まず、本実施形態に係るGaAs単結晶製造装置について説明し、続いて、GaAs単結晶の製造方法について説明する。   First, a GaAs single crystal manufacturing apparatus according to this embodiment will be described, and then a GaAs single crystal manufacturing method will be described.

<GaAs単結晶製造装置>
GaAs単結晶製造装置1は、チャンバ2と、熱分解窒化硼素(PBN:Pyrolytic Boron Nitride)製のルツボ5と、ルツボ5を支えるルツボ軸4と、GaAs単結晶10を
引き上げる引上軸3と、ルツボ5の加熱手段であるヒータ(抵抗加熱ヒータ)としてのカーボンヒータ8と、断熱材14とを備えている。
<GaAs single crystal manufacturing equipment>
The GaAs single crystal manufacturing apparatus 1 includes a chamber 2, a pyrolytic boron nitride (PBN) crucible 5, a crucible shaft 4 that supports the crucible 5, a pulling shaft 3 that pulls up the GaAs single crystal 10, A carbon heater 8 as a heater (resistance heater) that is a heating means of the crucible 5 and a heat insulating material 14 are provided.

チャンバ2は、耐圧容器であって、GaAs単結晶成長時には不活性ガスが充填される。チャンバ2内にはルツボ5が設置されている。カーボンヒータ8はルツボ5の外周部及び底部を取り囲むように設けられている。さらにカーボンヒータ8の周囲には断熱材14が設置されている。なお、チャンバ2内に充填する不活性ガスにはAr、Nなどが用いられ、チャンバ2内の不活性ガス圧力は、例えば60atm程度とされる。 The chamber 2 is a pressure vessel, and is filled with an inert gas during GaAs single crystal growth. A crucible 5 is installed in the chamber 2. The carbon heater 8 is provided so as to surround the outer peripheral portion and the bottom portion of the crucible 5. Further, a heat insulating material 14 is installed around the carbon heater 8. Ar, N 2 or the like is used as the inert gas filled in the chamber 2, and the inert gas pressure in the chamber 2 is set to, for example, about 60 atm.

ルツボ5の底部中央にはルツボ軸4が取り付けられ、ルツボ5はルツボ軸4によって支持されている。また、ルツボ5はルツボ軸4によって回転自在となっている。ルツボ軸4はチャンバ2の底壁を垂直に貫通しており、貫通部は図示省略のシール部材でシールされている。   A crucible shaft 4 is attached to the center of the bottom of the crucible 5, and the crucible 5 is supported by the crucible shaft 4. The crucible 5 is rotatable by the crucible shaft 4. The crucible shaft 4 penetrates the bottom wall of the chamber 2 vertically, and the penetrating portion is sealed with a seal member (not shown).

引上軸3は、チャンバ2の上壁を垂直に貫通して設けられ、回転自在及び昇降自在に構成されている。引上軸3の下端には、種結晶7を取り付けることができるようになっている。   The pull-up shaft 3 is provided vertically through the upper wall of the chamber 2 and is configured to be rotatable and liftable. A seed crystal 7 can be attached to the lower end of the pull-up shaft 3.

<GaAs単結晶製造方法>
次に、本実施形態に係るGaAs単結晶の製造方法について説明する。
<GaAs single crystal manufacturing method>
Next, a method for manufacturing a GaAs single crystal according to this embodiment will be described.

ルツボ5内に、Ga及びAsと、Asの揮発防止剤である三酸化硼素とを収納して、ルツボ5をチャンバ2内に設置する。また、引上軸3の下端に結晶の元となるGaAsの種結晶7を取り付ける。なお、種結晶7は、GaAs融液9と接する面を(100)面とするのが一般的である。   In the crucible 5, Ga and As, and boron trioxide which is an As volatilization preventive agent are housed, and the crucible 5 is placed in the chamber 2. Further, a GaAs seed crystal 7 as a crystal base is attached to the lower end of the pull-up shaft 3. Note that the seed crystal 7 generally has a (100) plane in contact with the GaAs melt 9.

チャンバ2内を真空排気した後、不活性ガスを充填する。その後、チャンバ2内に設置されたカーボンヒータ8に通電してルツボ5を加熱して、GaとAsを反応させることでGaAsを合成し、引き続き昇温させてGaAs融液9を生成する。   The chamber 2 is evacuated and then filled with an inert gas. Thereafter, the carbon heater 8 installed in the chamber 2 is energized to heat the crucible 5 to react Ga and As to synthesize GaAs, and then the temperature is raised to produce a GaAs melt 9.

引上軸3をルツボ5とは逆向きに5rpm程度で回転させ、引上軸3を種結晶7がGaAs融液9に接触するまで下降させる。続いて、カーボンヒータ8の設定温度を徐々に下げつつ、種結晶7を一定の速度で引き上げる。単結晶は徐々に増径して結晶頭部12から結晶肩部13を形成した後、結晶の直径が目標値に達したら、結晶の直径を一定に維持するように設定温度などを制御しつつ成長させ、GaAs単結晶10を製造する。   The pulling shaft 3 is rotated at about 5 rpm in the direction opposite to the crucible 5, and the pulling shaft 3 is lowered until the seed crystal 7 contacts the GaAs melt 9. Subsequently, the seed crystal 7 is pulled up at a constant speed while gradually lowering the set temperature of the carbon heater 8. After the diameter of the single crystal is gradually increased to form the crystal shoulder 13 from the crystal head 12, when the diameter of the crystal reaches the target value, the set temperature and the like are controlled so as to maintain the crystal diameter constant. The GaAs single crystal 10 is manufactured by growing.

GaAs単結晶10を製造する際、図1に示すように、結晶成長過程における固液界面11がGaAs融液9側に凸形状に維持されるように製造する。具体的には、ルツボ5の
回転数n〔rpm〕と引上軸3の引上速度V〔mm/h〕との関係が、
28≧n≧5.89e0.07V(eは自然対数の底)
となるように制御する。
When manufacturing the GaAs single crystal 10, as shown in FIG. 1, it manufactures so that the solid-liquid interface 11 in a crystal growth process may be maintained convex on the GaAs melt 9 side. Specifically, the relationship between the rotational speed n [rpm] of the crucible 5 and the pulling speed V [mm / h] of the pulling shaft 3 is
28 ≧ n ≧ 5.89e 0.07V (e is the base of natural logarithm)
Control to be

n≧5.89e0.07Vとすることで、結晶成長過程において転位の集積を抑制でき、安定した歩留でウエハ取得が可能となる。さらに、ルツボ5の回転数nが28≧nであれば、ルツボ5の高速回転に伴うルツボ軸4の偏芯の増加やルツボ軸4のシール部の磨耗を抑制することができ、生産性の低下を防止できる。 By setting n ≧ 5.89e 0.07 V , it is possible to suppress the accumulation of dislocations in the crystal growth process, and to obtain a wafer with a stable yield. Further, if the rotational speed n of the crucible 5 is 28 ≧ n, an increase in the eccentricity of the crucible shaft 4 and wear of the seal portion of the crucible shaft 4 due to the high-speed rotation of the crucible 5 can be suppressed. Decline can be prevented.

本実施形態では、引上軸3をルツボ5とは逆方向に回転させながら引き上げたが、引上軸3を回転させなくても良い。引上軸3を回転させずに、ルツボ5だけを回転させた場合でも、ほぼ同様の効果が得られることが確認されている。   In the present embodiment, the pull-up shaft 3 is lifted while rotating in the direction opposite to the crucible 5, but the pull-up shaft 3 may not be rotated. Even when only the crucible 5 is rotated without rotating the pull-up shaft 3, it has been confirmed that substantially the same effect can be obtained.

さらに、本実施形態によれば固液界面の凸形状の安定が図れるため、ウエハサイズ径が100mm以上となる結晶径を有するGaAs単結晶を歩留よく製造することができる。
以上、本発明の実施形態を具体的に説明したが、本発明は上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。
Furthermore, according to the present embodiment, since the convex shape of the solid-liquid interface can be stabilized, a GaAs single crystal having a crystal size with a wafer size diameter of 100 mm or more can be manufactured with a high yield.
As mentioned above, although embodiment of this invention was described concretely, this invention is not limited to the above-mentioned embodiment, It can change variously in the range which does not deviate from the summary.

次に、本発明の実施例を説明する。   Next, examples of the present invention will be described.

図1におけるGaAs単結晶製造装置1を用いて、結晶の直径が100mmであるGaAs単結晶10を製造した。外径280mmのPBN製のルツボ5内に11500gのGaと、12500gのAsと、Asの揮発防止に必要な適量の三酸化硼素とを収納し、ルツボ5をチャンバ2内に設置して加熱昇温した。GaAs融液9の加熱温度は1238℃以上とした。引上軸3の回転数を5rpmに設定し、引上速度Vを、2mm/h、4mm/h、6mm/h、8mm/h、10mm/h、12mm/h、14mm/h、16mm/h、18mm/h、20mm/hの10通りの条件を設定した。次に、それぞれの引上速度Vに対するルツボ5の回転数nを0rmpから1rmpずつ上げていき、製造されたGaAs単結晶10からのウエハ取得枚数の歩留の推移を調査した。その結果を図3に示す。   A GaAs single crystal 10 having a crystal diameter of 100 mm was manufactured using the GaAs single crystal manufacturing apparatus 1 in FIG. In a crucible 5 made of PBN having an outer diameter of 280 mm, 11500 g of Ga, 12,500 g of As, and an appropriate amount of boron trioxide necessary for preventing volatilization of As are stored, and the crucible 5 is placed in the chamber 2 and heated. Warm up. The heating temperature of the GaAs melt 9 was 1238 ° C. or higher. The number of rotations of the pulling shaft 3 is set to 5 rpm, and the pulling speed V is set to 2 mm / h, 4 mm / h, 6 mm / h, 8 mm / h, 10 mm / h, 12 mm / h, 14 mm / h, 16 mm / h. , 18 mm / h and 10 mm / h were set. Next, the number of rotations n of the crucible 5 with respect to each pulling speed V was increased by 1 rmp from 0 rmp, and the transition of the yield of the number of wafers obtained from the manufactured GaAs single crystal 10 was investigated. The result is shown in FIG.

図3に示すように、引上軸3のそれぞれの引上速度Vに対して、ルツボ5の回転数nを上げていくとウエハ取得枚数の歩留が向上することが確認できた。
一方、図3に示すように、ルツボ5の回転数が28rpmを上回ると、歩留が大きく低下することになった。このことから、ルツボの回転数nの最適な上限値は28rpmであることがわかった。
As shown in FIG. 3, it was confirmed that the yield of the number of wafers acquired was improved when the rotational speed n of the crucible 5 was increased with respect to each pulling speed V of the pulling shaft 3.
On the other hand, as shown in FIG. 3, when the rotational speed of the crucible 5 exceeded 28 rpm, the yield was greatly reduced. From this, it was found that the optimum upper limit value of the crucible rotation speed n was 28 rpm.

さらに、図3から、ウエハ取得枚数の歩留が80%となる時の、引上速度Vとルツボ5の回転数nを調査した。その結果を図4に示す。調査によって得られたデータから近似曲線を描いたところ、n=5.89e0.07Vとなった。
このことから、n≧5.89e0.07Vの関係を満たす場合に、80%以上の歩留でウエハ取得が可能であることがわかった。
Further, from FIG. 3, the pulling speed V and the rotation speed n of the crucible 5 when the yield of the number of wafers to be acquired is 80% were investigated. The result is shown in FIG. When an approximate curve was drawn from the data obtained by the investigation, n = 5.89e 0.07V was obtained.
From this, it was found that the wafer can be obtained with a yield of 80% or more when the relationship of n ≧ 5.89e 0.07V is satisfied.

以上により、LEC法によるGaAs単結晶の成長過程において、ルツボの回転数n〔rpm〕と引上軸の引上速度V〔mm/h〕との最適な関係は、28≧n≧5.89e0.07Vであり、このようにすると、80%以上の高歩留でウエハを取得でき、しかも安定的にGaAs単結晶を生産できることになる。 As described above, in the growth process of the GaAs single crystal by the LEC method, the optimum relationship between the crucible rotation speed n [rpm] and the pulling shaft pulling speed V [mm / h] is 28 ≧ n ≧ 5.89e. In this way, a wafer can be obtained with a high yield of 80% or more, and a GaAs single crystal can be produced stably.

1 GaAs単結晶製造装置
2 チャンバ
3 引上軸
4 ルツボ軸
5 ルツボ
6 三酸化硼素融液(液体封止剤)
7 種結晶
8 カーボンヒータ(ヒータ)
9 GaAs融液
10 GaAs単結晶
1 GaAs single crystal manufacturing equipment 2 chamber 3 pulling shaft 4 crucible shaft 5 crucible 6 boron trioxide melt (liquid sealant)
7 Seed crystal 8 Carbon heater (heater)
9 GaAs melt 10 GaAs single crystal

Claims (2)

不活性ガスを充填したチャンバ内に、GaAs原料と封止剤とを収納したルツボを設置し、ヒータにより前記ルツボを加熱し、前記GaAs原料と前記封止剤とを溶融させた後、GaAs融液に引上軸に取り付けた種結晶を接触させ、前記ルツボを回転させながら前記種結晶を引き上げてGaAs単結晶を成長させるGaAs単結晶の製造方法において、
前記ルツボの回転数n〔rpm〕と前記引上軸の引上速度V〔mm/h〕との関係が、
28≧n≧5.89e0.07V
であることを特徴とするGaAs単結晶の製造方法。
A crucible containing a GaAs raw material and a sealing agent is installed in a chamber filled with an inert gas, and the crucible is heated by a heater to melt the GaAs raw material and the sealing agent, and then GaAs melting. In the method for producing a GaAs single crystal, the seed crystal attached to the pulling shaft is brought into contact with the liquid, and the GaAs single crystal is grown by pulling up the seed crystal while rotating the crucible.
The relationship between the rotational speed n [rpm] of the crucible and the pulling speed V [mm / h] of the pulling shaft is
28 ≧ n ≧ 5.89e 0.07V
A method for producing a GaAs single crystal.
前記GaAs単結晶が、当該GaAs単結晶から得られるウエハサイズ径が100mm以上となる結晶径を有することを特徴とする請求項1に記載のGaAs単結晶の製造方法。   2. The method for producing a GaAs single crystal according to claim 1, wherein the GaAs single crystal has a crystal diameter such that a wafer size diameter obtained from the GaAs single crystal is 100 mm or more.
JP2009004314A 2009-01-13 2009-01-13 METHOD FOR PRODUCING GaAs SINGLE CRYSTAL Pending JP2010163287A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009004314A JP2010163287A (en) 2009-01-13 2009-01-13 METHOD FOR PRODUCING GaAs SINGLE CRYSTAL

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009004314A JP2010163287A (en) 2009-01-13 2009-01-13 METHOD FOR PRODUCING GaAs SINGLE CRYSTAL

Publications (1)

Publication Number Publication Date
JP2010163287A true JP2010163287A (en) 2010-07-29

Family

ID=42579775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009004314A Pending JP2010163287A (en) 2009-01-13 2009-01-13 METHOD FOR PRODUCING GaAs SINGLE CRYSTAL

Country Status (1)

Country Link
JP (1) JP2010163287A (en)

Similar Documents

Publication Publication Date Title
KR20180101586A (en) Manufacturing method of silicon single crystal
JP4966007B2 (en) InP single crystal wafer and method of manufacturing InP single crystal
JP2011079693A (en) Apparatus for producing semiconductor single crystal
JP2006327879A (en) Method for manufacturing compound semiconductor single crystal
JP2010163287A (en) METHOD FOR PRODUCING GaAs SINGLE CRYSTAL
JP2009161395A (en) Method for manufacturing compound semiconductor single crystal
JP2005343737A (en) Apparatus for manufacturing compound semiconductor single crystal
JP3885245B2 (en) Single crystal pulling method
JP2010030847A (en) Production method of semiconductor single crystal
WO2021162046A1 (en) Method for producing silicon single crystal
JP2010150136A (en) Apparatus for producing compound semiconductor single crystal and method for production thereof
JP2010030868A (en) Production method of semiconductor single crystal
JP2009057237A (en) Method for producing compound semiconductor single crystal
JP2009067620A (en) Method and apparatus for producing compound semiconductor single crystal
JPS6090897A (en) Method and apparatus for manufacturing compound semiconductor single crystal
JPH05319973A (en) Single crystal production unit
JPH03193689A (en) Production of compound semiconductor crystal
JP2700145B2 (en) Method for manufacturing compound semiconductor single crystal
JPH11130579A (en) Production of compound semiconductor single crystal and apparatus for producing the same
JPH03237088A (en) Method for growing single crystal
JP2010095412A (en) METHOD FOR MANUFACTURING GaAs SINGLE CRYSTAL
JP2004010467A (en) Method for growing compound semiconductor single crystal
KR101597207B1 (en) Silicon single crystalline ingot, method and apparatus for manufacturing the ingot
JP2013193942A (en) Single crystal manufacturing apparatus and method for manufacturing single crystal using the same
JP2004123444A (en) Apparatus for manufacturing compound semiconductor single crystal