JP2010158631A - Diffusion plate - Google Patents

Diffusion plate Download PDF

Info

Publication number
JP2010158631A
JP2010158631A JP2009002893A JP2009002893A JP2010158631A JP 2010158631 A JP2010158631 A JP 2010158631A JP 2009002893 A JP2009002893 A JP 2009002893A JP 2009002893 A JP2009002893 A JP 2009002893A JP 2010158631 A JP2010158631 A JP 2010158631A
Authority
JP
Japan
Prior art keywords
max
diffuser
air
width
diffuser plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009002893A
Other languages
Japanese (ja)
Inventor
Takeshi Tsuji
猛志 辻
Itaru Sakai
至 坂井
Takashi Miura
崇 三浦
Masanori Nagafuji
雅則 長藤
Kazuaki Ohashi
一聡 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP2009002893A priority Critical patent/JP2010158631A/en
Publication of JP2010158631A publication Critical patent/JP2010158631A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a diffusion plate capable of maintaining the initial performance even in severe use conditions likely to cause the clogging of an aerobic biological reaction tank or the like of sewage and industrial wastewater. <P>SOLUTION: The diffusion plate 1 comprises a thin plate which has a first surface in contact with liquid and a second surface in contact with air, and is provided with a plurality of aeration holes 5, and disperses air bubbles into the liquid through the aeration holes. An opening of each aeration hole has a first width in the first surface, and has a second width in the second surface, which is smaller than the first width. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、散気板に関する。   The present invention relates to a diffuser plate.

気液接触により気相から液相へ物質を移動する技術、特に、好気性生物反応を利用した水処理槽へ酸素を移動するにあたって、散気板が用いられている。酸素移動の効率を高めるために、種々の散気板および散気装置が提案されている。   A diffuser plate is used in transferring oxygen from a gas phase to a liquid phase by gas-liquid contact, particularly in transferring oxygen to a water treatment tank using an aerobic biological reaction. Various diffusers and diffusers have been proposed to increase the efficiency of oxygen transfer.

例えば、微細なスリット状の孔を有する金属製の板から発泡させる散気装置が提案されている(例えば、特許文献1参照)。これにおいては、圧力損失が小さく、微細な気泡を発生させることができることから、高い酸素移動効率が得られる。   For example, an air diffuser that foams from a metal plate having fine slit-like holes has been proposed (see, for example, Patent Document 1). In this, since the pressure loss is small and fine bubbles can be generated, high oxygen transfer efficiency can be obtained.

しかしながら、散気板が下水や工場排水の好気性生物反応槽に浸漬して用いられる場合には、被処理水に含まれる微生物が孔の内部に侵入し、付着することによって、孔の目詰まりが生じる。その結果、発泡が不均一となって酸素移動効率が低下したり、圧力損失が上昇して散気板に必要な量の送風ができなくなるなどの問題があった。
特開2006−61817号公報
However, when the diffuser plate is used by being immersed in an aerobic biological reaction tank for sewage or factory wastewater, the microorganisms contained in the water to be treated enter and adhere to the inside of the hole, thereby clogging the hole. Occurs. As a result, there are problems such as uneven foaming and reduced oxygen transfer efficiency, and increased pressure loss, making it impossible to supply the necessary amount of air to the diffuser plate.
JP 2006-61817 A

本発明は、上記の問題点を解決し、下水や工場排水の好気性生物反応槽などの目詰まりの生じやすい過酷な使用条件下においても、初期の性能を維持することが可能な散気板を提供することを目的とする。   The present invention solves the above-mentioned problems, and a diffuser plate capable of maintaining the initial performance even under severe use conditions such as sewage and aerobic biological reaction tanks for industrial wastewater that are likely to be clogged. The purpose is to provide.

本発明にかかる散気板は、液体に接する第1の面と空気に接する第2の面とを有し、複数の散気孔が設けられた薄板からなり、前記散気孔を通して液体中に気泡を分散させる散気板であって、
前記散気孔の開口は、前記第1の面で第1の幅を有するとともに、前記第2の面で第2の幅を有し、前記第2の幅は前記第1の幅より小さいことを特徴とする。
The air diffuser plate according to the present invention comprises a thin plate having a first surface in contact with a liquid and a second surface in contact with air, and provided with a plurality of air diffuser holes. Air bubbles are introduced into the liquid through the air diffuser holes. A diffuser plate to disperse,
The opening of the air diffusion hole has a first width on the first surface and a second width on the second surface, and the second width is smaller than the first width. Features.

本発明によれば、下水や工場排水の好気性生物反応槽などの目詰まりの生じやすい過酷な使用条件下においても、初期の性能を維持することが可能な散気板が提供される。   ADVANTAGE OF THE INVENTION According to this invention, the diffuser board which can maintain an initial stage performance also in the severe use conditions which a clogging of aerobic biological reaction tanks, such as a sewage and a factory wastewater, tends to produce is provided.

以下、図面を参照して本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail with reference to the drawings.

図1は、本発明の一実施形態にかかる散気板の平面図である。図示するように、散気板1は、複数の散気孔(スリット)5を有する薄板から構成される。薄板の材質は、通常、ステンレス、チタン、アルミ、銅、銀またはそれらを主成分とする合金である。特に、ステンレスまたはチタンを用いた場合には、表面に均質な酸化皮膜を形成しやすく、均一な発泡状態を得やすい。銀が含まれる場合には、薄板の微生物の繁殖を抑制する効果が高く、長期にわたって効果を持続することが可能である。散気板1の形状は特に限定されず、任意に決定することができる。散気孔5の形状や寸法、配置されるピッチもまた、適宜決定すればよい。   FIG. 1 is a plan view of a diffuser plate according to an embodiment of the present invention. As shown in the figure, the diffuser plate 1 is composed of a thin plate having a plurality of diffuser holes (slits) 5. The material of the thin plate is usually stainless steel, titanium, aluminum, copper, silver or an alloy containing them as a main component. In particular, when stainless steel or titanium is used, it is easy to form a uniform oxide film on the surface and to obtain a uniform foamed state. When silver is contained, the effect of suppressing the growth of microorganisms in the thin plate is high, and the effect can be maintained for a long time. The shape of the diffuser plate 1 is not particularly limited and can be arbitrarily determined. What is necessary is just to determine suitably the shape and dimension of the diffuser hole 5, and the pitch arrange | positioned.

下水や工業排水を処理する好気性生物反応槽などのように、微生物を多く含んだ被処理水に適用される場合、散気板1の散気孔5内部には、微生物が侵入・付着して目詰まりが起こりやすくなる。本発明においては、液体に接する面と空気に接する面とで、散気孔の開口の幅を異なる値に設定する。具体的には、空気に接する面における開口幅を、液体に接する面の開口幅より小さくすることによって、微生物の付着の問題を回避することができる。散気孔の開口幅とは、各面における開口形状が長手を有する場合には、開口の最大幅および最大長をさす。また、各面における開口形状が円形状の場合には、開口の直径をさす。   When applied to water to be treated containing a large amount of microorganisms, such as an aerobic biological reaction tank for treating sewage and industrial wastewater, microorganisms enter and adhere to the inside of the diffuser holes 5 of the diffuser plate 1. Clogging is likely to occur. In the present invention, the opening width of the air diffusion hole is set to a different value between the surface in contact with the liquid and the surface in contact with the air. Specifically, the problem of adhesion of microorganisms can be avoided by making the opening width on the surface in contact with air smaller than the opening width on the surface in contact with the liquid. The opening width of the diffuser holes refers to the maximum width and the maximum length of the opening when the opening shape on each surface has a longitudinal direction. Moreover, when the opening shape in each surface is circular, it refers to the diameter of the opening.

ここで、図1に示した散気板における散気孔1における散気孔5の断面形状を、図2に示す。図示する断面は、例えば長手をもった開口形状の散気孔の長手方向の断面とすることができる。   Here, the cross-sectional shape of the air diffusion hole 5 in the air diffusion hole 1 in the air diffusion plate shown in FIG. 1 is shown in FIG. The cross section shown in the figure can be, for example, a cross section in the longitudinal direction of an opening-shaped diffused hole having a longitudinal direction.

図2(a)〜図2(d)に示されるように、散気孔5の開口は、液体に接する第1の面1aと空気に接する第2の面1bとで異なる幅を有する。具体的には、第2の面1bにおける第2の開口幅は、第1の面1aにおける第1の開口幅より小さい。図2(a)に示されるように、散気孔5の断面は必ずしも左右対称に連続した傾斜を有するテーパー状とする必要はない。   As shown in FIGS. 2A to 2D, the opening of the air diffusion hole 5 has different widths on the first surface 1a in contact with the liquid and the second surface 1b in contact with the air. Specifically, the second opening width in the second surface 1b is smaller than the first opening width in the first surface 1a. As shown in FIG. 2A, the cross section of the air diffusion hole 5 does not necessarily need to be a tapered shape having a symmetrically continuous slope.

図2(b)に示されるような左右非対称な形状、あるいは図2(c)に示されるような曲線状でもよい。場合によっては、図2(d)に示されるように段階的に変化させてもよい。   It may be a left-right asymmetric shape as shown in FIG. 2B or a curved shape as shown in FIG. Depending on the case, it may be changed stepwise as shown in FIG.

散気孔は、例えば、打抜き法、エッチング法、および穿孔法などによって加工することができ、加工方法は散気孔の断面形状に応じて選択される。図2(a)および図2(b)に示されるテーパー形状は、打抜き法により形成することができ、図2(c)に示されるテーパー形状はエッチング法により形成することができる。また、図2(d)に示されるテーパー形状は、穿孔法により加工しやすい形状である。   The diffused holes can be processed by, for example, a punching method, an etching method, a drilling method, or the like, and the processing method is selected according to the cross-sectional shape of the diffused holes. The tapered shape shown in FIGS. 2A and 2B can be formed by a punching method, and the tapered shape shown in FIG. 2C can be formed by an etching method. Further, the tapered shape shown in FIG. 2 (d) is a shape that can be easily processed by a drilling method.

空気に接する下面側(第2の面)における散気孔の開口幅を、液体に接する上面側(第1の面)の開口幅より小さくしたので、本発明の実施形態にかかる散気板は汚水の浸入を抑制することが可能となった。こうした知見は、本願発明者らによって見出されたものである。   Since the opening width of the diffuser holes on the lower surface side (second surface) in contact with air is smaller than the opening width on the upper surface side (first surface) in contact with the liquid, the diffuser plate according to the embodiment of the present invention is sewage It has become possible to suppress the intrusion of water. Such knowledge has been found by the present inventors.

長手を有する形状の場合、第1の面1aにおける散気孔5の開口形状は、特に限定されない。図3に示されるように、散気孔5の開口形状は種々の形状とすることができる。具体的には、四角形、楕円、三日月形状、および台形などが挙げられる。第2の面1bにおいても、第1の面1aと同様の開口形状とすればよい。こうした長手を有する散気孔5の開口形状の最大幅および最大長は、図4に示すようにWmaxおよびLmaxを用いてそれぞれ表わすことができる。 In the case of a shape having a length, the opening shape of the air diffusion holes 5 on the first surface 1a is not particularly limited. As shown in FIG. 3, the opening shape of the air diffusion holes 5 can be various shapes. Specific examples include a quadrangle, an ellipse, a crescent shape, and a trapezoid. The second surface 1b may have an opening shape similar to that of the first surface 1a. The maximum width and the maximum length of the opening shape of the diffuser hole 5 having such a length can be expressed by using W max and L max , respectively, as shown in FIG.

ここで、第1の面1aにおける散気孔5の最大幅および最大長は、それぞれW1maxおよびL1maxとし、第2の面1bにおける散気孔5の最大幅および最大長は、それぞれW2maxおよびL2maxとする。第1の面1aおよび第2の面1bのそれぞれにおいて、最大長(Wmax)は最大幅(Lmax)より大きい。 Here, the maximum width and maximum length of the diffuser holes 5 on the first surface 1a are W1 max and L1 max , respectively, and the maximum width and maximum length of the diffuser holes 5 on the second surface 1b are W2 max and L2 respectively. Let it be max . In each of the first surface 1a and the second surface 1b, the maximum length (W max ) is larger than the maximum width (L max ).

本発明の実施形態にかかる散気板においては、下面側の第2の最大幅W2maxは、上面側の第1の最大幅W1maxより小さく規定される。特に、第2の最大幅W2maxが第1の最大幅のW1maxの0.8倍以下の場合には、汚水の散気孔内への侵入が困難になる点で有利である。第2の最大幅W2maxを第1の最大幅W1maxに対して過剰に小さくしたところで、その効果が顕著に高められるわけではない。むしろ、空気に対する下面側の開口面積が大幅に低下することにより、通気抵抗が激増するおそれがあることから、第2の最大幅W2maxは、第1の最大幅W1maxの0.5倍以上とすることが望まれる。 In the diffuser plate according to the embodiment of the present invention, the second maximum width W2 max on the lower surface side is defined to be smaller than the first maximum width W1 max on the upper surface side. In particular, the second maximum width W2 max is the case of 0.8 times or less of W1 max of the first maximum width, is advantageous in that entry into sewage diffusing pores inside is difficult. When the second maximum width W2 max is excessively reduced with respect to the first maximum width W1 max , the effect is not significantly enhanced. Rather, since the opening resistance on the lower surface side with respect to air is significantly reduced, there is a possibility that the ventilation resistance may increase drastically. Therefore, the second maximum width W2 max is 0.5 times or more of the first maximum width W1 max. Is desired.

第1の最大幅W1maxが小さいほど生成する気泡は微細化する傾向にあるものの、小さすぎる場合には、散気板の圧力損失が非常に大きくなってエネルギー的に不利になる。一方、第1の最大幅W1maxが大きすぎる場合には、生成する気泡が粗大となり、結果として酸素移動効率が低下するおそれがある。圧力損失を許容範囲に抑えつつ十分に大きな酸素移動効率を確保するためには、第1の最大幅W1maxは、0.02mm〜0.3mmの範囲内とすることが望まれる。 Although the generated bubbles tend to be finer as the first maximum width W1 max is smaller, if it is too small, the pressure loss of the diffuser plate becomes very large, which is disadvantageous in terms of energy. On the other hand, if the first maximum width W1 max is too large, air bubbles generated becomes coarse, oxygen transfer efficiency as a result may be lowered. In order to secure a sufficiently large oxygen transfer efficiency while keeping the pressure loss within an allowable range, it is desirable that the first maximum width W1 max is in the range of 0.02 mm to 0.3 mm.

第1の最大長L1maxも前述の第1の最大幅W1maxと同様に、小さすぎる場合にはエネルギー的に不利になり、大きすぎる場合には酸素移動効率の低下を招くおそれがある。これらを考慮すると、第1の最大長L1maxは、0.1mm〜2mmの範囲内に規定することが好ましい。 Similarly to the first maximum width W1 max described above, the first maximum length L1 max is disadvantageous in terms of energy when it is too small, and there is a possibility that the oxygen transfer efficiency is lowered when it is too large. Considering these, it is preferable to define the first maximum length L1 max within a range of 0.1 mm to 2 mm.

第1の面1aおよび第2の面1bにおける散気孔の開口形状は、円形状としてもよい。長手をもった形状の場合と同様に、下面側の第2の面1bにおける第2の直径R2は、上面側の第1の面1aにおける第1の直径R1より小さく規定される。特に、第2の直径R2が、第1の直径R1の0.8倍以下の場合には、汚水の散気孔内への侵入が困難になる点で有利である。第2の直径R2を第1の直径R1に対して過剰に小さくしたところで、その効果は顕著に高められるわけではない。むしろ、空気に接する下面側の開口面積が大幅に低下することにより通気抵抗が激増するおそれがあることから、第2の直径R2は、第1の直径R1の0.5倍以上とすることが望まれる。   The opening shape of the air diffusion holes in the first surface 1a and the second surface 1b may be circular. As in the case of the shape having the longitudinal direction, the second diameter R2 of the second surface 1b on the lower surface side is defined to be smaller than the first diameter R1 of the first surface 1a on the upper surface side. In particular, when the second diameter R2 is 0.8 times or less than the first diameter R1, it is advantageous in that it is difficult to enter the sewage into the air diffusion holes. When the second diameter R2 is made excessively smaller than the first diameter R1, the effect is not significantly enhanced. Rather, since the opening resistance on the lower surface side in contact with the air may be significantly reduced, the ventilation resistance may be drastically increased. Therefore, the second diameter R2 may be 0.5 times or more the first diameter R1. desired.

第1の面における第1の直径R1が小さいほど生成する気泡が微細化する傾向にあるものの、小さすぎる場合には、散気板の圧力損失が非常に大きくなってエネルギー的に不利になる。一方、第1の直径R1が大きすぎる場合には、生成する気泡が粗大となり、結果として酸素移動効率が低下するおそれがある。圧力損失を許容範囲に抑えつつ十分に大きな酸素移動効率を確保するためには、第1の直径R1は、0.02mm〜0.3mmの範囲内とすることが望まれる。   Although the generated bubbles tend to be finer as the first diameter R1 on the first surface is smaller, if it is too small, the pressure loss of the diffuser plate becomes very large, which is disadvantageous in terms of energy. On the other hand, when the first diameter R1 is too large, the generated bubbles become coarse, and as a result, the oxygen transfer efficiency may be reduced. In order to secure a sufficiently large oxygen transfer efficiency while keeping the pressure loss within an allowable range, it is desirable that the first diameter R1 be in the range of 0.02 mm to 0.3 mm.

上述したような散気板1を用いた散気装置の一例の断面図を、図5に示す。図示する散気装置10においては、散気板1が散気板固定枠2によってケーシング4の上部に装着されており、このケーシング4は、送気管3と連通している。ケーシング4と送気管3との間には、逆止弁11が設けられている。なお、図5中、参照符号13は散気板1とケーシング4との間の間隙を示す。   FIG. 5 shows a cross-sectional view of an example of the air diffuser using the air diffuser plate 1 as described above. In the diffuser 10 shown in the figure, the diffuser plate 1 is mounted on the upper part of the casing 4 by the diffuser plate fixing frame 2, and the casing 4 communicates with the air supply pipe 3. A check valve 11 is provided between the casing 4 and the air supply pipe 3. In FIG. 5, reference numeral 13 indicates a gap between the diffuser plate 1 and the casing 4.

散気板1には特定の形状の散気孔が設けられているので、汚水の浸入は抑制され、目詰まりに起因した問題を回避することができる。すなわち、均一な発泡が維持されるので、酸素移動効率が低下することはなく、圧力損失が上昇して散気に必要な量の送風が困難となることもない。したがって、本発明の散気板を用いた散気装置は長期にわたって連続運転が可能である。   Since the air diffuser plate 1 is provided with the air diffuser holes having a specific shape, the intrusion of sewage is suppressed, and problems due to clogging can be avoided. That is, since uniform foaming is maintained, the oxygen transfer efficiency does not decrease, and the pressure loss does not increase and the amount of air necessary for air diffusion does not become difficult. Therefore, the diffuser using the diffuser plate of the present invention can be operated continuously over a long period of time.

厚さ0.3mmのSUS316L板を用意し、散気孔を設けて散気板を作製した。設けた散気孔の開口の形状および寸法を、下記表1および2にまとめる。

Figure 2010158631
A SUS316L plate having a thickness of 0.3 mm was prepared, and a diffuser plate was prepared by providing a diffuser hole. The shapes and dimensions of the openings of the provided air diffusion holes are summarized in Tables 1 and 2 below.
Figure 2010158631

Figure 2010158631
Figure 2010158631

なお、上記表には、後述する図6中のプロットとの対応も併せて示した。   In the table, the correspondence with the plot in FIG. 6 described later is also shown.

実施例1,2の散気板は、第1の面における開口幅が第2の面における開口幅より大きいので、いずれもテーパーを有する形状である。比較例1,2の散気板は、第1の面および第2の面のいずれの開口幅も同等で、テーパーを有しない形状である。   Since the opening width in the first surface is larger than the opening width in the second surface, the diffuser plates of Examples 1 and 2 both have a tapered shape. The diffuser plates of Comparative Examples 1 and 2 have the same opening widths on the first surface and the second surface, and have no taper.

各散気板を活性汚泥処理反応槽内に設置して、実排水の散気運転を行なった。散気板の設置水深は1mとし、散気板面積当たりの散気量は35Nm3/hr/m2で散気して、圧力損失を調べた。散気板の圧力損失は、次のような手法により求めた。具体的には、散気板を保持するケーシング内に圧力センサーを設置し、ケーシング内の全圧損を測定した。この測定値から水深分の圧損1000mm−aqを差し引いて、散気板の圧力損失を求めた。 Each diffuser plate was installed in the activated sludge treatment reaction tank, and the actual drainage was diffused. The installed water depth of the diffuser plate was 1 m, the diffused amount per diffuser plate area was 35 Nm 3 / hr / m 2 , and the pressure loss was examined. The pressure loss of the diffuser plate was determined by the following method. Specifically, a pressure sensor was installed in the casing holding the diffuser plate, and the total pressure loss in the casing was measured. The pressure loss of the diffuser plate was determined by subtracting the pressure loss of 1000 mm-aq for the water depth from this measured value.

データ計測中の活性汚泥処理反応槽の運転状況は、以下のとおりである。なお、数値は平均値である。   The operating status of the activated sludge treatment reactor during data measurement is as follows. In addition, a numerical value is an average value.

処理時間(滞留時間):24hr
固形物濃度(MLSS濃度):3050mg/L
実施例1,2および比較例1,2の散気板についての圧力損失の経日変化を、図6のグラフに示す。
Processing time (residence time): 24 hr
Solid matter concentration (MLSS concentration): 3050 mg / L
The graph of FIG. 6 shows the change over time of the pressure loss for the diffuser plates of Examples 1 and 2 and Comparative Examples 1 and 2.

開口形状が長方形の場合、すなわち実施例1と比較例1とを比較すると、連続散気開始時における初期圧力損失は同程度である。テーパーなしの場合(比較例1)には92mm−aqであり、テーパーありの場合(実施例1)には94mm−aqである。   When the opening shape is rectangular, that is, when Example 1 and Comparative Example 1 are compared, the initial pressure loss at the start of continuous aeration is comparable. When there is no taper (Comparative Example 1), it is 92 mm-aq, and when there is a taper (Example 1), it is 94 mm-aq.

比較例1の散気板の圧力損失は、散気開始直後から上昇が確認された。約20日間経過後に400mm−aqに達し、80日経過後には560mm−aqにも及んでいる。圧力損失が600mm−aqを越えると、薬品洗浄等の回復作業を行なわなければ連続散気を継続するのが困難となる。   The pressure loss of the diffuser plate of Comparative Example 1 was confirmed to increase immediately after the start of the aeration. It reaches 400 mm-aq after about 20 days, and reaches 560 mm-aq after 80 days. When the pressure loss exceeds 600 mm-aq, it is difficult to continue the continuous aeration unless a recovery operation such as chemical cleaning is performed.

一方、実施例1の散気板の圧力損失は、散気開始直後から緩やかな上昇を示したものの、約20日間経過後以降は安定し、200〜300mm−aq間で推移している。圧力損失は、400mm−aq程度以下であれば、実質的に影響を及ぼさないので許容範囲内である。したがって、実施例1の散気板は、80日経過後も引き続き連続散気運転が可能であった。   On the other hand, although the pressure loss of the diffuser plate of Example 1 showed a gradual increase immediately after the start of the aeration, it has stabilized after about 20 days and has changed between 200 and 300 mm-aq. If the pressure loss is about 400 mm-aq or less, the pressure loss is not substantially affected, and thus is within an allowable range. Therefore, the diffuser plate of Example 1 was capable of continuous aeration operation even after 80 days.

開口形状が円形の場合、すなわち実施例2と比較例2とを比較すると、連続散気開始時における初期の圧力損失は、ほぼ同程度である。テーパーなしの場合(比較例2)には259mm−aqであり、テーパーありの場合(実施例2)には260mm−aqである。   When the opening shape is circular, that is, when Example 2 and Comparative Example 2 are compared, the initial pressure loss at the start of continuous aeration is substantially the same. When there is no taper (Comparative Example 2), it is 259 mm-aq, and when there is a taper (Example 2), it is 260 mm-aq.

比較例2の散気板の圧力損失は、散気開始直後から急激に上昇し、約41日間経過後に600mm−aqに達した。このため、比較例2の散気板は、薬品洗浄等の回復作業を行わなければ連続散気の継続が困難であった。   The pressure loss of the diffuser plate of Comparative Example 2 rapidly increased immediately after the start of the aeration, and reached 600 mm-aq after about 41 days. For this reason, it was difficult for the air diffusing plate of Comparative Example 2 to continue the continuous air diffusing unless a recovery operation such as chemical cleaning was performed.

一方、実施例2の散気板の圧力損失は、散気開始直後から穏やかな上昇を示したものの、約30〜40日間経過後以降は安定して300〜400mm−aq間で推移している。上述したように、圧力損失は、400mm−aq程度以下であれば、実質的に影響を及ぼさないので許容範囲内である。したがって、実施例2の散気板は、40日経過後も引き続き連続散気運転が可能であった。   On the other hand, although the pressure loss of the diffuser plate of Example 2 showed a moderate increase immediately after the start of the aeration, it has stably changed between 300 and 400 mm-aq after about 30 to 40 days. . As described above, if the pressure loss is about 400 mm-aq or less, the pressure loss is not substantially affected, and thus is within an allowable range. Therefore, the diffuser plate of Example 2 was capable of continuous aeration operation even after 40 days had elapsed.

以上の結果から、実施例の散気板は圧力損失の経日変化が小さく、過酷な使用条件下においても初期の性能を維持できることが確認された。   From the above results, it was confirmed that the diffuser plate of the example has a small change in pressure loss with time and can maintain the initial performance even under severe use conditions.

なお、開口形状に関して、気泡径は、散気孔との接触長さに影響され、これが小さければ気泡径も小さくなる。孔が円形の場合、気泡は孔の全周と接触して、成長、脱離し、孔の全周が接触長さになる。これに対して、孔が長方形の場合には、気泡は孔を形成する4辺のうち、2つの長辺の一部とだけ接触して、成長、脱離する。孔の周長さが同程度の場合、長方形の方が小さい径の気泡を発生することができる。したがって、円形の孔のように、孔径を小さくし圧力損失を増加させることなく気泡を小径化し、酸素溶解効率を高めることができるので、長方形の孔の方が好ましい。   In addition, regarding the opening shape, the bubble diameter is affected by the contact length with the air diffuser, and if this is small, the bubble diameter is also small. When the hole is circular, the bubble contacts the entire circumference of the hole, grows and desorbs, and the entire circumference of the hole becomes the contact length. On the other hand, when the hole is rectangular, the bubble grows and desorbs by contacting only part of two long sides among the four sides forming the hole. When the peripheral lengths of the holes are about the same, bubbles having a smaller diameter can be generated in the rectangular shape. Therefore, like a circular hole, since the diameter of the bubble can be reduced without increasing the pressure loss and the oxygen dissolution efficiency can be increased without increasing the pressure loss, the rectangular hole is preferable.

本発明の一実施例にかかる散気板の表面の拡大図。The enlarged view of the surface of the diffuser plate concerning one Example of this invention. 散気孔の断面形状の一例を示す図。The figure which shows an example of the cross-sectional shape of an air diffusion hole. 散気孔の平面形状の一例を示す図。The figure which shows an example of the planar shape of an air diffusion hole. 散気孔の平面形状の一例を示す図。The figure which shows an example of the planar shape of an air diffusion hole. 散気装置の一例を示す断面図。Sectional drawing which shows an example of an air diffuser. 散気板圧力損失の経日変化を示すグラフ図。The graph which shows the daily change of a diffuser plate pressure loss.

1…散気板; 1a…第1の(液体側)面; 1b…第2の(空気側)面
2…散気板固定枠; 3…送気管; 4…ケーシング; 5…散気孔
10…散気装置; 11…逆止弁; 13…間隙。
DESCRIPTION OF SYMBOLS 1 ... Air diffuser plate; 1a ... 1st (liquid side) surface; 1b ... 2nd (air side) surface 2 ... Air diffuser plate fixed frame; 3 ... Air supply pipe; 4 ... Casing; 5 ... Air diffuser hole 10 ... Air diffuser; 11 ... Check valve; 13 ... Gap.

Claims (5)

液体に接する第1の面と空気に接する第2の面とを有し、複数の散気孔が設けられた薄板からなり、前記散気孔を通して液体中に気泡を分散させる散気板であって、
前記散気孔の開口は、前記第1の面で第1の幅を有するとともに、前記第2の面で第2の幅を有し、前記第2の幅は前記第1の幅より小さいことを特徴とする散気板。
A diffuser plate having a first surface in contact with a liquid and a second surface in contact with air, comprising a thin plate provided with a plurality of air diffusion holes, and disperses bubbles in the liquid through the air diffusion holes;
The opening of the air diffusion hole has a first width on the first surface and a second width on the second surface, and the second width is smaller than the first width. A diffuser plate featuring.
前記散気孔の開口形状は、前記第1の面において第1の最大幅W1maxおよび第1の最大長L1maxを有する長手をもった形状であり、前記第2の面において第2の最大幅W2maxおよび第2の最大長L2maxの有する長手をもった形状であり、W1max≦L1max、W2max≦L2max、0.5W1max≦W2max≦0.8W1maxであることを特徴とする請求項1に記載の散気板。 The opening shape of the air diffusion hole is a shape having a length having a first maximum width W1 max and a first maximum length L1 max on the first surface, and a second maximum width on the second surface. W2 max and the second maximum length L2 max have a longitudinal shape, and are characterized by W1 max ≦ L1 max, W2 max ≦ L2 max , 0.5W1 max ≦ W2 max ≦ 0.8 W1 max The diffuser plate according to claim 1. 前記散気孔の前記第1の最大幅W1maxは0.02〜0.3mmであり、前記第1の最大長L1maxは0.1〜2mmであることを特徴とする請求項2に記載の散気板。 The first maximum width W1 max of the air diffuser is 0.02 to 0.3 mm, and the first maximum length L1 max is 0.1 to 2 mm. Diffuser. 前記散気孔の開口形状は、前記第1の面において第1の直径R1の円形状を有し、前記第2の面において第2の直径R2の円形状を有し、0.5R1≦R2≦0.8R1であることを特徴とする請求項1に記載の散気板。   The opening shape of the air diffuser has a circular shape with a first diameter R1 on the first surface, a circular shape with a second diameter R2 on the second surface, and 0.5R1 ≦ R2 ≦. The diffuser plate according to claim 1, wherein the diffuser plate is 0.8R1. 前記散気孔の前記第1の直径R1は0.02〜0.3mmであることを特徴とする請求項4に記載の散気板。   The diffuser plate according to claim 4, wherein the first diameter R1 of the diffuser hole is 0.02 to 0.3 mm.
JP2009002893A 2009-01-08 2009-01-08 Diffusion plate Pending JP2010158631A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009002893A JP2010158631A (en) 2009-01-08 2009-01-08 Diffusion plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009002893A JP2010158631A (en) 2009-01-08 2009-01-08 Diffusion plate

Publications (1)

Publication Number Publication Date
JP2010158631A true JP2010158631A (en) 2010-07-22

Family

ID=42576208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009002893A Pending JP2010158631A (en) 2009-01-08 2009-01-08 Diffusion plate

Country Status (1)

Country Link
JP (1) JP2010158631A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2484070A (en) * 2010-09-23 2012-04-04 Acal Energy Ltd Fine bubble generation device
US9385391B2 (en) 2010-03-02 2016-07-05 Acal Energy, Ltd. Fuel cells
WO2017061475A1 (en) * 2015-10-08 2017-04-13 住友電気工業株式会社 Filtration unit
GB2582980A (en) * 2019-04-12 2020-10-14 Colin Howard Stanwell Smith Improvements to sewage treatment plants

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5152037U (en) * 1974-10-16 1976-04-20
JPS5230787Y1 (en) * 1969-12-03 1977-07-13
JPS52107461U (en) * 1976-02-12 1977-08-16
JPH0619899U (en) * 1992-05-29 1994-03-15 喜代司 木村 Air diffuser
JPH10309597A (en) * 1997-05-09 1998-11-24 Nippon Synthetic Chem Ind Co Ltd:The Nozzle structure of diffuser pipe
JP2003230826A (en) * 2002-02-08 2003-08-19 Research Institute Of Innovative Technology For The Earth Liquid carbon dioxide release nozzle
JP2006061817A (en) * 2004-08-26 2006-03-09 Jfe Engineering Kk Aeration device
JP2008207165A (en) * 2007-01-29 2008-09-11 Jfe Engineering Kk Air diffusion plate, air diffusion device, and clogging removing method of air diffusion plate
JP2008229513A (en) * 2007-03-20 2008-10-02 Jfe Engineering Kk Aeration plate, and method for producing aeration plate
JP2009202139A (en) * 2008-02-29 2009-09-10 National Institute Of Advanced Industrial & Technology Gas diffuser member

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5230787Y1 (en) * 1969-12-03 1977-07-13
JPS5152037U (en) * 1974-10-16 1976-04-20
JPS52107461U (en) * 1976-02-12 1977-08-16
JPH0619899U (en) * 1992-05-29 1994-03-15 喜代司 木村 Air diffuser
JPH10309597A (en) * 1997-05-09 1998-11-24 Nippon Synthetic Chem Ind Co Ltd:The Nozzle structure of diffuser pipe
JP2003230826A (en) * 2002-02-08 2003-08-19 Research Institute Of Innovative Technology For The Earth Liquid carbon dioxide release nozzle
JP2006061817A (en) * 2004-08-26 2006-03-09 Jfe Engineering Kk Aeration device
JP2008207165A (en) * 2007-01-29 2008-09-11 Jfe Engineering Kk Air diffusion plate, air diffusion device, and clogging removing method of air diffusion plate
JP2008229513A (en) * 2007-03-20 2008-10-02 Jfe Engineering Kk Aeration plate, and method for producing aeration plate
JP2009202139A (en) * 2008-02-29 2009-09-10 National Institute Of Advanced Industrial & Technology Gas diffuser member

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9385391B2 (en) 2010-03-02 2016-07-05 Acal Energy, Ltd. Fuel cells
GB2484070A (en) * 2010-09-23 2012-04-04 Acal Energy Ltd Fine bubble generation device
WO2017061475A1 (en) * 2015-10-08 2017-04-13 住友電気工業株式会社 Filtration unit
GB2582980A (en) * 2019-04-12 2020-10-14 Colin Howard Stanwell Smith Improvements to sewage treatment plants

Similar Documents

Publication Publication Date Title
JP5088296B2 (en) Air diffuser
EP2226294B1 (en) Diffuser apparatus, and diffuser apparatus running method
JP4426596B2 (en) Air diffuser
WO2012165121A1 (en) Air diffuser
JP2006218371A (en) Wastewater treatment apparatus and method
JP2010158631A (en) Diffusion plate
JP2007136389A (en) Aeration device
JP4603395B2 (en) Filtration membrane cleaning method
JP6151578B2 (en) Wastewater treatment equipment
JP2008207165A (en) Air diffusion plate, air diffusion device, and clogging removing method of air diffusion plate
WO2010101152A1 (en) Device for membrane separation type activated-sludge treatment and method therefor
JP4671888B2 (en) Sewage treatment equipment
JP4819841B2 (en) Membrane separator
JP2012000584A (en) Air lift pump apparatus and wastewater treatment facility
JP3263267B2 (en) Septic tank
JP3468166B2 (en) Sewage treatment equipment
JP4373871B2 (en) Activated sludge treatment equipment
JP2002224685A (en) Activated sludge process equipment and method for operating the same
JP5519898B2 (en) How to recover phosphorus
JP2006263585A (en) Method for preventing clogging of air diffuser and method for operating air diffuser using this method
JP3605683B2 (en) Wastewater treatment equipment using microorganisms
TWI838480B (en) Aeration tank, sewage treatment device and sewage treatment method
JPS586555B2 (en) human waste septic tank
JP2011056384A (en) Membrane separator
JP4819840B2 (en) Membrane separator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120703

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121030