JP2009202139A - Gas diffuser member - Google Patents

Gas diffuser member Download PDF

Info

Publication number
JP2009202139A
JP2009202139A JP2008049771A JP2008049771A JP2009202139A JP 2009202139 A JP2009202139 A JP 2009202139A JP 2008049771 A JP2008049771 A JP 2008049771A JP 2008049771 A JP2008049771 A JP 2008049771A JP 2009202139 A JP2009202139 A JP 2009202139A
Authority
JP
Japan
Prior art keywords
hole
diffuser plate
diameter
gas
diffuser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008049771A
Other languages
Japanese (ja)
Inventor
Yuichi Yoshizawa
友一 吉澤
Manabu Fukushima
福島  学
Masayuki Nakada
昌幸 中田
Nobuo Oshima
信夫 大島
Hideya Shiraishi
英也 白石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd, National Institute of Advanced Industrial Science and Technology AIST filed Critical Meidensha Corp
Priority to JP2008049771A priority Critical patent/JP2009202139A/en
Publication of JP2009202139A publication Critical patent/JP2009202139A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

<P>PROBLEM TO BE SOLVED: To provide a gas diffuser member which can reduce electric power consumption of a blower by increasing oxygen distribution efficiency. <P>SOLUTION: A gas diffuser plate 1 (the gas diffuser member) comprises a porous ceramic member 19 having a plurality of through-holes 11 formed therethrough for passing a gas, and preferably further comprises: a hollow member which has an inner surface smoother than that of the through-hole 11 and is fixedly inserted into each of the through-holes 11; and a nozzle part for discharging the gas, which is connected to the through-hole 11 in such a way as to project from the surface of a porous ceramic member 10. The gas discharge side end of the nozzle part preferably has an outer diameter smaller than that of the gas discharge side end of the through-hole 11. The gas discharge opening of the through-hole 11 preferably has an inner diameter smaller than that of its gas inlet opening. The gas discharge opening of the hollow member preferably has an inner diameter smaller than that of its gas inlet opening. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は水処理装置に適用される散気部材に関する。   The present invention relates to an aeration member applied to a water treatment apparatus.

上下水処理場などにおける水処理装置においては、反応槽の下部に酸素またはオゾンを配給するための散気板を配置している。散気装置のうち最も一般的なものは、粗大なセラミックス粒子をバインダー等で接合した多孔質セラミックス散気板である。セラミックス粒子は矩形、円形、礫状のものが多く、平均粒子径は投影面積相当径で0.5〜2mm程度が一般的である。その場合の気孔径は260〜400μm 程度である。散気板のサイズは300×300×30mmの平板形状が広く用いられている。ブロワーより配給された空気は散気板を通して微細な気泡となり槽内に排出される。散気板を槽内に均一に空気を供給して高い溶解効率を得るために散気板から噴出する気泡の径が均一で細かなものであることが要求されている。   In a water treatment apparatus in a water treatment plant or the like, a diffuser plate for distributing oxygen or ozone is disposed at the lower part of a reaction tank. The most common diffuser is a porous ceramic diffuser plate in which coarse ceramic particles are bonded with a binder or the like. Ceramic particles are often rectangular, circular or gravel, and the average particle diameter is generally about 0.5 to 2 mm in terms of the projected area equivalent diameter. In that case, the pore diameter is about 260 to 400 μm. As the size of the diffuser plate, a flat plate shape of 300 × 300 × 30 mm is widely used. The air distributed from the blower becomes fine bubbles through the diffuser and is discharged into the tank. In order to obtain a high dissolution efficiency by uniformly supplying air into the tank of the diffuser plate, it is required that the diameter of bubbles ejected from the diffuser plate be uniform and fine.

水処理工程に要する電力は処理施設全体の総消費電力の約30〜60%を占めており、そのほとんどが水処理に必要な酸素を槽内に配給するためのブロワーによる電力消費となっている。処理中では、汚水の散気板への逆流を防ぐためにブロワーは常に稼働中であり、全国に設置されている処理施設での消費電力の合計は、日本で使用されている総消費電力の約0.4%に達する。省電力、省エネルギーおよび省二酸化炭素の観点から是正されるべき課題である。また、近年における下水処理の高度化により、窒素除去まで行なうことが要求されている。処理漕への供給酸素量を増加させるためには、散気板の設置枚数を増加させる方法が簡易であるが処理漕の面積により限界がある。   The power required for the water treatment process accounts for about 30 to 60% of the total power consumption of the entire treatment facility, most of which is consumed by the blower for distributing oxygen necessary for water treatment in the tank. . During processing, the blower is always in operation to prevent the backflow of sewage to the diffuser, and the total power consumption at the treatment facilities installed nationwide is approximately the total power consumption used in Japan. It reaches 0.4%. This should be corrected from the viewpoint of power saving, energy saving and carbon dioxide saving. Moreover, with the recent advancement of sewage treatment, it is required to perform even nitrogen removal. In order to increase the amount of oxygen supplied to the treatment tank, a method of increasing the number of installed diffuser plates is simple, but there is a limit depending on the area of the treatment tank.

したがって、電力消費を低減および硝化のために、より効率的に酸素を処理水中に供給できる散気板の開発が重要な課題となっている。   Therefore, the development of a diffuser plate that can supply oxygen more efficiently into the treated water is an important issue in order to reduce power consumption and nitrification.

多孔質散気板において、散気板一枚当たりにおける配給酸素量の増大方法としては、発生気泡径を減少させ酸素溶解効率を向上させる方法と、通気量の増やし配給酸素量を増大させる方法の二種類が考えられる。しかし、この二者は相反する関係にある。すなわち、発生気泡径を減少させるために散気板の気孔径を小さくすると圧力損失が大きくなり通気量が減少する。また散気板の気孔径を一定にしたままで散気板の通気量を増大させた場合、気泡径が大きくなり、一気泡あたりの酸素溶解効率は減少する。また、これらの方法はともに吐出圧力の大きなブロワーを必要とし、電力消費量の増加にともなって運転費用が高くなる問題がある。よって、これらの方法で配給酸素量を増大させるのには限界がある。   In the porous diffuser plate, there are two methods for increasing the amount of oxygen delivered per diffuser plate: a method of reducing the generated bubble diameter and improving the oxygen dissolution efficiency, and a method of increasing the air flow rate and increasing the amount of oxygen delivered. Two types are possible. But the two are in conflict. That is, if the pore diameter of the diffuser plate is reduced in order to reduce the generated bubble diameter, the pressure loss increases and the air flow rate decreases. Further, when the air flow rate of the diffuser plate is increased while keeping the pore diameter of the diffuser plate constant, the bubble diameter increases and the oxygen dissolution efficiency per bubble decreases. Further, both of these methods require a blower with a large discharge pressure, and there is a problem that the operating cost increases as the power consumption increases. Therefore, there is a limit in increasing the amount of oxygen delivered by these methods.

散気板における通気量及び通気抵抗の改善方法としては、微細気孔が開口する躯体表面に表面特性が疎水性(非極性化)に改質されることで微細気孔の内周面の濡れ性の低下により水膜の形成をなくし、通気抵抗を低下させる方法がある(特許文献1)。また、多孔質の板状体の表面に多数の凹凸に均一に形成配置させる方法がある(特許文献2)。さらには、多孔質体ではなく膜状ゴムに孔を多数配置した、いわゆるメンブレンタイプ散気装置も提案されている(特許文献3)。   As a method of improving the air flow rate and air flow resistance in the diffuser plate, the wettability of the inner surface of the fine pores can be improved by modifying the surface characteristics to hydrophobic (non-polarized) on the surface of the casing where the fine pores open. There is a method of eliminating the formation of a water film by lowering and reducing the ventilation resistance (Patent Document 1). Further, there is a method of uniformly forming and arranging a large number of irregularities on the surface of a porous plate-like body (Patent Document 2). Furthermore, a so-called membrane-type air diffuser in which a large number of holes are arranged in a membrane-like rubber instead of a porous body has also been proposed (Patent Document 3).

しかしながら、通気量および通気抵抗の大幅な改善にはなっていない。また、表面に樹脂を用いた散気板や、メンブレンタイプ散気装置などにおけるゴム膜部などは汚水中の経年劣化などが問題となっている。
特開2002−263679号公報 特開平9−164396号公報 特開2003−320388号公報
However, it is not a significant improvement in the amount of ventilation and ventilation resistance. In addition, the diffuser plate using resin on the surface, the rubber film part in the membrane type diffuser, etc., have problems such as aging deterioration in sewage.
JP 2002-263679 A JP-A-9-164396 JP 2003-320388 A

本発明は、以上の問題点を鑑みなされたもので、水処理施設に係る処理漕への酸素配給効率を向上させてブロワーの消費電力量を低減できる散気板の提供にある。   The present invention has been made in view of the above problems, and is to provide a diffuser plate that can improve the oxygen distribution efficiency to the treatment tanks related to the water treatment facility and reduce the power consumption of the blower.

前記課題を解決するための散気部材は気体を流通させる貫通孔が多孔質セラミックス部材に複数形成されている。この発明によれば多孔質セラミックス部材に貫通孔が複数形成されたことにより、前記セラミックス部材の内部における圧損が減少し、発生気泡径を増大させることなく通気量を向上させることできる。   In the diffuser member for solving the above-mentioned problems, a plurality of through-holes through which a gas flows are formed in the porous ceramic member. According to the present invention, since a plurality of through holes are formed in the porous ceramic member, the pressure loss inside the ceramic member is reduced, and the air flow rate can be improved without increasing the generated bubble diameter.

前記散気部材において、内面が前記貫通孔の内面よりも平滑である中空部材を前記個々の貫通孔に挿通固定させるとよい。前記中空部材の内面は前記貫通孔の内面よりも平滑であるので、前記中空体部材を流通する気体の乱流の発生が少なくなり、圧損を効果的に低下させることができる。   In the air diffusing member, a hollow member whose inner surface is smoother than the inner surface of the through hole may be inserted and fixed in the individual through holes. Since the inner surface of the hollow member is smoother than the inner surface of the through hole, the occurrence of turbulent flow of gas flowing through the hollow body member is reduced, and the pressure loss can be effectively reduced.

前記散気部材において、前記貫通孔には前記気体を放出させる噴射部が前記多孔質セラミックス部材の表面から突出するように接続され、前記噴射部はその排気側端部の外径が記貫通孔の排気側端部の外径よりも小径であるとよい。前記噴射部への気泡の吸着面積の縮小化が可能となり、前記散気板の発生気泡径をさらに小型化させることができる。   In the air diffuser, the through hole is connected to an injection portion for releasing the gas so as to protrude from the surface of the porous ceramic member, and the injection portion has an outer diameter at the exhaust side end. It is good that it is smaller than the outer diameter of the exhaust side end. It is possible to reduce the area where bubbles are adsorbed to the injection unit, and the bubble diameter generated by the diffuser plate can be further reduced.

前記散気部材において、前記貫通孔の排気口部は吸気口部よりも小径であるとよい。前記多孔質セラミックス部材に貫通孔が複数形成されたことの作用に加えて、通気量の増加と発生気泡径の小型化が可能となる。   In the air diffuser, the exhaust port portion of the through hole may have a smaller diameter than the intake port portion. In addition to the effect that a plurality of through-holes are formed in the porous ceramic member, it is possible to increase the air flow rate and reduce the generated bubble diameter.

前記散気部材において、前記中空部材の排気口部は吸気口部よりも小径であるとよい。前記中空部材の作用に加えて、通気量の増加と発生気泡径の小型化が可能となる。   In the air diffusing member, the exhaust port portion of the hollow member may have a smaller diameter than the intake port portion. In addition to the action of the hollow member, it is possible to increase the air flow rate and reduce the generated bubble diameter.

したがって、以上の発明によれば、酸素配給効率が向上し、ブロワーの消費電力量が低減する。   Therefore, according to the above invention, oxygen distribution efficiency improves and the power consumption of a blower reduces.

図面を参照しながら発明の実施形態について説明する。以下に述べる実施形態に係る散気板における貫通孔の直径、個数および形状は必要とされる散気板の通気量、発生気泡径、強度により決定される。   Embodiments of the invention will be described with reference to the drawings. The diameter, the number, and the shape of the through holes in the diffuser plate according to the embodiment described below are determined by the required air flow rate, generated bubble diameter, and strength of the diffuser plate.

図1は発明の第一の実施形態に係る散気板1の斜視図である。図2は散気板1の貫通孔11の構造を示した散気板1の概略断面図である。   FIG. 1 is a perspective view of a diffuser plate 1 according to a first embodiment of the invention. FIG. 2 is a schematic sectional view of the diffuser plate 1 showing the structure of the through holes 11 of the diffuser plate 1.

散気板1は板状の多孔質セラミックス部10に複数の貫通孔11が形成されて成る。多孔質セラミックス部10はセラミックス粒子の平均粒子径は、特に制限されないが0.1〜3mm程度、より好ましくは0.5〜2mm程度のものが採用される。平均粒子径は光学顕微鏡または走査型電子顕微鏡等で粒子の直径を複数箇所測定して算出された投影面積相当径等を用いるのが好ましい。より簡易的にはふるい径(例えばJIS R 6001等)を用いてもよい。平均粒子径が0.5〜2mm程度である場合の気孔径は260 〜400μm程度である。貫通孔の直径は多孔質セラミックス部の気孔径と同程度の100〜1000μm、より好ましくは260 〜400μm程度である。   The diffuser plate 1 is formed by forming a plurality of through holes 11 in a plate-like porous ceramic portion 10. In the porous ceramic portion 10, the average particle diameter of the ceramic particles is not particularly limited, but is about 0.1 to 3 mm, more preferably about 0.5 to 2 mm. As the average particle diameter, it is preferable to use a projected area equivalent diameter calculated by measuring the diameter of the particle at a plurality of positions with an optical microscope or a scanning electron microscope. More simply, a sieve diameter (for example, JIS R 6001 etc.) may be used. When the average particle size is about 0.5 to 2 mm, the pore size is about 260 to 400 μm. The diameter of the through hole is about 100 to 1000 μm, more preferably about 260 to 400 μm, which is the same as the pore diameter of the porous ceramic portion.

貫通孔11の製造方法としては鋳込み、ロストワックス法、機械加工等が例示され、特に限定しない。発泡面積一定で酸素溶解を効率よく行うためには、発泡気泡径を小さくすると同時に発泡した気体の合一を避ける必要がある。そこで、貫通孔11は一定の間隔をあけて製造することが好ましい。図2に例示された貫通孔11は直管型構造であるが、通気量の増加と発生気泡径の小型化のために図3に示された貫通孔12のように吸気口部13と排気口部14の口径とを異径させた構造(排気口部14の内径が吸気口部13の内径よりも小径)いわゆるテーパー型構造を採用してもよい。   Examples of the manufacturing method of the through hole 11 include casting, lost wax method, machining, and the like, and are not particularly limited. In order to efficiently dissolve oxygen with a constant foaming area, it is necessary to reduce the bubble diameter and avoid coalescence of the foamed gas. Therefore, it is preferable to manufacture the through holes 11 with a certain interval. The through hole 11 illustrated in FIG. 2 has a straight pipe structure, but the intake port 13 and the exhaust gas are exhausted like the through hole 12 shown in FIG. 3 in order to increase the air flow rate and reduce the generated bubble diameter. A structure in which the diameter of the mouth portion 14 is different (the inner diameter of the exhaust port portion 14 is smaller than the inner diameter of the air inlet portion 13), a so-called tapered structure may be adopted.

図4は第二の実施形態に係る散気板2の透視図である。図5は散気板2に係る中空部材11の構造を示した散気板2の概略断面図を示す。   FIG. 4 is a perspective view of the diffuser plate 2 according to the second embodiment. FIG. 5 is a schematic cross-sectional view of the diffuser plate 2 showing the structure of the hollow member 11 related to the diffuser plate 2.

散気板2は第一の実施形態に係る多孔質セラミックス部10の個々の貫通孔11に中空部材21が挿通された構成となっている。中空部材21は中空パイプ状に形成されている。中空部材21は内面が貫通孔11の内面よりも平滑に加工されている。中空部材21の内面が平滑であることにより、内面が凹凸の多い散気板1の貫通孔11と比較し、通過する気体の乱流の発生が少なく、圧損が低下する。中空部材21の材質は、セラミックス、金属、樹脂、または木材など特に種類は限定しないが、多孔質セラミックス部10との材質を合わせる面からセラミックス、特に前記のパイプ内乱流を防ぐ目的から緻密なセラミックスが好ましい。図5に例示された中空部材21は直管構造であるが、通気量増加と発生気泡径の小型化のために、図6に示した中空部材22のように吸気口部23と排気口部24の口径とを異径させた構造(排気口部24の内径が吸気口部23の内径よりも小径)いわゆるテーパー型構造の部材を採用してもよい。   The diffuser plate 2 has a configuration in which a hollow member 21 is inserted into each through hole 11 of the porous ceramic portion 10 according to the first embodiment. The hollow member 21 is formed in a hollow pipe shape. The inner surface of the hollow member 21 is processed more smoothly than the inner surface of the through hole 11. Since the inner surface of the hollow member 21 is smooth, the turbulent flow of the passing gas is less generated and the pressure loss is lower than that of the through hole 11 of the diffuser plate 1 having a large unevenness on the inner surface. The material of the hollow member 21 is not particularly limited, such as ceramics, metal, resin, or wood, but ceramics, particularly dense ceramics for the purpose of preventing turbulent flow in the pipe, from the surface where the material is combined with the porous ceramic part 10. Is preferred. Although the hollow member 21 illustrated in FIG. 5 has a straight tube structure, an intake port portion 23 and an exhaust port portion are formed like the hollow member 22 shown in FIG. A structure having a different diameter from the diameter of 24 (the inner diameter of the exhaust port portion 24 is smaller than the inner diameter of the intake port portion 23), a so-called tapered structure member may be employed.

図7は発明の第三の実施形態に係る散気板3の斜視図である。図8はノズル31を備えた散気板3の縦断面図である。図9はノズル31の構成を示した拡大断面図である。   FIG. 7 is a perspective view of the diffuser plate 3 according to the third embodiment of the invention. FIG. 8 is a longitudinal sectional view of the diffuser plate 3 provided with the nozzles 31. FIG. 9 is an enlarged cross-sectional view showing the configuration of the nozzle 31.

図7及び図8に示されたように散気板3は第一の実施形態に係る多孔質セラミックス部10の貫通孔11の排気側にノズル31が接続されて成る。ノズル31は多孔質セラミックス部10の表面から突出するように貫通孔11の排気側に接続されている。ノズル31は図9に示されたように排気口部35が吸気口部32よりも小径である異径配管の構造を成している。ノズル31の内部には貫通孔11と連通するテーパー状通気路33とこのテーパー状通気路33と連通する直管通気路34が形成されている。散気板10から露出したノズル31の排出部36は外周面がテーパー状に形成されている。このノズル31によれば吸気口部32から排気口部35に至る過程で発生気泡径を減少させることができる。また、直管通気経路34はノズル31に限定されるため、圧損の増大も防ぐこと可能である。   As shown in FIGS. 7 and 8, the diffuser plate 3 is formed by connecting a nozzle 31 to the exhaust side of the through hole 11 of the porous ceramic portion 10 according to the first embodiment. The nozzle 31 is connected to the exhaust side of the through hole 11 so as to protrude from the surface of the porous ceramic portion 10. As shown in FIG. 9, the nozzle 31 has a structure of a different diameter pipe in which the exhaust port 35 has a smaller diameter than the intake port 32. A tapered air passage 33 communicating with the through hole 11 and a straight pipe air passage 34 communicating with the tapered air passage 33 are formed inside the nozzle 31. The discharge portion 36 of the nozzle 31 exposed from the diffuser plate 10 has an outer peripheral surface tapered. According to the nozzle 31, the generated bubble diameter can be reduced in the process from the intake port 32 to the exhaust port 35. Further, since the straight pipe ventilation path 34 is limited to the nozzle 31, it is possible to prevent an increase in pressure loss.

図10(a)は直管構造の排出部37における発生気泡の模式図であり、図10(b)はテーパー型構造の排出部36における発生気泡の模式図である。これらの模式図から明らかなように発生気泡径はノズルの排出部の外径に依存する。すなわち、外径が排出部36のよりも大きい排出部37は発生気泡径R1が排出部36の発生気泡径R2よりも大きくなる。したがって、図10(b)に示された排出部36のように外周面がテーパー状に形成すると、気泡の排出部への吸着面積が減少し、発生気泡径を小型化させることができる。   FIG. 10A is a schematic diagram of generated bubbles in the discharge portion 37 having a straight pipe structure, and FIG. 10B is a schematic diagram of generated bubbles in the discharge portion 36 having a tapered structure. As is clear from these schematic diagrams, the generated bubble diameter depends on the outer diameter of the discharge portion of the nozzle. That is, the discharge part 37 whose outer diameter is larger than that of the discharge part 36 has a generated bubble diameter R1 larger than a generated bubble diameter R2 of the discharge part 36. Accordingly, when the outer peripheral surface is formed in a tapered shape like the discharge portion 36 shown in FIG. 10B, the area of bubbles adsorbed to the discharge portion is reduced, and the generated bubble diameter can be reduced.

図11はノズル31を備えた散気板3の汚泥堆積時の作用を説明した模式図である。多孔質セラミックス部10に汚泥(s)が堆積する場合でも、ノズル31より曝気が可能である。また、通気量を増大させてノズル31近傍に上昇流(t)を発生させることにより、汚泥(s)を多孔質セラミックス部10から剥離させることが可能である。   FIG. 11 is a schematic diagram illustrating the action of the diffuser plate 3 provided with the nozzles 31 when depositing sludge. Even when sludge (s) is deposited on the porous ceramic portion 10, aeration can be performed from the nozzle 31. Further, it is possible to peel the sludge (s) from the porous ceramic portion 10 by increasing the air flow rate and generating an upward flow (t) in the vicinity of the nozzle 31.

また、図8に示された散気板3の貫通孔11は直管型構造であるが、通気量増加と発生気泡径の減少のために、図12に示された散気板4の貫通孔41のように吸気口部42の口径と排気口部43の口径とを異径させた構造いわゆるテーパー型構造を採用してもよい。   Moreover, although the through-hole 11 of the diffuser plate 3 shown in FIG. 8 has a straight pipe structure, the through-hole 11 of the diffuser plate 4 shown in FIG. A structure in which the diameter of the intake port portion 42 and the diameter of the exhaust port portion 43 are different from each other like the hole 41 may be adopted.

以上説明した発明に係る散気板は内部に貫通孔を有しているので散気板の内部における圧損が減少し発生気泡径を増大させることなく通気量を大幅に向上させることができる。   Since the diffuser plate according to the invention described above has a through-hole inside, the pressure loss inside the diffuser plate is reduced, and the air flow rate can be greatly improved without increasing the generated bubble diameter.

また、貫通孔及び多孔質を有することで、それぞれの通気性能と発生気泡径を制御し、通気形態を制御することが可能である。異なる通気挙動をもつ貫通孔部と多孔質部を組み合わせることにより、例えば“通常運転時には貫通孔部からのみ曝気、ブロワー強風時には全面から曝気”や“通常運転時には全面から曝気、ブロワー弱風時には貫通孔部のみから曝気”といった、様々な通気形態を有した散気板の作製が可能である。   Moreover, by having a through hole and a porous material, it is possible to control the ventilation performance and the generated bubble diameter, and to control the ventilation mode. By combining through holes and porous parts that have different ventilation behaviors, for example, “aeration only from the through hole during normal operation, aeration from the entire surface during blower strong wind” or “aeration from the entire surface during normal operation, penetration through when the blower is weak. It is possible to manufacture a diffuser plate having various ventilation forms such as “aeration only from the hole”.

以下に発明に係る散気板の実施例を示す。但し、発明の技術的範囲は以下に開示される実施例によって何ら限定されるものではない。   Examples of the diffuser plate according to the invention are shown below. However, the technical scope of the invention is not limited by the examples disclosed below.

実施例1、実施例2及び実施例3に係る散気板の多孔質セラミックス部は平均粒子径が投影面積相当径で500〜100μmのセラミック粒子をバインダーと混合、成形した後に焼成することにより作製した。差圧0.49kPa、通気経路30mmにおける乾式通気量は約188ml/cm2・分であった。 The porous ceramic parts of the diffuser plates according to Example 1, Example 2 and Example 3 are prepared by mixing ceramic particles having an average particle diameter of 500-100 μm in projected area equivalent diameter with a binder, and then firing the mixture. did. The dry aeration rate in a differential pressure of 0.49 kPa and a ventilation path of 30 mm was about 188 ml / cm 2 · min.

図13は実施例1に係る散気板の排気面の拡大写真である。実施例1に係る散気板は図1及び図2を参照して説明した第一の実施形態の散気板1に基づく。貫通孔11は直径約700μmに設定された。貫通孔11は多孔質セラミックス部10の上面に対し1平方センチ当たり4.13本の割合で形成された。差圧0.49kPa、通気経路30mmにおける乾式通気量は約2200ml/cm2・分であった。 FIG. 13 is an enlarged photograph of the exhaust surface of the diffuser plate according to the first embodiment. The diffuser plate according to Example 1 is based on the diffuser plate 1 of the first embodiment described with reference to FIGS. 1 and 2. The through hole 11 was set to have a diameter of about 700 μm. The through holes 11 were formed at a rate of 4.13 per square centimeter with respect to the upper surface of the porous ceramic portion 10. The dry aeration rate in a differential pressure of 0.49 kPa and a ventilation path of 30 mm was about 2200 ml / cm 2 · min.

図14は実施例2に係る散気板の排気面の拡大写真である。実施例2に係る散気板は図4及び図5を参照して説明した第二の実施形態の散気板2に基づく。中空部材21は外形1000μm内径400μmのパイプを採用した。中空部材21は多孔質セラミックス部10の上面に対し1平方センチ当たり4.13本の割合で配置した。差圧0.49kPa、通気経路30mmにおける乾式通気量は約675ml/cm2・分であった。 FIG. 14 is an enlarged photograph of the exhaust surface of the diffuser plate according to the second embodiment. The diffuser plate according to Example 2 is based on the diffuser plate 2 of the second embodiment described with reference to FIGS. 4 and 5. The hollow member 21 is a pipe having an outer diameter of 1000 μm and an inner diameter of 400 μm. The hollow members 21 were arranged at a rate of 4.13 per square centimeter with respect to the upper surface of the porous ceramic portion 10. The dry air flow rate at a differential pressure of 0.49 kPa and a ventilation path of 30 mm was about 675 ml / cm 2 · min.

図15は実施例3に係る散気板の排気面の拡大写真である。実施例3に係る散気板は図7及び図8を参照して説明した第三の実施形態の散気板3に基づく。貫通孔11は直径約1000μmに設定された。この貫通孔11の排気側に接続されるノズル31は最小内径約100μmのセラミックス製ノズルを採用した。多孔質体セラミックス部10の上面に対し1平方センチ当たり2.07本の割合で作製した。差圧0.49kPa、通気経路30mmにおける乾式通気量は約350ml/cm2・分であった。実施例2に係る中空部材21の発生気泡と実施例3に係るノズル31の発生気泡を比較したところ、ノズル31を採用することで気泡径は約5分の1に減少した。 FIG. 15 is an enlarged photograph of the exhaust surface of the diffuser plate according to the third embodiment. The diffuser plate according to Example 3 is based on the diffuser plate 3 of the third embodiment described with reference to FIGS. 7 and 8. The through hole 11 was set to a diameter of about 1000 μm. The nozzle 31 connected to the exhaust side of the through hole 11 is a ceramic nozzle having a minimum inner diameter of about 100 μm. It was produced at a rate of 2.07 per square centimeter with respect to the upper surface of the porous ceramic part 10. The dry air flow rate at a differential pressure of 0.49 kPa and an air flow path of 30 mm was about 350 ml / cm 2 · min. When the generated bubbles of the hollow member 21 according to Example 2 and the generated bubbles of the nozzle 31 according to Example 3 were compared, the use of the nozzle 31 reduced the bubble diameter to about one fifth.

発明の第一の実施形態に係る散気板の斜視図。The perspective view of the diffuser plate which concerns on 1st embodiment of invention. 発明の第一の実施形態に係る貫通孔の構造を示した散気板の概略断面図。The schematic sectional drawing of the diffuser plate which showed the structure of the through-hole which concerns on 1st embodiment of invention. テーパー型の貫通孔の構造を示した散気板の縦断面図。The longitudinal cross-sectional view of the diffuser plate which showed the structure of the taper type through-hole. 発明の第二の実施形態に係る散気板の透視図。The perspective view of the diffuser plate which concerns on 2nd embodiment of invention. 発明の第二の実施形態に係る中空部材の構造を示した散気板の概略断面図。The schematic sectional drawing of the diffuser plate which showed the structure of the hollow member which concerns on 2nd embodiment of invention. テーパー型の中空部材の構造を示した散気板の縦断面図。The longitudinal cross-sectional view of the diffuser plate which showed the structure of the taper-type hollow member. 発明の第三の実施形態に係る散気板の斜視図。The perspective view of the diffuser plate which concerns on 3rd embodiment of invention. ノズルを備えた第三の実施形態に係る散気板の縦断面図。The longitudinal cross-sectional view of the diffuser plate which concerns on 3rd embodiment provided with the nozzle. 第三の実施形態に係るノズルの拡大断面図。The expanded sectional view of the nozzle which concerns on 3rd embodiment. (a)直管型排出部の発生気泡の模式図、(b)テーパー型排出部の発生気泡の模式図。(A) The schematic diagram of the bubble produced | generated of a straight pipe | tube type discharge part, (b) The schematic diagram of the bubble produced | generated of a taper type discharge part. ノズルを備えた散気板の汚泥堆積時の作用を説明した模式図。The schematic diagram explaining the effect | action at the time of sludge deposition of the diffuser board provided with the nozzle. 排気口部にノズルとこれと連通するテーパー型の貫通孔とを有する散気板の縦断面図。The longitudinal cross-sectional view of the diffuser board which has a nozzle and the taper-type through-hole connected to this in an exhaust port part. 実施例1に係る散気板の排気面の拡大写真。The enlarged photograph of the exhaust surface of the diffuser plate which concerns on Example 1. FIG. 実施例2に係る散気板の排気面の拡大写真。The enlarged photograph of the exhaust surface of the diffuser plate which concerns on Example 2. FIG. 実施例3に係る散気板の排気面の拡大写真。The enlarged photograph of the exhaust surface of the diffuser plate which concerns on Example 3. FIG.

符号の説明Explanation of symbols

1,2,3…散気板
10…多孔質セラミックス部
11,12,…貫通孔
21,22…中空部材
31…ノズル(噴射部)
1, 2, 3 ... Diffusing plate 10 ... Porous ceramic parts 11, 12, ... Through holes 21, 22 ... Hollow member 31 ... Nozzle (injection part)

Claims (5)

気体を流通させる貫通孔が多孔質セラミックス部材に複数形成されたことを特徴とする散気部材。   An air diffusing member, wherein a plurality of through holes through which a gas flows are formed in a porous ceramic member. 内面が前記貫通孔の内面よりも平滑である中空部材が前記個々の貫通孔に挿通固定されたことを特徴とする請求項1に記載の散気部材。   The air diffusing member according to claim 1, wherein a hollow member whose inner surface is smoother than the inner surface of the through hole is inserted and fixed in the individual through hole. 前記貫通孔には前記気体を放出させる噴射部が前記多孔質セラミックス部材の表面から突出するように接続され、
前記噴射部はその排気側端部の外径が前記貫通孔の排気側端部の外径よりも小径であること
を特徴とする請求項1に記載の散気部材。
The through-hole is connected so that an injection part for releasing the gas protrudes from the surface of the porous ceramic member,
The diffuser member according to claim 1, wherein an outer diameter of an exhaust side end portion of the injection unit is smaller than an outer diameter of an exhaust side end portion of the through hole.
前記貫通孔はその排気口部の内径が吸気口部の内径よりも小径であることを特徴とする請求項1から3のいずれか1項に記載の散気部材。   The diffuser member according to any one of claims 1 to 3, wherein an inner diameter of the exhaust port portion of the through hole is smaller than an inner diameter of the intake port portion. 前記中空部材はその排気口部の内径が吸気口部の内径よりも小径であることを特徴とする請求項2に記載の散気部材。   The air diffuser according to claim 2, wherein the hollow member has an inner diameter of an exhaust port portion smaller than an inner diameter of the intake port portion.
JP2008049771A 2008-02-29 2008-02-29 Gas diffuser member Pending JP2009202139A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008049771A JP2009202139A (en) 2008-02-29 2008-02-29 Gas diffuser member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008049771A JP2009202139A (en) 2008-02-29 2008-02-29 Gas diffuser member

Publications (1)

Publication Number Publication Date
JP2009202139A true JP2009202139A (en) 2009-09-10

Family

ID=41144937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008049771A Pending JP2009202139A (en) 2008-02-29 2008-02-29 Gas diffuser member

Country Status (1)

Country Link
JP (1) JP2009202139A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010158631A (en) * 2009-01-08 2010-07-22 Jfe Engineering Corp Diffusion plate
JP2013236981A (en) * 2012-05-11 2013-11-28 Sumitomo Heavy Industries Environment Co Ltd Air diffuser
JP2020011200A (en) * 2018-07-19 2020-01-23 日本特殊陶業株式会社 Fine bubble generation member, and manufacturing method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010158631A (en) * 2009-01-08 2010-07-22 Jfe Engineering Corp Diffusion plate
JP2013236981A (en) * 2012-05-11 2013-11-28 Sumitomo Heavy Industries Environment Co Ltd Air diffuser
JP2020011200A (en) * 2018-07-19 2020-01-23 日本特殊陶業株式会社 Fine bubble generation member, and manufacturing method thereof
JP7250453B2 (en) 2018-07-19 2023-04-03 日本特殊陶業株式会社 Microbubble-generating member and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP4309021B2 (en) Wastewater treatment system
JP2007167856A (en) Air diffusion device
KR20150053981A (en) Aeration device, operation method therefor, and water treatment apparatus
JPWO2014061737A1 (en) Air diffuser, air diffuser, and water treatment device
WO2002040137A1 (en) Method and apparatus for wet type flue-gas desulfurizaion
JP2007307450A (en) Bubble generating device
JP2007136389A (en) Aeration device
JP2010207799A (en) Jet aeration apparatus and method of using the same
WO2016017335A1 (en) Water treatment system
JP2009202139A (en) Gas diffuser member
JP2004188246A (en) System for manufacturing ozonized water
JP2006314857A (en) Apparatus for dissolving gas
JP2006239573A (en) Bubble generator
CN108671779B (en) A kind of fine gas bubbles generator
JP4004874B2 (en) Aeration method and apparatus
JP2008093607A (en) Organic waste water treatment device and organic waste water treatment method
JP2002273467A (en) Air diffuser and biological treatment tank using the same
KR101162576B1 (en) Aeration systems for water treatment
JP2019188351A (en) Diffuser pipe and intermittent bubble generating module
JP2010158631A (en) Diffusion plate
JPH10230150A (en) Aerator
JP2012106189A (en) Device of generating bubble-containing liquid
KR101915170B1 (en) A wastewater treatment apparatus by using aeration equipment and aeration equipment
JP2010131481A (en) Air diffusion apparatus for and method for aeration
JP2004174287A (en) Apparatus and method for purifying water