JP2006239573A - Bubble generator - Google Patents

Bubble generator Download PDF

Info

Publication number
JP2006239573A
JP2006239573A JP2005058862A JP2005058862A JP2006239573A JP 2006239573 A JP2006239573 A JP 2006239573A JP 2005058862 A JP2005058862 A JP 2005058862A JP 2005058862 A JP2005058862 A JP 2005058862A JP 2006239573 A JP2006239573 A JP 2006239573A
Authority
JP
Japan
Prior art keywords
liquid
gas
dissolution tank
hole
nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005058862A
Other languages
Japanese (ja)
Inventor
Toshiaki Yamada
敏明 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MDK KK
Original Assignee
MDK KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MDK KK filed Critical MDK KK
Priority to JP2005058862A priority Critical patent/JP2006239573A/en
Publication of JP2006239573A publication Critical patent/JP2006239573A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a bubble generator being low-cost and extremely excellent in practical use, the bubble generator of which extremely simple unit configuration can realize stable gas microbubble formation and can enable highly efficient operation. <P>SOLUTION: The bubble generator comprises a suction port 3 for sucking a liquid such as bath water in a reservoir portion 5 provided in the reservoir portion 5 of a bath tub or the like, a dissolution tank 12 in which a gas such as air is pressurized to be dissolved in the liquid sucked from the suction port 3 and an injection port 4 for injecting the liquid containing a gas dissolved therein into the reservoir portion 5, wherein an infinite number of bubbles can be generated in the reservoir portion 5 by injecting the liquid containing a gas dissolved therein from the injection port 4, an openable and closable gas intake port 6 is provided between the suction port 3 and the dissolution tank 12, a gas release port 13 is provided in the dissolution tank 12 so that an excess gas in the dissolution tank 12 is automatically discharged, and a microbubble formation nozzle 7 for microbubble formation of the gas dissolved in the liquid is provided between the dissolution tank 12 and the injection port 4. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、気泡発生装置に関するものである。   The present invention relates to a bubble generating device.

従来から、浴槽内に微細な気泡を発生させたり、水道水の浄化等のために用いられる、浴槽等の貯留部内に配設され貯留部内の浴水等の液体を吸入する吸入口と、この吸入口から吸入した前記液体に空気等の気体を加圧溶解せしめる溶解タンクと、この気体が溶解せしめられた液体を貯留部内に噴射する噴射口とを備え、この気体が溶解せしめられた液体を噴射口から噴射することで貯留部内に無数の気泡を発生させる構成の気泡発生装置が提案されている。   Conventionally, an intake port that is used for generating fine bubbles in a bathtub or purifying tap water, etc., and is provided in a storage part such as a bathtub and sucks liquid such as bath water in the storage part, A dissolution tank that pressurizes and dissolves a gas such as air in the liquid sucked from the suction port, and an injection port that jets the liquid in which the gas is dissolved into the storage unit, and the liquid in which the gas is dissolved is provided. There has been proposed a bubble generating device configured to generate an infinite number of bubbles in a storage unit by being injected from an injection port.

ところで、上述のような気泡発生装置においては、気体の取り入れ量が不十分であると液体に溶解される気体量も不十分となり、この液体から析出される微細気泡量が減少してしまうし、また、取り入れ量が過剰であると、気体を液体に溶解させきれず、余剰の気体は前記液体と共にノズル等を介して噴射口から噴射されることになる。   By the way, in the bubble generating apparatus as described above, if the amount of gas taken in is insufficient, the amount of gas dissolved in the liquid becomes insufficient, and the amount of fine bubbles deposited from the liquid decreases. If the intake amount is excessive, the gas cannot be completely dissolved in the liquid, and the excess gas is injected from the injection port through the nozzle or the like together with the liquid.

即ち、液体への気体の溶解量が不十分であると、発生する気泡の量が少なく、気泡発生効率が悪化してしまうことになり、一方、気体を過剰に供給すると、液体に溶解しきれずに、(液体とは別体に)大きな気泡となって貯留部に排出されてしまうため、微細な気泡を連続且つ安定的に供給することはできず、この場合にも気泡発生効率が悪化する。   That is, if the amount of gas dissolved in the liquid is insufficient, the amount of bubbles generated will be small and the bubble generation efficiency will deteriorate. On the other hand, if the gas is supplied excessively, it cannot be completely dissolved in the liquid. In addition, since it becomes a large bubble (separate from the liquid) and is discharged to the reservoir, fine bubbles cannot be supplied continuously and stably, and in this case the bubble generation efficiency also deteriorates. .

そこで、従来は、気泡の取り入れや溶解タンクからの空気抜きを、例えば所定のプログラミングで自動制御可能な電磁弁等の制御弁を介して行うことで、過不足なく気体を液体に溶解せしめようとしていた。   Therefore, in the past, by taking in air bubbles and venting air from the dissolution tank via a control valve such as an electromagnetic valve that can be automatically controlled by predetermined programming, for example, an attempt was made to dissolve the gas in the liquid without excess or deficiency. .

しかしながら、特に家庭用の浴槽に取り付ける小型の気泡発生装置に、上述のような制御弁を採用するのは当然ながらコスト高となってしまう。   However, it is natural that the use of such a control valve in a small bubble generating device that is attached to a household bathtub is naturally expensive.

本発明は、上述のような現状に鑑み、発明者等の鋭意研究の結果、上記溶解タンクにおける液体への気体の溶解度及びノズル形状に未だ改善の余地がある点を見出し、気泡発生装置の更なる高効率化,低コスト化を図るべく成されたもので、極めて簡易な装置構成で、安定した気体の微細気泡化が実現でき、より高効率な運転を行うことができる安価にして極めて実用性に秀れた気泡発生装置を提供することを目的とする。   In view of the present situation as described above, the present invention has found that there is still room for improvement in the solubility of the gas in the liquid and the nozzle shape in the dissolution tank as a result of intensive studies by the inventors and the like. In order to achieve high efficiency and low cost, stable gas microbubbles can be realized with an extremely simple device configuration, and more efficient operation can be achieved at a low cost. It aims at providing the bubble generator excellent in property.

添付図面を参照して本発明の要旨を説明する。   The gist of the present invention will be described with reference to the accompanying drawings.

浴槽等の貯留部5内に配設され貯留部5内の浴水等の液体を吸入する吸入口3と、この吸入口3から吸入した前記液体に空気等の気体を加圧溶解せしめる溶解タンク12と、この気体が溶解せしめられた液体を貯留部5内に噴射する噴射口4とを備え、この気体が溶解せしめられた液体を噴射口4から噴射することで貯留部5内に無数の気泡を発生させる気泡発生装置であって、前記吸入口3と溶解タンク12との間に開閉自在な気体取入口6を設けると共に、前記溶解タンク12にこの溶解タンク12内の余剰気体を自動的に排出するように構成した気体抜き部13を設け、前記溶解タンク12と噴射口4との間には、前記液体に溶解せしめられた気体を微細気泡化する微細気泡化ノズル7を設けたことを特徴とする気泡発生装置に係るものである。   A suction port 3 that is disposed in the storage unit 5 such as a bathtub and sucks liquid such as bath water in the storage unit 5, and a dissolution tank that pressurizes and dissolves gas such as air in the liquid sucked from the suction port 3. 12 and an injection port 4 for injecting the liquid in which the gas is dissolved into the storage unit 5, and innumerable in the storage unit 5 by injecting the liquid in which the gas is dissolved from the injection port 4. A bubble generating device for generating bubbles, wherein an openable and closable gas inlet 6 is provided between the suction port 3 and the dissolution tank 12, and the excess gas in the dissolution tank 12 is automatically transferred to the dissolution tank 12. A gas venting portion 13 configured to be discharged is provided, and a microbubble generation nozzle 7 is provided between the dissolution tank 12 and the injection port 4 to make the gas dissolved in the liquid into microbubbles. The present invention relates to a bubble generator characterized by the following.

また、前記微細気泡化ノズル7は、この微細気泡化ノズル7の液体導入側に液体導入孔8を穿設すると共に、液体導出側に液体導出孔9を複数穿設し、この液体導入孔8と液体導出孔9とは夫々、この孔を通過する前記液体が減圧されて微細気泡が生じるような長さ及び径に設定し、前記液体導入孔8から導入される液体により前記微細気泡化ノズル7内で乱流が生じるようにこの液体導入孔8を構成したことを特徴とする請求項1記載の気泡発生装置に係るものである。   The microbubble generation nozzle 7 has a liquid introduction hole 8 formed on the liquid introduction side of the microbubble formation nozzle 7 and a plurality of liquid discharge holes 9 formed on the liquid discharge side. And the liquid outlet hole 9 are set to such a length and diameter that the liquid passing through the hole is decompressed to generate fine bubbles, and the fine bubble-forming nozzle is formed by the liquid introduced from the liquid introduction hole 8. The bubble generating device according to claim 1, wherein the liquid introduction hole 8 is configured so that a turbulent flow is generated in the inside.

また、前記液体導入孔8を螺旋孔とし、この螺旋孔から導入される液体により前記微細気泡化ノズル7内で螺旋流が生じるように構成したことを特徴とする請求項2記載の気泡発生装置に係るものである。   The bubble generating device according to claim 2, wherein the liquid introduction hole (8) is a spiral hole, and a spiral flow is generated in the microbubble generation nozzle (7) by the liquid introduced from the spiral hole. It is related to.

また、前記液体導出孔9は、少なくともその一側開口部を外方程拡径するテーパ形状に設定したことを特徴とする請求項2,3のいずれか1項に記載の気泡発生装置に係るものである。   4. The bubble generating device according to claim 2, wherein the liquid lead-out hole 9 is set to have a tapered shape in which at least one side opening thereof is increased in diameter toward the outside. 5. It is.

また、複数の前記液体導入孔8が穿設された前記微細気泡化ノズル7の液体導入側端面に、前記複数の液体導入孔8に液体が均等に導入されるようにこの液体をガイドするガイド体10を設けたことを特徴とする請求項2〜4のいずれか1項に記載の気泡発生装置に係るものである。   Further, a guide for guiding the liquid so that the liquid is evenly introduced into the plurality of liquid introduction holes 8 on the liquid introduction side end face of the microbubble forming nozzle 7 in which the plurality of liquid introduction holes 8 are formed. The bubble generating apparatus according to any one of claims 2 to 4, wherein a body 10 is provided.

また、方形状の浴槽の角部を閉塞するバスカバー14であって、三角形状の基部15に浴槽の縁に載置される載置部16を連設した載置板17と、この載置板17に組み合わされるものであって、該載置板17と組み合わせた際平面視において方形状となり少なくとも一側に浴槽の縁に載置される載置部18を連設した組み合わせ板19とから成るバスカバー14に設けたことを特徴とする請求項1〜5のいずれか1項に記載の気泡発生装置に係るものである。   Further, a bus cover 14 for closing a corner portion of a rectangular bathtub, and a mounting plate 17 in which a mounting portion 16 mounted on the edge of the bathtub is connected to a triangular base 15 and the mounting plate 17. A combination plate 19 that is combined with the plate 17 and has a square shape in a plan view when combined with the mounting plate 17 and a mounting portion 18 that is placed on the edge of the bathtub on at least one side. The bubble generating apparatus according to claim 1, wherein the bubble generating apparatus is provided on the bus cover 14.

本発明は、上述のように構成したから、極めて簡易な装置構成で、安定した気体の微細気泡化が実現でき、高効率な運転を行うことができる安価にして極めて実用性に秀れた気泡発生装置となる。   Since the present invention is configured as described above, it is possible to realize stable gas microbubbles with an extremely simple apparatus configuration, and to perform highly efficient operation at low cost and extremely excellent practicality. It becomes a generator.

好適と考える本発明の実施形態(発明をどのように実施するか)を、図面に基づいて本発明の作用を示して簡単に説明する。   Embodiments of the present invention that are considered suitable (how to carry out the invention) will be briefly described with reference to the drawings, illustrating the operation of the present invention.

吸入口3から吸入した液体に、気体取入口6から取り入れた気体を溶解タンク12において加圧溶解せしめて、この液体を前記気体を微細気泡化する微細気泡化ノズル7を介して噴射口4から浴槽等の貯留部5内に噴射する。   The liquid taken in from the suction port 3 is pressurized and dissolved in the dissolution tank 12 by the gas taken in from the gas intake port 6, and this liquid is discharged from the injection port 4 via the microbubble-forming nozzle 7 that makes the gas into microbubbles. It sprays in storage parts 5, such as a bathtub.

この際、吸入口3から液体を吸入しつつ気体取入口6を開放して適宜な量の気体を取り入れることができ、更に、溶解タンク12に、例えば溶解タンク12内を一定圧力に保つ整流作用を発揮する多孔質材から成る気体抜き部13を設けることで、この溶解タンク12内の余剰気体、即ち、液体に溶解せしめきれない分をこの気体抜き部13から自動的に排出することができる。   At this time, an appropriate amount of gas can be taken in by opening the gas intake 6 while sucking liquid from the suction port 3, and further, for example, a rectifying action for keeping the inside of the dissolution tank 12 at a constant pressure. By providing the gas vent 13 made of a porous material that exhibits the above, excess gas in the dissolution tank 12, that is, the amount that cannot be completely dissolved in the liquid can be automatically discharged from the gas vent 13 .

即ち、溶解タンク12において気体が液体に溶解せしめられて気体量が不足した場合には、運転を止めることなく適宜空気を取り入れることができるのは勿論、気体取入口6から取り入れる空気の量が仮に過剰であっても、溶解タンク12から、液体に溶解しきれずに(大きな気泡、即ち、液体と別体となって)微細気泡の安定供給を妨げる原因となる余剰気体を自動的に排出することができ、従って、溶解タンク12においては常に適当量の気体を液体に溶解せしめることが可能となる。   In other words, when the gas is dissolved in the liquid in the dissolution tank 12 and the amount of gas is insufficient, air can be taken in appropriately without stopping the operation, and the amount of air taken in from the gas intake 6 is temporarily assumed. Even if it is excessive, it is not possible to completely dissolve the liquid in the liquid (large air bubbles, that is, separate from the liquid), and the excess gas that causes the stable supply of fine air bubbles is automatically discharged. Therefore, an appropriate amount of gas can always be dissolved in the liquid in the dissolution tank 12.

よって、溶解タンク12において液体が過不足なく溶解せしめられた液体のみを微細気泡化ノズル7により減圧せしめて噴射口4から貯留部5内に噴射することができるから、大量の微細気泡(液体に溶解せしめられる気体の量が多ければ、減圧の際に放出される気泡の量も多くなる)をコンスタントに発生させることができることになり、簡易な構成で、高効率な運転が可能となる。   Therefore, only the liquid in which the liquid is dissolved in the dissolution tank 12 without excess or deficiency can be decompressed by the microbubble generation nozzle 7 and can be injected into the storage unit 5 from the injection port 4. If the amount of dissolved gas is large, the amount of bubbles released at the time of decompression can be constantly generated), and a highly efficient operation can be achieved with a simple configuration.

しかも、単に例えばコック等から成る気体取入口6と上記多孔質材等から成る気体抜き部13と微細気泡化ノズル7とを取り付けるだけで良いから、既存の気泡発生装置にも簡単に後付けすることができ、この点からも一層実用的となる。   Moreover, it is only necessary to attach the gas inlet 6 made of, for example, a cock, the gas venting portion 13 made of the porous material, etc., and the microbubble generation nozzle 7, so that it can be easily retrofitted to an existing bubble generator. From this point, it becomes more practical.

また、例えば、前記微細気泡化ノズル7は、この微細気泡化ノズル7の液体導入側に液体導入孔8を穿設すると共に、液体導出側に液体導出孔9を複数穿設し、この液体導入孔8と液体導出孔9とは夫々、この孔を通過する前記気体が溶解せしめられた液体が減圧されて微細気泡が生じるような長さ及び径に設定し、前記液体導入孔8から導入される液体により前記微細気泡化ノズル7内で乱流が生じるようにこの液体導入孔8を構成した場合には、液体導入孔8を通過する際に気体を微細気泡化せしめると共に、微細気泡化ノズル7内の乱流により気液混合状態を作出して微細気泡を均一に混入せしめ、且つ液体導出孔9を通過する際に一層微細化が促進されることになり、微細化した気泡をコンスタントに貯留部5に発生させることが可能となる。   Further, for example, the microbubble generation nozzle 7 has a liquid introduction hole 8 formed on the liquid introduction side of the microbubble generation nozzle 7 and a plurality of liquid discharge holes 9 formed on the liquid discharge side. The holes 8 and the liquid outlet holes 9 are set to such lengths and diameters that the liquid in which the gas passing through the holes is dissolved is decompressed to generate fine bubbles, and are introduced from the liquid introduction hole 8. When the liquid introduction hole 8 is configured so that a turbulent flow is generated in the microbubble generation nozzle 7 by the liquid to be generated, the gas is microbubbled when passing through the liquid introduction hole 8, and the microbubble generation nozzle 7 creates a gas-liquid mixed state by the turbulent flow in 7 and mixes fine bubbles uniformly, and further refinement is promoted when passing through the liquid outlet hole 9, and the refined bubbles are made constant. Can be generated in the reservoir 5 To become.

また、例えば、前記液体導入孔8を螺旋孔とし、この螺旋孔から導入される液体により前記微細気泡化ノズル7内で螺旋流が生じるように構成した場合には、より一層均一化した気液混合状態を作出できることになる。   In addition, for example, when the liquid introduction hole 8 is a spiral hole and the liquid introduced from the spiral hole is configured to generate a spiral flow in the microbubble generation nozzle 7, a more uniform gas-liquid A mixed state can be created.

また、例えば、前記液体導出孔9は、少なくともその一側開口部を外方程拡径するテーパ形状に設定した場合には、圧力変化をそれだけなだらかにして、騒音の発生を抑制できることになる。   Further, for example, when the liquid outlet hole 9 is set to have a tapered shape in which at least one side opening thereof is expanded outwardly, the pressure change can be made gentle so that the generation of noise can be suppressed.

また、例えば、複数の前記液体導入孔8が穿設された前記微細気泡化ノズル7の液体導入側端面に、前記複数の液体導入孔8に液体が均等に導入されるようにこの液体をガイドするガイド体10を設けた場合には、複数の前記液体導入孔8から導入される液体によりより確実に前記乱流を生じさせることが可能となる。   Further, for example, the liquid is guided so that the liquid is evenly introduced into the plurality of liquid introduction holes 8 on the liquid introduction side end face of the microbubble generation nozzle 7 in which the plurality of liquid introduction holes 8 are formed. When the guide body 10 is provided, the turbulent flow can be generated more reliably by the liquid introduced from the plurality of liquid introduction holes 8.

また、例えば、方形状の浴槽の角部を閉塞するバスカバー14であって、三角形状の基部15に浴槽の縁に載置される載置部16を連設した載置板17と、この載置板17に組み合わされるものであって、該載置板17と組み合わせた際平面視において方形状となり少なくとも一側に浴槽の縁に載置される載置部18を連設した組み合わせ板19とから成るバスカバー14に設けるように構成すれば、浴槽への取り付けを極めて簡易に行えることになる。   Further, for example, a bus cover 14 that closes a corner of a rectangular bathtub, and a mounting plate 17 in which a mounting portion 16 that is mounted on the edge of the bathtub is connected to a triangular base portion 15; A combination plate 19 that is combined with the mounting plate 17 and has a square shape in a plan view when combined with the mounting plate 17 and a mounting portion 18 that is mounted at least on one side on the edge of the bathtub. If it is configured to be provided on the bath cover 14 consisting of the above, it can be very easily attached to the bathtub.

従って、本発明は、極めて簡易な装置構成で、安定した空気の微細気泡化が実現でき、高効率な運転を行うことができる極めて安価にして実用的な気泡発生装置となる。   Therefore, the present invention provides a practical bubble generator that can realize stable and fine air bubbles with an extremely simple apparatus configuration and can be operated with high efficiency at a very low cost.

本発明の具体的な実施例について図面に基づいて説明する。   Specific embodiments of the present invention will be described with reference to the drawings.

本実施例は、貯留部5としての浴槽内に配設され浴槽内の浴水を吸入する吸入口3と、この吸入口3から吸入した前記浴水に空気を加圧溶解せしめる溶解タンク12と、この空気が溶解せしめられた浴水を貯留部5内に噴射する噴射口4とを備え、この空気が溶解せしめられた浴水を噴射口4から噴射することで浴槽内に無数の気泡を発生させる気泡発生装置であって、前記吸入口3と溶解タンク12との間に開閉自在な気体取入口6を設けると共に、前記溶解タンク12にこの溶解タンク12内の余剰気体を自動的に排出するように構成した気体抜き部13を設け、前記溶解タンク12と噴射口4との間には、前記液体に溶解せしめられた空気を微細気泡化する微細気泡化ノズル7を設けたものである。   In this embodiment, a suction port 3 that is disposed in a bathtub as the storage unit 5 and sucks bath water in the bathtub, and a dissolution tank 12 that pressurizes and dissolves air in the bath water sucked from the suction port 3. And an injection port 4 for injecting the bath water in which the air is dissolved into the reservoir 5, and injecting the bath water in which the air is dissolved from the injection port 4 to generate countless bubbles in the bathtub. A bubble generating device for generating gas, wherein an openable and closable gas intake 6 is provided between the suction port 3 and the dissolution tank 12, and excess gas in the dissolution tank 12 is automatically discharged to the dissolution tank 12. A gas venting section 13 is provided, and a microbubble generation nozzle 7 is provided between the dissolution tank 12 and the injection port 4 for microbubbles the air dissolved in the liquid. .

具体的には、図2に図示したように吸入口3と循環ポンプ1の液体導入側、循環ポンプ1の液体導出側と溶解タンク12の液体導入側、溶解タンク12の液体導出側と噴射口4とを夫々循環路2で連結している。尚、循環ポンプ1としては、公知のポンプを採用している。また、循環路2としては、合成樹脂製のホースやパイプ等を採用している。符号21は圧力計,23は上記循環ポンプ1等を隠蔽するカバー体である。   Specifically, as shown in FIG. 2, the liquid inlet side of the suction port 3 and the circulation pump 1, the liquid outlet side of the circulation pump 1, the liquid inlet side of the dissolution tank 12, the liquid outlet side of the dissolution tank 12 and the injection port 4 are connected to each other by a circulation path 2. A known pump is used as the circulation pump 1. Further, as the circulation path 2, a synthetic resin hose, pipe, or the like is employed. Reference numeral 21 denotes a pressure gauge, and 23 denotes a cover body that conceals the circulation pump 1 and the like.

また、吸入口3と噴射口4とは、吸入口3から微細気泡を取り込まないようにするために、互いに異なる方向を向く(例えば互いの向きが直交する)ように設定している。具体的には、気泡の浮き上がりを考慮して吸入口3は水面に対して直交方向を向き、噴射口4は水面に対して平行方向を向くように設定している。また、吸入口3には、異物(髪の毛等)の侵入を阻止するためのフィルタ(ヘアキャッチャー)を設けている。   Further, the suction port 3 and the injection port 4 are set so as to face different directions (for example, their directions are orthogonal to each other) so as not to take in fine bubbles from the suction port 3. Specifically, the suction port 3 is set to face in a direction orthogonal to the water surface and the injection port 4 is set to face in a direction parallel to the water surface in consideration of floating of the bubbles. In addition, the suction port 3 is provided with a filter (hair catcher) for preventing entry of foreign matter (hair etc.).

また、本実施例においては、前記循環ポンプ1と吸入口3との間に気体取入口6を設け、この気体取入口6を開放状態としておくことで、循環ポンプ1により吸入口3から浴水を吸入する際に、この吸入される浴水に引き込まれることで自動的に循環路2内に取り入れることができるように構成している。   In this embodiment, a gas intake 6 is provided between the circulation pump 1 and the suction port 3, and the gas intake 6 is kept open so that the circulation pump 1 can take bath water from the suction port 3. When inhaling the water, it is configured so that it can be automatically taken into the circulation path 2 by being drawn into the inhaled bath water.

尚、本実施例の気体取入口6は、摘子を把持して捻ることで開度を調整できるコック11としているが、開度を容易に調整できる構成であれば、他の構成を採用しても良い。   The gas inlet 6 of the present embodiment is a cock 11 that can adjust the opening by gripping and twisting the knob, but other configurations may be adopted as long as the opening can be easily adjusted. May be.

循環ポンプ1の下流側の溶解タンク12には、吸入口3から吸入された浴水と前記気体取入口6から取り入れた空気とが導入され、加圧されることで空気が浴水に溶解せしめられるように構成している。溶解タンク12としては公知の溶解タンクを採用する。   In the dissolution tank 12 on the downstream side of the circulation pump 1, bath water sucked from the suction port 3 and air taken in from the gas inlet 6 are introduced and pressurized to dissolve the air in the bath water. It is configured to be able to. A known dissolution tank is used as the dissolution tank 12.

溶解タンク12には、この溶解タンク12の上部排気口に連結する空気抜きチューブ22を介して多孔質材から成る気体抜き部13を設け、この気体抜き部13から余剰な空気が排出されるように構成している。   The dissolution tank 12 is provided with a gas vent 13 made of a porous material via an air vent tube 22 connected to the upper exhaust port of the melt tank 12 so that excess air is discharged from the gas vent 13. It is composed.

従って、本実施例においては、前記気体取入口6から多めに空気を取り入れるように設定しても、気体抜き部13により余剰の空気を自動的に排出できるから、簡易な構造で面倒な設定を行う必要なく、前記浴水に可及的に多くの空気を溶解せしめられることになる。   Therefore, in this embodiment, even if it is set so that a large amount of air is taken in from the gas inlet 6, excess air can be automatically discharged by the gas vent 13, so a troublesome setting with a simple structure is possible. As much air as possible can be dissolved in the bath water without having to do so.

即ち、残存させておくと浴水と共に大きな気泡として排出され、微細気泡の安定供給を阻害する原因となる余剰空気を気体抜き部13から排出することができ、しかも、この気体抜き部13として整流作用を発揮する多孔質材を採用しているから、常に溶解タンク12内を所定の圧力に保持できることになり、極めて簡易な構成にして過不足なく空気を浴水に溶解せしめられる構成を実現できることになる。   That is, if it is left as it is, it will be discharged as large bubbles together with the bath water, and excess air that will hinder the stable supply of fine bubbles can be discharged from the degassing part 13, and rectification as this degassing part 13 Since the porous material that works is used, the dissolution tank 12 can always be maintained at the specified pressure, and it is possible to realize an extremely simple structure that can dissolve air in bath water without excess or deficiency. become.

本実施例においては、前記気体抜き部13としては、高温焼結セラミック(ファインセラミックではない)から成るものを採用しているが、他の材料、例えば、PP材等、他の多孔質材を採用しても良い。   In the present embodiment, the gas vent 13 is made of a high-temperature sintered ceramic (not a fine ceramic), but other materials, for example, other porous materials such as PP material, are used. It may be adopted.

また、このように可及的に多くの空気を溶解せしめた場合、後記する微細気泡化ノズル7において浴水を減圧することで多量の微細気泡が生じることになり、極めて効率良く多くの微細気泡を発生させることができる。   Further, when as much air as possible is dissolved in this way, a large amount of fine bubbles are generated by reducing the pressure of the bath water in the micro-bubble forming nozzle 7 described later, and a large number of fine bubbles are generated very efficiently. Can be generated.

本実施例の微細気泡化ノズル7は、一般的なノズルのような単に絞りをかけたものではなく、図3に図示したようにこの微細気泡化ノズル7の液体導入側に液体導入孔8を複数穿設すると共に、液体導出側に液体導出孔9を複数穿設し、この液体導入孔8と液体導出孔9とは夫々、この孔を通過する前記液体が減圧されて微細気泡が生じる(即ち所謂キャビテーションが生じる)ような長さ及び径に設定し、前記液体導入孔8から導入される液体により前記微細気泡化ノズル7内で乱流が生じるようにこの液体導入孔8を構成したものである。   The microbubble generation nozzle 7 of the present embodiment is not simply a throttle like a general nozzle, but has a liquid introduction hole 8 on the liquid introduction side of the microbubble generation nozzle 7 as shown in FIG. A plurality of holes are formed, and a plurality of liquid outlet holes 9 are formed on the liquid outlet side. The liquid inlet hole 8 and the liquid outlet hole 9 are reduced in pressure by the liquid passing through the holes, thereby generating fine bubbles ( In other words, the liquid introduction hole 8 is configured to have such a length and diameter as to cause so-called cavitation), and the liquid introduced from the liquid introduction hole 8 causes a turbulent flow in the microbubble generation nozzle 7. It is.

また、微細気泡化ノズル7は、着脱自在に前記噴射口4の手前側位置のノズル取り付け部20に設けられる。従って、メンテナンスを極めて容易に行える。   Moreover, the microbubble generation nozzle 7 is provided in the nozzle attachment part 20 of the near side position of the said injection nozzle 4 so that attachment or detachment is possible. Therefore, maintenance can be performed very easily.

尚、本実施例においては、液体導入孔8は90度間隔で4つ、液体導出孔9は2つ設けた構成、即ち、液体導出孔9を通過する浴水の方がより減圧される構成であるが、他の構成としても良い。   In the present embodiment, four liquid introduction holes 8 are provided at intervals of 90 degrees and two liquid outlet holes 9 are provided, that is, the bath water passing through the liquid outlet holes 9 is further decompressed. However, other configurations may be used.

従って、液体導入孔8を通過する際に気体を微細気泡化せしめると共に、微細気泡化ノズル7内の乱流により気液混合状態を作出して微細気泡を均一に混入せしめ、且つ液体導出孔9を通過する際に一層微細化が促進されることになる。   Accordingly, when the gas passes through the liquid introduction hole 8, the gas is made into fine bubbles, and a gas-liquid mixed state is created by the turbulent flow in the fine bubble formation nozzle 7 to uniformly mix the fine bubbles, and the liquid outlet hole 9. When passing through, further refinement is promoted.

本実施例においては具体的には、前記液体導入孔8を螺旋孔とし、この螺旋孔から導入される液体により前記微細気泡化ノズル7内で螺旋流が生じるように構成しており、気泡の微細化及び均一化を一層良好に行える。   Specifically, in this embodiment, the liquid introduction hole 8 is a spiral hole, and the liquid introduced from the spiral hole is configured so that a spiral flow is generated in the microbubble generation nozzle 7. Miniaturization and homogenization can be further improved.

尚、本実施例の液体導入孔8は螺旋状に形成しているが、他の形状であっても、微細気泡化ノズル7内で乱流を生じさせて気液混合状態を作出できる構成であれば良い。   In addition, although the liquid introduction hole 8 of this embodiment is formed in a spiral shape, even if it is in other shapes, it is configured so that a gas-liquid mixed state can be created by generating a turbulent flow in the microbubble generation nozzle 7. I need it.

また、複数の前記液体導入孔8が穿設された前記微細気泡化ノズル7の液体導入側端面には、前記複数の液体導入孔8に液体が均等に導入されるようにこの液体をガイドするガイド体10を設けている。   Further, the liquid is guided so that the liquid is uniformly introduced into the plurality of liquid introduction holes 8 on the liquid introduction side end face of the microbubble forming nozzle 7 in which the plurality of liquid introduction holes 8 are formed. A guide body 10 is provided.

従って、前記螺旋孔を通過する浴水の量は略均一化し、それだけ良好な螺旋流を作出できることになる。   Accordingly, the amount of bath water passing through the spiral hole is made substantially uniform, and a good spiral flow can be created accordingly.

具体的には、ガイド体10は円錐形状であって、外周に螺旋状に凸条24を設けた構成(所謂ネジ形状)である。従って、導入される浴水はこのガイド体の凸条24及び円錐形状面に沿って略均一に各液体導入孔8にガイドされることになる。   Specifically, the guide body 10 has a conical shape, and has a configuration (so-called screw shape) in which the ridges 24 are provided spirally on the outer periphery. Accordingly, the bath water to be introduced is guided to each liquid introduction hole 8 substantially uniformly along the ridges 24 and the conical surface of the guide body.

尚、本実施例においては凸条24の螺旋方向は、浴水をよりスムーズに導入するために液体導入孔8の螺旋方向と同方向に設定しているが、逆方向に設定しても良い。また、本実施例においては、円錐形状のガイド体10を採用しているが、液体導入孔8に略均一に液体をガイドできる構成であれば他の形状のガイド体を採用しても良い。   In this embodiment, the spiral direction of the ridges 24 is set in the same direction as the spiral direction of the liquid introduction hole 8 in order to introduce the bath water more smoothly, but may be set in the opposite direction. . Further, in the present embodiment, the conical guide body 10 is adopted, but other shape guide bodies may be adopted as long as the liquid can be guided to the liquid introduction hole 8 substantially uniformly.

また、微細気泡化ノズル7の液体導出孔9は、少なくともその一側開口部を外方程拡径するテーパ形状に設定すると良い。本実施例においては両側開口部を夫々外方程拡径するテーパ形状に設定している。これにより、液体導出孔9を通過する浴水の圧力変化が緩やかとなり、それだけ急激な圧力変化が原因で生じる騒音を抑制することができる。   Further, the liquid outlet hole 9 of the microbubble generation nozzle 7 is preferably set to have a tapered shape in which the diameter of at least one side opening is increased outward. In the present embodiment, the opening portions on both sides are set in a tapered shape that increases in diameter outward. Thereby, the pressure change of the bath water passing through the liquid outlet hole 9 becomes gentle, and the noise caused by the sudden pressure change can be suppressed.

微細気泡化ノズル7を通過して上述のように多量の微細気泡が略均一に散在せしめられた浴水は噴射口4(ノズル)から浴槽内に噴射され、圧力が開放されて多量の微細気泡を浴槽内に発生させることになる。この多数の微細気泡により、温浴効果が一層高まることになる。尚、例えば浄化槽等に設けて水の浄化を行う場合には、この浄化能力が一層高まることになる。   Bath water in which a large amount of fine bubbles are scattered almost uniformly as described above after passing through the fine bubble-generating nozzle 7 is sprayed into the bathtub from the injection port 4 (nozzle), and the pressure is released to generate a large amount of fine bubbles. Will be generated in the bathtub. This large number of fine bubbles further enhances the warm bath effect. For example, when water is purified by being provided in a septic tank or the like, this purification capacity is further enhanced.

また、本実施例は、図1に図示したように、方形状の浴槽の角部を閉塞するバスカバー14であって、三角形状の基部15に浴槽の縁に載置される載置部16を連設した載置板17と、この載置板17に組み合わされるものであって、該載置板17と組み合わせた際平面視において方形状となり少なくとも一側に浴槽の縁に載置される載置部18を連設した組み合わせ板19とから成る出願人が取得した特許第2733648号に係るバスカバー14に設けるのが望ましい。この場合には、省スペースにして浴槽への取り付けが極めて簡易に行えるものとなる。   In addition, as shown in FIG. 1, this embodiment is a bath cover 14 that closes a corner portion of a rectangular bathtub, and a mounting portion 16 that is mounted on the edge of the bathtub on a triangular base portion 15. Are combined with the mounting plate 17, and when combined with the mounting plate 17, it is square in a plan view and mounted on the edge of the bathtub on at least one side. It is desirable to provide it on the bus cover 14 according to Japanese Patent No. 2733648 obtained by the applicant, which is composed of the combination plate 19 provided with the mounting portion 18. In this case, the space can be saved and the attachment to the bathtub can be very easily performed.

尚、本実施例を用いて径が5〜100μm程度の微細気泡(マイクロバブル)を安定して発生させることができる点を確認している。   In addition, it has been confirmed that microbubbles having a diameter of about 5 to 100 μm can be stably generated by using this embodiment.

本実施例は上述のように構成したから、吸入口3から吸入した浴水に、気体取入口6から取り入れた空気を溶解タンク12において加圧溶解せしめて、この浴水を前記空気を微細気泡化する微細気泡化ノズル7を介して噴射口4から浴槽内に噴射する際、吸入口3から浴水を吸入しつつ気体取入口6を開放して適宜な量の空気を取り入れることができ、更に、溶解タンク12に、例えば溶解タンク12内を一定圧力に保つ整流作用を発揮する多孔質材から成る気体抜き部13を設けることで、この溶解タンク12内の余剰空気、即ち、浴水に溶解せしめきれない分をこの気体抜き部13から自動的に排出することができる。   Since the present embodiment is configured as described above, the air taken from the gas inlet 6 is dissolved in the bath water sucked from the suction port 3 under pressure in the dissolution tank 12, and the bath water is used as the fine bubbles. When injecting into the bathtub from the injection port 4 through the microbubble nozzle 7 to be converted, an appropriate amount of air can be taken in by opening the gas intake 6 while inhaling bath water from the intake port 3, Furthermore, by providing the degassing part 13 made of a porous material that exhibits a rectifying action for keeping the inside of the dissolving tank 12 at a constant pressure, for example, in the dissolving tank 12, excess air in the dissolving tank 12, that is, bath water The portion that cannot be completely dissolved can be automatically discharged from the gas vent 13.

即ち、溶解タンク12において空気が浴水に溶解せしめられて空気量が不足した場合には、運転を止めることなく適宜空気を取り入れることができるのは勿論、気体取入口6から取り入れる空気の量が仮に過剰であっても、溶解タンク12から、浴水に溶解しきれずに(大きな気泡、即ち、浴水と別体となって)微細気泡の安定供給を妨げる原因となる余剰空気を自動的に排出することができ、従って、溶解タンク12においては常に適当量の空気を浴水に溶解せしめることが可能となる。   That is, when air is dissolved in the bath water in the dissolution tank 12 and the amount of air is insufficient, air can be appropriately taken in without stopping the operation, and the amount of air taken in from the gas inlet 6 is not limited. Even if it is excessive, it does not completely dissolve in the bath water from the dissolution tank 12 (large bubbles, that is, separate from the bath water), and automatically removes excess air that causes the stable supply of fine bubbles. Therefore, in the dissolution tank 12, an appropriate amount of air can always be dissolved in the bath water.

よって、溶解タンク12において浴水が過不足なく溶解せしめられた浴水のみを微細気泡化ノズル7により減圧せしめて噴射口4から浴槽内に噴射することができるから、大量の微細気泡(浴水に溶解せしめられる空気の量が多ければ、減圧の際に放出される気泡の量も多くなる)をコンスタントに発生させることができることになり、簡易な構成で、高効率な運転が可能となる。   Therefore, only the bath water in which the bath water is dissolved in the dissolution tank 12 without excess or deficiency can be decompressed by the micro-bubble generating nozzle 7 and sprayed from the spray port 4 into the bathtub. If the amount of air dissolved in the air is large, the amount of bubbles released at the time of decompression can be constantly generated), and a highly efficient operation can be performed with a simple configuration.

しかも、単に例えばコック等から成る気体取入口6と上記多孔質材等から成る気体抜き部13と微細気泡化ノズル7とを取り付けるだけで良いから、既存の気泡発生装置にも簡単に後付けすることができ、この点からも一層実用的となる。   Moreover, it is only necessary to attach the gas inlet 6 made of, for example, a cock, the gas venting portion 13 made of the porous material, etc., and the microbubble generation nozzle 7, so that it can be easily retrofitted to an existing bubble generator. From this point, it becomes more practical.

また、前記微細気泡化ノズル7は、この微細気泡化ノズル7の液体導入側に液体導入孔8を穿設すると共に、液体導出側に液体導出孔9を複数穿設し、この液体導入孔8と液体導出孔9とは夫々、この孔を通過する前記空気が溶解せしめられた浴水が減圧されて微細気泡が生じるような長さ及び径に設定し、前記液体導入孔8から導入される浴水により前記微細気泡化ノズル7内で乱流が生じるようにこの液体導入孔8を構成したから、液体導入孔8を通過する際に空気を微細気泡化せしめると共に、微細気泡化ノズル7内の乱流により気液混合状態を作出して微細気泡を均一に混入せしめ、且つ液体導出孔9を通過する際に一層微細化が促進されることになり、微細化した気泡をコンスタントに浴槽に発生させることが可能となる。   The microbubble generation nozzle 7 has a liquid introduction hole 8 formed on the liquid introduction side of the microbubble formation nozzle 7 and a plurality of liquid discharge holes 9 formed on the liquid discharge side. And the liquid outlet hole 9 are set to such lengths and diameters that the bath water in which the air passing through the hole is dissolved is decompressed to generate fine bubbles, and is introduced from the liquid introduction hole 8. Since the liquid introduction hole 8 is configured so that turbulent flow is generated in the microbubble generation nozzle 7 by the bath water, the air is microbubbled when passing through the liquid introduction hole 8 and the microbubble generation nozzle 7 The gas-liquid mixed state is created by the turbulent flow of the liquid, so that the fine bubbles are uniformly mixed, and further miniaturization is promoted when passing through the liquid outlet hole 9, and the finely-sized bubbles are constantly put into the bathtub. Can be generated.

また、前記液体導入孔8を螺旋孔とし、この螺旋孔から導入される浴水により前記微細気泡化ノズル7内で螺旋流が生じるように構成したから、より一層均一化した気液混合状態を作出できることになる。   In addition, since the liquid introduction hole 8 is a spiral hole, and the bath water introduced from the spiral hole is configured to generate a spiral flow in the microbubble generation nozzle 7, a more uniform gas-liquid mixing state is achieved. It can be created.

また、前記液体導出孔9は、その両側開口部を外方程拡径するテーパ形状に設定したから、圧力変化をそれだけ緩やかにして、騒音の発生を抑制できることになる。   In addition, since the liquid outlet hole 9 is set to have a tapered shape in which the opening portions on both sides are expanded outwardly, the pressure change can be moderated and the generation of noise can be suppressed.

また、複数の前記液体導入孔8が穿設された前記微細気泡化ノズル7の液体導入側端面に、前記複数の液体導入孔8に液体が均等に導入されるようにこの液体をガイドするガイド体10を設けたから、複数の前記液体導入孔8から導入される浴水によってより確実に前記乱流を生じさせることが可能となる。   Further, a guide for guiding the liquid so that the liquid is evenly introduced into the plurality of liquid introduction holes 8 on the liquid introduction side end face of the microbubble forming nozzle 7 in which the plurality of liquid introduction holes 8 are formed. Since the body 10 is provided, the turbulent flow can be more reliably generated by the bath water introduced from the plurality of liquid introduction holes 8.

また、方形状の浴槽の角部を閉塞するバスカバー14であって、三角形状の基部15に浴槽の縁に載置される載置部16を連設した載置板17と、この載置板17に組み合わされるものであって、該載置板17と組み合わせた際平面視において方形状となり少なくとも一側に浴槽の縁に載置される載置部18を連設した組み合わせ板19とから成るバスカバー14に設けるように構成すれば、浴槽への取り付けを極めて簡易に行えることになる。   Further, a bus cover 14 for closing a corner portion of a rectangular bathtub, and a mounting plate 17 in which a mounting portion 16 mounted on the edge of the bathtub is connected to a triangular base 15 and the mounting plate 17. A combination plate 19 that is combined with the plate 17 and has a square shape in a plan view when combined with the mounting plate 17 and a mounting portion 18 that is placed on the edge of the bathtub on at least one side. If it comprises so that it may provide in the bus cover 14 which consists of, the attachment to a bathtub can be performed very simply.

従って、本実施例は、極めて簡易な装置構成で、安定した空気の微細気泡化が実現でき、高効率な運転を行うことができる極めて安価にして実用的な気泡発生装置となる。   Therefore, this embodiment is a practical bubble generating apparatus that can realize stable and fine air bubbles with a very simple apparatus configuration and can be operated with high efficiency at a very low cost.

本実施例の概略説明斜視図である。It is a schematic explanatory perspective view of a present Example. 本実施例の拡大概略説明斜視図である。It is an expansion outline explanatory perspective view of a present Example. 本実施例の微細気泡化ノズルの拡大概略説明斜視図である。It is an expansion schematic explanatory perspective view of the microbubble generation nozzle of a present Example.

符号の説明Explanation of symbols

3 吸入口
4 噴射口
5 貯留部
6 気体取入口
7 微細気泡化ノズル
8 液体導入孔
9 液体導出孔
10 ガイド体
12 溶解タンク
13 気体抜き部
14 バスカバー
15 基部
16 載置部
17 載置板
18 載置部
19 組み合わせ板
DESCRIPTION OF SYMBOLS 3 Inlet 4 Injector 5 Reservoir 6 Gas inlet 7 Microbubble nozzle 8 Liquid inlet 9 Liquid outlet
10 Guide body
12 Dissolution tank
13 Gas vent
14 Bus cover
15 base
16 Placement section
17 Mounting plate
18 Placement section
19 Combination board

Claims (6)

浴槽等の貯留部内に配設され貯留部内の浴水等の液体を吸入する吸入口と、この吸入口から吸入した前記液体に空気等の気体を加圧溶解せしめる溶解タンクと、この気体が溶解せしめられた液体を貯留部内に噴射する噴射口とを備え、この気体が溶解せしめられた液体を噴射口から噴射することで貯留部内に無数の気泡を発生させる気泡発生装置であって、前記吸入口と溶解タンクとの間に開閉自在な気体取入口を設けると共に、前記溶解タンクにこの溶解タンク内の余剰気体を自動的に排出するように構成した気体抜き部を設け、前記溶解タンクと噴射口との間には、前記液体に溶解せしめられた気体を微細気泡化する微細気泡化ノズルを設けたことを特徴とする気泡発生装置。   An inlet that is disposed in a reservoir such as a bathtub and sucks liquid such as bath water in the reservoir, a dissolution tank that pressurizes and dissolves gas such as air in the liquid sucked from the inlet, and this gas dissolves A bubble generating device that generates an infinite number of bubbles in the storage unit by spraying the liquid in which the gas is dissolved from the injection port. A gas inlet that can be freely opened and closed is provided between the mouth and the dissolution tank, and a gas vent configured to automatically discharge excess gas in the dissolution tank is provided in the dissolution tank. A bubble generating device characterized in that a micro-bubble generating nozzle for forming a gas dissolved in the liquid into micro-bubbles is provided between the mouth. 前記微細気泡化ノズルは、この微細気泡化ノズルの液体導入側に液体導入孔を穿設すると共に、液体導出側に液体導出孔を複数穿設し、この液体導入孔と液体導出孔とは夫々、この孔を通過する前記液体が減圧されて微細気泡が生じるような長さ及び径に設定し、前記液体導入孔から導入される液体により前記微細気泡化ノズル内で乱流が生じるようにこの液体導入孔を構成したことを特徴とする請求項1記載の気泡発生装置。   The microbubble generation nozzle has a liquid introduction hole formed on the liquid introduction side of the microbubble generation nozzle and a plurality of liquid discharge holes formed on the liquid discharge side. The liquid introduction hole and the liquid discharge hole are respectively provided. The length and the diameter are set so that the liquid passing through the hole is depressurized to generate fine bubbles, and the liquid introduced from the liquid introduction hole is used to generate turbulent flow in the fine bubble forming nozzle. 2. The bubble generating device according to claim 1, wherein a liquid introduction hole is formed. 前記液体導入孔を螺旋孔とし、この螺旋孔から導入される液体により前記微細気泡化ノズル内で螺旋流が生じるように構成したことを特徴とする請求項2記載の気泡発生装置。   3. The bubble generating apparatus according to claim 2, wherein the liquid introduction hole is a spiral hole, and a spiral flow is generated in the microbubble generation nozzle by the liquid introduced from the spiral hole. 前記液体導出孔は、少なくともその一側開口部を外方程拡径するテーパ形状に設定したことを特徴とする請求項2,3のいずれか1項に記載の気泡発生装置。   4. The bubble generating device according to claim 2, wherein the liquid lead-out hole is set to have a tapered shape in which at least one side opening thereof is increased in diameter toward the outside. 5. 複数の前記液体導入孔が穿設された前記微細気泡化ノズルの液体導入側端面に、前記複数の液体導入孔に液体が均等に導入されるようにこの液体をガイドするガイド体を設けたことを特徴とする請求項2〜4のいずれか1項に記載の気泡発生装置。   A guide body for guiding the liquid so that the liquid is uniformly introduced into the plurality of liquid introduction holes is provided on a liquid introduction side end face of the microbubble forming nozzle in which the plurality of liquid introduction holes are formed. The bubble generating device according to any one of claims 2 to 4, wherein: 方形状の浴槽の角部を閉塞するバスカバーであって、三角形状の基部に浴槽の縁に載置される載置部を連設した載置板と、この載置板に組み合わされるものであって、該載置板と組み合わせた際平面視において方形状となり少なくとも一側に浴槽の縁に載置される載置部を連設した組み合わせ板とから成るバスカバーに設けたことを特徴とする請求項1〜5のいずれか1項に記載の気泡発生装置。
It is a bus cover that closes the corner of a rectangular bathtub, and it is combined with a mounting plate in which a mounting portion that is mounted on the edge of the bathtub is connected to a triangular base, and this mounting plate. And when it is combined with the mounting plate, it has a rectangular shape in plan view and is provided on a bus cover comprising a combination plate in which a mounting portion mounted on the edge of the bathtub is connected to at least one side. The bubble generator according to any one of claims 1 to 5.
JP2005058862A 2005-03-03 2005-03-03 Bubble generator Pending JP2006239573A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005058862A JP2006239573A (en) 2005-03-03 2005-03-03 Bubble generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005058862A JP2006239573A (en) 2005-03-03 2005-03-03 Bubble generator

Publications (1)

Publication Number Publication Date
JP2006239573A true JP2006239573A (en) 2006-09-14

Family

ID=37046497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005058862A Pending JP2006239573A (en) 2005-03-03 2005-03-03 Bubble generator

Country Status (1)

Country Link
JP (1) JP2006239573A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008079895A (en) * 2006-09-28 2008-04-10 Sharp Corp Micro-nanobubble bathtub water production method and micro-nanobubble bathtub
JP2008104609A (en) * 2006-10-25 2008-05-08 Sharp Corp Shower device and shower method
JP2008149039A (en) * 2006-12-20 2008-07-03 Matsushita Electric Works Ltd Microbubble generator
JP2008290037A (en) * 2007-05-28 2008-12-04 Panasonic Electric Works Co Ltd Fine bubble generator
JP2010017692A (en) * 2008-07-14 2010-01-28 Panasonic Electric Works Co Ltd Portable bubble generator
JP2010227784A (en) * 2009-03-26 2010-10-14 Panasonic Electric Works Co Ltd Gas dissolving apparatus
JP2012135648A (en) * 2012-04-02 2012-07-19 Panasonic Corp Gas dissolving apparatus
JP2018075560A (en) * 2016-10-28 2018-05-17 トスレック株式会社 Bubble-containing liquid production device and bubble-containing liquid production method

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5048876U (en) * 1973-09-07 1975-05-14
JPS52130058A (en) * 1976-04-24 1977-11-01 Miura Kagaku Souchi Kk Liquid mixer
JPS61125480A (en) * 1984-11-21 1986-06-13 Kurita Water Ind Ltd Pressure reducing device for pressure flotation separation apparatus
JPH03101941U (en) * 1990-02-06 1991-10-23
JPH06181961A (en) * 1992-12-16 1994-07-05 Asahi Kogyo Kk Bubble generating device
JPH07308353A (en) * 1994-05-19 1995-11-28 Matsushita Electric Ind Co Ltd Bubble generator
JPH08280771A (en) * 1995-04-14 1996-10-29 Brother Ind Ltd Air bubble generator
JP2733648B2 (en) * 1995-03-07 1998-03-30 株式会社エムディケー Bath circulator mounting device
JP2000084027A (en) * 1998-09-16 2000-03-28 Mitsubishi Electric Corp Bath water circulating device
JP2000184978A (en) * 1998-12-24 2000-07-04 Noritz Corp Fine bubble generator and bathtub system
JP2002186840A (en) * 2000-12-19 2002-07-02 Sys Yoshida:Kk Fine bubbles production method and device therefor
JP2003265938A (en) * 2002-03-14 2003-09-24 Shigen Kaihatsu Kk Apparatus and system for generating minute air bubble
JP2004267940A (en) * 2003-03-10 2004-09-30 Nippon Kankyo Kagaku:Kk Method and apparatus for mixing/reacting gas with liquid
JP2004290804A (en) * 2003-03-26 2004-10-21 Matsushita Electric Works Ltd Fine air bubble generator
JP2004298793A (en) * 2003-03-31 2004-10-28 Tokyo Flow Meter Kenkyusho:Kk Ejector and deaeration apparatus using the same

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5048876U (en) * 1973-09-07 1975-05-14
JPS52130058A (en) * 1976-04-24 1977-11-01 Miura Kagaku Souchi Kk Liquid mixer
JPS61125480A (en) * 1984-11-21 1986-06-13 Kurita Water Ind Ltd Pressure reducing device for pressure flotation separation apparatus
JPH03101941U (en) * 1990-02-06 1991-10-23
JPH06181961A (en) * 1992-12-16 1994-07-05 Asahi Kogyo Kk Bubble generating device
JPH07308353A (en) * 1994-05-19 1995-11-28 Matsushita Electric Ind Co Ltd Bubble generator
JP2733648B2 (en) * 1995-03-07 1998-03-30 株式会社エムディケー Bath circulator mounting device
JPH08280771A (en) * 1995-04-14 1996-10-29 Brother Ind Ltd Air bubble generator
JP2000084027A (en) * 1998-09-16 2000-03-28 Mitsubishi Electric Corp Bath water circulating device
JP2000184978A (en) * 1998-12-24 2000-07-04 Noritz Corp Fine bubble generator and bathtub system
JP2002186840A (en) * 2000-12-19 2002-07-02 Sys Yoshida:Kk Fine bubbles production method and device therefor
JP2003265938A (en) * 2002-03-14 2003-09-24 Shigen Kaihatsu Kk Apparatus and system for generating minute air bubble
JP2004267940A (en) * 2003-03-10 2004-09-30 Nippon Kankyo Kagaku:Kk Method and apparatus for mixing/reacting gas with liquid
JP2004290804A (en) * 2003-03-26 2004-10-21 Matsushita Electric Works Ltd Fine air bubble generator
JP2004298793A (en) * 2003-03-31 2004-10-28 Tokyo Flow Meter Kenkyusho:Kk Ejector and deaeration apparatus using the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008079895A (en) * 2006-09-28 2008-04-10 Sharp Corp Micro-nanobubble bathtub water production method and micro-nanobubble bathtub
US8205277B2 (en) 2006-09-28 2012-06-26 Sharp Kabushiki Kaisha Manufacturing method for micro-nano bubble bathtub water and micro-nano bubble bathtub
JP2008104609A (en) * 2006-10-25 2008-05-08 Sharp Corp Shower device and shower method
JP2008149039A (en) * 2006-12-20 2008-07-03 Matsushita Electric Works Ltd Microbubble generator
JP2008290037A (en) * 2007-05-28 2008-12-04 Panasonic Electric Works Co Ltd Fine bubble generator
JP2010017692A (en) * 2008-07-14 2010-01-28 Panasonic Electric Works Co Ltd Portable bubble generator
JP2010227784A (en) * 2009-03-26 2010-10-14 Panasonic Electric Works Co Ltd Gas dissolving apparatus
JP2012135648A (en) * 2012-04-02 2012-07-19 Panasonic Corp Gas dissolving apparatus
JP2018075560A (en) * 2016-10-28 2018-05-17 トスレック株式会社 Bubble-containing liquid production device and bubble-containing liquid production method
JP7121879B2 (en) 2016-10-28 2022-08-19 トスレック株式会社 Bubble-containing liquid manufacturing device and bubble-containing liquid manufacturing method

Similar Documents

Publication Publication Date Title
JP2006239573A (en) Bubble generator
JP2009082903A (en) Microbubble generator
JP2007289903A (en) Micro-bubble generating device and bath system
JP2008237956A (en) Microbubble-carbonate spring generator and gas-liquid mixing tank
JP4807967B2 (en) Bathing equipment
JP2005262200A (en) Water cleaning apparatus
WO2002040137A1 (en) Method and apparatus for wet type flue-gas desulfurizaion
KR101990747B1 (en) Fine-bubble generating apparatus
JP2013000626A (en) Fine air bubble generator
US20210138410A1 (en) Microbubble generation device and microbubble generation method, and shower apparatus and oil-water separation apparatus having said microbubble generation device
JP2012120997A (en) Method for producing microbubble and device therefor
JP2002059186A (en) Water-jet type fine bubble generator
JP2011110468A (en) Device for generating fine air bubble
JP4561349B2 (en) Liquid nozzle
JP2017136513A (en) Fine air bubble generating device, fine air bubble generating method, and shower device and oil water separating apparatus having the fine air bubble generating device
JP2007089702A (en) Shower apparatus
JP2000184978A (en) Fine bubble generator and bathtub system
JP2008279350A (en) Fine bubble generator and apparatus for generating fine bubble
CN206228263U (en) A kind of microbubble bathtub
JP2002330885A (en) Bathtub system
JP2008289993A (en) Bubble generator
JP4228990B2 (en) Microbubble generator
JP2007000546A (en) Fine air bubble generating bathtub
JP2010155212A (en) Minute bubble generation apparatus
CN209602189U (en) A kind of high-effect sewage treatment injector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090312

A131 Notification of reasons for refusal

Effective date: 20090319

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090518

A131 Notification of reasons for refusal

Effective date: 20100401

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20100729

Free format text: JAPANESE INTERMEDIATE CODE: A02