JP2010149687A - 車両用操舵制御装置及び車両用操舵制御方法 - Google Patents

車両用操舵制御装置及び車両用操舵制御方法 Download PDF

Info

Publication number
JP2010149687A
JP2010149687A JP2008329661A JP2008329661A JP2010149687A JP 2010149687 A JP2010149687 A JP 2010149687A JP 2008329661 A JP2008329661 A JP 2008329661A JP 2008329661 A JP2008329661 A JP 2008329661A JP 2010149687 A JP2010149687 A JP 2010149687A
Authority
JP
Japan
Prior art keywords
reaction force
steering
road surface
angle
turning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008329661A
Other languages
English (en)
Other versions
JP5218028B2 (ja
Inventor
Hiroshi Suzuki
拓 鈴木
Takeshi Kimura
健 木村
Satoshi Taya
智 田家
Hironari Takeda
裕也 武田
Yukinori Nishida
雪徳 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2008329661A priority Critical patent/JP5218028B2/ja
Publication of JP2010149687A publication Critical patent/JP2010149687A/ja
Application granted granted Critical
Publication of JP5218028B2 publication Critical patent/JP5218028B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Power Steering Mechanism (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)

Abstract

【課題】運転者に違和感を与えることなく適正に操舵反力を付与することができる車両用操舵制御装置及び車両用操舵制御方法を提供する。
【解決手段】ステアリングホイール1と舵取り機構10(転舵機構)とを機械的に切り離した構成とし、前輪(操向輪)11R,11Lの転舵角θtが、自車両の走行状態に基づいて演算した自動転舵指令角θaとなるように、転舵モータ8を駆動制御する自動転舵制御を行う。このとき、自動転舵制御により発生した自動転舵指令角θaに対応する路面反力Faを推定する。そして、検出した実路面反力Fから推定した推定路面反力Faを差し引いた反力偏差相当の操舵反力をステアリングホイール1に付与するように、反力モータ5を駆動制御する。
【選択図】 図4

Description

本発明は、操向輪を転舵する転舵アクチュエータと、ステアリングに操舵反力を付与する操舵反力アクチュエータとを備えた車両用操舵制御装置及び車両用操舵制御方法に関するものである。
従来、操作部材(ステアリングホイール)を車輪に機械的に連結することなく、その操作部材の操作に応じて車輪を転舵駆動する操舵アクチュエータを備えた車両の操舵装置がある(例えば、特許文献1参照)。
この車両の操舵装置では、操作部材の操作量に対応する反力成分と、舵角偏差に対応する反力成分とを含む操作部材の操作反力を演算する。ここで、上記舵角偏差は、操作部材の操作量に対応する指示舵角から車輪の実舵角を差し引いた値である。そして、車両挙動が不安定でないときは、演算された操作反力を発生するように反力アクチュエータを制御する。一方、車両挙動が不安定であるときは、操舵アクチュエータを駆動して、車両挙動が安定化するように車輪を操作部材の操作量に関係なく自動的に転舵すると共に、演算した操作反力から上記舵角偏差に対応する反力成分を差し引いた操作反力を発生するように反力アクチュエータを制御する。
特開2001−30931号公報
しかしながら、上記特許文献1に記載の車両の操舵装置にあっては、車両挙動が不安定でない場合は操作部材の操作量に対応する反力成分と、舵角偏差に対応する反力成分とを含む操作反力を発生し、車両挙動が不安定であるときは、操作反力から上記舵角偏差に対応する反力成分を差し引いた操作反力を発生する。この為、上記舵角偏差分の操作反力があるときに車両挙動が不安定となると、舵角偏差に対応する反力成分が抜けてしまい、運転者に違和感を与える。
そこで、本発明は、運転者に違和感を与えることなく適正に操舵反力を付与することができる車両用操舵制御装置及び車両用操舵制御方法を提供することを課題としている。
上記課題を解決するために、本発明に係る車両用操舵制御装置は、ステアリングと操向輪を転舵する転舵機構とを機械的に切り離した構成とし、操向輪の転舵角が、自車両の走行状態に基づいて演算した第二転舵指令角となるように、転舵アクチュエータを駆動制御する自動転舵制御を行う。このとき、自動転舵制御により発生した第二転舵指令角に対応する路面反力を推定する。そして、検出した実路面反力から推定した推定路面反力を差し引いた反力偏差相当の操舵反力をステアリングに付与するように、操舵反力アクチュエータを駆動制御する。
本発明に係る車両用操舵制御装置によれば、自動転舵制御により発生する路面反力を操舵反力としてフィードバックしない。したがって、自動転舵分の操舵反力がステアリングに入力されない。その結果、運転者に違和感、不快感を与えることがない。また、運転者の操舵により発生する路面反力は操舵反力としてフィードバックするので、操舵感を確保することができる。
以下、本発明の実施の形態を図面に基づいて説明する。
《第1の実施の形態》
《構成》
図1は、本発明に係る車両用操舵制御装置をステアバイワイヤシステムに適用した全体構成図である。
この図1に示すように、運転者が操作するステアリングホイール1は、左右前輪11R,11L(操向輪)を転舵する舵取り機構10(転舵機構)とは機械的に切り離して設ける。ステアリングシャフト2は、ステアリングホイール1に連結した、ステアリングホイール1の回転軸であり、ステアリングホイール1と共に回転する。そして、このステアリングシャフト2に、ステアリングシャフト2の回転角(すなわち操舵角)を検出する操舵角センサ3(操舵角検出手段)と、ステアリングシャフト2に入力するトルクを検出する操舵トルクセンサ4と、ステアリングシャフト2にトルクを付与する反力モータ5(操舵反力アクチュエータ)とを設ける。反力モータ5は、ステアリングシャフト2にトルクを付与する事によってステアリングホイール1に操舵反力を与えるためのものであり、ブラシレスモータ等で構成する。
ピニオンシャフト7は舵取り機構10に連結し、ピニオンシャフト7の回転に伴って左右前輪11R,11Lを転舵する。そして、このピニオンシャフト7に、該ピニオンシャフト7を回転駆動することによって舵取り機構10を介して左右前輪11R,11Lを転舵駆動可能な転舵モータ8(転舵アクチュエータ)と、左右前輪11R,11Lの転舵角を検出する転舵角度センサ9(転舵角検出手段)とを設ける。転舵モータ8は、反力モータ5と同様に、ブラシレスモータ等で構成する。なお、転舵モータ8とピニオンシャフト7とは機械的に接続されているため、転舵角度センサ9は転舵モータ8の回転角度を検出することにより左右前輪11R,11Lの転舵角度を検出することができる。
ステアリングシャフト2とピニオンシャフト7とは、バックアップクラッチ6によって機械的に連結可能に構成している。バックアップクラッチ6は、ステアバイワイヤシステムに何らかの異常が発生した場合などに連結し、運転者がステアリングホイール1を操舵することにより、左右前輪11R,11Lを直接転舵可能とする。
また、軸力センサ12は、左右前輪11R,11Lのハブ部に設ける。この軸力センサ12は、舵取り機構10のラックにかかる軸力F(左右前輪11R,11Lに入力する路面からの反力)を検出する。
前方認識センサ13は、走行車線内の自車両の位置を検出するためのものである。この前方認識センサ13は、CCDカメラ13aとカメラコントローラ13bとを備える。カメラコントローラ13bは、CCDカメラ13aで捉えた自車両前方の撮像画像に対してエッジ検出等により、レーンマークを検出して走行車線を検出する。また、カメラコントローラ13bは、検出したレーンマークに基づいて自車両の走行車線中央から車線幅方向の位置である横変位y、及び車線に対する角度であるヨー角φを演算する。
また、転舵コントローラ14と操舵反力コントローラ15及び前方認識センサ13とは、通信ライン16を介して通信可能に接続し、互いにデータの送受信を行なう。
なお、各種センサで検出した検出値に左右の方向性がある場合には、何れも左方向を正値とする。
(転舵コントローラの構成)
転舵コントローラ14は、操舵角センサ3で検出したステアリングホイール1の操舵角θと、前方認識センサ13で演算した横変位y及びヨー角φとを入力する。
転舵コントローラ14は、運転者が入力した操舵角θに対応した転舵指令角(第一転舵指令角)である入力指令角θsを演算する。また、転舵コントローラ14は、自車両が走行車線中央を走行するように自動転舵するための自動転舵指令角θa(第二転舵指令角)を演算する。そして、転舵コントローラ14は、実転舵角θtと指令転舵角(=θs+θa)とが一致するように、転舵モータ8の駆動指令値を演算する。演算した駆動指令値に基づいて転舵モータ8が駆動して、左右前輪11R,11Lが転舵駆動する。このようにして転舵動作を行う。
図2は、転舵コントローラ14の構成を示す制御ブロック図である。
この図2に示すように、転舵コントローラ14は、入力指令角演算部141(第一転舵指令角演算手段)と、自動転舵指令角演算部142(第二転舵指令角演算手段)と、指令転舵角演算部143と、モータ駆動制御部144とを備える。
入力指令角演算部141は、操舵角センサ3で検出した操舵角θを入力する。そして、この操舵角θに対応した転舵の指令角である入力指令角θsを演算する。なお、入力指令角θsは、予め定められた操舵角θと入力指令角θsとの比(ギヤ比)に基づいて演算される。
自動転舵指令角演算部142は、前方認識センサ13が出力する自車両の横変位y及びヨー角φを入力する。そして、この横変位y及びヨー角φを“0”とするための自動転舵指令角θaを演算する。自動転舵指令角θaは、例えば、横変位yと所定のゲインZ1を乗算した値に、ヨー角φと所定のゲインZ2を乗算した値を加算して求める(θa=Z1・y+Z2・φ)。
指令転舵角演算部143は、入力指令角演算部141で演算した入力指令角θsと、自動転舵指令角演算部142で演算した自動転舵指令角θaとを加算する。加算した結果(θs+θa)は、指令転舵角としてモータ駆動制御部144に出力する。
モータ駆動制御部144は、実転舵角θtが指令転舵角(θs+θa)となるように、転舵角度センサ9で検出した実転舵角θtと指令転舵角との偏差に基づいて転舵モータ8を駆動制御する。
具体的にはモータ駆動制御部144は、指令転舵角に所定の応答特性で実転舵角が追従するように制御演算する舵角サーボ制御により、転舵モータ8の駆動指令値(電流指令値)を演算する。
図3は、舵角サーボ制御のブロック図である。
この図3に示すように、舵角サーボ系は、例えば、ロバストモデルマッチング手法を用いた方法で構成する。この方法では、予め与えておいた所望の特性と一致させるためのモデルマッチング補償器により、指令転舵角に対し所定の規範応答特性を実現するための電流指令値を演算する。また、ロバスト補償器により外乱成分に応じた補償電流を演算する。これにより、外乱発生時においても実転舵角が規範応答特性で追従可能な、耐外乱性に優れた制御系が実現できる。
(操舵反力コントローラの構成)
操舵反力コントローラ15は、転舵角度センサ9で検出した実転舵角θt、軸力センサ12で検出した路面反力(実路面反力)F、及び転舵コントローラ14で演算した自動転舵指令角θaを入力する。
そして、操舵反力コントローラ15は、ステアリングホイール1に付与する操舵反力を演算する。次いで、操舵反力コントローラ15は、演算した操舵反力を付与するための反力モータ5の駆動指令値を演算し、演算した駆動指令値に基づいて反力モータ5が駆動する。このようにして反力モータ5を駆動し、ステアリングホイール1に操舵反力を付与する。
ここで、ステアリングホイール1に付与する操舵反力は、実路面反力Fに応じた大きさとする。但し、本実施形態では、自動転舵により発生した路面反力に対応する操舵反力はステアリングホイール1にフィードバックしない構成とする。
図4は、操舵反力コントローラ15の構成を示す制御ブロック図である。
操舵反力コントローラ15は、比例ゲイン演算部151と、補正路面反力演算部152と、フィードバック路面反力演算部153と、モータ駆動制御部154とを備える。
比例ゲイン演算部151は、転舵角度センサ9で検出した実転舵角θtと、軸力センサ12で検出した路面反力Fとを入力する。
先ず、自動転舵が行なわれていないときの実転舵角θtと実路面反力Fとの関係を、比例ゲインKを用いて次式で近似する。
F=K・θt ………(1)
そして、比例ゲイン演算部151は、上記(1)式を変形した下記(2)式をもとに比例ゲインKを算出する。
K=F/θt ………(2)
補正路面反力演算部152は、比例ゲイン演算部151で演算した比例ゲインKと、転舵コントローラ14で演算した自動転舵指令角θaとを入力する。そして、補正路面反力演算部152は、比例ゲインKと自動転舵指令角θaとに基づいて、自動転舵の指令角(θa)に対応した路面反力Faを演算する。
Fa=K・θa ………(3)
フィードバック路面反力演算部153は、軸力センサ12で検出した路面反力Fから、補正路面反力演算部152で演算した自動転舵分の路面反力Faを差し引き、操舵反力としてフィードバックする路面反力FFBを演算する。
FB=F−(K・θa) ………(4)
ところで、自動転舵が行なわれているときの実路面反力Fは、次式に示すように、運転者による指令角(θs)に対応した路面反力Fsと、自動転舵による指令角(θa)に対応した路面反力Faとの和である。
F=Fs+Fa=(K・θs)+(K・θa) ………(5)
したがって、上記(4)式をもとに演算したフィードバック路面反力FFBは、運転者による指令角(θs)に対応した路面反力Fsに相当することになる。
モータ駆動制御部154は、フィードバック路面反力演算部153で演算したフィードバック路面反力FFBを操舵反力として付与するように、反力モータ5を駆動制御する。このとき、モータ電流センサ5aで検出した反力モータ5に供給されている実際の電流(実電流)をモニタリングし、反力モータ5を駆動制御する。
具体的には、モータ駆動制御部154は、フィードバック路面反力FFB(トルク)を実現する電流目標値を算出すると共に、実際に反力モータに供給されている実電流を電流センサ5aで検出し、検出した実電流と電流目標値とが一致するように実電流と電流目標値との偏差に基づく駆動指令値を出力してフィードバック制御する。これにより、反力モータ5がフィードバック路面反力FFBを出力するように駆動制御される。
《動作》
次に、第1の実施形態の動作について説明する。
図5は、操舵反力コントローラ15で実行する操舵反力制御処理手順を示すフローチャートである。
今、車両が走行車線中央を車線に沿って走行している状態であるものとする。このとき、前方認識センサ13は、車両の走行車線中央からの横変位y=0及びヨー角φ=0を転舵コントローラ14に出力する。車両は走行車線中央を走行しているため、レーンキープを行うための自動転舵制御を作動する必要はない。したがって、転舵コントローラ14は、図2の自動転舵指令角演算部142で、自動転舵指令角θaを“0”に算出する。そのため、指令転舵角演算部143が演算する指令転舵角は、運転者のハンドル操作量に応じた入力指令角θsと等しくなる。
そして、モータ駆動制御部144は、実転舵角θtが指令転舵角(=θs)と一致するように、転舵モータ8を駆動制御する。
操舵反力コントローラ15の比例ゲイン演算部151は、転舵角度センサ9で検出した実転舵角θtと、軸力センサ12で検出した路面反力Fとを入力する。また、操舵反力コントローラ15の補正路面反力演算部152は、転舵コントローラ14で演算した自動転舵指令角θa=0を入力する(ステップS1)。
比例ゲイン演算部151は、実転舵角θtと実路面反力Fとに基づいて、前記(2)式をもとに、転舵角と路面反力との関係を示す比例ゲインKを演算する(ステップS2)。また、補正路面反力演算部152は、演算した比例ゲインKと自動転舵指令角θaとに基づいて、前記(3)式をもとに自動転舵分路面反力Faを演算する(ステップS3)。このとき、θa=0であるためFa=0となる。つまり、自動転舵分の路面反力は発生していない。したがって、フィードバック路面反力FFBは、前記(4)式をもとにFFB=Fとなる(ステップS4)。
このように、実際に発生している路面反力Fは、すべて運転者による入力指令角θsに対応する路面反力である。そのため、この場合には自動転舵分路面反力Faによる補正を行わず、検出した実路面反力Fをそのまま操舵反力としてフィードバックする。
モータ駆動制御部154は、上記フィードバック路面反力FFB(=F)を操舵反力指令値として設定する。そして、この操舵反力指令値に応じて反力モータ5の駆動指令値を演算する(ステップS5)。次いで、演算した駆動指令値を反力モータ5に出力する(ステップS6)。これにより、ステアリングホイール1に実路面反力Fに対応した操舵反力を付与する。
また、運転者がステアリング操作を行って、車両が走行車線中央から左方向へ逸脱したものとする。この場合には、前方認識センサ13で車両の走行車線中央からの左方向のずれ量に相当する横変位y及び車線に対する車両前後方向の角度であるヨー角φを算出する。そして、転舵コントローラ14の自動転舵指令角演算部142は、横変位y及びヨー角φに基づいて、車両を走行車線中央に戻すための(右方向に転舵するための)自動転舵指令角θaを演算する。したがって、指令転舵角演算部143が演算する指令転舵角は、運転者の入力指令角θsと自動転舵指令角θaとの和となる。
そして、モータ駆動制御部143は、実転舵角θtが指令転舵角(=θs+θa)となるように、転舵モータ8を駆動制御する。これにより前輪11R,11Lは、右方向に転舵する。
この場合、操舵反力コントローラ15は、補正路面反力演算部152で、自動転舵指令角θaに基づいて、前記(3)式をもとに自動転舵分路面反力Faを演算する(ステップS3)。そして、フィードバック路面反力演算部153は、実路面反力Fから自動転舵分路面反力Faを差し引いた結果をフィードバック路面反力FFBとして演算する(ステップS4)。
モータ駆動制御部154は、上記フィードバック路面反力FFB(=F−Fa)を操舵反力指令値として設定する。そして、この操舵反力指令値に応じて反力モータ5の駆動指令値を演算する(ステップS5)。次いで、演算した駆動指令値を反力モータ5に出力する(ステップS6)。これにより、ステアリングホイール1に操舵反力を付与する。このとき、付与する操舵反力は、入力指令角θsに対応する転舵によって発生する路面反力相当となる。
次に、ステアリングホイール1に付与する操舵反力について図6及び図7を用いて説明する。図6は、本実施形態における自動転舵制御時に付与する操舵反力を示す図である。図7は、自動転舵制御時に付与する一般的な操舵反力を示す図である。
運転者が右方向にステアリング操作を行うと、ステアリングホイール1には符号aで示す運転者入力操舵角が発生する。操舵角センサ3は、この運転者入力操舵角aを操舵角θとして検出する。
このとき、車両に左方向の横変位yが発生しているものとすると、前輪11R,11Lには、運転者入力操舵角aに対応する右方向の転舵角bと、自動転舵制御により横変位y及びヨー角φを0にするための右方向の転舵角cとが発生する。
ここで、転舵角bは、入力指令角θsに対応する転舵角である。また、転舵角cは、自動転舵指令角θaに対応する転舵角である。転舵角度センサ9は、転舵角(b+c)を実転舵角θtとして検出する。
したがって、前輪11R,11Lに入力する路面からの反力は、転舵角bに対応する路面反力dと、転舵角cに対応する路面反力eとの和となる。軸力センサ12は、路面反力(d+e)を実路面反力Fとして検出する。
そして、ステアリングホイール1には操舵反力fを付与する。この操舵反力fは、実路面反力(d+e)から自動転舵指令角θaに対応する転舵角cによって発生する路面反力eを差し引いた路面反力に相当する。言い換えると、操舵反力fは、入力指令角θsに対応する転舵角bによって発生する路面反力dに相当する。
このように、本実施形態では、ステアリングホイール1に、転舵角cによって発生する路面反力eに相当する操舵反力をフィードバックしない。
一方、ステアリングホイール1に実路面反力Fに相当する操舵反力をそのまま付与する場合、図7に示すように、ステアリングホイール1には余分な操舵反力が付与されてしまう。
上述したように、レーンキープのための自動転舵により前輪11R,11Lを転舵すると、その分の路面反力eが発生する。このとき軸力センサ12で検出する実路面反力Fは、運転者入力操舵角aに対応する路面反力dと上記路面反力eとの和である。
したがって、実路面反力Fに相当する操舵反力をそのままフィードバックすると、ステアリングホイール1には、路面反力dに相当する操舵反力f以上の操舵反力を付与してしまう。つまり、実路面反力Fに相当する操舵反力をそのままフィードバックすると、運転者は操舵操作を行っていないにもかかわらず、自動転舵による転舵角の変化に対応した操舵反力の変化がステアリングホイール1に発生して、運転者にとって違和感や不快感となる。
また、自動転舵分の操舵反力を付与するため、ステアリングホイール1には自動転舵したい方向とは逆方向へ回転させようとするトルク(操舵反力)が入力してしまう。
これに対して、本実施形態では、自動転舵により発生する路面反力相当の操舵反力のみをフィードバックしない構成とする。そのため、運転者に違和感や不快感を与えることがない。また、自動転舵分の操舵反力によりステアリングホイール1に、自動転舵とは逆の方向にトルクが入力してしまうこともない。
さらに、運転者による入力指令角θsに対応する路面反力は操舵反力としてフィードバックするので、運転者は操舵操作を行った際に路面反力変化を操舵反力変化として感じることができ、操舵感を確保することができる。
また、検出した実路面反力Fから推定した自動転舵分路面反力Faを差し引いてフィードバック路面反力FFBを演算する。したがって、実路面反力Fに、入力指令角θsに対応した路面反力Fs及び自動転舵分路面反力Fa以外の反力成分が含まれる場合、その路面反力を適正にフィードバックすることができる。そのため、例えば、車両が縁石に乗り上げた場合などでも、車両挙動に応じた操舵反力を付与することができる。
なお、本実施形態においては、前輪11R,11Lが操向輪を構成し、舵取り機構10が転舵機構を構成している。また、反力モータ5が操舵反力アクチュエータを構成し、転舵モータ8が転舵アクチュエータを構成している。さらに、操舵角センサ3が操舵角検出手段を構成し、軸力センサ12が路面反力検出手段を構成している。
また、入力指令角演算部141が第一転舵指令角演算手段を構成し、自動転舵指令角演算部142が第二転舵指令角演算手段を構成し、モータ駆動制御部144が転舵制御手段を構成している。さらに、比例ゲイン演算部151及び補正路面反力演算部152が路面反力推定手段を構成し、フィードバック路面反力演算部153及びモータ駆動制御部154が操舵反力制御手段を構成している。
また、比例ゲイン演算部151が第1ゲイン演算手段を構成し、補正路面反力演算部152が第1ゲイン乗算手段を構成している。
《効果》
(1)操舵角検出手段は、ステアリングの操舵角を検出する。第一転舵指令角演算手段は、操舵角検出手段で検出された操舵角に基づいた転舵角である第一転舵指令角を演算する。第二転舵指令角演算手段は、自車両の走行状態に基づいた転舵角である第二転舵指令角を演算する。転舵制御手段は、第一転舵指令角演算手段で演算した第一転舵指令角と第二転舵指令角演算手段で演算した第二転舵指令角とに基づいて、転舵アクチュエータを駆動制御する。路面反力推定手段は、第二転舵指令角に対応して発生する路面反力である推定路面反力を推定する。路面反力検出手段は、路面から転舵機構へ入力される実路面反力を検出する。操舵反力制御手段は、路面反力検出手段で検出した実路面反力から路面反力推定手段で推定した推定路面反力を差し引いた反力偏差相当の操舵反力をステアリングに付与するように、操舵反力アクチュエータを駆動制御する。
これにより、自動転舵制御により発生する路面反力を操舵反力としてフィードバックしない構成とすることができる。したがって、ステアリングホイール1には自動転舵による転舵角変化に基づく操舵反力変化が発生することがない。その結果、運転者に違和感、不快感を与えることがない。
また、運転者の操舵により発生する路面反力は操舵反力としてフィードバックするので、操舵感を確保することができる。
さらに、実路面反力から推定路面反力を差し引いてフィードバックする操舵反力を演算するので、車両挙動に応じた操舵反力を付与することができる。特に、実路面反力に、運転者の操舵により発生する路面反力および目標転舵角に対応した路面反力以外の路面反力成分が含まれる場合に効果的である。
(2)転舵角検出手段は、操向輪の転舵角を検出する。転舵制御手段は、第一転舵指令角演算手段で演算した第一転舵指令角と第二転舵指令角演算手段で演算した第二転舵指令角とを合算した指令転舵角と、転舵角検出手段によって検出された転舵角が一致するように転舵アクチュエータを駆動制御する。
これにより、運転者による操舵に対応した転舵角と走行状態に応じた転舵角とを、操向輪に発生することができる。
(3)第1ゲイン演算手段は、操向輪の実転舵角と実路面反力との比例関係を示す第1ゲインを演算する。第1ゲイン乗算手段は、第1ゲイン演算手段で演算した第1ゲインと第二転舵指令角演算手段で演算した第二転舵指令角とを乗じる。路面反力推定手段は、第1ゲイン乗算手段の乗算結果を、第二転舵指令角に対応する路面反力として推定する。
したがって、比較的簡易に自動転舵分路面反力を推定することができる。
(4)自動転舵制御により発生する路面反力を推定し、検出した実路面反力から推定路面反力を差し引いた反力偏差相当の操舵反力をステアリングに付与するように、操舵反力アクチュエータを駆動制御する。
したがって、運転者に違和感や不快感を与えることなく、適正に操舵反力を付与することができる。
《第2の実施の形態》
次に、本発明の第2の実施形態について説明する。
この第2の実施形態は、前述した第1の実施形態において、自動転舵指令角θaが所定角度より大きいとき、運転者に自動転舵を行っていることを認識させるように操舵反力を付与するようにしたものである。
《構成》
図8は、操舵反力コントローラ15の構成を示す制御ブロック図である。
第2の実施形態の操舵反力コントローラ15は、前述した図4において補正ゲイン演算部155と補正部156とを追加したことを除いては、図4に示す操舵反力コントローラ15と同様の構成を有する。したがって、ここでは構成の異なる部分を中心に説明する。
補正ゲイン演算部155は、転舵コントローラ14で演算した自動転舵指令角θaを入力する。そして、補正ゲイン演算部155は、自動転舵指令角θaに基づいて補正ゲインK1を演算する。補正ゲインK1は、補正路面反力演算部152で演算する自動転舵分路面反力Faを補正するためのゲインである。
補正ゲイン演算部155は、図9に示す補正ゲイン算出マップを参照して補正ゲインK1を演算する。補正ゲイン算出マップは、横軸に自動転舵指令角θa、縦軸に補正ゲインK1をとる。そして、補正ゲイン算出マップは、自動転舵指令角θaが所定角度α(第1転舵指令角閾値)以下であるとき、補正ゲインK1=1に算出するように設定する。また、補正ゲイン算出マップは、自動転舵指令角θaが所定角度αより大きいとき、自動転舵指令角θaが大きいほど補正ゲインK1を“1”から比例的に大きく算出するように設定する。
補正部156は、補正路面反力演算部152で演算した自動転舵分路面反力Faと、補正ゲイン演算部155で演算した補正ゲインK1とを入力する。そして、自動転舵分路面反力Faに補正ゲインK1を乗じることで、補正後の自動転舵分路面反力Fa´を演算する(Fa´=K1・Fa)。
また、フィードバック路面反力演算部153は、実路面反力Fから補正後の自動転舵分路面反力Fa´を差し引いて、フィードバック路面反力FFBを演算する。
FB=F−Fa´=F−K1(K・θa) ………(6)
《動作》
次に、第2の実施形態の動作について説明する。
図10は、操舵反力コントローラ15で実行する操舵反力制御処理手順を示すフローチャートである。
今、車両が走行車線中央から左方向へ大きく逸脱したものとする。この場合、前方認識センサ13で車両の走行車線中央からの左方向のずれ量に相当する横変位y及びヨー角φを算出する。そして、転舵コントローラ14の自動転舵指令角演算部142は、横変位y及びヨー角φに基づいて、車両を走行車線中央に戻すための(右方向に転舵するための)自動転舵指令角θaを大きく演算する。
そして、モータ駆動制御部144は、実転舵角θtが指令転舵角(=θs+θa)となるように、転舵モータ8を駆動制御する。これにより前輪11R,11Lは、右方向に転舵する。
操舵反力コントローラ15は、比例ゲイン演算部151で、転舵角度センサ9で検出した実転舵角θtと、軸力センサ12で検出した路面反力Fとを入力する。また、補正路面反力演算部152と補正ゲイン演算部155とは、転舵コントローラ14で演算した自動転舵指令角θaを入力する(ステップS1)。
比例ゲイン演算部151は、実転舵角θtと実路面反力Fとに基づいて、前記(2)式をもとに、転舵角と路面反力との関係を示す比例ゲインKを演算する(ステップS2)。また、補正路面反力演算部152は、演算した比例ゲインKと自動転舵指令角θaとに基づいて、前記(3)式をもとに自動転舵分路面反力Faを演算する(ステップS3)。
次に、補正ゲイン演算部155は、自動転舵指令角θaに基づいて補正ゲインK1を演算する。このとき、自動転舵指令角θaが所定角度αより大きいものとすると(ステップS11でYes)、図9の補正ゲイン算出マップをもとに補正ゲインK1を“1”より大きい値に算出する(ステップS12)。
したがって、補正部156は、補正路面反力演算部152で演算した自動転舵分路面反力Faを増加補正する(ステップS14)。
そして、フィードバック路面反力演算部153は、実路面反力Fから増加補正後の自動転舵分路面反力Fa´を差し引いた結果をフィードバック路面反力FFBとして演算する(ステップS15)。
モータ駆動制御部154は、上記フィードバック路面反力FFB(=F−Fa´)を操舵反力指令値として設定する。そして、その操舵反力指令値に応じて、反力モータ5の駆動指令値を演算する(ステップS5)。次いで、演算した駆動指令値を反力モータ5に出力する(ステップS6)。これにより、ステアリングホイール1に操舵反力を付与する。
このように、自動転舵指令角θaが大きい場合(θa>αである場合)、自動転舵分路面反力Faを増加補正することで、操舵反力としてフィードバックする路面反力の補正量を大きくする。これにより、自動転舵を行う方向にハンドルを回すことができ、運転者は自動転舵を行っていることを操舵反力の変化によって認識することができる。
自動転舵指令角θaが大きい場合、自動転舵によって車両挙動も大きくなる。そのため、この場合には自動転舵を行っていることを運転者に認識させた方がよい。また、ステアリングホイール1に自動転舵を行う転舵方向に操舵反力を付与することができるので、自動転舵を補助することができる。
一方、自動転舵指令角θaが所定角度α以下であるときには(ステップS11でNo)、補正ゲインK1を“1”に設定する(ステップS13)。そのため、自動転舵分路面反力Faは補正しない。
このように、自動転舵指令角θaが小さい場合(θa≦αである場合)は、自動転舵分路面反力Faを操舵反力としてフィードバックしない。これにより、自動転舵を行っていることを運転者に認識させない。そのため、運転者に与える煩わしさを解消することができる。
なお、本実施形態においては、補正ゲイン演算部155及び補正部156が推定路面反力補正手段を構成している。
《効果》
(5)推定路面反力補正手段は、第二転舵指令角が所定の第1転舵指令角閾値より大きいとき、実路面反力から差し引く推定路面反力を増加補正する。
これにより、自動転舵の量が大きいときは、運転者は自動転舵を行っていることを認識することができる。また、自動転舵を行う方向にハンドルを回すことができるので、自動転舵を補助することができる。
《第3の実施の形態》
次に、本発明の第3の実施形態について説明する。
この第3の実施形態は、前述した第2の実施形態において、自動転舵に対する路面反力をより正確に推定するようにしたものである。
《構成》
図11は、操舵反力コントローラ15の構成を示す制御ブロック図である。
第3の実施形態の操舵反力コントローラ15は、前述した図8において接線ゲイン演算部157、第2補正路面反力演算部158、第2フィードバック路面反力演算部159及びフィードバック路面反力演算部160を追加したことを除いては、図8に示す操舵反力コントローラ15と同様の構成を有する。したがって、ここでは構成の異なる部分を中心に説明する。
なお、以下の説明では、図8における補正路面反力演算部152は第1補正路面反力演算部152に、フィードバック路面反力演算部153は第1フィードバック路面反力演算部153に名称変更する。そして、第1補正路面反力演算部152で演算する自動転舵分路面反力を第1自動転舵分路面反力Fa1とする。また、第1フィードバック路面反力演算部153で演算するフィードバック路面反力を第1フィードバック路面反力FFB1とする。
接線ゲイン演算部157は、転舵角度センサ9で検出した実転舵角θtと、軸力センサ12で検出した実路面反力Fとを入力する。そして、現在の実転舵角θt(x)及び1サンプリング前に検出した実転舵角θt(x−1)、並びに現在の実路面反力F(x)及び1サンプリング前に検出した実路面反力F(x−1)に基づいて、接線ゲインLを演算する。
図12は、実転舵角θtと実路面反力Fとの関係を示す図である。この図12に示すように、実転舵角θtと実路面反力Fとの関係は、一般に非線形の関係となる。
そこで、自動転舵分路面反力Faの推定を正確に行うために、以下の式に示す直線の傾きLを用いる。この傾きLは、実転舵角θtの変化量に対する実路面反力Fの変化量を示す路面反力変化率である。
F(x)−F(x−1)=L・(θt(x)−θt(x−1)) ………(7)
上記(7)式で表される直線は図12の直線に相当する。
本実施形態では、この直線を図中P点の接線として考える。ここで、P点は、実転舵角θt(x)と実転舵角θt(x−1)との中間である実転舵角θt(x´)での特性線上の点である。そして、この直線の傾きLを接線ゲインとする。
接線ゲイン演算部157は、上記(7)式を変形した下記(8)式をもとに接線ゲインLを算出する。
L=F(x)−F(x−1)/(θt(x)−θt(x−1)) ………(8)
第2補正路面反力演算部158は、接線ゲイン演算部157で演算した接線ゲインLと、転舵コントローラ14で演算した自動転舵指令角θaとを入力する。そして、第2補正路面反力演算部158は、接線ゲインLと自動転舵指令角θaとに基づいて、自動転舵指令角θaに対応した路面反力Fa2を演算する。
Fa2=L・θa ………(9)
第2フィードバック路面反力演算部159は、軸力センサ12で検出した路面反力Fから、第2補正路面反力演算部158で演算した路面反力Fa2を差し引き、第2フィードバック路面反力FFB2を演算する。
FB2=F−(L・θa) ………(10)
フィードバック路面反力演算部160は、比例ゲインK、接線ゲインL、自動転舵指令角θa、第1フィードバック路面反力FFB1及び第2フィードバック路面反力FFB2を入力する。
そして、接線ゲインLが比例ゲインKより小さい(L<K)ときは、次式をもとにフィードバック路面反力FFBを演算する。
FB=s・FFB1+(1−s)・FFB2 ………(11)
ここで、上記sは、第1フィードバック路面反力FFB1と第2フィードバック路面反力FFB2との配分を決定するための配分ゲインである。この配分ゲインsは、図13に示す配分ゲイン算出マップを参照して算出する。
配分ゲイン算出マップは、横軸に自動転舵指令角θa、縦軸に配分ゲインsをとる。そして、配分ゲイン算出マップは、自動転舵指令角θaが所定角度β1(第3転舵指令角閾値)より小さいとき、ゲインsを“0”に算出するように設定する。また、配分ゲイン算出マップは、自動転舵指令角θaが所定角度β2(第2転舵指令角閾値)より大きいとき、ゲインsを“1”に算出するように設定する。さらに、配分ゲイン算出マップは、自動転舵指令角θaが所定角度β1以上β2以下のとき、自動転舵指令角θaが大きくなるほどゲインsを“0”から“1”へ向けて比例的に大きく算出するように設定する。
すなわち、θa<β1のとき、フィードバック路面反力FFBは第2フィードバック路面反力FFB2と等しくなる。また、θa>β2のとき、フィードバック路面反力FFBは第1フィードバック路面反力FFB1と等しくなる。
また、接線ゲインLが比例ゲインK以上である(L≧K)ときは、次式をもとにフィードバック路面反力FFBを演算する。
FB=FFB1=F−K1(K・θa) ………(12)
《動作》
次に、第3の実施形態の動作について説明する。
図14は、操舵反力コントローラ15で実行する操舵反力制御処理手順を示すフローチャートである。
今、車両が走行車線中央から左方向へ逸脱したものとする。この場合、前方認識センサ13で車両の走行車線中央からの左方向のずれ量に相当する横変位y及びヨー角φを算出する。そして、転舵コントローラ14の自動転舵指令角演算部142は、横変位y及びヨー角φに基づいて、車両を走行車線中央に戻すための(右方向に転舵するための)自動転舵指令角θaを演算する。
そして、モータ駆動制御部144は、実転舵角θtが指令転舵角(=θs+θa)となるように、転舵モータ8を駆動制御する。これにより前輪11R,11Lは、右方向に転舵する。
操舵反力コントローラ15の比例ゲイン演算部151と接線ゲイン演算部157とは、転舵角度センサ9で検出した実転舵角θtと、軸力センサ12で検出した路面反力Fとを入力する。また、第1補正路面反力演算部152と補正ゲイン演算部155と第2補正路面反力演算部158とは、転舵コントローラ14で演算した自動転舵指令角θaを入力する(ステップS1)。
比例ゲイン演算部151は、実転舵角θtと実路面反力Fとに基づいて、前記(2)式をもとに、転舵角と路面反力との関係を示す比例ゲインKを演算する(ステップS2)。また、第1補正路面反力演算部152は、演算した比例ゲインKと自動転舵指令角θaとを乗じて、自動転舵分路面反力Fa1を演算する(ステップS3)。
補正ゲイン演算部155は、自動転舵指令角θaに基づいて補正ゲインK1を演算する。このとき、自動転舵指令角θaが所定角度α以下であるものとすると(ステップS11でNo)、補正ゲインK1=1に設定する(ステップS13)。
したがって、補正部156は、補正路面反力演算部152で演算した自動転舵分路面反力Fa1を、そのまま補正後の自動転舵分路面反力Fa1´とする(ステップS14)。
そして、第1フィードバック路面反力演算部153は、実路面反力Fから自動転舵分路面反力Fa´を差し引いた結果を第1フィードバック路面反力FFB1として演算する(ステップS15)。
また、接線ゲイン演算部157は、1サンプリング期間における実転舵角θtの変化量に対する実路面反力Fの変化量を示す路面反力変化率を、前記(8)式をもとに接線ゲインLとして演算する(ステップS21)。
第2補正路面反力演算部158は、演算した接線ゲインLと自動転舵指令角θaとを乗じて、自動転舵分路面反力Fa2を演算する(ステップS22)。
そして、第2フィードバック路面反力演算部159は、実路面反力Fから自動転舵分路面反力Fa2を差し引いた結果を第2フィードバック路面反力FFB2として演算する(ステップS23)。
このとき、接線ゲインLが比例ゲインKより小さく(ステップS24でYes)、且つ自動転舵指令角θaが所定角度β1より小さい(ステップS25でYes)ものとする。この場合、フィードバック路面反力演算部160は、配分ゲイン算出マップをもとに配分ゲインsを“0”を算出する。そして、この配分ゲインsを用いて、前記(11)式をもとにフィードバック路面反力FFBを算出する。したがって、フィードバック路面反力FFBは、第2フィードバック路面反力FFB2と等しい値となる(ステップS26)。
モータ駆動制御部154は、上記フィードバック路面反力FFB(=FFB2)を操舵反力指令値として設定する。そして、その操舵反力指令値に応じて、反力モータ5の駆動指令値を演算する(ステップS5)。次いで、演算した駆動指令値を反力モータ5に出力する(ステップS6)。これにより、ステアリングホイール1に操舵反力を付与する。
このように、接線ゲインLが比例ゲインKより小さい場合、接線ゲインLを用いて補正した路面反力相当の操舵反力をフィードバックする。これにより、自動転舵分路面反力を精度良く推定することができる。
図15は、自動転舵分路面反力(補正路面反力)の算出方法を説明するための図である。
ここでは、接線ゲインLが比例ゲインKより小さく、且つ自動転舵指令角θaが所定角度β1より小さい場合について説明する。
図中符号Aは、接線ゲインLを用いて算出した自動転舵分路面反力(L・θa)である。また符号Cは、比例ゲインKを用いて算出した自動転舵分路面反力(K・θa)である。そして、符号Bは、実際の自動転舵分路面反力(理論値)である。
この図15からも解るように、比例ゲインKを用いて補正するCに比べて、接線ゲインLを用いて補正するAの方が実際に補正したい量Bに近い値となる。したがって、接線ゲインLが比例ゲインKより小さく、且つ自動転舵指令角θaが所定角度β1より小さい場合は、接線ゲインLを用いて自動転舵分路面反力を推定した方が正確な値を導出することができる。
次に、車両が走行車線中央から左方向へ大きく逸脱しており、転舵コントローラ14の自動転舵指令角演算部142が所定角度β1以上となる自動転舵指令角θaを演算している場合について説明する。
この場合、操舵反力コントローラ15のフィードバック路面反力演算部160は、配分ゲイン算出マップをもとに、配分ゲインsを1より大きい値に演算する(ステップS27)。そして、この配分ゲインsを用いて、前記(11)式をもとにフィードバック路面反力FFBを算出する(ステップS28)。
このとき、フィードバック路面反力FFBは、自動転舵指令角θaが大きいほど第1フィードバック路面反力FFB1に近い値となるように大きく算出する。
図15からも解るように、自動転舵指令角θaが大きいほど、実際に補正したい量Bは比例ゲインKを用いて補正するCに近づく。したがって、接線ゲインLが比例ゲインKより小さく、且つ自動転舵指令角θaが所定角度β1以上である場合は、比例ゲインKと接線ゲインLとを用いて自動転舵分路面反力を推定する。更には、自動転舵指令角θaが大きいほど、自動転舵分路面反力を、比例ゲインKを用いて推定した値に近づける。これにより、正確な値を導出することができる。
また、接線ゲインLのみを用いて自動転舵分路面反力を推定する場合と比較して、実路面反力Fから差し引く自動転舵分路面反力(補正路面反力)を大きくすることができる。その結果、前述した第2の実施形態と同様に、運転者は自動転舵を行っていることを認識することができる。また、自動転舵により転舵したい方向に操舵反力を付与することができる。
なお、本実施形態においては、接線ゲイン演算部157が第2ゲイン演算手段を構成し、第2補正路面反力演算部158が第2ゲイン乗算手段を構成している。
《効果》
(6)第2ゲイン演算手段は、操向輪の実転舵角の変化量に対する実路面反力の変化量である路面反力変化率を示す第2ゲインを演算する。第2ゲイン乗算手段は、第2ゲイン演算手段で演算した第2ゲインと第二転舵指令角演算手段で演算した第二転舵指令角とを乗じる。路面反力推定手段は、第2ゲイン乗算手段の乗算結果を、前記第二転舵指令角に対応する路面反力として推定する。
これにより、実転舵角と実路面反力との関係が非線形であっても、自動転舵分路面反力を精度良く推定することができる。
(7)路面反力推定手段は、第2ゲイン演算手段で演算した第2ゲインが、第1ゲイン演算手段で演算した第1ゲインより小さく、且つ第二転舵指令角演算手段で演算した第二転舵指令角が所定の第2転舵指令角閾値より小さいとき、第2ゲイン乗算手段の乗算結果を、前記第二転舵指令角に対応する路面反力として推定する。
これにより、自動転舵により発生した路面反力を正確に推定することができる。
(8)路面反力推定手段は、第2ゲイン演算手段で演算した第2ゲインが、第1ゲイン演算手段で演算した第1ゲインより小さく、且つ第二転舵指令角演算手段で演算した第二転舵指令角が第2転舵指令角閾値より大きい所定の第3転舵指令角閾値以上であるとき、第1ゲイン乗算手段の乗算結果を、前記第二転舵指令角に対応する路面反力として推定する。
これにより、自動転舵により発生した路面反力を正確に推定することができる。また、運転者は自動転舵を行っていることを認識することができる。さらに、自動転舵により転舵したい方向に操舵反力を付与することができる。
(9)路面反力推定手段は、第2ゲイン演算手段で演算した第2ゲインが、第1ゲイン演算手段で演算した第1ゲインより小さく、且つ第二転舵指令角演算手段で演算した第二転舵指令角が第2転舵指令角閾値以上で第3転舵指令角閾値より小さいとき、第1ゲイン乗算手段の乗算結果と第2ゲイン乗算手段の乗算結果とに基づいて、前記第二転舵指令角に対応する路面反力を推定する。
これにより、自動転舵指令角が大きいほど自動転舵分路面反力を大きく推定することができ、自動転舵により発生した路面反力を正確に推定することができる。
《変形例》
上記各実施形態においては、転舵コントローラ14で、自車両が走行車線中央を走行するように自動転舵するレーンキープ制御を行う場合について説明したが、運転者のステアリング操作とは独立して自動的に転舵制御するものであれば、本発明を適用可能である。このような制御としては、例えば、車両挙動安定化制御がある。車両挙動安定化制御では、先ず、運転者のステアリング操作に基づいた目標車両挙動量を演算する。そして、実際の車両挙動量を目標車両挙動量に近づけるように自動的に転舵する。
この場合にも、車両挙動安定化制御により発生した路面反力を操舵反力としてフィードバックしない構成とすれば、上記各実施形態と同様の効果が得られる。
本発明における車両制御装置の実施形態を示す全体構成図である。 転舵コントローラの構成を示す制御ブロック図である。 転舵コントローラにおける転舵角制御ブロック図である。 第1の実施形態における操舵反力コントローラの構成を示す制御ブロック図である。 第1の実施形態における操舵反力コントローラで実行する操舵反力制御処理手順を示すフローチャートである。 本実施形態における自動転舵制御時に付与する操舵反力を示す図である。 自動転舵制御時に付与する一般的な操舵反力を示す図である。 第2の実施形態における操舵反力コントローラの構成を示す制御ブロック図である。 補正ゲイン算出マップである。 第2の実施形態における操舵反力コントローラで実行する操舵反力制御処理手順を示すフローチャートである。 第3の実施形態における操舵反力コントローラの構成を示す制御ブロック図である。 実路面反力と実転舵角との関係を示す図である。 配分ゲイン算出マップである。 第3の実施形態における操舵反力コントローラで実行する操舵反力制御処理手順を示すフローチャートである。 フィードバック路面反力の算出方法を説明するための図である。
符号の説明
1 ステアリングホイール
2 ステアリングシャフト
3 操舵角センサ
4 操舵トルクセンサ
5 反力モータ
6 バックアップクラッチ
7 ピニオンシャフト
8 転舵モータ
9 転舵角度センサ
10 舵取り機構
11R,11L 前輪
12 軸力センサ
13 前方認識センサ
14 転舵コントローラ
15 操舵反力コントローラ
16 通信ライン

Claims (9)

  1. 運転者が操舵するステアリングと、
    前記ステアリングと機械的に切り離され、操向輪を転舵する転舵機構と、
    前記ステアリングに操舵反力を付与する操舵反力アクチュエータと、
    前記転舵機構を駆動する転舵アクチュエータと、
    前記ステアリングの操舵角を検出する操舵角検出手段と、
    前記操舵角検出手段で検出された操舵角に基づいた転舵角である第一転舵指令角を演算する第一転舵指令角演算手段と、
    自車両の走行状態に基づいた転舵角である第二転舵指令角を演算する第二転舵指令角演算手段と、
    前記第一転舵指令角演算手段で演算した第一転舵指令角と第二転舵指令角演算手段で演算した第二転舵指令角とに基づいて、前記転舵アクチュエータを駆動制御する転舵制御手段と、
    前記第二転舵指令角に対応して発生する路面反力である推定路面反力を推定する路面反力推定手段と、
    路面から前記転舵機構へ入力される実路面反力を検出する路面反力検出手段と、
    前記路面反力検出手段で検出した実路面反力から前記路面反力推定手段で推定した推定路面反力を差し引いた反力偏差相当の操舵反力を前記ステアリングに付与するように、前記操舵反力アクチュエータを駆動制御する操舵反力制御手段と、を備えることを特徴とする車両用操舵制御装置。
  2. 前記操向輪の転舵角を検出する転舵角検出手段を備え、
    前記転舵制御手段は、前記第一転舵指令角演算手段で演算した第一転舵指令角と第二転舵指令角演算手段で演算した第二転舵指令角とを合算した指令転舵角と、前記転舵角検出手段によって検出された転舵角が一致するように前記転舵アクチュエータを駆動制御することを特徴とする請求項1に記載の車両用操舵制御装置。
  3. 前記操舵反力制御手段は、前記第二転舵指令角が所定の第1転舵指令角閾値より大きいとき、前記実路面反力から差し引く前記推定路面反力を増加補正する推定路面反力補正手段を備えることを特徴とする請求項1又は2に記載の車両用操舵制御装置。
  4. 前記操向輪の実転舵角と実路面反力との比例関係を示す第1ゲインを演算する第1ゲイン演算手段と、前記第1ゲイン演算手段で演算した第1ゲインと前記第二転舵指令角演算手段で演算した第二転舵指令角とを乗じる第1ゲイン乗算手段と、を有し、
    前記路面反力推定手段は、前記第1ゲイン乗算手段の乗算結果を、前記第二転舵指令角に対応する路面反力として推定することを特徴とする請求項1〜3の何れか1項に記載の車両用操舵制御装置。
  5. 前記操向輪の実転舵角の変化量に対する実路面反力の変化量である路面反力変化率を示す第2ゲインを演算する第2ゲイン演算手段と、前記第2ゲイン演算手段で演算した第2ゲインと前記第二転舵指令角演算手段で演算した第二転舵指令角とを乗じる第2ゲイン乗算手段と、を有し、
    前記路面反力推定手段は、前記第2ゲイン乗算手段の乗算結果を、前記第二転舵指令角に対応する路面反力として推定することを特徴とする請求項1〜3の何れか1項に記載の車両用操舵制御装置。
  6. 前記操向輪の実転舵角と実路面反力との比例関係を示す第1ゲインを演算する第1ゲイン演算手段と、前記操向輪の実転舵角の変化量に対する実路面反力の変化量である路面反力変化率を示す第2ゲインを演算する第2ゲイン演算手段と、前記第2ゲイン演算手段で演算した第2ゲインと前記第二転舵指令角演算手段で演算した第二転舵指令角とを乗じる第2ゲイン乗算手段と、を有し、
    前記路面反力推定手段は、前記第2ゲイン演算手段で演算した第2ゲインが、前記第1ゲイン演算手段で演算した第1ゲインより小さく、且つ前記第二転舵指令角演算手段で演算した第二転舵指令角が所定の第2転舵指令角閾値より小さいとき、前記第2ゲイン乗算手段の乗算結果を、前記第二転舵指令角に対応する路面反力として推定することを特徴とする請求項1〜3の何れか1項に記載の車両用操舵制御装置。
  7. 前記第1ゲイン演算手段で演算した第1ゲインと前記第二転舵指令角演算手段で演算した第二転舵指令角とを乗じる第1ゲイン乗算手段を有し、
    前記路面反力推定手段は、前記第2ゲイン演算手段で演算した第2ゲインが、前記第1ゲイン演算手段で演算した第1ゲインより小さく、且つ前記第二転舵指令角演算手段で演算した第二転舵指令角が前記第2転舵指令角閾値より大きい所定の第3転舵指令角閾値以上であるとき、前記第1ゲイン乗算手段の乗算結果を、前記第二転舵指令角に対応する路面反力として推定することを特徴とする請求項6に記載の車両用操舵制御装置。
  8. 前記路面反力推定手段は、前記第2ゲイン演算手段で演算した第2ゲインが、前記第1ゲイン演算手段で演算した第1ゲインより小さく、且つ前記第二転舵指令角演算手段で演算した第二転舵指令角が前記第2転舵指令角閾値以上で前記第3転舵指令角閾値より小さいとき、前記第1ゲイン乗算手段の乗算結果と前記第2ゲイン乗算手段の乗算結果とに基づいて、前記第二転舵指令角に対応する路面反力を推定することを特徴とする請求項6又は7に記載の車両用操舵制御装置。
  9. 路面からステアリングと機械的に切り離された転舵機構へ入力される実路面反力を検出するステップと、
    前記ステアリングの操舵角に基づいた転舵角である第一転舵指令角を演算するステップと、
    自車両の走行状態に基づいた転舵角である第二転舵指令角を演算するステップと、
    演算した第一転舵指令角と第二転舵指令角とに基づいて、前記転舵機構を駆動する転舵アクチュエータを駆動制御するステップと、
    その制御により発生した前記第二転舵指令角に対応する路面反力を推定するステップと、
    検出した実路面反力から推定した推定路面反力を差し引いた反力偏差相当の操舵反力を前記ステアリングに付与するように、操舵反力アクチュエータを駆動制御するステップと、を備えることを特徴とする車両用操舵制御方法。
JP2008329661A 2008-12-25 2008-12-25 車両用操舵制御装置及び車両用操舵制御方法 Active JP5218028B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008329661A JP5218028B2 (ja) 2008-12-25 2008-12-25 車両用操舵制御装置及び車両用操舵制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008329661A JP5218028B2 (ja) 2008-12-25 2008-12-25 車両用操舵制御装置及び車両用操舵制御方法

Publications (2)

Publication Number Publication Date
JP2010149687A true JP2010149687A (ja) 2010-07-08
JP5218028B2 JP5218028B2 (ja) 2013-06-26

Family

ID=42569276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008329661A Active JP5218028B2 (ja) 2008-12-25 2008-12-25 車両用操舵制御装置及び車両用操舵制御方法

Country Status (1)

Country Link
JP (1) JP5218028B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013112279A (ja) * 2011-11-30 2013-06-10 Jtekt Corp 車両用操舵装置
WO2014049939A1 (ja) * 2012-09-28 2014-04-03 日産自動車株式会社 転舵制御装置
WO2021065714A1 (ja) * 2019-10-03 2021-04-08 日立Astemo株式会社 操舵制御装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11479265B2 (en) * 2020-03-25 2022-10-25 Baidu Usa Llc Incremental lateral control system using feedbacks for autonomous driving vehicles

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005112044A (ja) * 2003-10-03 2005-04-28 Mitsubishi Electric Corp 車両用操舵制御装置
JP2006321471A (ja) * 2005-04-19 2006-11-30 Honda Motor Co Ltd 車両用操舵装置
JP2008062668A (ja) * 2006-09-04 2008-03-21 Toyota Motor Corp 車両の操舵装置
JP2008081006A (ja) * 2006-09-28 2008-04-10 Mitsubishi Electric Corp 車両用走行制御装置
JP2008184004A (ja) * 2007-01-29 2008-08-14 Jtekt Corp 車両用操舵装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005112044A (ja) * 2003-10-03 2005-04-28 Mitsubishi Electric Corp 車両用操舵制御装置
JP2006321471A (ja) * 2005-04-19 2006-11-30 Honda Motor Co Ltd 車両用操舵装置
JP2008062668A (ja) * 2006-09-04 2008-03-21 Toyota Motor Corp 車両の操舵装置
JP2008081006A (ja) * 2006-09-28 2008-04-10 Mitsubishi Electric Corp 車両用走行制御装置
JP2008184004A (ja) * 2007-01-29 2008-08-14 Jtekt Corp 車両用操舵装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013112279A (ja) * 2011-11-30 2013-06-10 Jtekt Corp 車両用操舵装置
WO2014049939A1 (ja) * 2012-09-28 2014-04-03 日産自動車株式会社 転舵制御装置
JPWO2014049939A1 (ja) * 2012-09-28 2016-08-22 日産自動車株式会社 転舵制御装置
WO2021065714A1 (ja) * 2019-10-03 2021-04-08 日立Astemo株式会社 操舵制御装置
JP2021059139A (ja) * 2019-10-03 2021-04-15 日立Astemo株式会社 操舵制御装置
DE112020004728T5 (de) 2019-10-03 2022-06-15 Hitachi Astemo, Ltd. Lenksteuervorrichtung
JP7169957B2 (ja) 2019-10-03 2022-11-11 日立Astemo株式会社 操舵制御装置

Also Published As

Publication number Publication date
JP5218028B2 (ja) 2013-06-26

Similar Documents

Publication Publication Date Title
JP5286982B2 (ja) 車両用操舵制御装置及び方法
US9457839B2 (en) Steering system
US9789901B2 (en) Electric power steering apparatus
US9994253B2 (en) Lane keeping assist apparatus
US9440675B2 (en) Electric power steering apparatus
JP5233624B2 (ja) 車両用操舵制御装置および方法
JP4108713B2 (ja) 電動式パワーステアリング制御装置
JP5407171B2 (ja) 電動パワーステアリング装置
JP5365084B2 (ja) 車両用操舵制御装置及び車両用操舵制御方法
US7832522B2 (en) Vehicle steering system, vehicle including the same and method for turning wheel of vehicle
JP5206170B2 (ja) 車両用操舵制御装置及び方法
JP2019098817A (ja) 車両用操舵装置
US9988081B2 (en) Steering system
JP6663767B2 (ja) 車両の操舵支援装置
EP3699062B1 (en) Steering system
US11091195B2 (en) Motor control device and motor control method
CN112154092A (zh) 马达控制装置
JP5218028B2 (ja) 車両用操舵制御装置及び車両用操舵制御方法
US20200377148A1 (en) Electric power steering system
JP6220688B2 (ja) 電動パワーステアリング装置
US8886409B2 (en) Checking method implemented by a steering system regulating function
JP4929892B2 (ja) 車両の操舵装置
JP2017202774A (ja) 運転支援方法及び運転支援装置
WO2023084646A1 (ja) 操舵装置
WO2023079765A1 (ja) モータ制御装置

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100917

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111128

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130131

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130218

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160315

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5218028

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150