JP2010141224A - 半導体装置およびその製造方法 - Google Patents

半導体装置およびその製造方法 Download PDF

Info

Publication number
JP2010141224A
JP2010141224A JP2008317895A JP2008317895A JP2010141224A JP 2010141224 A JP2010141224 A JP 2010141224A JP 2008317895 A JP2008317895 A JP 2008317895A JP 2008317895 A JP2008317895 A JP 2008317895A JP 2010141224 A JP2010141224 A JP 2010141224A
Authority
JP
Japan
Prior art keywords
film
insulating film
gate insulating
amorphous
gate electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008317895A
Other languages
English (en)
Inventor
Kazuyuki Sugahara
和之 須賀原
Naoki Nakagawa
直紀 中川
Koji Oda
耕治 小田
Takeshi Ono
岳 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2008317895A priority Critical patent/JP2010141224A/ja
Publication of JP2010141224A publication Critical patent/JP2010141224A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Thin Film Transistor (AREA)

Abstract

【課題】薄膜トランジスタ等の半導体装置の特性を向上させ、信頼性の優れた半導体装置およびその製造方法を得ることを目的とする。
【解決手段】この発明にかかる半導体装置の製造方法は、(a)基板10上に選択的にゲート電極20を形成する工程と、(b)ゲート電極20を被覆してゲート絶縁膜30を形成する工程と、(c)ゲート絶縁膜30を介してゲート電極20上に、ゲート絶縁膜30上の非晶質シリコン膜40と、非晶質シリコン膜40上の微結晶シリコン膜41とを有するチャネル層42を形成する工程と、(d)チャネル層42上に、ソース領域73、ドレイン領域74を離間して形成する工程とを備え、工程(c)は、非晶質シリコン膜40に、ソース領域73、ドレイン領域74と同一導電型の不純物であるリンを添加する工程である。
【選択図】 図8

Description

本発明は、基板上に形成された微結晶半導体膜を用いた半導体装置およびその製造方法に関する。
従来からの一般的な薄型パネルのひとつである液晶表示装置(LCD:Liquid Crystal Display)は、低消費電力や小型軽量といったメリットを活かしてパーソナルコンピュータのモニタや携帯情報端末機器のモニタなどに広く用いられている。また近年ではTV用途としても広く用いられ、従来のブラウン管にとってかわろうとしている。さらに、液晶表示装置で問題となる視野角やコントラストの制限や、動画対応の高速応答への追従が困難といった問題点をクリアした自発光型で広視野角、高コントラスト、高速応答等、LCDにはない特徴を活かしたEL(Electro−Luminescence)素子のような発光体を画素表示部に用いた電界発光型EL表示装置も、次世代の薄型パネル用デバイスとして用いられるようになってきている。
このような表示装置に用いられる半導体装置である薄膜トランジスタ(TFT:Thin Film Transistor)は、半導体膜を用いたMOS構造が多用される。TFTには、逆スタガ型(ボトムゲート型)やトップゲート型といった種類があり、半導体膜にも非晶質半導体膜(例えば特許文献1)や多結晶半導体膜がある。小型の表示パネルにおいては、表示領域の開口率を上げる、解像度を上げる、ゲートドライバなどの周辺駆動回路もTFTで作成する必要があるという点で、多結晶半導体膜を使用することが多い。また最近では微結晶半導体膜も使用されるようになってきた。多結晶半導体膜の作成方法としては、まず下地膜として形成された酸化珪素膜等の上層に非晶質半導体膜を形成した後にレーザ光を照射することにより半導体膜を多結晶化する方法が知られている(例えば特許文献2参照)。また微結晶半導体層の形成方法としては、プラズマCVD(Chemical Vapor Deposition)法により堆積する方法が知られている(例えば特許文献3参照)。
このような多結晶半導体膜を作成した後にトップゲート型TFTを製造する方法も知られている。具体的には、まず多結晶半導体膜上に酸化珪素等からなるゲート絶縁膜を形成し、ゲート電極を形成後、ゲート絶縁膜を介して多結晶半導体膜にリンやボロン等の不純物を導入することによりソースドレイン領域を形成する。その後、ゲート電極とゲート絶縁膜とを覆うように層間絶縁膜を形成した後、ソースドレイン領域に到達するコンタクトホールを層間絶縁膜とゲート絶縁膜とに開口する。層間絶縁膜上に金属膜を形成し、多結晶半導体膜に形成されたソースドレイン領域に接続するようにパターニングしてソースドレイン電極を形成する。その後は、ドレイン電極に接続されるように画素電極や自発光素子を形成することによりTFTが形成される(例えば特許文献3参照)。
また微結晶半導体層によりボトムゲート型TFTを製造する方法も知られている。これは、基板上にゲート電極を形成後、窒化珪素からなるゲート絶縁膜を形成し、この上に微結晶半導体層、n型非晶質半導体層、ソースドレイン電極を順次堆積する。この後所定の位置にn型非晶質半導体層、ソースドレイン電極をパターニングすることでTFTが形成される(例えば特許文献4参照)。
特開2005−259371号公報 特開2003−17505号公報 特開平8−97436号公報 特開2001−217424号公報 特開2004−158685号公報
しかし、従来のプラズマCVD法により形成される微結晶は膜の上方は微結晶もしくは微結晶と非晶質の混在状態であるが、膜の下方は非晶質半導体しか存在しない。従ってボトムゲート型の薄膜トランジスタ構造をとる場合はチャネルとなるゲート絶縁膜近傍が非晶質シリコンになってしまうために、トランジスタ特性が向上せず、また信頼性に関しても従来の非晶質シリコンを使用したTFTと同様、不充分な特性しか示さない。このため画素トランジスタに比べて常に高速で動作しなければならないゲートドライバなどの周辺駆動回路が正常に動作しなくなるという問題がある。
非晶質半導体膜への公知のレーザ照射方法によって多結晶半導体膜もしくは微結晶半導体膜を形成すると、半導体膜は溶融してから固化するため半導体膜の膜厚方向の全てで結晶化した半導体膜が得られる。しかしレーザ照射方法では、非晶質半導体層を多結晶または微結晶半導体層に変えるためレーザアニール工程が必要になり、コストの上昇を招くという問題がある。
また特許文献3には、従来のプラズマCVD法による微結晶シリコン膜を半導体層に使用したトップゲート型のTFTを作成することが記載されている。トップゲート型TFTの場合は、チャネルとなるゲート絶縁膜近傍の半導体層が微結晶シリコン層になる。このため、トップゲート型TFTは良好なトランジスタ特性を有し、さらに信頼性も向上する。
しかしながら、微結晶を半導体層に使用したトップゲート型TFTはボトムゲート型TFTより製造工程が多く、製造コストが高いという欠点がある。
微結晶半導体ボトムゲート型TFTは従来の非晶質半導体を半導体層に使用したTFTの非晶質半導体を微結晶半導体に置き換えただけの構造をしているため、製造工程が従来の非晶質半導体TFTと同じであり、さらに既存の非晶質半導体TFTの製造工場を改造無しに使用できる利点を有する。従ってボトムゲート型TFTで微結晶半導体層を通常の非晶質半導体膜を形成するためのプラズマCVD装置で形成できれば良好な特性で信頼性の高い薄膜トランジスタが低コストで実現可能となる。
プラズマCVD装置で、膜の下方に非晶質半導体が存在しない微結晶半導体膜を形成する試みもなされている。
通常の非晶質シリコン膜をプラズマCVD装置で形成するための原料ガスはSiH4とH2であるが、H2のSiH4に対する流量比を200以上にして微結晶シリコン膜を形成する方法がある(特許文献3)。この方法では膜の下方も微結晶が得られるが、流量比が大きいため、すなわちSiH4の流量が小さいためシリコン膜の成膜速度が著しく減少し、事実上量産が困難になるという問題がある。
さらにプラズマCVD装置で、原料ガスにSiF4等のハロゲンを含むガスを使用する方法もある(例えば特許文献5)。この方法でも膜の下方で微結晶が得られるが、ハロゲンを含むガスには使用実績が少なく、完成した量産技術ではない。
本発明は上記のような問題点を解決するためになされたものであり、特にトランジスタ特性が良好で、信頼性の高い半導体装置、およびその製造方法の提供を目的とする。
特に、低コストのプラズマCVD法を用いて、良好なトランジスタ特性を有する、半導体装置であるボトムゲート型薄膜トランジスタ、およびその製造方法を提供することを目的とする。
この発明にかかる半導体装置の製造方法は、(a)基板上に選択的にゲート電極を形成する工程と、(b)前記ゲート電極を被覆してゲート絶縁膜を形成する工程と、(c)前記ゲート絶縁膜を介して前記ゲート電極上に、前記ゲート絶縁膜上の非晶質半導体膜と、前記非晶質半導体膜上の微結晶半導体膜とを有するチャネル層を形成する工程と、(d)前記チャネル層上に、ソース領域、ドレイン領域を離間して形成する工程とを備え、前記工程(c)は、前記非晶質半導体膜に、前記ソース領域、前記ドレイン領域と同一導電型の不純物を添加する工程である。
また、この発明にかかる半導体装置は、基板上に選択的に形成されたゲート電極と、前記ゲート電極を被覆して形成されたゲート絶縁膜と、前記ゲート絶縁膜を介して前記ゲート電極上に形成され、前記ゲート絶縁膜上の非晶質半導体膜と、前記非晶質半導体膜上の微結晶半導体膜とを有するチャネル層と、前記チャネル層上に離間して形成されたソース領域、ドレイン領域とを備え、前記非晶質半導体膜に、前記ソース領域、前記ドレイン領域と同一導電型の不純物が添加されたものである。
この発明によれば、半導体装置の製造方法において、(a)基板上に選択的にゲート電極を形成する工程と、(b)前記ゲート電極を被覆してゲート絶縁膜を形成する工程と、(c)前記ゲート絶縁膜を介して前記ゲート電極上に、前記ゲート絶縁膜上の非晶質半導体膜と、前記非晶質半導体膜上の微結晶半導体膜とを有するチャネル層を形成する工程と、(d)前記チャネル層上に、ソース領域、ドレイン領域を離間して形成する工程とを備え、前記工程(c)は、前記非晶質半導体膜に、前記ソース領域、前記ドレイン領域と同一導電型の不純物を添加する工程であることにより、微結晶半導体膜の下方にソースドレイン領域の導電型と同一の導電型である非晶質半導体膜が形成されるので、作製されたボトムゲート型の半導体装置のチャネル層における電子の移動度が向上し、トランジスタとしての特性が向上する。また、この非晶質半導体層と微結晶半導体層の価電子上端エネルギー(Ev)が大きく異なるため、ゲート絶縁膜への正孔の注入が阻止でき、BT(Bias Temperature)ストレスによる信頼性が向上する。
また、この発明によれば、半導体装置において、基板上に選択的に形成されたゲート電極と、前記ゲート電極を被覆して形成されたゲート絶縁膜と、前記ゲート絶縁膜を介して前記ゲート電極上に形成され、前記ゲート絶縁膜上の非晶質半導体膜と、前記非晶質半導体膜上の微結晶半導体膜とを有するチャネル層と、前記チャネル層上に離間して形成されたソース領域、ドレイン領域とを備え、前記非晶質半導体膜に、前記ソース領域、前記ドレイン領域と同一導電型の不純物が添加されたものであることにより、微結晶半導体膜の下方にソースドレイン領域の導電型と同一の導電型である非晶質半導体膜が形成されるので、作製されたボトムゲート型の半導体装置のチャネル層における電子の移動度が向上し、トランジスタとしての特性が向上する。また、この非晶質半導体層と微結晶半導体層の価電子上端エネルギー(Ev)が大きく異なるため、ゲート絶縁膜への正孔の注入が阻止でき、BT(Bias Temperature)ストレスによる信頼性が向上する。
<A.実施の形態1>
<A−1.半導体装置の製造方法>
実施の形態1では図面を用いて本発明における具体的な半導体装置およびその製造方法について説明する。図1〜8は、この発明の実施の形態1における半導体装置の製造方法を示すための工程別断面図である。
図1において、ガラス基板や石英基板などの光透過性を有する絶縁性基板上にスパッタ法を用いて、第1の金属膜を形成する。第1の金属膜の金属はAl,Mo,Crなどの金属が適している。この実施の形態1では絶縁性基板は無アルカリのガラス基板10を用い、第1の金属膜はMoを200nmの膜厚に成膜した。この第1の金属膜を1回目の写真製版技術およびウエットエッチング技術により所定の形状にパターニングして選択的に形成されたゲート電極20とした。なおゲート電極20の端面はテーパ形状としてもよい。
次にゲート電極20を覆って窒化シリコン膜(SiN膜)を第1の絶縁膜であるゲート絶縁膜30として形成する。本実施の形態1では、プラズマCVD法によりSiN膜を400nmの膜厚に成膜した。またこのゲート絶縁膜30の膜厚は上記の膜厚に限るものではない。
その後、ゲート絶縁膜30の上にプラズマCVD法により微結晶半導体膜を形成する工程を図2を用いて説明する。この実施の形態1では半導体としてシリコン膜を用いた。この微結晶シリコン膜の形成は、以下の工程により行う。まずSiH4ガスとH2ガスおよびフォスフィン(PH3)の流量をそれぞれ10、1200、10sccmに設定し、成膜圧力400Pa、成膜温度300℃、RF周波数13.56MHz、RFパワー密度0.2W/cm2で不純物であるリン(P)がドープされた非晶質シリコン膜40を形成する。膜厚は、5〜25nmの膜厚に成膜する。本実施の形態1では、膜厚は20nmとした(図2)。なお、この非晶質シリコン膜40はマルチチャンバを持つプラズマCVD装置でゲート絶縁膜30を形成した装置と同一の装置内でガラス基板10を大気にさらすことなく形成することが望ましい。
次に、リン(P)がドープされた非晶質シリコン膜40を形成したプラズマCVD装置の同一チャンバで連続して微結晶シリコン膜41を形成する工程を図3を用いて説明する。微結晶シリコン膜41は非晶質シリコン膜40の形成に用いたPH3ガスの供給を止めることで行う。具体的には、微結晶シリコン膜41はSiH4ガスとH2ガスの流量をそれぞれ10、1200sccmに設定し、成膜圧力400Pa、成膜温度300℃、RF周波数13.56MHz、RFパワー密度0.2W/cm2で形成する。膜厚は30nmとした(図3)。
ここで、微結晶シリコン膜41が形成される原理は次の通りである。プラズマCVD法において、SiH4ガスとH2ガスの流量がそれぞれ10、1200sccm、成膜圧力400Pa、成膜温度300℃、RF周波数13.56MHz、RFパワー密度0.2W/cm2の条件では成膜の初期には非晶質シリコン膜40しか成長しない。非晶質シリコン膜40が約20nm成長した後、微結晶シリコン膜41が成長する。
非晶質シリコン膜40成長時に成膜ガスにPH3を加えることでN型の非晶質シリコン膜40を成膜し、次にPH3の供給を止めることでその上に微結晶シリコン膜41が積層化されたシリコン膜42が得られる。この非晶質シリコン膜40と微結晶シリコン膜41が積層されたシリコン膜42がチャネル層に相当する。
微結晶シリコン膜41を形成した後は、図4に示すように通常のTFTのプロセスによって製造を進める。イントリンシック(電気的活性不純物が含まれていない)a−Si(i)(ノンドープ非晶質シリコン)膜50をプラズマCVD法で厚さ100nm堆積する。その後、後のソース領域73、ドレイン領域74を形成するために、オーミックコンタクトのためのリンがドープされたN型のn+a−Si(リンドープ非晶質シリコン)膜60をプラズマCVD法で50nm堆積した。a−Si(i)膜50は形成しなくてもよい。微結晶シリコン膜41とn+a−Si膜60の間にa−Si(i)膜50を設けるとTFTのリーク電流(OFF電流)を抑えることができる。製品に要求される仕様により適宜a−Si(i)膜50の有無及び膜厚を選択すればよい。次に2回目の写真製版工程および沸素系ガスを用いたドライエッチング法でn+a−Si膜60、a−Si(i)膜50、微結晶シリコン膜41、リンがドープされた非晶質シリコン膜40をエッチングして、ゲート絶縁膜30を介してゲート電極20上に半導体パターンを形成した(図4)。
図5に示すように第2の金属膜70を成膜し、図6に示すように3回目の写真製版工程でソース電極71、ドレイン電極72、およびその下層のソース領域73、ドレイン領域74を形成する。本実施の形態1では第2の金属膜70としてMoに2.5〜20重量%のNbを添加したMoNb合金を、スパッタリング法を用いて200nmの厚さで成膜し、公知のリン酸+硝酸+酢酸を含む溶液を用いてエッチングを行い、上記のパターンを形成した。その後ソース電極71、ドレイン電極72をマスクとしてソース電極71、ドレイン電極72に覆われていないn+a−Si膜60を沸素系ガスを用いたドライエッチング法で除去した。このときa−Si(i)膜50も若干エッチングされる(図6)。
その後、第2の絶縁膜80を成膜したのちに、感光性有機樹脂膜からなる層間絶縁膜90を塗布形成する(図7)。本実施の形態1では第2の絶縁膜80としてSiNを300nm成膜したのちに、感光性有機樹脂膜(層間絶縁膜90)としてJSR製PC335を、スピンコート法を用いて3.2〜3.9μmの膜厚になるように塗布した(図7)。
4回目の写真製版工程で第2の金属膜70からなるドレイン電極72の表面まで貫通するコンタクトホール100(図8)と、第1の金属膜からなるゲート電極20の表面まで貫通するコンタクトホール(図示せず)と、第2の金属膜70からなるソース電極71の表面まで貫通するコンタクトホール(図示せず)などを形成する(詳細は例えば特許文献1に記載されているように公知であるので省略する)。
つぎに図8に示すように、透明導電性膜110等を成膜し、5回目の写真製版工程で画素電極(図示せず)、コンタクトホール100を介してドレイン電極72に接続された画素ドレインコンタクト部110、コンタクトホール100を介してゲート端子部に接続されたゲート端子パッド(図示せず)およびコンタクトホール100を介して端子部(図示せず)に接続されたソース端子パッドを形成する(図示せず)。これら透明導電性膜110の詳細は例えば特許文献1に記載されているように公知であるので省略する。
本実施の形態1では透明導電性膜110としてITOを形成した。好適な例として、In23(酸化インジウム)とSnO2(酸化スズ)をそれぞれ重量比9:1で混合したITOターゲットを用いて、公知のArガスにH2Oガスを導入したスパッタリング法により、100nm膜厚のITO膜を成膜した。その後、写真製版工程でレジストパターニングを行い、シュウ酸を含有する溶液を用いてエッチングを行った(図8)。
液晶表示装置用TFTアレイ基板に、公知の技術を用いて液晶を配向させるための配向制御膜を形成し、カラー表示を行うためのカラーフィルタ、ブラックマトリックス、対向電極および配向制御膜を形成した対向基板を公知の技術を用いて貼り合わせ、該TFTアレイ基板と対向基板の間に液晶を注入することにより本発明の実施の形態1にかかる半導体装置を用いた液晶表示装置を完成させた。
なお、本発明の実施の形態1ではリンをドープした非晶質シリコン膜40の膜厚を20nmとした。非晶質シリコン膜40の膜厚はこれに限るものではないが、5nmから25nmの範囲が好ましい。非晶質シリコン膜40の膜厚が25nm以上になると電流が非晶質シリコン膜40内を流れるようになり、特性が向上しなくなる。また膜厚が5nm以下になるとプラズマCVDの処理時間が短くなりガスの制御が困難になることにより実用化出来ない。プラズマCVD法による流量、圧力、温度を変えれば、非晶質シリコン膜40の膜厚は変化する。非晶質シリコン膜40の膜厚が5nmから25nmの範囲に入るように選択したプラズマCVDの条件において非晶質シリコン膜40の膜厚を調べ、その膜厚の非晶質シリコン膜40が成長する間に成膜ガスにPH3を加えればよい。
<A−2.動作>
以下図9を用いながら、本発明にかかる半導体装置と、従来の半導体装置の動作について説明する。特に、チャネル層42における非晶質シリコン膜40と、微結晶シリコン膜41のエネルギーバンド図の様子と動作の関係について説明する。
図9はTFTのエネルギーバンドを示す模式図であり、図9(a)は本発明の実施の形態1による非晶質シリコン膜40の導電型をソース領域73、ドレイン領域74の導電型と同じN型にしたものであり、(b)は従来のノンドープの非晶質シリコン膜を使用した場合のエネルギーバンド図である。
図9はゲート電極に+3V程度の電圧(Vg)を印加した場合のエネルギーバンド図を示してある。非晶質シリコン及び微結晶シリコンのバンドギャップはそれぞれ1.6、1.3eVであり、非晶質シリコンのバンドギャップは微結晶シリコンよりも大きい(図9(b)参照)。またゲート電極20に金属を使用しているため、非晶質シリコン膜40の導電型をN型にした場合、非晶質シリコンのエネルギーバンドはゲート絶縁膜(SiN膜)30界面で大きく曲げられる(図9(a)参照)。このためバンド構造はいわゆる埋め込みチャネル型トランジスタと同様の構造になり、電子は概ね微結晶シリコン膜41内に発生し(図9(a)の○)、電流は微結晶シリコン膜41内を流れやすくなる。
上記のように、非晶質シリコンより微結晶シリコンの方が電流が流れやすくなるため、本発明の実施の形態1では、非晶質シリコン膜40が有ってもチャネル層42における電子の移動度が向上するのである。実測された移動度は1〜2cm2/Vsであった。なお、従来のTFTでは、電子はノンドープの非晶質シリコン膜内に発生し、非晶質シリコン膜内を流れるため移動度は非晶質シリコンTFTと同等の低い値(0.2〜0.5cm2/Vs)となる。
また、ノンドープ(i型)の非晶質シリコン膜を使用した場合、エネルギーバンドの曲がりは少ない(図9(b))。このため従来のTFTではエネルギーバンドを曲げて電子を発生させるためにゲート電極に大きな正の電圧を印加しなければならず、このためしきい値電圧Vthが5V以上になる。これに対し、N型の非晶質シリコン膜40を使用した場合は、しきい値電圧VthもエネルギーバンドがVg=0Vですでに曲がっている(図9(a))ために低くなり3Vになる。
一方、TFTを液晶表示装置の画素に使用した場合、液晶に印加する電圧を1フレーム(1秒/1秒間の書き換え回数)の間保持しなければならない。この場合、ソースドレイン電圧が同電位でゲート電圧より大きくなる期間が存在する。これはいわゆる負のBTストレスと呼ばれている状態で、ソースドレイン電圧が0Vでゲート電圧が−20Vになることに相当する。従来のTFTでは微結晶シリコン膜と非晶質シリコン膜の価電子帯の障壁(価電子帯上端Evのエネルギー差)が0.15eV(図9(b))しかないために正孔がゲート絶縁膜に容易に注入され、Vthが負の方向にシフトするなど信頼性が劣化しやすい。
これに対して実施の形態1のように、非晶質シリコン膜40の導電型をN型にした場合、微結晶シリコン膜41と非晶質シリコン膜40の価電子帯の障壁が0.85eV(図9(a))と大きくなるために正孔の注入が抑制され、信頼性が向上する。実測したところ本発明の実施の形態1では、従来のTFTに比べ、約2倍の負のBTストレス寿命を示した。
さらに本発明の実施の形態1では、電流がゲート絶縁膜30と非晶質シリコン膜40界面近傍を流れないため、ホットエレクトロンのゲート絶縁膜30への注入による信頼性劣化も少ない。
<A−3.効果>
この発明にかかる実施の形態1によれば、半導体装置の製造方法において、(a)基板10上に選択的にゲート電極20を形成する工程と、(b)ゲート電極20を被覆してゲート絶縁膜30を形成する工程と、(c)ゲート絶縁膜30を介してゲート電極20上に、ゲート絶縁膜30上の非晶質半導体膜である非晶質シリコン膜40と、非晶質シリコン膜40上の微結晶半導体膜である微結晶シリコン膜41とを有するチャネル層42を形成する工程と、(d)チャネル層42上に、ソース領域73、ドレイン領域74を離間して形成する工程とを備え、工程(c)は、非晶質半導体膜である非晶質シリコン膜40に、ソース領域73、ドレイン領域74と同一導電型の不純物であるリンを添加する工程であることにより、電流は微結晶シリコン膜41の中を流れやすくなるため、チャネル層42における電子の移動度の大きなTFTが得られる。
またTFTの構造にはボトムゲート構造を採用し、シリコン膜を形成するのに実績のあるSiH4ガスを使用しており、H2との流量比が小さいので、スループットが高く低コストの表示装置が得られる。さらに非晶質シリコン膜40と微結晶シリコン膜41の価電子上端のエネルギー(Ev)が大きく異なるため正孔の注入が阻止でき、BTストレスによる信頼性が向上する。
また、しきい値電圧VthもエネルギーバンドがVg=0Vですでに曲がっている(図9(a))ために低くなり3Vになる。
さらに本発明の実施の形態1では、電流がゲート絶縁膜20と非晶質シリコン膜40界面近傍を流れないため、ホットエレクトロンのゲート絶縁膜への注入による信頼性劣化も少ない。
また、この発明にかかる実施の形態1によれば、半導体装置の製造方法において、工程(c)は、ゲート絶縁膜30上にプラズマ化学的気相成長装置の反応室に導入したシリコン元素を含む原料ガスと水素ガスをプラズマにより分解して、チャネル層42としての半導体層を形成する工程であり、その際半導体層を形成する初期に原料ガスにソース領域73とドレイン領域74と同一導電型の元素を含むガスを混合して非晶質半導体膜である非晶質シリコン膜40を形成し、その後同一導電型の元素を含むガスの混合を止めて微結晶半導体膜である微結晶シリコン膜41を形成することで、電流は微結晶シリコン膜41の中を流れるため、移動度の大きなTFTが得られる。
また、この発明にかかる実施の形態1によれば、半導体装置において、基板10上に選択的に形成されたゲート電極20と、ゲート電極20を被覆して形成されたゲート絶縁膜30と、ゲート絶縁膜30を介してゲート電極20上に形成され、ゲート絶縁膜30上の非晶質半導体膜である非晶質シリコン膜40と、非晶質シリコン膜40上の微結晶半導体膜である微結晶シリコン膜41とを有するチャネル層42と、チャネル層42上に離間して形成されたソース領域73、ドレイン領域74とを備え、非晶質シリコン膜40に、ソース領域73、ドレイン領域74と同一導電型のN型の不純物であるリンが添加されたものであることにより、電流は微結晶シリコン膜41の中を流れるため、移動度の大きなTFTが得られる。
<B.実施の形態2>
<B−1.半導体装置の構成>
実施の形態2では、図面を用いて本発明における具体的な半導体装置について説明する。
図10は、この発明の実施の形態2における半導体装置を示す図である。図10において示される半導体装置の構造は実施の形態1と同様に、絶縁性基板上に形成されたゲート電極20と、ゲート電極20上に形成されたゲート絶縁膜31と、ゲート絶縁膜31上に形成されたN型の非晶質シリコン膜40と、非晶質シリコン膜40上に形成された微結晶シリコン膜41と、微結晶シリコン膜41上に形成されたa−Si(i)膜50と、a−Si(i)膜50上に、離間して形成された、ソース領域73、ドレイン領域74と、ソース領域73、ドレイン領域74上にそれぞれ形成されたソース電極71、ドレイン電極72と、さらに基板上に形成された第2の絶縁膜80と、第2の絶縁膜80上に形成された層間絶縁膜90と、層間絶縁膜90、第2の絶縁膜80を貫通し、ソースドレイン領域に到達するコンタクトホール100と、コンタクトホール100を介して成膜された透明導電性膜110とを備えている。
実施の形態1に対して異なっている点は、ゲート絶縁膜31が、プラズマCVD法による酸化シリコン膜(SiO2膜)からなる点である。本実施の形態2において、酸化シリコン膜31の膜厚は例えば450nmである。
ゲート絶縁膜が酸化シリコン膜31であると、非晶質シリコン膜40を形成する際に、プラズマによって酸化シリコン膜31の表面から酸素が非晶質シリコン膜40内に混入する。非晶質シリコン中の酸素はドナーとして作用するために、非晶質シリコン膜40は形成時にPH3ガスを導入しなくてもN型になる。従って、実施の形態1に示す半導体装置を製造する場合と異なり、PH3ガスを混合させずに非晶質シリコン膜40を形成し、その後微結晶シリコン膜41を形成することができる。なお、他の工程については、実施の形態1に示すものと同様である。
<B−2.効果>
この発明にかかる実施の形態2によれば、半導体装置の製造方法において、実施の形態1の前記工程(b)として、ゲート絶縁膜として酸化シリコン膜31を形成し、同じく工程(c)として、不純物を添加せず、チャネル層42を形成することにより、非晶質シリコン膜40を形成する際に、プラズマによって酸化シリコン膜31の表面から酸素が非晶質シリコン膜40内に混入するため、非晶質シリコン中の酸素はドナーとして作用し、非晶質シリコン膜40は形成時にPH3ガスを導入しなくてもN型になる。よって、非晶質シリコンの形成にPH3ガスを使用しないので、移動度が大きく信頼性が向上したTFTがより低コストで得られる。
なお実施の形態2ではゲート絶縁膜に酸化シリコン膜31を使用した例を示したが、図11に示すように、ゲート絶縁膜が窒化シリコン膜32と酸化シリコン膜31を積層した2層膜であっても同様の効果を示す。
また、この発明にかかる実施の形態2によれば、半導体装置において、ゲート絶縁膜は酸化シリコン膜31であり、非晶質半導体膜である非晶質シリコン膜40に不純物が添加されないことにより、非晶質シリコン膜40を形成する際に、プラズマによって酸化シリコン膜31の表面から酸素が非晶質シリコン膜40内に混入するため、非晶質シリコン中の酸素はドナーとして作用し、非晶質シリコン膜40は形成時にPH3ガスを導入しなくてもN型になるため、PH3ガスを混合させずに非晶質シリコン膜40を形成し、その後微結晶シリコン膜41を形成することができる。
本発明の実施の形態1にかかる半導体装置の製造方法を示す工程別断面模式図である。 本発明の実施の形態1にかかる半導体装置の製造方法を示す工程別断面模式図である。 本発明の実施の形態1にかかる半導体装置の製造方法を示す工程別断面模式図である。 本発明の実施の形態1にかかる半導体装置の製造方法を示す工程別断面模式図である。 本発明の実施の形態1にかかる半導体装置の製造方法を示す工程別断面模式図である。 本発明の実施の形態1にかかる半導体装置の製造方法を示す工程別断面模式図である。 本発明の実施の形態1にかかる半導体装置の製造方法を示す工程別断面模式図である。 本発明の実施の形態1にかかる半導体装置の製造方法を示す工程別断面模式図である。 本発明の実施の形態1にかかる半導体装置のエネルギーバンド図を示す模式図である。 本発明の実施の形態2にかかる半導体装置を示す断面模式図である。 本発明の実施の形態2にかかる半導体装置の変形例を示す断面模式図である。
符号の説明
10 ガラス基板、20 ゲート電極、30 ゲート絶縁膜、31 ゲート絶縁膜(酸化シリコン膜)、32 窒化シリコン膜、40 非晶質シリコン膜、41 微結晶シリコン膜、42 シリコン膜(チャネル層)、50 a−Si(i)膜、60 n+a−Si膜、70 第2の金属膜、71 ソース電極、72 ドレイン電極、80 第2の絶縁膜、90 層間絶縁膜、100 コンタクトホール、110 ドレインコンタクト部。

Claims (4)

  1. (a)基板上に選択的にゲート電極を形成する工程と、
    (b)前記ゲート電極を被覆してゲート絶縁膜を形成する工程と、
    (c)前記ゲート絶縁膜を介して前記ゲート電極上に、前記ゲート絶縁膜上の非晶質半導体膜と、前記非晶質半導体膜上の微結晶半導体膜とを有するチャネル層を形成する工程と、
    (d)前記チャネル層上に、ソース領域、ドレイン領域を離間して形成する工程と、
    を備え、
    前記工程(c)は、前記非晶質半導体膜に、前記ソース領域、前記ドレイン領域と同一導電型の不純物を添加する工程である、
    半導体装置の製造方法。
  2. 前記工程(c)は、前記ゲート絶縁膜上にプラズマ化学的気相成長装置の反応室に導入したシリコン元素を含む原料ガスと水素ガスをプラズマにより分解して、前記チャネル層としての半導体層を形成する工程であり、その際前記半導体層を形成する初期に前記原料ガスに前記ソース領域と前記ドレイン領域と同一導電型の元素を含むガスを混合して前記非晶質半導体膜を形成し、その後前記同一導電型の元素を含むガスの混合を止めて前記微結晶半導体膜を形成する、
    請求項1に記載の半導体装置の製造方法。
  3. 基板上に選択的に形成されたゲート電極と、
    前記ゲート電極を被覆して形成されたゲート絶縁膜と、
    前記ゲート絶縁膜を介して前記ゲート電極上に形成され、前記ゲート絶縁膜上の非晶質半導体膜と、前記非晶質半導体膜上の微結晶半導体膜とを有するチャネル層と、
    前記チャネル層上に離間して形成されたソース領域、ドレイン領域と、
    を備え、
    前記非晶質半導体膜に、前記ソース領域、前記ドレイン領域と同一導電型の不純物が添加された、
    半導体装置。
  4. 前記非晶質半導体膜は非晶質シリコン膜であり、添加された前記不純物はリンである、
    請求項3に記載の半導体装置。
JP2008317895A 2008-12-15 2008-12-15 半導体装置およびその製造方法 Pending JP2010141224A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008317895A JP2010141224A (ja) 2008-12-15 2008-12-15 半導体装置およびその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008317895A JP2010141224A (ja) 2008-12-15 2008-12-15 半導体装置およびその製造方法

Publications (1)

Publication Number Publication Date
JP2010141224A true JP2010141224A (ja) 2010-06-24

Family

ID=42351077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008317895A Pending JP2010141224A (ja) 2008-12-15 2008-12-15 半導体装置およびその製造方法

Country Status (1)

Country Link
JP (1) JP2010141224A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019182263A1 (ko) * 2018-03-23 2019-09-26 홍잉 저온 다결정 반도체 소자 및 그 제조 방법
WO2019182261A1 (ko) * 2018-03-23 2019-09-26 홍잉 단결정립 나노와이어 제조 방법 및 이를 적용하는 반도체 소자의 제조 방법
KR20190111723A (ko) * 2018-03-23 2019-10-02 잉 홍 저온 다결정 반도체 소자 및 그 제조 방법
CN111902943A (zh) * 2018-03-23 2020-11-06 洪瑛 用于制造单粒纳米线的方法以及用于利用所述单粒纳米线制造半导体装置的方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019182263A1 (ko) * 2018-03-23 2019-09-26 홍잉 저온 다결정 반도체 소자 및 그 제조 방법
WO2019182261A1 (ko) * 2018-03-23 2019-09-26 홍잉 단결정립 나노와이어 제조 방법 및 이를 적용하는 반도체 소자의 제조 방법
KR20190111723A (ko) * 2018-03-23 2019-10-02 잉 홍 저온 다결정 반도체 소자 및 그 제조 방법
CN111902930A (zh) * 2018-03-23 2020-11-06 洪瑛 低温多晶半导体装置及其制造方法
CN111902943A (zh) * 2018-03-23 2020-11-06 洪瑛 用于制造单粒纳米线的方法以及用于利用所述单粒纳米线制造半导体装置的方法
KR102182058B1 (ko) * 2018-03-23 2020-11-23 홍잉 저온 다결정 반도체 소자 및 그 제조 방법
US11205570B2 (en) 2018-03-23 2021-12-21 Ying Hong Method for manufacturing single-grained nanowire and method for manufacturing semiconductor device employing same single-grained nanowire
US11271092B2 (en) 2018-03-23 2022-03-08 Ying Hong Low temperature polycrystalline semiconductor device and manufacturing method thereof

Similar Documents

Publication Publication Date Title
KR101518794B1 (ko) 박막 트랜지스터의 제작 방법, 및 표시 장치의 제작 방법
JP2021036318A (ja) 液晶表示装置
CN101026093B (zh) 形成硅层的方法及使用该硅层的显示基板的制造方法
KR101690541B1 (ko) 박막 트랜지스터의 제작 방법 및 표시 장치의 제작 방법
US20110183463A1 (en) Thin film transitor substrate and method of manufacturing the same
CN102664194B (zh) 薄膜晶体管
WO2016101392A1 (zh) Amoled背板的制作方法及其结构
KR20090003129A (ko) 액정 표시 장치
JP2006041457A (ja) 薄膜トランジスター構造及び製作方法
US8796692B2 (en) Thin-film semiconductor device and method for fabricating thin-film semiconductor device
US9735286B2 (en) Thin film transistor substrate having high reliability metal oxide semiconductor material
WO2016115824A1 (zh) 薄膜晶体管、阵列基板及其制作方法
CN103745954B (zh) 显示装置、阵列基板及其制造方法
US8044576B2 (en) Organic light emitting display and method of fabricating the same
JP5563787B2 (ja) 薄膜トランジスタ及びその製造方法、並びに薄膜トランジスタアレイ基板及び表示装置
US10629746B2 (en) Array substrate and manufacturing method thereof
JP2010141224A (ja) 半導体装置およびその製造方法
JP2002294451A (ja) 多結晶性半導体薄膜の形成方法、半導体装置の製造方法、並びにこれらの方法の実施に使用する装置
US11217698B2 (en) Method of manufacturing a thin film transistor
KR20080102665A (ko) 박막 트랜지스터 및 이를 포함하는 표시장치
KR20090016993A (ko) 박막 트랜지스터 및 그 제조방법, 이를 포함하는 표시장치
KR20090035768A (ko) 유기전계발광표시장치 및 그 제조방법
KR102145978B1 (ko) 어레이기판 및 이의 제조방법
US20180315777A1 (en) Oxide semiconductor material, thin-film transistor, and fabrication method thereof
KR20090127687A (ko) 투명 박막트랜지스터의 제조방법