JP2010139303A - Sensor-equipped bearing for wheel - Google Patents

Sensor-equipped bearing for wheel Download PDF

Info

Publication number
JP2010139303A
JP2010139303A JP2008314166A JP2008314166A JP2010139303A JP 2010139303 A JP2010139303 A JP 2010139303A JP 2008314166 A JP2008314166 A JP 2008314166A JP 2008314166 A JP2008314166 A JP 2008314166A JP 2010139303 A JP2010139303 A JP 2010139303A
Authority
JP
Japan
Prior art keywords
sensor
sensor unit
wheel bearing
strain
protective cover
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008314166A
Other languages
Japanese (ja)
Other versions
JP5171589B2 (en
Inventor
Kentaro Nishikawa
健太郎 西川
Toru Takahashi
亨 高橋
Kentaro Iki
健太郎 壹岐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2008314166A priority Critical patent/JP5171589B2/en
Priority to CN2009801409126A priority patent/CN102187189B/en
Priority to KR1020117008618A priority patent/KR101574304B1/en
Priority to PCT/JP2009/005251 priority patent/WO2010044228A1/en
Priority to EP09820406.8A priority patent/EP2341327B1/en
Publication of JP2010139303A publication Critical patent/JP2010139303A/en
Priority to US13/064,738 priority patent/US8567260B2/en
Application granted granted Critical
Publication of JP5171589B2 publication Critical patent/JP5171589B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/0009Force sensors associated with a bearing
    • G01L5/0019Force sensors associated with a bearing by using strain gages, piezoelectric, piezo-resistive or other ohmic-resistance based sensors

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sensor-equipped bearing for wheel capable of precisely and stably detecting a load acting on the bearing for wheel or tire ground contact surface without being affected by variation of external environments. <P>SOLUTION: A sensor-equipped bearing for wheel is formed by arranging rolling bodies 5 between opposed double-row rolling surfaces 3, 4 of an outer member 1 and an inner member 2. A sensor unit 20 is provided at a circumferential surface of a member at a fixed side from among the outer member 1 or the inner member 2. The sensor unit 20 includes a strain generation member 21 in contact with and fixed to the circumferential surface of the member at the fixed side, a strain sensor 22 mounted to the strain generation member 21 and detecting strain in the strain generation member 21, and a temperature sensor 28 mounted to the strain generation member 21 and detecting the temperature of a part where the strain sensor is mounted. The sensor unit 20 is shielded from ambient air by a heat insulating material 29. An estimation means 30 correcting a sensor output signal of the sensor unit 20 by the output of the temperature sensor 28 and estimating a load acting on the bearing for wheel or the tire from the corrected signal is provided. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、車輪の軸受部にかかる荷重を検出する荷重センサを内蔵したセンサ付車輪用軸受に関する。   The present invention relates to a sensor-equipped wheel bearing with a built-in load sensor for detecting a load applied to a bearing portion of the wheel.

自動車の各車輪にかかる荷重を検出する技術として、車輪用軸受の固定輪である外輪のフランジ部外径面の歪みを検出することにより荷重を検出するセンサ付車輪用軸受が提案されている(例えば特許文献1)。また、車輪用軸受の外輪に歪みゲージを貼り付け、歪みを検出するようにした車輪用軸受も提案されている(例えば特許文献2)。   As a technique for detecting a load applied to each wheel of an automobile, a sensor-equipped wheel bearing that detects a load by detecting a distortion of an outer diameter surface of a flange portion of an outer ring that is a fixed ring of a wheel bearing has been proposed ( For example, Patent Document 1). There has also been proposed a wheel bearing in which a strain gauge is attached to the outer ring of the wheel bearing to detect the strain (for example, Patent Document 2).

さらに、歪み発生部材およびこの歪み発生部材に取付けた歪みセンサからなるセンサユニットを軸受の固定輪に取付け、前記歪み発生部材は、前記固定輪に対して少なくとも2箇所の接触固定部を有し、隣り合う接触固定部の間で少なくとも1箇所に切欠き部を有し、この切欠き部に前記歪みセンサを配置したセンサ付車輪用軸受が提案されている(例えば特許文献3)。   Furthermore, a sensor unit comprising a strain generating member and a strain sensor attached to the strain generating member is attached to a fixed ring of the bearing, and the strain generating member has at least two contact fixing portions with respect to the fixed ring, A sensor-equipped wheel bearing has been proposed that has at least one notch portion between adjacent contact fixing portions, and the strain sensor is disposed in the notch portion (for example, Patent Document 3).

特許文献3に開示のセンサ付車輪用軸受によると、車両走行に伴い回転輪に荷重が加わったとき、転動体を介して固定輪が変形するので、その変形がセンサユニットに歪みをもたらす。センサユニットに設けられた歪みセンサは、センサユニットの歪みを検出する。歪みと荷重の関係を予め実験やシミュレーションで求めておけば、歪みセンサの出力から車輪にかかる荷重等を検出することができる。
特開2002−098138号公報 特表2003−530565号公報 特開2007−57299号公報
According to the sensor-equipped wheel bearing disclosed in Patent Document 3, when a load is applied to the rotating wheel as the vehicle travels, the fixed wheel is deformed via the rolling elements, and this deformation causes distortion of the sensor unit. The strain sensor provided in the sensor unit detects the strain of the sensor unit. If the relationship between strain and load is obtained in advance through experiments and simulations, the load applied to the wheel can be detected from the output of the strain sensor.
JP 2002-098138 A Special table 2003-530565 gazette JP 2007-57299 A

特許文献1に開示の技術では、固定輪のフランジ部の変形により発生する歪みを検出している。しかし、固定輪のフランジ部の変形には、フランジ面とナックル面の間に、静止摩擦力を超える力が作用した場合に滑りが伴うため、繰返し荷重を印加すると、出力信号にヒステリシスが発生するといった問題がある。
例えば、車輪用軸受に対してある方向の荷重が大きくなる場合、固定輪フランジ面とナックル面の間は、最初は荷重よりも静止摩擦力の方が大きいため滑らないが、ある大きさを超えると静止摩擦力に打ち勝って滑るようになる。その状態で荷重を小さくしていくと、やはり最初は静止摩擦力により滑らないが、ある大きさになると滑るようになる。その結果、この変形が生じる部分で荷重を推定しようとするとヒステリシスが生じる。ヒステリシスが生じると、検出分解能が低下する。
また、特許文献2のように外輪に歪みゲージを貼り付けるのでは、組立性に問題がある。
In the technique disclosed in Patent Document 1, distortion generated by deformation of the flange portion of the fixed ring is detected. However, the deformation of the flange portion of the fixed ring involves slipping when a force exceeding the static friction force is applied between the flange surface and the knuckle surface, so that hysteresis is generated in the output signal when a repeated load is applied. There is a problem.
For example, when the load in a certain direction with respect to the wheel bearing increases, the static friction force between the fixed ring flange surface and the knuckle surface does not slip at first, but exceeds a certain size. And it comes to slip over the static friction force. If the load is reduced in this state, it will not slip due to static friction force at first, but it will slip when it reaches a certain size. As a result, hysteresis occurs when an attempt is made to estimate the load at the portion where this deformation occurs. When hysteresis occurs, the detection resolution decreases.
In addition, when a strain gauge is attached to the outer ring as in Patent Document 2, there is a problem in assemblability.

また、特許文献1や特許文献2の例に限らず、特許文献3に開示のセンサ付車輪用軸受においても、車輪用軸受の固定輪に歪みセンサが設けられているので、温度が変化した場合、歪みセンサの出力信号が変動する。すなわち、例えば特許文献3に開示のセンサ付車輪用軸受では、軸受回転による発熱や周囲環境などにより車輪用軸受の温度が変化した場合、荷重に変化がなくても固定輪とセンサユニットとの線膨張率の差などにより歪みセンサの出力信号が変動する。このセンサ付車輪用軸受において、前記固定輪に複数のセンサユニットを取付け、各センサユニットではそのセンサ出力の平均値をとって出力信号とし、これら複数の出力信号の和や差から荷重を推定するものとした場合、前記温度変化による出力変動の影響で荷重の検出誤差が大きくなってしまう。   Further, not only in the examples of Patent Document 1 and Patent Document 2, but also in the wheel bearing with sensor disclosed in Patent Document 3, since the strain sensor is provided on the fixed ring of the wheel bearing, the temperature changes. The output signal of the strain sensor fluctuates. That is, for example, in the sensor-equipped wheel bearing disclosed in Patent Document 3, when the temperature of the wheel bearing changes due to heat generated by the rotation of the bearing or the surrounding environment, the wire between the fixed ring and the sensor unit does not change even if the load changes. The output signal of the strain sensor varies due to the difference in expansion coefficient. In this sensor-equipped wheel bearing, a plurality of sensor units are attached to the fixed wheel, and each sensor unit takes an average value of the sensor outputs as an output signal, and estimates the load from the sum or difference of the plurality of output signals. In such a case, the load detection error increases due to the influence of the output fluctuation due to the temperature change.

上記した温度変化による推定荷重の誤差を低減するために、例えば特許文献3に開示のセンサ付車輪用軸受において、センサユニット上に温度センサを設置し、この温度センサの出力により、上記した線膨張率の差などによる歪みセンサ出力信号の補正、および歪みセンサ自体の温度特性の補正を行うことが考えられる。   In order to reduce the error of the estimated load due to the temperature change described above, for example, in the sensor-equipped wheel bearing disclosed in Patent Document 3, a temperature sensor is installed on the sensor unit, and the above linear expansion is performed by the output of the temperature sensor. It is conceivable to correct the strain sensor output signal due to the difference in the rate, etc., and to correct the temperature characteristics of the strain sensor itself.

しかし、センサユニットと外気との断熱が不十分な場合、外気の状態やセンサ周辺の状態(風量、水分の付着有無など)によって放熱抵抗が変わるため、車輪用軸受のセンサユニットが取付けられる固定輪の温度とセンサユニット上の温度センサが検出した温度とはずれてしまう。その結果、実際の温度膨張の状態と、検出された温度から演算される補正値とにずれが生じ、最終的に得られる荷重推定値に誤差が発生してしまう。   However, if the sensor unit and the outside air are not sufficiently insulated, the heat radiation resistance will change depending on the outside air condition and the sensor surroundings (air volume, moisture adhesion, etc.). And the temperature detected by the temperature sensor on the sensor unit will be different. As a result, a difference occurs between the actual temperature expansion state and the correction value calculated from the detected temperature, and an error occurs in the finally obtained load estimated value.

この発明の目的は、外部環境の変動に左右されることなく、車輪用軸受やタイヤ接地面に作用する荷重を高い精度で安定良く検出できるセンサ付車輪用軸受を提供することである。   An object of the present invention is to provide a sensor-equipped wheel bearing capable of stably detecting a load acting on a wheel bearing or a tire ground contact surface with high accuracy without being affected by fluctuations in the external environment.

この発明のセンサ付車輪用軸受は、複列の転走面が内周に形成された外方部材と、前記転走面と対向する転走面が外周に形成された内方部材と、両部材の対向する転走面間に介在した複列の転動体とを備え、車体に対して車輪を回転自在に支持する車輪用軸受において、上記外方部材および内方部材のうちの固定側部材の周面にセンサユニットを設け、前記センサユニットは、前記固定側部材の周面に接触して固定される2つ以上の接触固定部を有する歪み発生部材、この歪み発生部材に取付けられて歪み発生部材の歪みを検出する1つ以上の歪みセンサ、および前記歪み発生部材に取付けられて前記歪みセンサ設置部の温度を検出する温度センサを有し、前記センサユニットとこのセンサユニット周辺の外気との間に断熱材料を介在させ、前記センサユニットのセンサ出力信号を前記温度センサの出力で補正し、その補正した信号から車輪用軸受もしくはタイヤに加わる荷重を推定する推定手段を設けたことを特徴とする。前記固定側部材は例えば外方部材であっても良い。前記断熱材料は、センサユニットを外気に対して遮断するように設けることが好ましいが、別部材、例えば後述のような保護カバーを設ける場合は、保護カバー等の別部材と断熱材料とでセンサユニットを外気に対して遮断するようにしても良い。
車輪用軸受や、車輪のタイヤと路面間に荷重が作用すると、車輪用軸受の固定側部材(例えば外方部材)にも荷重が印加されて変形が生じる。センサユニットにおける歪み発生部材の接触固定部が外方部材に接触固定されているので、外方部材の歪みが歪み発生部材に拡大して伝達され、その歪みが歪みセンサで感度良く検出され、その出力信号に生じるヒステリシスも小さくなり、荷重を精度良く推定できる。
また、センサユニットの歪み発生部材に歪みセンサの設置部の温度を検出する温度センサを取付け、推定手段では、歪みセンサの出力信号を温度センサの出力で補正し、その補正した信号から車輪用軸受もしくはタイヤに加わる荷重を推定するようにしているので、軸受回転による発熱や周囲環境などにより車輪用軸受の温度が変化した場合に、外方部材とセンサユニットとの線膨張率の差などにより歪みセンサの出力信号に生じる変動を補正することができる。
この場合に、センサユニットと外気との断熱が不十分であると、外気の状態や歪みセンサの周辺の状態(風量、水分の付着の有無など)によって放熱抵抗が変わるため、外方部材の温度と温度センサの検出した温度とがずれて、前記推定手段での補正により算出される補正値と、実際の温度膨張の状態とがずれ、最終的に推定手段で推定される荷重に誤差が生じる。このセンサ付車輪用軸受では、センサユニットとその周辺の外気との間に断熱材料を介在させたので、外気の状態や水分の付着等に影響されず、上記した外部環境の影響を最小限度に抑えることができて、車輪用軸受やタイヤ接地面に作用する荷重を高い精度で安定良く検出できる。
The sensor-equipped wheel bearing according to the present invention includes an outer member having a double-row rolling surface formed on the inner periphery, an inner member having a rolling surface opposed to the rolling surface formed on the outer periphery, A wheel bearing comprising a double row rolling element interposed between opposing rolling surfaces of the member and rotatably supporting the wheel with respect to the vehicle body, wherein the fixed side member of the outer member and the inner member A sensor unit is provided on the peripheral surface of the strain generating member, and the sensor unit is a strain generating member having two or more contact fixing parts fixed in contact with the peripheral surface of the fixed side member, and is attached to the strain generating member to be distorted. One or more strain sensors for detecting strain of the generating member, and a temperature sensor attached to the strain generating member for detecting the temperature of the strain sensor installation portion, the sensor unit and outside air around the sensor unit Insulating material between A sensor output signal of the serial sensor unit is corrected by the output of the temperature sensor, characterized in that a estimating means for estimating a load applied from the correction signal on the wheel support bearing or tire. The stationary member may be an outward member, for example. The heat insulating material is preferably provided so as to block the sensor unit from outside air. However, when a separate member, for example, a protective cover as described later is provided, the sensor unit is composed of a separate member such as a protective cover and the heat insulating material. May be blocked from outside air.
When a load acts between the wheel bearing or the tire of the wheel and the road surface, the load is also applied to the stationary side member (for example, the outer member) of the wheel bearing to cause deformation. Since the contact fixing portion of the strain generating member in the sensor unit is fixed in contact with the outer member, the strain of the outer member is transmitted to the strain generating member in an enlarged manner, and the strain is detected with high sensitivity by the strain sensor. Hysteresis generated in the output signal is also reduced, and the load can be estimated with high accuracy.
In addition, a temperature sensor for detecting the temperature of the strain sensor installation portion is attached to the strain generating member of the sensor unit, and the estimation means corrects the output signal of the strain sensor with the output of the temperature sensor, and the wheel bearing is determined from the corrected signal. Alternatively, the load applied to the tire is estimated, so when the temperature of the wheel bearing changes due to the heat generated by the rotation of the bearing or the surrounding environment, distortion occurs due to the difference in linear expansion coefficient between the outer member and the sensor unit. Variations in the sensor output signal can be corrected.
In this case, if the heat insulation between the sensor unit and the outside air is insufficient, the heat dissipation resistance changes depending on the outside air state and the surrounding state of the strain sensor (air volume, presence or absence of moisture adhesion, etc.). And the temperature detected by the temperature sensor deviate from each other, the correction value calculated by the correction by the estimation means and the actual temperature expansion state deviate, and an error occurs in the load estimated by the estimation means. . In this sensor-equipped wheel bearing, heat-insulating material is interposed between the sensor unit and the surrounding outside air, so that it is not affected by the state of the outside air or adhesion of moisture, etc. The load acting on the wheel bearing and the tire ground contact surface can be detected with high accuracy and stability.

この発明において、前記センサユニットを3つ以上設け、これらのセンサユニットのセンサ出力信号から、前記推定手段は車輪用軸受もしくはタイヤに加わる径方向荷重および軸方向荷重を推定するものとしても良い。   In the present invention, three or more sensor units may be provided, and the estimation means may estimate a radial load and an axial load applied to a wheel bearing or a tire from sensor output signals of these sensor units.

この発明において、前記センサユニットを4つ設け、これらのセンサユニットを、タイヤ接地面に対して上下位置および左右位置となる前記固定側部材の周面の上面部、下面部、右面部、および左面部に、周方向に互いに90度の位相差をなすように配置しても良い。この構成の場合、どのような荷重条件においても、荷重を精度良く推定することができる。すなわち、ある方向への荷重が大きくなると、転動体と転走面が接触している部分と接触していない部分が180度位相差で現れるため、その方向に合わせてセンサユニットを180度位相差で設置すれば、どちらかのセンサユニットには必ず転動体を介して固定側部材に印加される荷重が伝達され、その荷重を歪みセンサにより検出可能となる。   In the present invention, four sensor units are provided, and these sensor units are arranged in an up-down position and a left-right position with respect to the tire ground contact surface. You may arrange | position to a surface part so that a 90 degree phase difference may be made | formed in the circumferential direction. In this configuration, the load can be accurately estimated under any load condition. That is, when the load in a certain direction increases, the part where the rolling element and the rolling surface are in contact with each other and the part that is not in contact appear with a phase difference of 180 degrees. If installed, the load applied to the stationary member is always transmitted to one of the sensor units via the rolling elements, and the load can be detected by the strain sensor.

前記断熱材料としては、樹脂またはゴムを用いることができる。断熱材料は、特に、発泡樹脂等の発泡材が好ましい。これらの断熱材料によると、効果的に断熱効果が得られ、また断熱材料を設ける工程が簡単である。   As the heat insulating material, resin or rubber can be used. The heat insulating material is particularly preferably a foamed material such as a foamed resin. According to these heat insulating materials, a heat insulating effect can be effectively obtained, and the process of providing the heat insulating material is simple.

この発明において、前記断熱材料が、前記センサユニットの外気に対する露出面を被覆する被覆層であっても良い。被覆層であると、モールド等の処理で、断熱材料を簡単に設けることができる。   In this invention, the said heat insulation material may be a coating layer which coat | covers the exposed surface with respect to the external air of the said sensor unit. When it is a coating layer, a heat insulating material can be easily provided by a process such as molding.

この発明において、前記センサユニット、前記センサの出力信号を処理する信号処理用IC、およびこれらセンサおよび信号処理用ICの配線系を、前記固定側部材の周面に取付けられる円環状の保護カバーの内側に配置し、この保護カバーは、センサユニットの配置部にセンサユニットを露出させる開口する開口部を有し、この開口部を前記断熱材料で密封しても良い。
この構成の場合は、保護カバーにより、飛び石などの異物の接触等に対してセンサユニットのセンサや配線系等を保護すると共に、センサユニットを外気温や水等の外部環境の影響から最小限度に抑えることができる。
In this invention, the sensor unit, the signal processing IC for processing the output signal of the sensor, and the wiring system of the sensor and the signal processing IC are connected to the peripheral protective surface of the annular member. It arrange | positions inside and this protective cover has an opening part which exposes a sensor unit to the arrangement | positioning part of a sensor unit, and you may seal this opening part with the said heat insulation material.
In this configuration, the protective cover protects the sensor unit's sensor and wiring system against contact with foreign objects such as stepping stones, and minimizes the sensor unit from the influence of the external environment such as outside air temperature and water. Can be suppressed.

この発明において、前記センサユニットが保護カバーで覆われ、その保護カバーの内部にセンサユニットを外気から遮断する前記断熱材料が充填されていても良い。この場合の保護カバーは、各センサユニットを個別に覆うものであっても、複数のセンサユニットをまとめて覆うものであっても良い。
このように保護カバーを設けてその内部に断熱材料を充填した場合、保護カバーにより、飛び石などの異物の接触等に対してセンサユニット保護すると共に、センサユニットの外気に対する断熱が図れる。また、断熱材料を保護カバー内に設けるため、断熱材料の取付け作業が簡単となる。
In this invention, the sensor unit may be covered with a protective cover, and the inside of the protective cover may be filled with the heat insulating material that blocks the sensor unit from outside air. The protective cover in this case may cover each sensor unit individually, or may cover a plurality of sensor units collectively.
When the protective cover is provided in this way and the inside thereof is filled with a heat insulating material, the protective cover protects the sensor unit against contact with foreign matters such as stepping stones and the like, and can insulate the sensor unit from the outside air. In addition, since the heat insulating material is provided in the protective cover, the heat insulating material can be easily attached.

この発明において、前記センサユニットが保護カバーで覆われ、センサユニットを外気から遮断する前記断熱材料として、前記保護カバーの内部に空気層が密封されていても良い。空気層は断熱効果が高く、保護カバーで覆ってその内部を空気層とすることで、センサユニットの異物接触に対する保護と、センサユニットの外気温度,水滴等の外部環境からの遮断との両方を、保護カバーを設けるだけの簡単な構成で得ることができる。   In this invention, the sensor unit may be covered with a protective cover, and an air layer may be sealed inside the protective cover as the heat insulating material that shields the sensor unit from outside air. The air layer has a high thermal insulation effect, and it is covered with a protective cover to make the inside an air layer, thereby protecting both the sensor unit against foreign matter contact and blocking the sensor unit from the outside environment such as the outside air temperature and water droplets. It can be obtained with a simple configuration in which only a protective cover is provided.

この発明において、前記保護カバーが円環状で、前記固定側部材の周面に固定側部材と同心に取付けられていても良い。保護カバーが円環状であると、固定側部材に対する保護カバーの取付けが簡単であり、また一つの保護カバーで、円周方向に並ぶ複数のセンサユニットを覆うこともできる。   In this invention, the protective cover may be annular and attached to the peripheral surface of the fixed side member concentrically with the fixed side member. When the protective cover is annular, it is easy to attach the protective cover to the stationary member, and a single protective cover can cover a plurality of sensor units arranged in the circumferential direction.

この発明において、前記保護カバーがステンレススチールからなるものであっても良い。ステンレススチールであると、保護カバーに十分な強度と耐食性を持たせること、およびセンサユニットを外気から遮断する効果を上げる観点から、保護カバーの材料として望ましい。   In the present invention, the protective cover may be made of stainless steel. Stainless steel is desirable as a material for the protective cover from the viewpoint of providing the protective cover with sufficient strength and corrosion resistance and increasing the effect of blocking the sensor unit from the outside air.

この発明において、前記センサユニットの表面、および前記固定側部材の周面の前記センサユニットの設置部周辺を熱伝導率の高い材料で覆っても良い。この熱伝導率の高い材料は、熱伝導率が高いほど好ましいが、樹脂材料の平均となる熱伝導率に比べて熱伝導率の高い材料であれば良い。このように、センサユニットの表面、および固定側部材の周面のセンサユニットの設置部周辺を熱伝導率の高い材料で覆うと、固定側部材の周面とセンサユニットの温度差が低減され、固定側部材の温度と温度センサの検出する温度とのずれをさらに小さくすることができ、車輪用軸受やタイヤ接地面に作用する荷重をより高い精度で安定良く検出できる。   In this invention, you may cover the surface of the said sensor unit, and the installation part periphery of the said sensor unit of the surrounding surface of the said stationary-side member with a material with high heat conductivity. A material having a high thermal conductivity is more preferable as the thermal conductivity is higher, but any material having a higher thermal conductivity than the average thermal conductivity of the resin material may be used. Thus, when the surface of the sensor unit and the periphery of the sensor unit installation portion on the peripheral surface of the fixed member are covered with a material having high thermal conductivity, the temperature difference between the peripheral surface of the fixed member and the sensor unit is reduced, The deviation between the temperature of the stationary member and the temperature detected by the temperature sensor can be further reduced, and the load acting on the wheel bearing and the tire ground contact surface can be detected stably with higher accuracy.

この発明のセンサ付車輪用軸受は、複列の転走面が内周に形成された外方部材と、前記転走面と対向する転走面が外周に形成された内方部材と、両部材の対向する転走面間に介在した複列の転動体とを備え、車体に対して車輪を回転自在に支持する車輪用軸受において、上記外方部材および内方部材のうちの固定側部材の周面にセンサユニットを設け、前記センサユニットは、前記固定側部材の周面に接触して固定される2つ以上の接触固定部を有する歪み発生部材、この歪み発生部材に取付けられて歪み発生部材の歪みを検出する1つ以上の歪みセンサ、および前記歪み発生部材に取付けられて前記歪みセンサ設置部の温度を検出する温度センサを有し、前記センサユニットとこのセンサユニット周辺の外気との間に断熱材料を介在させ、前記センサユニットのセンサ出力信号を前記温度センサの出力で補正し、その補正した信号から車輪用軸受もしくはタイヤに加わる荷重を推定する推定手段を設けたため、外部環境の変動に左右されることなく、車輪用軸受やタイヤ接地面に作用する荷重を高い精度で安定良く検出できる。   The sensor-equipped wheel bearing according to the present invention includes an outer member having a double-row rolling surface formed on the inner periphery, an inner member having a rolling surface opposed to the rolling surface formed on the outer periphery, A wheel bearing comprising a double row rolling element interposed between opposing rolling surfaces of the member and rotatably supporting the wheel with respect to the vehicle body, wherein the fixed side member of the outer member and the inner member A sensor unit is provided on the peripheral surface of the strain generating member, and the sensor unit is a strain generating member having two or more contact fixing parts fixed in contact with the peripheral surface of the fixed side member, and is attached to the strain generating member to be distorted. One or more strain sensors for detecting strain of the generating member, and a temperature sensor attached to the strain generating member for detecting the temperature of the strain sensor installation portion, the sensor unit and outside air around the sensor unit Insulating material between Since the sensor output signal of the sensor unit is corrected with the output of the temperature sensor and the estimation means for estimating the load applied to the wheel bearing or tire from the corrected signal is provided, it is not affected by fluctuations in the external environment, The load acting on the wheel bearing and the tire ground contact surface can be detected stably with high accuracy.

この発明の一実施形態を図1ないし図4と共に説明する。この実施形態は、第3世代型の内輪回転タイプで、駆動輪支持用の車輪用軸受に適用したものである。なお、この明細書において、車両に取付けた状態で車両の車幅方向の外側寄りとなる側をアウトボード側と呼び、車両の中央寄りとなる側をインボード側と呼ぶ。   An embodiment of the present invention will be described with reference to FIGS. This embodiment is a third generation inner ring rotating type and is applied to a wheel bearing for driving wheel support. In this specification, the side closer to the outer side in the vehicle width direction of the vehicle when attached to the vehicle is referred to as the outboard side, and the side closer to the center of the vehicle is referred to as the inboard side.

このセンサ付車輪用軸受における軸受は、図1に断面図で示すように、内周に複列の転走面3を形成した外方部材1と、これら各転走面3に対向する転走面4を外周に形成した内方部材2と、これら外方部材1および内方部材2の転走面3,4間に介在した複列の転動体5とで構成される。この車輪用軸受は、複列のアンギュラ玉軸受型とされていて、転動体5はボールからなり、各列毎に保持器6で保持されている。上記転走面3,4は断面円弧状であり、ボール接触角が背面合わせとなるように形成されている。外方部材1と内方部材2との間の軸受空間の両端は、一対のシール7,8によってそれぞれ密封されている。   As shown in the sectional view of FIG. 1, the bearing for this sensor-equipped wheel bearing includes an outer member 1 in which a double row rolling surface 3 is formed on the inner periphery, and rolling facing each of these rolling surfaces 3. The inner member 2 has a surface 4 formed on the outer periphery, and the outer member 1 and the double row rolling elements 5 interposed between the rolling surfaces 3 and 4 of the inner member 2. This wheel bearing is a double-row angular ball bearing type, and the rolling elements 5 are made of balls and are held by a cage 6 for each row. The rolling surfaces 3 and 4 have an arc shape in cross section, and are formed so that the ball contact angle is aligned with the back surface. Both ends of the bearing space between the outer member 1 and the inner member 2 are sealed by a pair of seals 7 and 8, respectively.

外方部材1は固定側部材となるものであって、車体の懸架装置(図示せず)におけるナックル16に取付ける車体取付用フランジ1aを外周に有し、全体が一体の部品とされている。フランジ1aには円周方向の複数箇所に車体取付用のねじ孔14が設けられ、インボード側よりナックル16のボルト挿通孔17に挿通したナックルボルト18を前記ねじ孔14に螺合することで、車体取付用フランジ1aがナックル16に取付けられる。
内方部材2は回転側部材となるものであって、車輪取付用のハブフランジ9aを有するハブ輪9と、このハブ輪9の軸部9bのインボード側端の外周に嵌合した内輪10とでなる。これらハブ輪9および内輪10に、前記各列の転走面4が形成されている。ハブ輪9のインボード側端の外周には段差を持って小径となる内輪嵌合面12が設けられ、この内輪嵌合面12に内輪10が嵌合している。ハブ輪9の中心には貫通孔11が設けられている。ハブフランジ9aには、周方向複数箇所にハブボルト(図示せず)の圧入孔15が設けられている。ハブ輪9のハブフランジ9aの根元部付近には、車輪および制動部品(図示せず)を案内する円筒状のパイロット部13がアウトボード側に突出している。
The outer member 1 is a fixed side member, and has a vehicle body mounting flange 1a attached to a knuckle 16 in a suspension device (not shown) of the vehicle body on the outer periphery, and the whole is an integral part. The flange 1a is provided with screw holes 14 for mounting the vehicle body at a plurality of locations in the circumferential direction, and the knuckle bolts 18 inserted into the bolt insertion holes 17 of the knuckle 16 from the inboard side are screwed into the screw holes 14. The vehicle body mounting flange 1 a is attached to the knuckle 16.
The inner member 2 is a rotating side member, and includes a hub wheel 9 having a hub flange 9a for wheel mounting, and an inner ring 10 fitted to the outer periphery of the end portion on the inboard side of the shaft portion 9b of the hub wheel 9. And become. The hub wheel 9 and the inner ring 10 are formed with the rolling surfaces 4 of the respective rows. An inner ring fitting surface 12 having a small diameter with a step is provided on the outer periphery of the inboard side end of the hub wheel 9, and the inner ring 10 is fitted to the inner ring fitting surface 12. A through hole 11 is provided at the center of the hub wheel 9. The hub flange 9a is provided with press-fitting holes 15 for hub bolts (not shown) at a plurality of locations in the circumferential direction. In the vicinity of the base portion of the hub flange 9a of the hub wheel 9, a cylindrical pilot portion 13 for guiding a wheel and a braking component (not shown) protrudes toward the outboard side.

図2は、この車輪用軸受の外方部材1をアウトボード側から見た正面図を示す。なお、図1は、図2におけるI−I矢視断面図を示す。前記車体取付用フランジ1aは、図2のように、各ねじ孔14が設けられた円周方向部分が他の部分よりも外径側へ突出した突片1aaとされている。   FIG. 2 shows a front view of the outer member 1 of the wheel bearing as viewed from the outboard side. 1 shows a cross-sectional view taken along the line II in FIG. As shown in FIG. 2, the vehicle body mounting flange 1 a is a projecting piece 1 aa in which a circumferential portion provided with each screw hole 14 protrudes to the outer diameter side from the other portion.

固定側部材である外方部材1の外径面には、3つ以上のセンサユニット20が設けられている。ここでは、4つのセンサユニット20が、タイヤ接地面に対して上下位置および前後位置となる外方部材1の外径面における上面部、下面部、右面部、および左面部に、周方向に相互に90度の位相差をなすように設けられている。ここでは、1組のセンサユニット対を構成する2つのセンサユニット20が、タイヤ接地面に対して上位置となる外方部材1の外径面における上面部および下面部の2箇所に設けられている。また、他の1組のセンユニット対を構成する2つのセンサユニット20が、タイヤ接地面に対して前後位置となる外方部材1の外径面における右面部と左面部の2箇所に設けられている。   Three or more sensor units 20 are provided on the outer diameter surface of the outer member 1 that is a stationary member. Here, the four sensor units 20 are arranged in the circumferential direction on the upper surface portion, the lower surface portion, the right surface portion, and the left surface portion of the outer diameter surface of the outer member 1 that is in the vertical position and the front-rear position with respect to the tire ground contact surface. Are provided so as to form a phase difference of 90 degrees. Here, the two sensor units 20 constituting one pair of sensor units are provided at two locations on the outer diameter surface of the outer member 1 that is located above the tire ground contact surface, the upper surface portion and the lower surface portion. Yes. In addition, two sensor units 20 constituting another pair of sensor unit pairs are provided at two locations, the right surface portion and the left surface portion, on the outer diameter surface of the outer member 1 that are front and rear positions with respect to the tire ground contact surface. ing.

これらのセンサユニット20は、図3および図4に拡大平面図および拡大断面図で示すように、歪み発生部材21と、この歪み発生部材21に取付けられて歪み発生部材21の歪みを検出する歪みセンサ22と、歪み発生部材21に取付けられて歪みセンサ22の設置部の温度を検出する温度センサ28とでなる。歪み発生部材21は、鋼材等の弾性変形可能な金属製の2mm以下の薄板材からなり、平面概形が帯状で中央の両側辺部に切欠き部21bを有する。また、歪み発生部材21は、外方部材1の外径面にスペーサ23を介して接触固定される2つの接触固定部21aを両端部に有する。歪みセンサ22は、歪み発生部材21における各方向の荷重に対して歪みが大きくなる箇所に貼り付けられる。ここでは、その箇所として、歪み発生部材21の外面側で両側辺部の切欠き部21bで挟まれる中央部位が選ばれており、歪みセンサ22は切欠き部21bの周辺の周方向の歪みを検出する。なお、歪み発生部材21は、固定側部材である外方部材1に作用する外力、またはタイヤと路面間に作用する作用力として、想定される最大の力が印加された状態においても、塑性変形しないものとするのが望ましい。塑性変形が生じると、外方部材1の変形がセンサユニット20に伝わらず、歪みの測定に影響を及ぼすからである。ここで、「想定される最大の力」は、軸受に異常な力が作用した場合に、その力が除かれた状態でセンサ系を除く軸受としての正常な機能が復元される範囲で最大の力である。   3 and 4, the sensor unit 20 includes a strain generating member 21 and a strain that is attached to the strain generating member 21 and detects the strain of the strain generating member 21. The sensor 22 includes a temperature sensor 28 that is attached to the strain generating member 21 and detects the temperature of the installation portion of the strain sensor 22. The strain generating member 21 is made of an elastically deformable metal thin plate material of 2 mm or less such as a steel material, has a planar shape in a strip shape, and has notches 21b on both sides of the center. Further, the strain generating member 21 has two contact fixing portions 21a that are fixed to the outer diameter surface of the outer member 1 through spacers 23 at both ends. The strain sensor 22 is affixed to a location where the strain increases with respect to the load in each direction on the strain generating member 21. Here, as the location, a central portion sandwiched between the notch portions 21b on both sides is selected on the outer surface side of the strain generating member 21, and the strain sensor 22 measures the circumferential strain around the notch portion 21b. To detect. Note that the strain generating member 21 is plastically deformed even in a state in which an assumed maximum force is applied as an external force acting on the outer member 1 that is a fixed member or an acting force acting between the tire and the road surface. It is desirable not to do so. This is because when plastic deformation occurs, the deformation of the outer member 1 is not transmitted to the sensor unit 20 and affects the measurement of strain. Here, the “assumed maximum force” is the maximum in the range in which the normal function of the bearing excluding the sensor system can be restored when an abnormal force is applied to the bearing. It is power.

前記センサユニット20は、その歪み発生部材21の2つの接触固定部21aが、外方部材1の軸方向に同寸法の位置で、かつ互いに円周方向に離れた位置に来るように配置され、これら接触固定部21aがそれぞれスペーサ23を介してボルト24により外方部材1の外径面に固定される。これにより、センサユニット20の歪みセンサ22は、歪み発生部材21の切欠き部21bの周辺における外方部材円周方向の歪みを検出することになる。前記各ボルト24は、それぞれ接触固定部21aに設けられた径方向に貫通するボルト挿通孔25からスペーサ23のボルト挿通孔26に挿通し、外方部材1の外周部に設けられたねじ孔27に螺合させる。このように、スペーサ23を介して外方部材1の外径面に接触固定部21aを固定することにより、薄板状である歪み発生部材21における切欠き部21bを有する中央部位が外方部材1の外径面から離れた状態となり、切欠き部21bの周辺の歪み変形が容易となる。   The sensor unit 20 is arranged such that the two contact fixing portions 21a of the strain generating member 21 are located at positions having the same dimension in the axial direction of the outer member 1 and being spaced apart from each other in the circumferential direction. These contact fixing portions 21 a are respectively fixed to the outer diameter surface of the outer member 1 by bolts 24 through spacers 23. Thereby, the strain sensor 22 of the sensor unit 20 detects the strain in the outer member circumferential direction around the notch 21 b of the strain generating member 21. Each bolt 24 is inserted into a bolt insertion hole 26 of the spacer 23 from a bolt insertion hole 25 penetrating in the radial direction provided in the contact fixing portion 21 a, and a screw hole 27 provided in the outer peripheral portion of the outer member 1. Screwed on. In this way, by fixing the contact fixing portion 21a to the outer diameter surface of the outer member 1 via the spacer 23, the central portion having the notch portion 21b in the strain generating member 21 having a thin plate shape is the outer member 1. It becomes a state away from the outer diameter surface of the, and distortion deformation around the notch 21b becomes easy.

接触固定部21aが配置される軸方向位置として、ここでは外方部材1のアウトボード側列の転走面3の周辺となる軸方向位置が選ばれる。ここでいうアウトボード側列の転走面3の周辺とは、インボード側列およびアウトボード側列の転走面3の中間位置からアウトボード側列の転走面3の形成部までの範囲である。外方部材1の外径面へセンサユニット20を安定良く固定する上で、外方部材1の外径面における前記スペーサ23が接触固定される箇所には平坦部1bが形成される。   As the axial position where the contact fixing portion 21a is disposed, an axial position that is the periphery of the rolling surface 3 of the outboard side row of the outer member 1 is selected here. Here, the periphery of the rolling surface 3 of the outboard side row is a range from the intermediate position of the rolling surface 3 of the inboard side row and the outboard side row to the formation portion of the rolling surface 3 of the outboard side row. It is. In order to stably fix the sensor unit 20 to the outer diameter surface of the outer member 1, a flat portion 1 b is formed at a location where the spacer 23 is contacted and fixed on the outer diameter surface of the outer member 1.

歪みセンサ22としては、種々のものを使用することができる。例えば、歪みセンサ22を金属箔ストレインゲージで構成することができる。その場合、通常、歪み発生部材21に対しては接着による固定が行なわれる。また、歪みセンサ22を歪み発生部材21上に厚膜抵抗体にて形成することもできる。   Various strain sensors 22 can be used. For example, the strain sensor 22 can be composed of a metal foil strain gauge. In that case, the distortion generating member 21 is usually fixed by adhesion. The strain sensor 22 can also be formed on the strain generating member 21 with a thick film resistor.

前記センサユニット20の表面は断熱材料29で覆われており、これによりセンサユニット20が外気から遮断されている。断熱材料29は、センサユニット20を覆う被覆層として設けられ、センサユニット20の外方部材1に対する接触面を除く全面を覆っている。ここでの断熱材料29は、例えばウレタンフォーム、発泡樹脂モールド材、ウレタン系樹脂モールド材、ゴムなどの低熱伝導率の材料である。   The surface of the sensor unit 20 is covered with a heat insulating material 29, thereby blocking the sensor unit 20 from the outside air. The heat insulating material 29 is provided as a covering layer that covers the sensor unit 20 and covers the entire surface of the sensor unit 20 except the contact surface with respect to the outer member 1. The heat insulating material 29 here is a material having a low thermal conductivity such as urethane foam, foamed resin molding material, urethane-based resin molding material, or rubber.

センサユニット20の歪みセンサ22および温度センサ28は、推定手段30に接続される。推定手段30は、歪みセンサ22の出力信号により、車輪用軸受や車輪と路面間(タイヤ接地面)に作用する力(垂直方向荷重Fz ,駆動力または制動力となる荷重Fx ,軸方向荷重Fy )を推定する手段であり、前記温度センサ28の出力で前記歪みセンサ22の出力信号を補正する温度補正手段31を有する。温度補正手段31は、歪みセンサ22の出力信号を、例えば、温度と補正値または補正結果となる出力信号の関係を設定した演算式やテーブル等(図示せず)に従って補正する。推定手段30では、前記温度補正手段31で補正された歪みセンサ22の出力信号から、径方向荷重である前記垂直方向荷重Fz および駆動力または制動力となる荷重Fx と、コーナリング力である軸方向荷重Fy とを推定する。   The strain sensor 22 and the temperature sensor 28 of the sensor unit 20 are connected to the estimation unit 30. The estimation means 30 uses the output signal of the strain sensor 22 to determine the force acting on the wheel bearing or between the wheel and the road surface (tire contact surface) (vertical load Fz, load Fx serving as driving force or braking force, axial load Fy). ) And temperature correction means 31 for correcting the output signal of the strain sensor 22 with the output of the temperature sensor 28. The temperature correction unit 31 corrects the output signal of the strain sensor 22 in accordance with, for example, an arithmetic expression or a table (not shown) that sets the relationship between the temperature and the output value that is the correction value or the correction result. In the estimating means 30, the vertical load Fz that is a radial load and the load Fx that is a driving force or a braking force and an axial direction that is a cornering force are obtained from the output signal of the strain sensor 22 corrected by the temperature correcting means 31. Estimate the load Fy.

推定手段30は、前記作用力と前記温度補正手段31で求めた歪みセンサ22の出力信号の補正値との関係を演算式またはテーブル等により設定した関係設定手段(図示せず)を有し、入力された補正値から前記関係設定手段を用いて作用力の値を出力する。前記関係設定手段の設定内容は、予め試験やシミュレーションで求めておいて設定する。   The estimation unit 30 includes a relationship setting unit (not shown) in which the relationship between the acting force and the correction value of the output signal of the strain sensor 22 obtained by the temperature correction unit 31 is set by an arithmetic expression or a table. An action force value is output from the input correction value using the relationship setting means. The setting contents of the relationship setting means are obtained by a test or simulation in advance.

車輪のタイヤと路面間に荷重が作用すると、車輪用軸受の固定側部材である外方部材1にも荷重が印加されて変形が生じる。センサユニット20における歪み発生部材21の2つの接触固定部21aが外方部材1の外径面に接触固定されているので、外方部材1の歪みが歪み発生部材21に拡大して伝達され、その歪みが歪みセンサ22で感度良く検出され、その出力信号に生じるヒステリシスも小さくなり、荷重を精度良く推定できる。   When a load acts between the tire of the wheel and the road surface, the load is also applied to the outer member 1 that is a stationary member of the wheel bearing, causing deformation. Since the two contact fixing portions 21a of the strain generating member 21 in the sensor unit 20 are fixed in contact with the outer diameter surface of the outer member 1, the strain of the outer member 1 is transmitted to the strain generating member 21 in an enlarged manner, The distortion is detected by the distortion sensor 22 with high sensitivity, the hysteresis generated in the output signal is also reduced, and the load can be estimated with high accuracy.

また、センサユニット20の歪み発生部材21に歪みセンサ22の設置部の温度を検出する温度センサ28を取付け、推定手段30では、温度補正手段31により、歪みセンサ22の出力信号を温度センサ28の出力で補正し、その補正した信号から車輪用軸受もしくはタイヤに加わる荷重を推定するようにしているので、軸受回転による発熱や周囲環境などにより車輪用軸受の温度が変化した場合に、外方部材1とセンサユニット20との線膨張率の差などにより歪みセンサ22の出力信号に生じる変動を補正することができる。この場合に、センサユニット20と外気との断熱が不十分であると、外気の状態や歪みセンサ22の周辺の状態(風量、水分の付着の有無など)によって放熱抵抗が変わるため、外方部材1の温度と温度センサ28の検出した温度とがずれて、前記温度補正手段31で算出される補正値と、実際の温度膨張の状態とがずれ、最終的に推定手段30で推定される荷重に誤差が生じる。このセンサ付車輪用軸受では、センサユニット20を断熱材料29で外気から遮断しているので、上記した外部環境の影響を最小限度に抑えることができて、車輪用軸受やタイヤ接地面に作用する荷重を高い精度で安定良く検出できる。   In addition, a temperature sensor 28 for detecting the temperature of the installation portion of the strain sensor 22 is attached to the strain generating member 21 of the sensor unit 20, and the estimation means 30 causes the temperature correction means 31 to output the output signal of the strain sensor 22 from the temperature sensor 28. Since the output is corrected and the load applied to the wheel bearing or tire is estimated from the corrected signal, when the temperature of the wheel bearing changes due to heat generated by the rotation of the bearing or the surrounding environment, the outer member Variations in the output signal of the strain sensor 22 due to the difference in linear expansion coefficient between the sensor unit 20 and the sensor unit 20 can be corrected. In this case, if the heat insulation between the sensor unit 20 and the outside air is insufficient, the heat radiation resistance changes depending on the state of the outside air and the surrounding state of the strain sensor 22 (air volume, presence / absence of moisture adhesion, etc.). 1 and the temperature detected by the temperature sensor 28 are shifted, the correction value calculated by the temperature correction means 31 and the actual temperature expansion state are shifted, and the load finally estimated by the estimation means 30 An error occurs. In this sensor-equipped wheel bearing, since the sensor unit 20 is shielded from the outside air by the heat insulating material 29, the influence of the external environment described above can be suppressed to the minimum, and acts on the wheel bearing and the tire ground contact surface. The load can be detected with high accuracy and stability.

上記説明では車輪のタイヤと路面間の作用力を検出する場合を示したが、車輪のタイヤと路面間の作用力だけでなく、車輪用軸受に作用する力(例えば予圧量)を検出するものとしても良い。
このセンサ付車輪用軸受から得られた検出荷重を自動車の車両制御に使用することにより、自動車の安定走行に寄与できる。また、このセンサ付車輪用軸受を用いると、車両にコンパクトに荷重センサを設置でき、量産性に優れたものとでき、コスト低減を図ることができる。
In the above description, the case where the acting force between the wheel tire and the road surface is detected is shown. However, not only the acting force between the wheel tire and the road surface but also the force acting on the wheel bearing (for example, the preload amount) is detected. It is also good.
By using the detected load obtained from the sensor-equipped wheel bearing for vehicle control of the automobile, it is possible to contribute to stable running of the automobile. In addition, when this sensor-equipped wheel bearing is used, a load sensor can be installed in a compact vehicle, the mass productivity can be improved, and the cost can be reduced.

また、この実施形態では、センサユニット20を4つ設け、これらのセンサユニット20を、タイヤ接地面に対して上下位置および左右位置となる外方部材1の外径面の上面部、下面部、右面部、および左面部に、周方向に相互に90度の位相差をなすように配置しているので、どのような荷重条件においても、荷重を精度良く推定することができる。すなわち、ある方向への荷重が大きくなると、転動体5と転走面3,4が接触している部分と接触していない部分が180度位相差で現れるため、その方向に合わせてセンサユニット20を180度位相差で設置すれば、どちらかのセンサユニット20には必ず転動体5を介して外方部材1に印加される荷重が伝達され、その荷重を歪みセンサ22により検出可能となる。   Further, in this embodiment, four sensor units 20 are provided, and these sensor units 20 are arranged on the upper surface portion, the lower surface portion, and the outer diameter surface of the outer member 1 that are in the vertical position and the horizontal position with respect to the tire ground contact surface. Since the right surface portion and the left surface portion are arranged so as to have a phase difference of 90 degrees in the circumferential direction, the load can be accurately estimated under any load condition. That is, when a load in a certain direction increases, a portion where the rolling element 5 and the rolling surfaces 3 and 4 are in contact with each other and a portion which is not in contact appear with a phase difference of 180 degrees. Is installed with a phase difference of 180 degrees, a load applied to the outer member 1 is always transmitted to one of the sensor units 20 via the rolling elements 5, and the load can be detected by the strain sensor 22.

図5ないし図13は、この発明の他の実施形態を示す。この実施形態のセンサ付車輪用軸受は、円環状の保護カバー37にセンサユニット20を取付けたものである。センサユニット20は、図10に示すように、歪み発生部材21と、この歪み発生部材21に取付けられて歪み発生部材21の歪みを検出する歪みセンサ22と、歪み発生部材21に取付けられて歪みセンサ設置部の温度を検出する温度センサ28とでなる。歪み発生部材21の前記歪みセンサ22を挟んで長手方向に離れた2箇所には、センサユニット20を前記外方部材1の外径面に固定するボルト24(図6)の挿通孔25が設けられている。   5 to 13 show another embodiment of the present invention. The sensor-equipped wheel bearing of this embodiment is obtained by attaching the sensor unit 20 to an annular protective cover 37. As shown in FIG. 10, the sensor unit 20 includes a strain generating member 21, a strain sensor 22 that is attached to the strain generating member 21 and detects the strain of the strain generating member 21, and is attached to the strain generating member 21 to be distorted. The temperature sensor 28 detects the temperature of the sensor installation part. Insertion holes 25 for bolts 24 (FIG. 6) for fixing the sensor unit 20 to the outer diameter surface of the outer member 1 are provided at two positions of the strain generating member 21 that are separated in the longitudinal direction across the strain sensor 22. It has been.

この実施形態でもセンサユニット20は4つとされ、これらの歪みセンサ22の出力信号を処理する信号処理用IC35、処理された前記出力信号を軸受外部へ取り出す信号ケーブル36(図10)などの電子部品と共に、図8(A),(B)に正面図および側面図で示す円環状の保護カバー37の内側に配置して、図11(A),(B)に正面図および側面図で示す円環状のセンサ組立品38が構成される。図10は、保護カバー37の内側に配置される前記電子部品の展開図を示す。各センサユニット20間に信号ケーブル36が保護カバー37の溝部39に沿って配線され、その信号ケーブル36の途中に信号処理用IC35が配置されている。信号ケーブル36の車体側への引き出し部36aは、保護カバー37の一箇所から保護カバー37の外側に引き出される。保護カバー37の材質は、プラスチックやゴムであっても良く、またステンレススチールなどの金属製であっても良い。   Also in this embodiment, there are four sensor units 20, and electronic components such as a signal processing IC 35 for processing the output signals of these strain sensors 22 and a signal cable 36 (FIG. 10) for taking out the processed output signals to the outside of the bearing. 8A and 8B are arranged inside an annular protective cover 37 shown in front and side views in FIGS. 8A and 8B, and circles shown in front and side views in FIGS. 11A and 11B. An annular sensor assembly 38 is constructed. FIG. 10 is a development view of the electronic component disposed inside the protective cover 37. A signal cable 36 is wired between the sensor units 20 along the groove 39 of the protective cover 37, and a signal processing IC 35 is disposed in the middle of the signal cable 36. The lead-out portion 36 a of the signal cable 36 toward the vehicle body is drawn out from the protective cover 37 to one side of the protective cover 37. The material of the protective cover 37 may be plastic or rubber, or may be made of metal such as stainless steel.

保護カバー37は、図8(A),(B)のIXa −IXa 矢視断面図およびIXb −IXb 矢視断面図を示す図9(A),(B)のように、外径面に周方向に沿って延びる溝部39を有し、その周方向の前記各センサユニット20の配置部となる4箇所には径方向に貫通する開口部40がそれぞれ設けられている。これら開口部40の内径側における周方向に沿う両側縁には、センサユニット20の歪み発生部材21が係合する平面状の係合段部40aが設けられている。これにより、図11(A),(B)のXIIa−XIIa矢視断面図およびXIIb−XIIb矢視断面図を示す図12(A),(B)のように、保護カバー37の開口部40に、各センサユニット20がその歪み発生部材21を内径側に露出させて設置される。   As shown in FIGS. 9A and 9B showing the cross-sectional view taken along arrows IXa-IXa and IXb-IXb in FIGS. There are provided groove portions 39 extending in the direction, and openings 40 penetrating in the radial direction are provided at four locations where the sensor units 20 are arranged in the circumferential direction. On both side edges along the circumferential direction on the inner diameter side of these openings 40, planar engagement step portions 40a with which the strain generating members 21 of the sensor unit 20 are engaged are provided. Accordingly, as shown in FIGS. 12A and 12B showing the XIIa-XIIa arrow cross-sectional view and the XIIb-XIIb arrow cross-sectional view of FIGS. 11A and 11B, the opening 40 of the protective cover 37. Further, each sensor unit 20 is installed with its distortion generating member 21 exposed to the inner diameter side.

前記円環状のセンサ組立品38は、図13(A),(B)のように中央で2分割可能とされている。具体的には、円環状の保護カバー37が、2つの分割体37A,37Bの各一端をヒンジ41で開閉可能に連結してなり、そのヒンジ41を介してセンサ組立品38の2つの半円弧部が開閉可能とされている。このセンサ組立品38の開放状態での開口寸法Wの最大値は、外方部材1の外径寸法D(図6)よりも大きくなるようにされている。これにより、前記センサ組立品38を、その開口寸法Wが最大となる状態に開いて外方部材1の外径面に取付けることができる。   The annular sensor assembly 38 can be divided into two at the center as shown in FIGS. Specifically, an annular protective cover 37 is formed by connecting one end of each of the two divided bodies 37 </ b> A and 37 </ b> B with a hinge 41 so that the two semicircular arcs of the sensor assembly 38 can be connected via the hinge 41. The part can be opened and closed. The maximum value of the opening dimension W in the opened state of the sensor assembly 38 is set to be larger than the outer diameter dimension D (FIG. 6) of the outer member 1. As a result, the sensor assembly 38 can be attached to the outer diameter surface of the outer member 1 with the opening dimension W being maximized.

図6は、インボード側から見た外方部材1の断面図を示す。外方部材1の外径面の前記センサ組立品38が取付けられる軸方向位置は全周にわたる円筒研削面とされ、その円筒研削面のうち、前記センサユニット20の歪み発生部材21が接触する4箇所、つまり上面部、下面部、右面部および左面部は、図7に示すように平坦部1bとされている。これにより各センサユニット20の歪み発生部材21を平坦部1bに確実に接触させることができる。また、前記各平坦部1bには、前記歪み発生部材21のボルト挿通孔25に整合するねじ孔27(図6)が設けられている。これにより、外方部材1の外径面にセンサ組立品38を組み付けた後で、歪み発生部材21のボルト挿通孔25に挿通したボルト24(図6)を前記ねじ孔27に螺合させることで、センサユニット20が外方部材1の外径面に固定され、同時にセンサ組立品38の全体も固定される。前記平坦部1bにおける2つのねじ孔27で挟まれる中間部には軸方向に延びて溝1c(図7)が設けられる。これにより、歪み発生部材21における切欠き部21bが位置する中間部位が平坦部1bから離されるので、切欠き部21bの周辺の歪み変形が容易となる。4つのセンサユニット20は、それらの各歪みセンサ22が外方部材1の軸方向に対して同寸法となる位置に設けられる。   FIG. 6 shows a cross-sectional view of the outer member 1 viewed from the inboard side. The axial position of the outer diameter surface of the outer member 1 to which the sensor assembly 38 is attached is a cylindrical grinding surface over the entire circumference, and the strain generating member 21 of the sensor unit 20 contacts the cylindrical grinding surface 4. The portions, that is, the upper surface portion, the lower surface portion, the right surface portion, and the left surface portion are flat portions 1b as shown in FIG. Thereby, the distortion generating member 21 of each sensor unit 20 can be reliably brought into contact with the flat portion 1b. Each flat portion 1b is provided with a screw hole 27 (FIG. 6) that matches the bolt insertion hole 25 of the strain generating member 21. Thus, after the sensor assembly 38 is assembled on the outer diameter surface of the outer member 1, the bolt 24 (FIG. 6) inserted into the bolt insertion hole 25 of the strain generating member 21 is screwed into the screw hole 27. Thus, the sensor unit 20 is fixed to the outer diameter surface of the outer member 1, and at the same time, the entire sensor assembly 38 is also fixed. An intermediate portion sandwiched between the two screw holes 27 in the flat portion 1b is provided with a groove 1c (FIG. 7) extending in the axial direction. Thereby, since the intermediate part in which the notch part 21b in the distortion generating member 21 is located is separated from the flat part 1b, distortion deformation around the notch part 21b is facilitated. The four sensor units 20 are provided at positions where the respective strain sensors 22 have the same dimensions with respect to the axial direction of the outer member 1.

図5における外方部材1のセンサ組立品38の取付部を拡大して図7に示す。同図に示すように、外方部材1の外径面にセンサ組立品38を取付けた後で、センサ組立品38におけるセンサユニット20の保護カバー37からの露出部分が断熱材料29で覆われ、これによりセンサユニット20が断熱材料29により外気から遮断されている。また、センサ組立品38の他の電子部品(信号処理用IC35、信号ケーブル36)の保護カバー37からの露出部分も、図示しないモールド材で密封される。具体的には、保護カバー37の溝部39に全周にわたってモールド材が充填されて、前記電子部品の露出部分が密封される。モールド材は前記断熱材料29と同じ材料であっても良い。保護カバー37に十分な強度と耐食性を持たせること、および前記センサユニット20を外気から遮断する効果を上げる観点から、保護カバー37の材料としてはステンレススチールが望ましい。   FIG. 7 is an enlarged view of the mounting portion of the sensor assembly 38 of the outer member 1 in FIG. As shown in the figure, after the sensor assembly 38 is attached to the outer diameter surface of the outer member 1, the exposed portion of the sensor unit 38 from the protective cover 37 of the sensor unit 20 is covered with a heat insulating material 29. Thereby, the sensor unit 20 is shielded from the outside air by the heat insulating material 29. In addition, exposed portions of the other electronic components (signal processing IC 35 and signal cable 36) of the sensor assembly 38 from the protective cover 37 are also sealed with a molding material (not shown). Specifically, the groove 39 of the protective cover 37 is filled with a molding material over the entire circumference, and the exposed portion of the electronic component is sealed. The molding material may be the same material as the heat insulating material 29. From the viewpoint of providing the protective cover 37 with sufficient strength and corrosion resistance and improving the effect of blocking the sensor unit 20 from the outside air, the material of the protective cover 37 is preferably stainless steel.

センサユニット20の歪みセンサ22および温度センサ28は前記信号処理用IC35に接続される。信号処理用IC35は、歪みセンサ22の出力信号により、車輪用軸受や車輪と路面間(タイヤ接地面)に作用する力(垂直方向荷重Fz ,駆動力となる荷重Fx ,軸方向荷重Fy )を推定する推定手段(図1〜図4の実施形態における推定手段30に相当)となるものであって、信号処理回路や補正回路などが含まれる。補正回路には、図1〜図4の実施形態における温度補正手段31が含まれる。その他の構成は図1〜図4の実施形態の場合と同様である。   The strain sensor 22 and the temperature sensor 28 of the sensor unit 20 are connected to the signal processing IC 35. The signal processing IC 35 generates forces (vertical load Fz, driving force Fx, axial load Fy) acting between the wheel bearing and the wheel and the road surface (tire contact surface) according to the output signal of the strain sensor 22. The estimation means is an estimation means (corresponding to the estimation means 30 in the embodiment of FIGS. 1 to 4), and includes a signal processing circuit, a correction circuit, and the like. The correction circuit includes the temperature correction means 31 in the embodiment of FIGS. Other configurations are the same as those in the embodiment of FIGS.

この実施形態の場合も、荷重の推定手段である前記信号処理用IC35により、歪みセンサ22の出力信号を温度センサ28の出力で補正し、その補正した信号から車輪用軸受もしくはタイヤに加わる荷重を推定するようにしているが、センサユニット20が断熱材料29で外気から遮断されているので、外方部材1の温度と温度センサ28の検出した温度とのずれが低減され、外部環境の影響を最小限度に抑えることができて、車輪用軸受やタイヤ接地面に作用する荷重を高い精度で安定良く検出できる。   Also in this embodiment, the output signal of the strain sensor 22 is corrected by the output of the temperature sensor 28 by the signal processing IC 35 that is a load estimating means, and the load applied to the wheel bearing or tire from the corrected signal is calculated. Although it is estimated, since the sensor unit 20 is shielded from the outside air by the heat insulating material 29, the deviation between the temperature of the outer member 1 and the temperature detected by the temperature sensor 28 is reduced, and the influence of the external environment is reduced. The load acting on the wheel bearing and the tire ground contact surface can be detected stably with high accuracy.

また、この実施形態では、複数のセンサユニット20と、歪みセンサ22の出力信号を処理する信号処理用IC35と、処理された前記出力信号を軸受外部へ取り出す信号ケーブル36とを含む電子部品を、円環状の保護カバー37の内側に配置して円環状のセンサ組立品38とし、このセンサ組立品38を外方部材1の外径面に外方部材1と同心に取付けているので、外部環境によりセンサユニット20を含む電子部品が故障する(飛び石による破損や、泥水・塩水などによる腐食)のを防止でき、長期にわたって荷重を正確に検出することができる。また、信号ケーブル36の配線処理や歪みセンサ22の組付けも容易となる。また、保護カバー37でセンユニット20を覆う構造であるため、センサユニット20の保護と外気との断熱をコンパクトな構成で実現することができる。   In this embodiment, an electronic component including a plurality of sensor units 20, a signal processing IC 35 that processes the output signal of the strain sensor 22, and a signal cable 36 that extracts the processed output signal to the outside of the bearing, Since the annular sensor cover 38 is arranged inside the annular protective cover 37 and the sensor assembly 38 is attached to the outer diameter surface of the outer member 1 concentrically with the outer member 1, the external environment As a result, it is possible to prevent the electronic components including the sensor unit 20 from being broken (damage due to stepping stones, corrosion due to muddy water, salt water, etc.), and the load can be accurately detected over a long period of time. In addition, wiring processing of the signal cable 36 and assembly of the strain sensor 22 are facilitated. Further, since the sensor unit 20 is covered with the protective cover 37, the protection of the sensor unit 20 and the heat insulation with the outside air can be realized with a compact configuration.

また、この実施形態では、センサ組立品38を、中央で2分割可能としているので、固定側部材である外方部材1の外径面への取付けが容易となり、組立性が向上する。   In this embodiment, since the sensor assembly 38 can be divided into two at the center, it is easy to attach the outer member 1 which is a stationary member to the outer diameter surface, and the assemblability is improved.

また、この実施形態では、センサユニット20の歪み発生部材21を固定側部材である外方部材1の外径面にボルト24で直接固定するようにしているので、センサユニット20を強固に固定でき、荷重負荷時でも固定部に滑りが生じることがなく、それだけ検出精度を向上させることができる。また、センサユニット20をボルト24で外方部材1に固定することで、同時にセンサ組立品38を外方部材1に取付けることができるので、組立性がさらに向上する。   Further, in this embodiment, the strain generating member 21 of the sensor unit 20 is directly fixed to the outer diameter surface of the outer member 1 that is a fixed member with the bolt 24, so that the sensor unit 20 can be firmly fixed. Even when a load is applied, the fixed portion does not slip, and the detection accuracy can be improved accordingly. Further, by fixing the sensor unit 20 to the outer member 1 with the bolts 24, the sensor assembly 38 can be attached to the outer member 1 at the same time, so that the assemblability is further improved.

固定側部材である外方部材1の外径面に固定されるセンサユニット20の軸方向寸法が異なると、外方部材1の外径面から歪み発生部材21に伝達される歪みも異なる。この実施形態では、センサユニット20を、それらの各歪みセンサ22が外方部材1の軸方向に対して同寸法となる位置に設けているので、その軸方向位置を周回する保護カバー37で複数のセンサユニット20を含む電子部品を保護することができ、保護カバー37をコンパクトに構成できる。   If the axial dimension of the sensor unit 20 fixed to the outer diameter surface of the outer member 1 that is a fixed side member is different, the strain transmitted from the outer diameter surface of the outer member 1 to the strain generating member 21 is also different. In this embodiment, the sensor units 20 are provided at positions where the respective strain sensors 22 have the same dimensions with respect to the axial direction of the outer member 1, so that a plurality of protective units 37 that circulate around the axial position are provided. The electronic parts including the sensor unit 20 can be protected, and the protective cover 37 can be made compact.

図14は、この発明のさらに他の実施形態を示す。このセンサ付車輪用軸受では、図5〜図13の実施形態において、保護カバー37Aを、センサユニット20の取付用部材に兼用させずに、センサユニット20を覆う専用部品として設けている。この例では、保護カバー37Aを、外方部材1側の周面が開口した溝形ないしU字形の断面形状の円環状部品とし、センサユニット20を覆って外方部材の外周に嵌合状態に取付けている。図示の例では、保護カバー37Aは、外周壁部と一対の側壁部とでなる溝形の断面形状とされている。センサユニット20を外気から遮断する断熱材料29は、保護カバー37Aの内部の全体に充填している。保護カバー37Aの材質は、図5〜13に示した保護カバー37と同じく、ステンレススチールが望ましい。その他の構成は、図5〜図13の実施形態の場合と同様である。   FIG. 14 shows still another embodiment of the present invention. In the sensor-equipped wheel bearing, in the embodiment shown in FIGS. 5 to 13, the protective cover 37 </ b> A is provided as a dedicated component that covers the sensor unit 20 without being used as an attachment member of the sensor unit 20. In this example, the protective cover 37A is an annular part having a groove shape or a U-shaped cross-section with an opening on the outer member 1 side, and covers the sensor unit 20 and is fitted to the outer periphery of the outer member. It is installed. In the illustrated example, the protective cover 37 </ b> A has a groove-shaped cross-sectional shape including an outer peripheral wall portion and a pair of side wall portions. A heat insulating material 29 that shields the sensor unit 20 from the outside air fills the entire interior of the protective cover 37A. The material of the protective cover 37A is preferably stainless steel, like the protective cover 37 shown in FIGS. Other configurations are the same as those of the embodiment of FIGS.

図15は、この発明のさらに他の実施形態を示す。このセンサ付車輪用軸受では、図14の実施形態において、センサユニット20を外気から遮断する断熱材料29を、保護カバー37Aの内部の全体に充填せずに、センサユニット20の表面だけを覆うように設けている。センサユニット20の表面と保護カバー37Aの外周壁部の内面との間には空気層が形成されている。この空気層は、断熱材料として機能し、前記断熱材料29と空気層とで2重の断熱材層が構成されることになる。その他の構成は、図14の実施形態の場合と同様である。   FIG. 15 shows still another embodiment of the present invention. In this sensor-equipped wheel bearing, in the embodiment of FIG. 14, the heat insulating material 29 that blocks the sensor unit 20 from the outside air is not filled in the entire interior of the protective cover 37A, and only the surface of the sensor unit 20 is covered. Provided. An air layer is formed between the surface of the sensor unit 20 and the inner surface of the outer peripheral wall portion of the protective cover 37A. This air layer functions as a heat insulating material, and the heat insulating material 29 and the air layer constitute a double heat insulating material layer. Other configurations are the same as those in the embodiment of FIG.

図16は、この発明のさらに他の実施形態を示す。このセンサ付車輪用軸受では、図14の実施形態において、保護カバー37Aの内部において、センサユニット20の表面、および外方部材1の外径面のセンサユニット20の設置部周辺を熱伝導率の高い材料42で覆うと共に、その上方空間に断熱材料29を充填している。熱伝導率の高い材料42としては、熱伝導率の高い材料ほど好ましいが、樹脂材料の平均的な熱伝導率よりも高ければ良く、熱伝導性ペーストやシリコンゴムなどが用いられている。断熱材料29は、保護カバー37Aの外周壁部の内面に沿って設けられ、断熱材料29と熱伝導率の高い材料42との間には空気層が形成されている。この空気層は、断熱材料として機能し、前記断熱材料29と空気層とで2重の断熱材層が構成されることになる。その他の構成は、図14の実施形態の場合と同様である。   FIG. 16 shows still another embodiment of the present invention. In this sensor-equipped wheel bearing, in the embodiment of FIG. 14, the thermal conductivity of the surface of the sensor unit 20 and the periphery of the sensor unit 20 on the outer diameter surface of the outer member 1 within the protective cover 37 </ b> A. It is covered with a high material 42 and the space above it is filled with a heat insulating material 29. As the material 42 having a high thermal conductivity, a material having a high thermal conductivity is preferable. However, it is sufficient that the material has an average thermal conductivity higher than that of the resin material, and a thermal conductive paste, silicon rubber, or the like is used. The heat insulating material 29 is provided along the inner surface of the outer peripheral wall portion of the protective cover 37A, and an air layer is formed between the heat insulating material 29 and the material 42 having a high thermal conductivity. This air layer functions as a heat insulating material, and the heat insulating material 29 and the air layer constitute a double heat insulating material layer. Other configurations are the same as those in the embodiment of FIG.

この実施形態では、センサユニット20の表面、および外方部材1の外径面のセンサユニット20の設置部周辺を熱伝導率の高い材料42で覆って、外方部材1の外径面とセンサユニット20の温度差を低減するようにしているので、外方部材1の温度と温度センサ28の検出する温度とのずれをさらに小さくすることができ、車輪用軸受やタイヤ接地面に作用する荷重をより高い精度で安定良く検出できる。   In this embodiment, the surface of the sensor unit 20 and the periphery of the installation portion of the sensor unit 20 on the outer diameter surface of the outer member 1 are covered with the material 42 having high thermal conductivity, and the outer diameter surface of the outer member 1 and the sensor are covered. Since the temperature difference of the unit 20 is reduced, the deviation between the temperature of the outer member 1 and the temperature detected by the temperature sensor 28 can be further reduced, and the load acting on the wheel bearing and the tire ground contact surface. Can be detected stably with higher accuracy.

図17は、この発明のさらに他の実施形態を示す。このセンサ付車輪用軸受では、図14の実施形態において、保護カバー37Aの内部において、センサユニット20の表面、および外方部材1の外径面のセンサユニット20の設置部周辺を熱伝導率の高い材料42で覆うと共に、その上の空間を空気層43の密封空間とすることで、その空気層43を前記断熱材料29に代用している。その他の構成は、図14の実施形態と同様である。   FIG. 17 shows still another embodiment of the present invention. In this sensor-equipped wheel bearing, in the embodiment of FIG. 14, the thermal conductivity of the surface of the sensor unit 20 and the periphery of the sensor unit 20 on the outer diameter surface of the outer member 1 within the protective cover 37 </ b> A. The air layer 43 is substituted for the heat insulating material 29 by covering it with the high material 42 and making the space above it a sealed space for the air layer 43. Other configurations are the same as those of the embodiment of FIG.

図18ないし図20は、この発明のさらに他の実施形態を示す。このセンサ付車輪用軸受では、図5〜図13の実施形態において、前記円環状のセンサ組立品38が、シール部材50を介して軸受の固定側部材である外方部材1の外径面に外方部材1と同心に取付けられている。シール部材50は、図20に一部を拡大断面図で示すように、前記保護カバー37の内径面に沿うリング状芯金51と、この芯金51の両側縁全周にその内径面から外径面にわたって接合した一対のリング状弾性体52とでなる。このシール部材50の前記センサ組立品38におけるセンサユニット20の配置部と対面する周方向の各位置には、径方向に貫通するセンサユニット露出用開口53(図19)がそれぞれ設けられている。これにより、シール部材50を介してセンサ組立品38を外方部材1の外径面に取付けた状態で、センサユニット20をシール部材50のセンサユニット露出用開口53から外方部材1の外径面に接触させることができる。   18 to 20 show still another embodiment of the present invention. In this sensor-equipped wheel bearing, in the embodiment shown in FIGS. 5 to 13, the annular sensor assembly 38 is provided on the outer diameter surface of the outer member 1 which is a fixed member of the bearing via a seal member 50. It is attached concentrically with the outer member 1. As shown in part in an enlarged cross-sectional view in FIG. 20, the seal member 50 includes a ring-shaped cored bar 51 along the inner diameter surface of the protective cover 37, and the outer circumference of both side edges of the cored bar 51 outside the inner diameter surface. It consists of a pair of ring-shaped elastic bodies 52 joined over the radial surface. A sensor unit exposure opening 53 (FIG. 19) penetrating in the radial direction is provided at each position in the circumferential direction of the seal member 50 facing the arrangement portion of the sensor unit 20 in the sensor assembly 38. As a result, the sensor unit 20 is attached to the outer diameter of the outer member 1 from the sensor unit exposure opening 53 of the seal member 50 in a state where the sensor assembly 38 is attached to the outer diameter surface of the outer member 1 via the seal member 50. The surface can be contacted.

シール部材50の芯金51は耐食性鋼材のプレス成形品からなり、そのリング状弾性体52が接合される両側縁は、外径側へ拡径する拡径曲げ部51aとされている。リング状弾性体52は内向きの側面に周方向に沿う溝部52aを有する断面コ字状とされ、その溝部52aを芯金51の前記拡径曲げ部51aに圧入することにより、芯金51の両側縁にリング状弾性体52が接合されている。このような接合構造とすることにより、接着剤などを用いることなく、芯金51の両側縁へリング状弾性体52を簡単かつ確実に接合できる。   The metal core 51 of the seal member 50 is made of a press-molded product of corrosion-resistant steel, and both side edges to which the ring-shaped elastic body 52 is joined are diameter-expanded bent portions 51a that expand to the outer diameter side. The ring-shaped elastic body 52 has a U-shaped cross-section having a groove portion 52 a along the circumferential direction on the inward side surface, and the groove portion 52 a is press-fitted into the diameter-enlarged bent portion 51 a of the core metal 51, thereby Ring-shaped elastic bodies 52 are joined to both side edges. With such a joining structure, the ring-shaped elastic body 52 can be easily and reliably joined to both side edges of the cored bar 51 without using an adhesive or the like.

また、前記円環状のセンサ組立品38の保護カバー37の内径面の両側部には、図19のように前記シール部材50のリング状弾性体52と密着する内径側溝部39Bが形成されている。センサ組立品38は、外方部材1の外径面にシール部材50を圧入嵌合させた後に、前記シール部材50に重ねて取付けられる。その他の構成は、図5〜図13の実施形態の場合と同様である。   In addition, on both sides of the inner diameter surface of the protective cover 37 of the annular sensor assembly 38, an inner diameter side groove 39B is formed to be in close contact with the ring-shaped elastic body 52 of the seal member 50 as shown in FIG. . The sensor assembly 38 is attached to the seal member 50 after the seal member 50 is press-fitted onto the outer diameter surface of the outer member 1. Other configurations are the same as those of the embodiment of FIGS.

この実施形態では、シール部材50を、前記保護カバー37の内径面に沿うリング状芯金51と、この芯金51の両側縁全周にその内径面から外径面にわたって接合した一対のリング状弾性体52とでなるものとしているので、シール部材50の両側縁の弾性体52が外方部材1の外径面と保護カバー37の内径面との間に挟まれて、保護カバー37の内部と外部とを弾性体52で完全に遮断でき、シール部材50のシール効果を上げることができる。   In this embodiment, the seal member 50 is a ring-shaped cored bar 51 along the inner diameter surface of the protective cover 37 and a pair of ring-shaped members joined to the entire circumference of both side edges of the cored bar 51 from the inner diameter surface to the outer diameter surface. Since the elastic body 52 is used, the elastic bodies 52 on both side edges of the seal member 50 are sandwiched between the outer diameter surface of the outer member 1 and the inner diameter surface of the protective cover 37, so And the outside can be completely blocked by the elastic body 52, and the sealing effect of the seal member 50 can be improved.

上記各実施形態では、外方部材1が固定側部材である場合につき説明したが、この発明は、内方部材が固定側部材である車輪用軸受にも適用することができ、その場合、センサユニット20あるいはセンサ組立品38は内方部材の内周となる周面に設ける。   In each of the above embodiments, the case where the outer member 1 is a fixed side member has been described. However, the present invention can also be applied to a wheel bearing in which the inner member is a fixed side member. The unit 20 or the sensor assembly 38 is provided on the peripheral surface that is the inner periphery of the inner member.

また、この実施形態では第3世代型の車輪用軸受に適用した場合につき説明したが、この発明は、軸受部分とハブとが互いに独立した部品となる第1または第2世代型の車輪用軸受や、内方部材の一部が等速ジョイントの外輪で構成される第4世代型の車輪用軸受にも適用することができる。また、このセンサ付車輪用軸受は、従動輪用の車輪用軸受にも適用でき、さらに各世代形式のテーパころタイプの車輪用軸受にも適用することができる。また、外方部材が回転側部材となる車輪用軸受に適用することもできる。その場合、内方部材の外周にセンサユニットあるいはセンサ組立品を設ける。   In this embodiment, the case where the present invention is applied to a third generation type wheel bearing has been described. However, the present invention relates to a first or second generation type wheel bearing in which the bearing portion and the hub are independent parts. In addition, the present invention can also be applied to a fourth generation type wheel bearing in which a part of the inner member is composed of an outer ring of a constant velocity joint. Further, this sensor-equipped wheel bearing can be applied to a wheel bearing for a driven wheel, and can also be applied to a tapered roller type wheel bearing of each generation type. Further, the present invention can be applied to a wheel bearing in which the outer member is a rotation side member. In that case, a sensor unit or a sensor assembly is provided on the outer periphery of the inner member.

この発明の一実施形態にかかるセンサ付車輪用軸受の断面図とその検出系の概念構成のブロック図とを組み合わせて示す図である。It is a figure showing combining the sectional view of the wheel bearing with a sensor concerning one embodiment of this invention, and the block diagram of the conceptual composition of the detection system. 同センサ付車輪用軸受の外方部材をアウトボード側から見た正面図である。It is the front view which looked at the outer member of the wheel bearing with a sensor from the outboard side. 同センサ付車輪用軸受におけるセンサユニットの拡大平面図である。It is an enlarged plan view of a sensor unit in the wheel bearing with sensor. 図3におけるIV−IV矢視断面図である。FIG. 4 is a cross-sectional view taken along arrow IV-IV in FIG. 3. この発明の他の実施形態にかかるセンサ付車輪用軸受の断面図である。It is sectional drawing of the bearing for wheels with a sensor concerning other embodiment of this invention. 図5におけるVI−VI矢視断面図である。It is VI-VI arrow sectional drawing in FIG. 図5の外方部材におけるセンサ組立品設置部の拡大断面図である。It is an expanded sectional view of the sensor assembly installation part in the outward member of FIG. (A)は円環状保護カバーの正面図、(B)は同側面図である。(A) is a front view of an annular | circular shaped protective cover, (B) is the same side view. (A)は図8(A)におけるIXa −IXa 矢視断面図、(B)は図8(B)におけるIXb −IXb 矢視断面図である。(A) is a cross-sectional view taken along the line IXa-IXa in FIG. 8 (A), and (B) is a cross-sectional view taken along the line IXb-IXb in FIG. 8 (B). センサ組立品に設置される電子部品の展開図である。It is an expanded view of the electronic component installed in a sensor assembly. (A)はセンサ組立品の正面図、(B)は同センサ組立品の側面図である。(A) is a front view of the sensor assembly, and (B) is a side view of the sensor assembly. (A)は図11(A)におけるXIIa−XIIa矢視断面図、(B)は図11(B)におけるXIIb−XIIb矢視断面図である。(A) is XIIa-XIIa arrow sectional drawing in FIG. 11 (A), (B) is XIIb-XIIb arrow sectional drawing in FIG. 11 (B). (A)はセンサ組立品の閉じ状態を示す正面図、(B)は同センサ組立品の開放状態を示す正面図である。(A) is a front view which shows the closed state of a sensor assembly, (B) is a front view which shows the open state of the sensor assembly. この発明のさらに他の実施形態にかかるセンサ付車輪用軸受の一部拡大断面図である。It is a partially expanded sectional view of the bearing for wheels with a sensor concerning other embodiment of this invention. この発明のさらに他の実施形態にかかるセンサ付車輪用軸受の一部拡大断面図である。It is a partially expanded sectional view of the bearing for wheels with a sensor concerning other embodiment of this invention. この発明のさらに他の実施形態にかかるセンサ付車輪用軸受の一部拡大断面図である。It is a partially expanded sectional view of the bearing for wheels with a sensor concerning other embodiment of this invention. この発明のさらに他の実施形態にかかるセンサ付車輪用軸受の一部拡大断面図である。It is a partially expanded sectional view of the bearing for wheels with a sensor concerning other embodiment of this invention. この発明のさらに他の実施形態にかかるセンサ付車輪用軸受の断面図である。It is sectional drawing of the bearing for wheels with a sensor concerning further another embodiment of this invention. 同センサ付車輪用軸受の外方部材のセンサ組立品が設置される軸方向位置におけるセンサユニットが配置される周方向位置の拡大断面図である。It is an expanded sectional view of the circumferential position where the sensor unit is arranged in the axial position where the sensor assembly of the outer member of the wheel bearing with sensor is installed. シール部材の部分拡大断面図である。It is a partial expanded sectional view of a sealing member.

符号の説明Explanation of symbols

1…外方部材
2…内方部材
3,4…転走面
5…転動体
20…センサユニット
21…歪み発生部材
21a…接触固定部
22…歪みセンサ
28…温度センサ
29…断熱材料
30…推定手段
31…温度補正手段
35…信号処理用IC
37,37A…保護カバー
42…熱伝導率の高い材料
43…空気層(断熱材料)
DESCRIPTION OF SYMBOLS 1 ... Outer member 2 ... Inner member 3, 4 ... Rolling surface 5 ... Rolling body 20 ... Sensor unit 21 ... Strain generating member 21a ... Contact fixing | fixed part 22 ... Strain sensor 28 ... Temperature sensor 29 ... Thermal insulation material 30 ... Estimation Means 31 ... Temperature correction means 35 ... Signal processing IC
37, 37A ... protective cover 42 ... material with high thermal conductivity 43 ... air layer (heat insulating material)

Claims (13)

複列の転走面が内周に形成された外方部材と、前記転走面と対向する転走面が外周に形成された内方部材と、両部材の対向する転走面間に介在した複列の転動体とを備え、車体に対して車輪を回転自在に支持する車輪用軸受において、
上記外方部材および内方部材のうちの固定側部材の周面にセンサユニットを設け、前記センサユニットは、前記固定側部材の周面に接触して固定される2つ以上の接触固定部を有する歪み発生部材、この歪み発生部材に取付けられて歪み発生部材の歪みを検出する1つ以上の歪みセンサ、および前記歪み発生部材に取付けられて前記歪みセンサ設置部の温度を検出する温度センサを有し、前記センサユニットとこのセンサユニット周辺の外気との間に断熱材料を介在させ、前記センサユニットのセンサ出力信号を前記温度センサの出力で補正し、その補正した信号から車輪用軸受もしくはタイヤに加わる荷重を推定する推定手段を設けたことを特徴とするセンサ付車輪用軸受。
An outer member having a double row rolling surface formed on the inner periphery, an inner member having a rolling surface facing the rolling surface formed on the outer periphery, and interposed between the opposing rolling surfaces of both members A double row rolling element, and a wheel bearing for rotatably supporting the wheel with respect to the vehicle body,
A sensor unit is provided on a peripheral surface of the fixed side member of the outer member and the inner member, and the sensor unit has two or more contact fixing portions fixed in contact with the peripheral surface of the fixed side member. A strain generating member, one or more strain sensors attached to the strain generating member to detect strain of the strain generating member, and a temperature sensor attached to the strain generating member to detect the temperature of the strain sensor installation portion. A heat insulating material is interposed between the sensor unit and the ambient air around the sensor unit, the sensor output signal of the sensor unit is corrected by the output of the temperature sensor, and the wheel bearing or tire is corrected from the corrected signal. A bearing for a wheel with a sensor, characterized in that an estimation means for estimating a load applied to the vehicle is provided.
請求項1において、前記固定側部材が前記外方部材であるセンサ付車輪用軸受。   The sensor-equipped wheel bearing according to claim 1, wherein the fixed-side member is the outer member. 請求項1または請求項2において、前記センサユニットを3つ以上設け、これらのセンサユニットのセンサ出力信号から、前記推定手段は車輪用軸受もしくはタイヤに加わる径方向荷重および軸方向荷重を推定するものとしたセンサ付車輪用軸受。   3. The sensor unit according to claim 1, wherein three or more sensor units are provided, and the estimation means estimates a radial load and an axial load applied to a wheel bearing or a tire from sensor output signals of these sensor units. Wheel bearing with sensor. 請求項1ないし請求項3のいずれか1項において、前記センサユニットを4つ設け、これらのセンサユニットを、タイヤ接地面に対して上下位置および左右位置となる前記固定側部材の周面の上面部、下面部、右面部、および左面部に、周方向に互いに90度の位相差をなすように配置したセンサ付車輪用軸受。   4. The upper surface of the peripheral surface of the fixed side member according to claim 1, wherein the four sensor units are provided, and the sensor units are positioned in a vertical position and a horizontal position with respect to a tire ground contact surface. Sensor-equipped wheel bearings arranged on the upper surface, the lower surface portion, the right surface portion, and the left surface portion so as to have a phase difference of 90 degrees in the circumferential direction. 請求項1ないし請求項4のいずれか1項において、前記断熱材料が樹脂またはゴムからなるセンサ付車輪用軸受。   5. The wheel bearing with sensor according to claim 1, wherein the heat insulating material is made of resin or rubber. 請求項5において、前記断熱材料が発泡材からなるセンサ付車輪用軸受。   6. The wheel bearing with sensor according to claim 5, wherein the heat insulating material is made of a foam material. 請求項1ないし請求項6のいずれか1項において、前記断熱材料が、前記センサユニットの外気に対する露出面を被覆する被覆層であるセンサ付車輪用軸受。   The sensor-equipped wheel bearing according to any one of claims 1 to 6, wherein the heat insulating material is a covering layer that covers an exposed surface of the sensor unit exposed to the outside air. 請求項1ないし請求項6のいずれか1項において、前記センサユニット、前記センサの出力信号を処理する信号処理用IC、およびこれらセンサおよび信号処理用ICの配線系を、前記固定側部材の周面に取付けられる円環状の保護カバーの内側に配置し、この保護カバーは、センサユニットの配置部にセンサユニットを露出させる開口する開口部を有し、この開口部を前記断熱材料で密封したセンサ付車輪用軸受。   7. The sensor unit, a signal processing IC that processes an output signal of the sensor, and a wiring system of these sensors and the signal processing IC are arranged around the periphery of the fixed side member according to claim 1. The sensor is disposed inside an annular protective cover attached to the surface, and the protective cover has an opening that exposes the sensor unit at the arrangement portion of the sensor unit, and the opening is sealed with the heat insulating material. Wheel bearing. 請求項1ないし請求項6のいずれか1項において、前記センサユニットが保護カバーで覆われ、この保護カバーの内部に断熱材料が充填されているセンサ付車輪用軸受。   7. The sensor-equipped wheel bearing according to claim 1, wherein the sensor unit is covered with a protective cover, and a heat insulating material is filled in the protective cover. 請求1ないし請求項6のいずれか1項において、前記センサユニットが保護カバーで覆われ、センサユニットを外気から遮断する前記断熱材料として、前記保護カバーの内部に空気層が密封されているセンサ付車輪用軸受。   7. The sensor according to claim 1, wherein the sensor unit is covered with a protective cover, and an air layer is sealed inside the protective cover as the heat insulating material that shields the sensor unit from outside air. Wheel bearing. 請求項9または請求項10において、前記保護カバーが円環状で、前記固定側部材の周面に固定側部材と同心に取付けられているセンサ付車輪用軸受。   11. The sensor-equipped wheel bearing according to claim 9 or 10, wherein the protective cover has an annular shape and is attached to a peripheral surface of the fixed side member concentrically with the fixed side member. 請求項8ないし請求項11のいずれか1項において、前記保護カバーがステンレススチールからなるセンサ付車輪用軸受。   12. The sensor-equipped wheel bearing according to claim 8, wherein the protective cover is made of stainless steel. 請求項1ないし請求項12のいずれか1項において、前記センサユニットの表面、および前記固定側部材の周面の前記センサユニットの設置部周辺を、樹脂材料の平均となる熱伝導率に比べて熱伝導率の高い材料で覆ったセンサ付車輪用軸受。   The surface of the sensor unit and the periphery of the sensor unit installation portion on the peripheral surface of the fixed-side member according to any one of claims 1 to 12, as compared with an average thermal conductivity of a resin material. Wheel bearing with sensor covered with a material with high thermal conductivity.
JP2008314166A 2008-10-15 2008-12-10 Wheel bearing with sensor Expired - Fee Related JP5171589B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2008314166A JP5171589B2 (en) 2008-12-10 2008-12-10 Wheel bearing with sensor
CN2009801409126A CN102187189B (en) 2008-10-15 2009-10-08 Sensor-equipped bearing for wheel
KR1020117008618A KR101574304B1 (en) 2008-10-15 2009-10-08 Sensor-equipped bearing for wheel
PCT/JP2009/005251 WO2010044228A1 (en) 2008-10-15 2009-10-08 Sensor-equipped bearing for wheel
EP09820406.8A EP2341327B1 (en) 2008-10-15 2009-10-08 Sensor-equipped bearing for wheel
US13/064,738 US8567260B2 (en) 2008-10-15 2011-04-12 Sensor-equipped bearing for wheel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008314166A JP5171589B2 (en) 2008-12-10 2008-12-10 Wheel bearing with sensor

Publications (2)

Publication Number Publication Date
JP2010139303A true JP2010139303A (en) 2010-06-24
JP5171589B2 JP5171589B2 (en) 2013-03-27

Family

ID=42349568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008314166A Expired - Fee Related JP5171589B2 (en) 2008-10-15 2008-12-10 Wheel bearing with sensor

Country Status (1)

Country Link
JP (1) JP5171589B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012153721A1 (en) * 2011-05-09 2012-11-15 Ntn株式会社 Sensor-equipped wheel bearing
JP2012251659A (en) * 2011-05-09 2012-12-20 Ntn Corp Sensor-equipped wheel bearing
JP2012255544A (en) * 2011-05-16 2012-12-27 Ntn Corp Sensor-equipped wheel bearing
GB2529193A (en) * 2014-08-12 2016-02-17 Safran Power Uk Ltd Rotor bearing temperature sensor
JP2019512626A (en) * 2016-11-18 2019-05-16 蘇州市能工基礎工程有限責任公司Suzhou Ng.Foundation Engineering Co.,Ltd Hot melt anchor head
US11319990B2 (en) * 2020-03-06 2022-05-03 Jtekt Corporation Rolling bearing device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7153596B2 (en) * 2019-03-28 2022-10-14 株式会社小野測器 Torque measuring device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01206113A (en) * 1988-02-12 1989-08-18 Agency Of Ind Science & Technol Rolling bearing with sensor
JP2002349558A (en) * 2001-05-29 2002-12-04 Koyo Seiko Co Ltd Rolling bearing unit equipped with sensor
JP2005043336A (en) * 2003-07-04 2005-02-17 Ntn Corp Wheel bearing with built-in load sensor
JP2007078597A (en) * 2005-09-16 2007-03-29 Ntn Corp Bearing with sensor for wheel
JP2008185497A (en) * 2007-01-31 2008-08-14 Ntn Corp Bearing apparatus for wheel with sensor
JP2008190706A (en) * 2007-02-08 2008-08-21 Ntn Corp Wheel bearing with sensor
JP2008190707A (en) * 2007-02-08 2008-08-21 Ntn Corp Wheel bearing with sensor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01206113A (en) * 1988-02-12 1989-08-18 Agency Of Ind Science & Technol Rolling bearing with sensor
JP2002349558A (en) * 2001-05-29 2002-12-04 Koyo Seiko Co Ltd Rolling bearing unit equipped with sensor
JP2005043336A (en) * 2003-07-04 2005-02-17 Ntn Corp Wheel bearing with built-in load sensor
JP2007078597A (en) * 2005-09-16 2007-03-29 Ntn Corp Bearing with sensor for wheel
JP2008185497A (en) * 2007-01-31 2008-08-14 Ntn Corp Bearing apparatus for wheel with sensor
JP2008190706A (en) * 2007-02-08 2008-08-21 Ntn Corp Wheel bearing with sensor
JP2008190707A (en) * 2007-02-08 2008-08-21 Ntn Corp Wheel bearing with sensor

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012153721A1 (en) * 2011-05-09 2012-11-15 Ntn株式会社 Sensor-equipped wheel bearing
JP2012251659A (en) * 2011-05-09 2012-12-20 Ntn Corp Sensor-equipped wheel bearing
CN103502786A (en) * 2011-05-09 2014-01-08 Ntn株式会社 Sensor-equipped wheel bearing
US9011013B2 (en) 2011-05-09 2015-04-21 Ntn Corporation Sensor-equipped wheel bearing
JP2012255544A (en) * 2011-05-16 2012-12-27 Ntn Corp Sensor-equipped wheel bearing
GB2529193A (en) * 2014-08-12 2016-02-17 Safran Power Uk Ltd Rotor bearing temperature sensor
WO2016024110A1 (en) * 2014-08-12 2016-02-18 Safran Power Uk Ltd Rotor bearing temperature sensor
US10184518B2 (en) 2014-08-12 2019-01-22 Safran Electrical And Power Uk Ltd Rotor bearing temperature sensor
JP2019512626A (en) * 2016-11-18 2019-05-16 蘇州市能工基礎工程有限責任公司Suzhou Ng.Foundation Engineering Co.,Ltd Hot melt anchor head
KR20190067863A (en) * 2016-11-18 2019-06-17 수저우 엔지.파운데이션 엔지니어링 컴퍼니.,리미티드 Hot melt anchor head
KR102165997B1 (en) 2016-11-18 2020-10-15 수저우 엔지.파운데이션 엔지니어링 컴퍼니.,리미티드 Hot melt anchor head
US11319990B2 (en) * 2020-03-06 2022-05-03 Jtekt Corporation Rolling bearing device

Also Published As

Publication number Publication date
JP5171589B2 (en) 2013-03-27

Similar Documents

Publication Publication Date Title
JP5274343B2 (en) Wheel bearing with sensor
JP5171589B2 (en) Wheel bearing with sensor
WO2010044228A1 (en) Sensor-equipped bearing for wheel
WO2010055636A1 (en) Sensor-equipped bearing for wheel
JP5100567B2 (en) Wheel bearing with sensor
JP5424565B2 (en) Wheel bearing with sensor
JP5063270B2 (en) Wheel bearing with sensor
JP5153373B2 (en) Wheel bearing with sensor
WO2009101793A1 (en) Sensor-integrated bearing for wheel
JP5355042B2 (en) Wheel bearing with sensor
JP5355118B2 (en) Wheel bearing with sensor
JP5085290B2 (en) Wheel bearing with sensor
JP2010127376A (en) Sensor equipped bearing for wheel
JP4986759B2 (en) Wheel bearing with sensor
JP2009128265A (en) Wheel bearing with sensor
JP2010144888A (en) Wheel bearing with sensor
JP5072608B2 (en) Wheel bearing with sensor
JP2010101720A (en) Wheel bearing with sensor
JP2010138958A (en) Bearing for wheel with sensor
JP2010242921A (en) Wheel bearing with sensor
JP5224805B2 (en) Wheel bearing with sensor
JP5219423B2 (en) Wheel bearing with sensor
JP5264206B2 (en) Wheel bearing with sensor
JP2010138959A (en) Sensor-equipped bearing for wheel
JP5219424B2 (en) Wheel bearing with sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121205

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121225

LAPS Cancellation because of no payment of annual fees