JP2010127376A - Sensor equipped bearing for wheel - Google Patents

Sensor equipped bearing for wheel Download PDF

Info

Publication number
JP2010127376A
JP2010127376A JP2008302297A JP2008302297A JP2010127376A JP 2010127376 A JP2010127376 A JP 2010127376A JP 2008302297 A JP2008302297 A JP 2008302297A JP 2008302297 A JP2008302297 A JP 2008302297A JP 2010127376 A JP2010127376 A JP 2010127376A
Authority
JP
Japan
Prior art keywords
sensor
strain
wheel bearing
load
generating member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008302297A
Other languages
Japanese (ja)
Inventor
Takayuki Norimatsu
孝幸 乗松
Kentaro Nishikawa
健太郎 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2008302297A priority Critical patent/JP2010127376A/en
Priority to EP09825890.8A priority patent/EP2360384A4/en
Priority to PCT/JP2009/005971 priority patent/WO2010055636A1/en
Priority to CN200980145679.0A priority patent/CN102216635B/en
Priority to KR1020117010930A priority patent/KR101596398B1/en
Publication of JP2010127376A publication Critical patent/JP2010127376A/en
Priority to US13/067,134 priority patent/US8578791B2/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sensor equipped bearing for a wheel capable of accurately detecting loads acting on the bearing and on the ground contact surface of a tire without being affected by rolling bodies. <P>SOLUTION: The bearing for the wheel is formed by arranging rolling bodies 5 between double-row, opposed rolling surfaces of an outer member 1 and an inner member 2. A fixed-side member among the outer member 1 and the inner member 2 is provided with one or more sensor units 20. Each of the sensor units 20 is provided with a distortion generating member 21 having two or more contacting fixed sections which are in contact with and fixed to the fixed-side member, and also with a sensor 22 for detecting the distortion of the distortion generating member. The sensor units 20 are arranged such that each of the deforming members 21 thereof is located at a position so as to be offset from a line L passing through the center of each rolling body 5 and extending in the direction of forming a rolling body contact angle, and on an inboard side further from the rolling body 5 on the inboard side among the double-row rolling bodies. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、車輪の軸受部にかかる荷重を検出する荷重センサを内蔵したセンサ付車輪用軸受に関する。   The present invention relates to a sensor-equipped wheel bearing with a built-in load sensor for detecting a load applied to a bearing portion of the wheel.

自動車の各車輪にかかる荷重を検出する技術として、歪み発生部材およびこの歪み発生部材に取付けた歪みセンサからなるセンサユニットを軸受の固定輪に取付け、前記歪み発生部材は、前記固定輪に対して少なくとも2箇所の接触固定部を有し、隣り合う接触固定部の間で少なくとも1箇所に切欠き部を有し、この切欠き部に前記歪みセンサを配置したセンサ付車輪用軸受が提案されている(例えば特許文献1)。   As a technique for detecting a load applied to each wheel of an automobile, a sensor unit including a strain generating member and a strain sensor attached to the strain generating member is attached to a fixed ring of a bearing, and the strain generating member is attached to the fixed wheel. A sensor-equipped wheel bearing has been proposed which has at least two contact fixing portions, and has at least one notch portion between adjacent contact fixing portions, and the strain sensor is disposed in the notch portion. (For example, Patent Document 1).

このセンサ付車輪用軸受によると、車両走行に伴い回転輪に荷重が加わったとき、転動体を介して固定輪が変形するので、その変形がセンサユニットに歪みをもたらす。センサユニットに設けられた歪みセンサは、センサユニットの歪みを検出する。歪みと荷重の関係を予め実験やシミュレーションで求めておけば、歪みセンサの出力から車輪にかかる荷重等を検出することができる。
特開2007−57299号公報
According to this sensor-equipped wheel bearing, when a load is applied to the rotating wheel as the vehicle travels, the fixed wheel is deformed via the rolling elements, and this deformation causes distortion of the sensor unit. The strain sensor provided in the sensor unit detects the strain of the sensor unit. If the relationship between strain and load is obtained in advance through experiments and simulations, the load applied to the wheel can be detected from the output of the strain sensor.
JP 2007-57299 A

しかし、上記センサ付車輪用軸受では、転動体がセンサユニットの設置部の近傍を通過する毎に、固定輪が転動体荷重で変形してセンサユニットの出力信号の振幅が大きくなる。すなわち、センサユニットの出力信号が転動体の影響を受けた周期的な波形となり、荷重を精度良く検出できない。   However, in the sensor-equipped wheel bearing, each time the rolling element passes near the sensor unit installation portion, the fixed wheel is deformed by the rolling element load, and the amplitude of the output signal of the sensor unit increases. That is, the output signal of the sensor unit becomes a periodic waveform affected by the rolling elements, and the load cannot be detected with high accuracy.

この発明の目的は、転動体の影響を受けることなく、車輪用軸受やタイヤ接地面に作用する荷重を正確に検出できるセンサ付車輪用軸受を提供することである。   An object of the present invention is to provide a wheel bearing with a sensor that can accurately detect a load acting on a wheel bearing or a tire ground contact surface without being affected by rolling elements.

この発明のセンサ付車輪用軸受は、複列の転走面が内周に形成された外方部材と、前記転走面と対向する転走面が外周に形成された内方部材と、両部材の対向する転走面間に介在した複列の転動体とを備え、車体に対して車輪を回転自在に支持する車輪用軸受において、上記外方部材および内方部材のうちの固定側部材に接触して固定される2つ以上の接触固定部を有する歪み発生部材、およびこの歪み発生部材に取付けられてこの歪み発生部材の歪みを検出するセンサからなる1つ以上のセンサユニットを、その歪み発生部材が前記転動体の中心を通り転動体接触角をなす方向に延びる線分から外れた位置で、前記複列の転動体のうちのインボード側の転動体よりもさらにインボード側の位置に設けたことを特徴とする。前記固定側部材は、例えば前記外方部材である。前記センサユニッットは複数としても良い。
固定側部材は通過する転動体の荷重で変形する。とくに、転動体の中心を通り転動体接触角をなす方向に延びる線分上では、転動体荷重による変形が大きい。すなわち、転動体荷重の影響を受け易い。このセンサ付車輪用軸受では、センサユニットを、その歪み発生部材が転動体の中心を通り転動体接触角をなす方向に延びる線分から外れた固定側部材における前記複列の転動体のうちのインボード側の転動体よりもさらにインボード側の位置に設けているので、センサユニットの歪み発生部材はそれだけ転動体荷重の影響を受け難くなる。したがって、本来の荷重による固定側部材の変形をセンサユニットで精度良く検出でき、その出力信号から車輪のタイヤと路面間に作用する荷重を正確に検出できる。
The sensor-equipped wheel bearing according to the present invention includes an outer member having a double-row rolling surface formed on the inner periphery, an inner member having a rolling surface opposed to the rolling surface formed on the outer periphery, A wheel bearing comprising a double row rolling element interposed between opposing rolling surfaces of the member and rotatably supporting the wheel with respect to the vehicle body, wherein the fixed side member of the outer member and the inner member One or more sensor units each including a strain generating member having two or more contact fixing portions fixed in contact with the sensor, and a sensor attached to the strain generating member and detecting the strain of the strain generating member, A position on the inboard side further than the inboard side rolling element of the double row rolling elements at a position where the strain generating member deviates from a line segment passing through the center of the rolling element and forming a rolling element contact angle. It is characterized by being provided in. The fixed side member is, for example, the outer member. The sensor unit may be plural.
The stationary member is deformed by the load of the rolling element that passes through. In particular, the deformation due to the rolling element load is large on a line segment that extends in the direction that forms the contact angle of the rolling element through the center of the rolling element. That is, it is easily affected by the rolling element load. In this sensor-equipped wheel bearing, the sensor unit is connected to the inner side of the double-row rolling elements of the fixed-side member that deviates from the line extending in the direction in which the strain generating member passes through the center of the rolling element and forms the rolling element contact angle. Since it is provided at a position closer to the inboard side than the rolling element on the board side, the distortion generating member of the sensor unit is less affected by the rolling element load. Therefore, the deformation of the fixed side member due to the original load can be accurately detected by the sensor unit, and the load acting between the tire of the wheel and the road surface can be accurately detected from the output signal.

この発明において、前記センサユニットを少なくとも3つ以上設け、これらのセンサユニットのセンサの出力信号から車輪用軸受もしくはタイヤの径方向に作用する径方向荷重および車輪用軸受もしくはタイヤの軸方向に作用する軸方向荷重を推定する荷重推定手段を設けても良い。   In the present invention, at least three or more sensor units are provided, and the radial load acting in the radial direction of the wheel bearing or tire and the axial direction of the wheel bearing or tire from the output signals of the sensors of these sensor units. A load estimation means for estimating the axial load may be provided.

この発明において、前記センサユニットを、タイヤ接地面に対して上下位置および左右位置となる前記固定側部材の外径面の上面部、下面部、右面部、および左面部に配置しても良い。
この構成の場合、固定側部材の外径面における上面部と下面部に配置される2個のセンサユニットの出力信号から垂直方向荷重Fz と軸方向荷重Fy を推定でき、固定側部材の外径面における右面部と左面部に配置される2個のセンサユニットの出力信号から駆動力や制動力による荷重Fx を推定できる。
In this invention, you may arrange | position the said sensor unit in the upper surface part of the outer diameter surface of the said fixed side member which becomes a vertical position and a left-right position with respect to a tire ground-contact surface, a lower surface part, a right surface part, and a left surface part.
In this configuration, the vertical load Fz and the axial load Fy can be estimated from the output signals of the two sensor units arranged on the upper surface and the lower surface on the outer diameter surface of the fixed member, and the outer diameter of the fixed member can be estimated. The load Fx caused by the driving force or the braking force can be estimated from the output signals of the two sensor units arranged on the right and left surfaces of the surface.

この発明において、前記センサユニットの歪み発生部材は、平面概形が帯状の薄板材からなるものしても良い。また、その歪み発生部材の側辺部に切欠き部を有するものとしても良い。この構成の場合、固定側部材の歪みが歪み発生部材に拡大して伝達されやすく、その歪みがセンサで感度良く検出され、その出力信号に生じるヒステリシスも小さくなり、荷重を精度良く推定できる。また、歪み発生部材の形状も簡単なものとなり、コンパクトで低コストなものとできる。   In the present invention, the strain generating member of the sensor unit may be made of a thin plate material having a belt-like general shape. Moreover, it is good also as what has a notch part in the side part of the distortion generating member. In the case of this configuration, the distortion of the fixed side member is easily transmitted to the distortion generating member, the distortion is detected with high sensitivity by the sensor, the hysteresis generated in the output signal is reduced, and the load can be estimated with high accuracy. Further, the shape of the strain generating member can be simplified, and it can be made compact and inexpensive.

この発明において、前記センサユニットの歪み発生部材は、前記固定側部材に作用する外力、またはタイヤと路面間に作用する作用力として、想定される最大の力が印加された状態においても塑性変形しないものとしても良い。想定される最大の力は、例えば、軸受に過大な荷重が作用しても、その荷重が除かれると、センサ系を除く軸受としての正常な機能が復元される範囲の最大の力である。想定される最大の力が印加された状態になるまでに塑性変形が生じると、固定側部材の変形がセンサユニットに正確に伝わらず、歪みの測定に影響を及ぼすので、想定される最大の力が印加された状態においても、塑性変形しないものとするのが望ましい。   In this invention, the strain generating member of the sensor unit is not plastically deformed even in a state where the assumed maximum force is applied as an external force acting on the stationary member or an acting force acting between the tire and the road surface. It is good as a thing. The assumed maximum force is, for example, the maximum force within a range in which a normal function as a bearing excluding the sensor system is restored even if an excessive load is applied to the bearing. If plastic deformation occurs before the assumed maximum force is applied, the deformation of the fixed side member is not accurately transmitted to the sensor unit and affects the strain measurement. It is desirable that plastic deformation does not occur even in a state where is applied.

この発明において、前記荷重推定手段の前段に、前記センサユニットのセンサの出力信号を補正する補正手段を設けても良い。
上記したように、センサユニットの設置位置を工夫することにより、センサユニットの出力信号は通過する転動体の影響を低減できるが、それでもその影響は残る。この場合のセンサユニットの出力信号は、その振幅が転動体の配列ピッチを周期として変化する波形となる。そこで、例えば、転動体の回転位置を検出する転動体検出手段を別に設け、前記補正手段として、前記転動体検出手段が検出する転動体位置に応じてセンサユニットの出力信号の振幅を増減補正するものとすれば、転動体の位置による影響を解消できる。
また、軸受回転による発熱や周辺環境などにより車輪用軸受の温度が変化すると、荷重が変化しなくても、センサユニットのセンサ出力信号は熱膨張などにより変動するので、検出された荷重に温度の影響が残る。そこで、車輪用軸受の温度またはその周辺温度に応じてセンサユニットのセンサ出力信号を補正する温度補正手段を設けると、温度による検出誤差を低減できる。
In this invention, you may provide the correction | amendment means which correct | amends the output signal of the sensor of the said sensor unit in the front | former stage of the said load estimation means.
As described above, by devising the installation position of the sensor unit, the output signal of the sensor unit can reduce the influence of the rolling elements that pass through, but the influence still remains. The output signal of the sensor unit in this case has a waveform whose amplitude changes with the arrangement pitch of the rolling elements as a period. Therefore, for example, a rolling element detection unit that detects the rotational position of the rolling element is provided separately, and the correction unit increases or decreases the amplitude of the output signal of the sensor unit according to the rolling element position detected by the rolling element detection unit. If it is assumed, the influence of the position of the rolling element can be eliminated.
In addition, if the temperature of the wheel bearing changes due to heat generated by the rotation of the bearing or the surrounding environment, the sensor output signal of the sensor unit fluctuates due to thermal expansion, etc., even if the load does not change. The effect remains. Therefore, by providing temperature correction means for correcting the sensor output signal of the sensor unit according to the temperature of the wheel bearing or its surrounding temperature, detection errors due to temperature can be reduced.

この発明において、さらに軸方向荷重の方向を判別する軸方向荷重方向判別手段を設けても良い。
センサユニットのセンサ出力信号から軸方向荷重を推定する場合、その方向を判別できない場合がある。そこで、センサユニットとは別に、軸方向荷重の方向を判別する軸方向荷重方向判別手段を設けると、軸方向荷重を正確に推定することができる。
In the present invention, an axial load direction determining means for determining the direction of the axial load may be further provided.
When estimating the axial load from the sensor output signal of the sensor unit, the direction may not be determined. Thus, if an axial load direction discriminating means for discriminating the direction of the axial load is provided separately from the sensor unit, the axial load can be accurately estimated.

この発明において、前記固定側部材はその周面にフランジを有し、前記軸方向荷重方向判別手段が、前記固定側材の周面とフランジに跨がって設けられるL字状の歪み発生部材と、この歪み発生部材に取付けられて歪み発生部材の歪みを検出するセンサとを有する方向判別センサであっても良い。   In this invention, the fixed side member has a flange on the peripheral surface thereof, and the axial load direction determining means is an L-shaped strain generating member provided across the peripheral surface of the fixed side member and the flange. And a direction discrimination sensor having a sensor attached to the strain generating member and detecting the strain of the strain generating member.

この発明のセンサ付車輪用軸受は、複列の転走面が内周に形成された外方部材と、前記転走面と対向する転走面が外周に形成された内方部材と、両部材の対向する転走面間に介在した複列の転動体とを備え、車体に対して車輪を回転自在に支持する車輪用軸受において、上記外方部材および内方部材のうちの固定側部材に接触して固定される2つ以上の接触固定部を有する歪み発生部材、およびこの歪み発生部材に取付けられてこの歪み発生部材の歪みを検出するセンサからなる1つ以上のセンサユニットを、その歪み発生部材が前記転動体の中心を通り転動体接触角をなす方向に延びる線分から外れた位置で、前記複列の転動体のうちのインボード側の転動体よりもさらにインボード側の位置に設けたため、転動体の影響を受けることなく、車輪用軸受やタイヤ接地面に作用する荷重を正確に検出できる。   The sensor-equipped wheel bearing according to the present invention includes an outer member having a double-row rolling surface formed on the inner periphery, an inner member having a rolling surface opposed to the rolling surface formed on the outer periphery, A wheel bearing comprising a double row rolling element interposed between opposing rolling surfaces of the member and rotatably supporting the wheel with respect to the vehicle body, wherein the fixed side member of the outer member and the inner member One or more sensor units each including a strain generating member having two or more contact fixing portions fixed in contact with the sensor, and a sensor attached to the strain generating member and detecting the strain of the strain generating member, A position on the inboard side further than the inboard side rolling element of the double row rolling elements at a position where the strain generating member deviates from a line segment passing through the center of the rolling element and forming a rolling element contact angle. Without being affected by rolling elements The load acting on the wheel support bearing and the tire contact surface can be accurately detected.

この発明の第1の実施形態を図1ないし図5と共に説明する。この実施形態は、第3世代型の内輪回転タイプで、駆動輪支持用の車輪用軸受に適用したものである。なお、この明細書において、車両に取付けた状態で車両の車幅方向の外側寄りとなる側をアウトボード側と呼び、車両の中央寄りとなる側をインボード側と呼ぶ。   A first embodiment of the present invention will be described with reference to FIGS. This embodiment is a third generation inner ring rotating type and is applied to a wheel bearing for driving wheel support. In this specification, the side closer to the outer side in the vehicle width direction of the vehicle when attached to the vehicle is referred to as the outboard side, and the side closer to the center of the vehicle is referred to as the inboard side.

このセンサ付車輪用軸受における軸受は、図1に断面図で示すように、内周に複列の転走面3を形成した外方部材1と、これら各転走面3に対向する転走面4を外周に形成した内方部材2と、これら外方部材1および内方部材2の転走面3,4間に介在した複列の転動体5とで構成される。この車輪用軸受は、複列のアンギュラ玉軸受型とされていて、転動体5はボールからなり、各列毎に保持器6で保持されている。上記転走面3,4は断面円弧状であり、ボール接触角が背面合わせとなるように形成されている。外方部材1と内方部材2との間の軸受空間の両端は、一対のシール7,8によってそれぞれ密封されている。   As shown in the sectional view of FIG. 1, the bearing for this sensor-equipped wheel bearing includes an outer member 1 in which a double row rolling surface 3 is formed on the inner periphery, and rolling facing each of these rolling surfaces 3. The inner member 2 has a surface 4 formed on the outer periphery, and the outer member 1 and the double row rolling elements 5 interposed between the rolling surfaces 3 and 4 of the inner member 2. This wheel bearing is a double-row angular ball bearing type, and the rolling elements 5 are made of balls and are held by a cage 6 for each row. The rolling surfaces 3 and 4 have an arc shape in cross section, and are formed so that the ball contact angle is aligned with the back surface. Both ends of the bearing space between the outer member 1 and the inner member 2 are sealed by a pair of seals 7 and 8, respectively.

外方部材1は固定側部材となるものであって、車体の懸架装置におけるナックル(図示せず)に取付ける車体取付用フランジ1aを外周に有し、全体が一体の部品とされている。フランジ1aには円周方向の複数箇所に車体取付用のねじ孔14が設けられ、インボード側よりナックルのボルト挿通孔に挿通したナックルボルト(図示せず)を前記ねじ孔14に螺合することにより、車体取付用フランジ1aがナックルに取付けられる。
内方部材2は回転側部材となるものであって、車輪取付用のハブフランジ9aを有するハブ輪9と、このハブ輪9の軸部9bのインボード側端の外周に嵌合した内輪10とでなる。これらハブ輪9および内輪10に、前記各列の転走面4が形成されている。ハブ輪9のインボード側端の外周には段差を持って小径となる内輪嵌合面12が設けられ、この内輪嵌合面12に内輪10が嵌合している。ハブ輪9の中心には貫通孔11が設けられている。ハブフランジ9aには、周方向複数箇所にハブボルト15の圧入孔16が設けられている。ハブ輪9のハブフランジ9aの根元部付近には、車輪および制動部品(図示せず)を案内する円筒状のパイロット部13がアウトボード側に突出している。
The outer member 1 is a fixed side member, and has a vehicle body mounting flange 1a attached to a knuckle (not shown) in the suspension device of the vehicle body on the outer periphery, and the whole is an integral part. The flange 1a is provided with screw holes 14 for mounting the vehicle body at a plurality of locations in the circumferential direction, and knuckle bolts (not shown) inserted into the bolt insertion holes of the knuckle from the inboard side are screwed into the screw holes 14. Thus, the vehicle body mounting flange 1a is attached to the knuckle.
The inner member 2 is a rotating side member, and includes a hub wheel 9 having a hub flange 9a for wheel mounting, and an inner ring 10 fitted to the outer periphery of the end portion on the inboard side of the shaft portion 9b of the hub wheel 9. And become. The hub wheel 9 and the inner ring 10 are formed with the rolling surfaces 4 of the respective rows. An inner ring fitting surface 12 having a small diameter with a step is provided on the outer periphery of the inboard side end of the hub wheel 9, and the inner ring 10 is fitted to the inner ring fitting surface 12. A through hole 11 is provided at the center of the hub wheel 9. The hub flange 9a is provided with press-fit holes 16 for hub bolts 15 at a plurality of locations in the circumferential direction. In the vicinity of the base portion of the hub flange 9a of the hub wheel 9, a cylindrical pilot portion 13 for guiding a wheel and a braking component (not shown) protrudes toward the outboard side.

図2は、この車輪用軸受の外方部材1をアウトボード側から見た正面図を示す。なお、図1は、図2におけるI−I矢視断面図を示す。外方部材1の車体取付用フランジ1aは、各ねじ孔14が設けられた円周方向部分が他の部分よりも外径側へ突出した突片1aaとされている。同図に示すように、固定側部材である外方部材1の外径面には、2つのセンサユニット20を1組とする2組のセンサユニット対19A,19Bが設けられている。各組のセンサユニット対19A,19Bの2つのセンサユニット20は、外方部材1の外径面の円周方向における180度の位相差をなす位置に配置される。ここでは、1組のセンサユニット対19Aを構成する2つのセンサユニット20が、タイヤ接地面に対して上下位置となる外方部材1の外径面の上面部および下面部の2箇所に設けられている。また,他の1組のセンサユニット対19Bを構成する2つのセンサユニット20が、タイヤ接地面に対して前後位置となる外方部材1の外径面における右面部および左面部の2箇所に設けられている。   FIG. 2 shows a front view of the outer member 1 of the wheel bearing as viewed from the outboard side. 1 shows a cross-sectional view taken along the line II in FIG. The vehicle body mounting flange 1a of the outer member 1 is a projecting piece 1aa in which a circumferential portion provided with each screw hole 14 protrudes to the outer diameter side from the other portion. As shown in the figure, two sensor unit pairs 19A and 19B, each having two sensor units 20 as one set, are provided on the outer diameter surface of the outer member 1 which is a fixed member. The two sensor units 20 of each pair of sensor units 19 </ b> A and 19 </ b> B are arranged at a position that forms a phase difference of 180 degrees in the circumferential direction of the outer diameter surface of the outer member 1. Here, the two sensor units 20 constituting one set of sensor unit pair 19A are provided at two locations on the upper surface portion and the lower surface portion of the outer diameter surface of the outer member 1 that are in the vertical position with respect to the tire ground contact surface. ing. Further, two sensor units 20 constituting another pair of sensor units 19B are provided at two locations on the right surface portion and the left surface portion of the outer diameter surface of the outer member 1 which are front and rear positions with respect to the tire ground contact surface. It has been.

センサユニット対19Aを構成する2つのセンサユニット20を、タイヤ接地面に対して上下位置となる外方部材1の外径面における上面部および下面部の2箇所に設けることで、車輪用軸受に作用する垂直方向の荷重Fz が検出される。また、センサユニット対19Bを構成する2つのセンサユニット20を、タイヤ接地面に対して前後位置となる外方部材1の外径面の右面部および左面部の2箇所に設けることで、駆動力や制動力となる荷重Fx が検出される。垂直方向の荷重Fz を検出するセンサユニット対19Aについては、外方部材1の外径面における上面部の、隣り合う2つの突片1aaの間の中央部に1つのセンサユニット20が配置され、外方部材1の外径面における下面部の、隣り合う2つの突片1aaの間の中央部に他の1つのセンサユニット20が配置される。   The two sensor units 20 constituting the sensor unit pair 19 </ b> A are provided at two locations on the outer diameter surface of the outer member 1 that is in the vertical position with respect to the tire ground contact surface, so that the wheel bearing is provided. The acting vertical load Fz is detected. Further, the two sensor units 20 constituting the sensor unit pair 19B are provided at two locations on the right surface portion and the left surface portion of the outer diameter surface of the outer member 1 which are front and rear positions with respect to the tire ground contact surface. And a load Fx as a braking force is detected. For the sensor unit pair 19A for detecting the vertical load Fz, one sensor unit 20 is disposed at the center between the two adjacent projecting pieces 1aa on the upper surface portion of the outer diameter surface of the outer member 1. Another sensor unit 20 is arranged at the center between the two adjacent projecting pieces 1aa on the lower surface portion of the outer diameter surface of the outer member 1.

これらのセンサユニット20は、図3および図4に拡大平面図および拡大断面図で示すように、歪み発生部材21と、この歪み発生部材21に取付けられて歪み発生部材21の歪みを検出する歪みセンサ22とでなる。歪み発生部材21は、鋼材等の弾性変形可能な金属製で2mm以下の薄板材からなり、平面概形が全長にわたり一定幅の帯状で中央の両側辺部に切欠き部21bを有する。また、歪み発生部材21は、外方部材1の外径面に接触固定される2つの接触固定部21aを両端部に有する。なお、歪み発生部材21の形状によっては、接触固定部21aを2つ以上有するものとしても良い。歪みセンサ22は、歪み発生部材21における各方向の荷重に対して歪みが大きくなる箇所に貼り付けられる。ここでは、その箇所として、歪み発生部材21の外面側で両側辺部の切欠き部21bで挟まれる中央部位が選ばれており、歪みセンサ22は切欠き部21b周辺の周方向の歪みを検出する。なお、歪み発生部材21は、固定側部材である外方部材1に作用する外力、またはタイヤと路面間に作用する作用力として、想定される最大の力が印加された状態においても、塑性変形しないものとするのが望ましい。塑性変形が生じると、外方部材1の変形がセンサユニット20に伝わらず、歪みの測定に影響を及ぼすからである。想定される最大の力は、例えば、軸受に過大な荷重が作用しても、その荷重が除かれると、センサ系を除く軸受としての正常な機能が復元される範囲の最大の力である。   3 and 4, the sensor unit 20 includes a strain generating member 21 and a strain that is attached to the strain generating member 21 and detects the strain of the strain generating member 21. The sensor 22 is used. The strain generating member 21 is made of an elastically deformable metal such as a steel material and is made of a thin plate material having a thickness of 2 mm or less, and the planar outline is a belt having a constant width over the entire length, and has notches 21b on both sides of the center. Further, the strain generating member 21 has two contact fixing portions 21 a that are fixed to the outer diameter surface of the outer member 1 at both ends. Note that, depending on the shape of the strain generating member 21, two or more contact fixing portions 21a may be provided. The strain sensor 22 is affixed to a location where the strain increases with respect to the load in each direction on the strain generating member 21. Here, as the location, the central portion sandwiched between the notch portions 21b on both sides is selected on the outer surface side of the strain generating member 21, and the strain sensor 22 detects the strain in the circumferential direction around the notch portion 21b. To do. Note that the strain generating member 21 is plastically deformed even in a state in which an assumed maximum force is applied as an external force acting on the outer member 1 that is a fixed member or an acting force acting between the tire and the road surface. It is desirable not to do so. This is because when plastic deformation occurs, the deformation of the outer member 1 is not transmitted to the sensor unit 20 and affects the measurement of strain. The assumed maximum force is, for example, the maximum force within a range in which a normal function as a bearing excluding the sensor system is restored even if an excessive load is applied to the bearing.

図1のように、前記センサユニット20は、その歪み発生部材21が前記転動体5の中心を通り転動体接触角をなす方向に延びる1点鎖線で示す線分Lから外れた位置で、複列の転動体5のうちのインボード側の転動体5よりもさらにインボード側の位置に設けられる。具体的には、外方部材1における車体取付用フランジ1aよりもインボード側の外径面にセンサユニット20が設けられる。   As shown in FIG. 1, the sensor unit 20 has a plurality of strain generating members 21 at positions deviating from a line segment L indicated by a one-dot chain line extending in a direction passing through the center of the rolling element 5 and forming a rolling element contact angle. It is provided at a position on the inboard side further than the rolling body 5 on the inboard side among the rolling elements 5 in the row. Specifically, the sensor unit 20 is provided on the outer diameter surface of the outer member 1 on the inboard side of the vehicle body mounting flange 1a.

また、図4のように、センサユニット20は、その歪み発生部材21の2つの接触固定部21aが、外方部材1の軸方向に同寸法の位置で、かつ互いに円周方向に離れた位置に来るように配置され、これら接触固定部21aがそれぞれスペーサ23を介してボルト24により外方部材1の外径面に固定される。これにより、センサユニット20の歪みセンサ22は、歪み発生部材21の切欠き部21b周辺における外方部材円周方向の歪みを検出することになる。前記各ボルト24は、それぞれ接触固定部21aに設けられた径方向に貫通するボルト挿通孔25からスペーサ23のボルト挿通孔26に挿通し、外方部材1の外周部に設けられたねじ孔27に螺合させる。このように、スペーサ23を介して外方部材1の外径面に接触固定部21aを固定することにより、薄板状である歪み発生部材21における切欠き部21bを有する中央部位が外方部材1の外径面から離れた状態となり、切欠き部21bの周辺の歪み変形が容易となる。外方部材1の外径面へセンサユニット20を安定良く固定する上で、外方部材1の外径面における前記歪み発生部材21の2つの接触固定部21aが接触固定される箇所には平坦部1bが形成されている。   Further, as shown in FIG. 4, the sensor unit 20 has a position where the two contact fixing portions 21 a of the strain generating member 21 are in the same dimension in the axial direction of the outer member 1 and are separated from each other in the circumferential direction. These contact fixing portions 21a are fixed to the outer diameter surface of the outer member 1 by bolts 24 through spacers 23, respectively. Thereby, the strain sensor 22 of the sensor unit 20 detects the strain in the outer member circumferential direction around the notch 21 b of the strain generating member 21. Each bolt 24 is inserted into a bolt insertion hole 26 of the spacer 23 from a bolt insertion hole 25 penetrating in the radial direction provided in the contact fixing portion 21 a, and a screw hole 27 provided in the outer peripheral portion of the outer member 1. Screwed on. In this way, by fixing the contact fixing portion 21a to the outer diameter surface of the outer member 1 via the spacer 23, the central portion having the notch portion 21b in the strain generating member 21 having a thin plate shape is the outer member 1. It becomes a state away from the outer diameter surface of the, and distortion deformation around the notch 21b becomes easy. In order to stably fix the sensor unit 20 to the outer diameter surface of the outer member 1, the portion where the two contact fixing portions 21a of the strain generating member 21 on the outer diameter surface of the outer member 1 are fixed in contact with each other is flat. Part 1b is formed.

歪みセンサ22としては、種々のものを使用することができる。例えば、歪みセンサ22を金属箔ストレインゲージで構成することができる。その場合、通常、歪み発生部材21に対しては接着による固定が行なわれる。また、歪みセンサ22を歪み発生部材21上に厚膜抵抗体にて形成することもできる。   Various strain sensors 22 can be used. For example, the strain sensor 22 can be composed of a metal foil strain gauge. In that case, the distortion generating member 21 is usually fixed by adhesion. The strain sensor 22 can also be formed on the strain generating member 21 with a thick film resistor.

センサユニット20の歪みセンサ22は荷重推定手段30に接続される。荷重推定手段30は、ここでは歪みセンサ22の出力信号により、車輪のタイヤと路面間の作用力を推定する手段であり、信号処理回路や補正回路などが含まれる。荷重推定手段30は、車輪のタイヤと路面間の作用力と歪みセンサ22の出力信号との関係を演算式またはテーブル等により設定した関係設定手段(図示せず)を有し、入力された歪みセンサ22の出力信号から前記関係設定手段を用いて作用力を出力する。前記関係設定手段の設定内容は、予め試験やシミュレーションで求めておいて設定する。   The strain sensor 22 of the sensor unit 20 is connected to the load estimation means 30. Here, the load estimating means 30 is a means for estimating the acting force between the tire of the wheel and the road surface based on the output signal of the strain sensor 22, and includes a signal processing circuit and a correction circuit. The load estimating means 30 has relation setting means (not shown) in which the relation between the acting force between the tire of the wheel and the road surface and the output signal of the distortion sensor 22 is set by an arithmetic expression or a table, etc. The acting force is output from the output signal of the sensor 22 using the relationship setting means. The setting contents of the relationship setting means are obtained by a test or simulation in advance.

車輪のタイヤと路面間に荷重が作用すると、車輪用軸受の固定側部材である外方部材1にも荷重が印加されて変形が生じる。センサユニット20の構成部材である歪み発生部材21の2つの接触固定部21aが外方部材1に接触固定されているので、外方部材1の歪みが歪み発生部材21に拡大して伝達され、その歪みが歪みセンサ22で検出され、その出力信号から荷重を推定できる。   When a load acts between the tire of the wheel and the road surface, the load is also applied to the outer member 1 that is a stationary member of the wheel bearing, causing deformation. Since the two contact fixing portions 21a of the strain generating member 21 which is a constituent member of the sensor unit 20 are fixed in contact with the outer member 1, the strain of the outer member 1 is transmitted to the strain generating member 21 in an enlarged manner, The strain is detected by the strain sensor 22, and the load can be estimated from the output signal.

また、センサユニット20の構成部材である歪み発生部材21の接触固定部21aを固定側部材である外方部材1にボルト24で固定しているので、外方部材1とセンサユニット20の間での滑りを抑えることができ、滑りに伴い歪みセンサ22の出力信号に歪みが生じるのを回避できる。   Further, since the contact fixing portion 21 a of the strain generating member 21 that is a constituent member of the sensor unit 20 is fixed to the outer member 1 that is a fixed member with the bolt 24, between the outer member 1 and the sensor unit 20. Thus, it is possible to prevent the output signal of the strain sensor 22 from being distorted.

従来例の説明でも述べたように、外方部材1は通過する転動体5の荷重で変形する。とくに、転動体5の中心を通り転動体接触角をなす方向に延びる線分L(図1)上では、転動体荷重による変形が大きい。すなわち、転動体荷重の影響を受け易い。このセンサ付車輪用軸受では、センサユニット20を、その歪み発生部材21が転動体5の中心を通り転動体接触角をなす方向に延びる線分Lから外れた位置で、複列の転動体5のうちのインボード側の転動体5よりもさらにインボード側の位置に設けているので、センサユニット20の歪み発生部材21はそれだけ転動体荷重の影響を受け難くなる。したがって、本来の荷重による外方部材1の変形をセンサユニット20で精度良く検出でき、その出力信号から車輪のタイヤと路面間に作用する荷重を荷重推定手段30により精度よく推定することができる。   As described in the description of the conventional example, the outer member 1 is deformed by the load of the rolling element 5 that passes therethrough. In particular, the deformation due to the rolling element load is large on a line segment L (FIG. 1) that extends in the direction that forms the contact angle of the rolling element through the center of the rolling element 5. That is, it is easily affected by the rolling element load. In this sensor-equipped wheel bearing, the double-row rolling elements 5 of the sensor unit 20 are separated from the line segment L in which the strain generating member 21 extends in the direction passing through the center of the rolling elements 5 to form the rolling element contact angle. Of these, the strain generating member 21 of the sensor unit 20 is less affected by the rolling element load. Therefore, the deformation of the outer member 1 due to the original load can be accurately detected by the sensor unit 20, and the load acting between the tire of the wheel and the road surface can be accurately estimated by the load estimating means 30 from the output signal.

上記説明では車輪のタイヤと路面間の作用力を検出する場合を示したが、車輪のタイヤと路面間の作用力だけでなく、車輪用軸受に作用する力(例えば予圧量)を検出するものとしても良い。
このセンサ付車輪用軸受から得られた検出荷重を自動車の車両制御に使用することにより、自動車の安定走行に寄与できる。また、このセンサ付車輪用軸受を用いると、車両にコンパクトに荷重センサを設置でき、量産性に優れたものとでき、コスト低減を図ることができる。
In the above description, the case where the acting force between the wheel tire and the road surface is detected is shown. However, not only the acting force between the wheel tire and the road surface but also the force acting on the wheel bearing (for example, the preload amount) is detected. It is also good.
By using the detected load obtained from the sensor-equipped wheel bearing for vehicle control of the automobile, it is possible to contribute to stable running of the automobile. In addition, when this sensor-equipped wheel bearing is used, a load sensor can be installed in a compact vehicle, the mass productivity can be improved, and the cost can be reduced.

また、この実施形態の場合、センサユニット20の歪み発生部材21は、平面概形が全長にわたり一定幅の帯状で側辺部に切欠き部21bを有する薄板材からなるので、外方部材1の歪みが歪み発生部材21に拡大して伝達され易く、その歪みが歪みセンサ22で感度良く検出され、その出力信号に生じるヒステリシスも小さくなり、荷重を精度良く推定できる。また、歪み発生部材21の形状も簡単なものとなり、コンパクトで低コストなものとでき量産性に優れたものとなる。   Further, in the case of this embodiment, the strain generating member 21 of the sensor unit 20 is made of a thin plate material having a flat shape with a constant width over the entire length and having a notch portion 21b on the side portion. Strain is easily transmitted to the strain generating member 21 in an enlarged manner, and the strain is detected by the strain sensor 22 with high sensitivity. Hysteresis generated in the output signal is also reduced, so that the load can be estimated with high accuracy. Further, the shape of the strain generating member 21 can be simplified, and it can be made compact and low-cost and excellent in mass productivity.

また、この実施形態では、固定側部材である外方部材1の外径面に、その周方向における180度の位相差をなす位置に配置されたセンサユニット20の2つを1組とする2組のセンサユニット対19A,19Bを設けているので、どのような荷重条件においても、荷重を精度良く推定することができる。すなわち、ある方向への荷重が大きくなると、転動体5と転走面3が接触している部分と接触していない部分が180度位相差で現れるため、その方向に合わせてセンサユニット20を180度位相差で設置すれば、どちらかのセンサユニット20には必ず転動体5を介して外方部材1に印加される荷重が伝達され、その荷重を歪みセンサ22により検出可能となる。   Further, in this embodiment, two sensor units 20 arranged at a position forming a phase difference of 180 degrees in the circumferential direction on the outer diameter surface of the outer member 1 which is a fixed side member are set as one set 2. Since the pair of sensor unit pairs 19A and 19B is provided, the load can be accurately estimated under any load condition. That is, when a load in a certain direction increases, a portion where the rolling element 5 and the rolling surface 3 are in contact with each other and a portion which is not in contact appear with a phase difference of 180 degrees. If it is installed with a phase difference, the load applied to the outer member 1 is always transmitted to one of the sensor units 20 via the rolling elements 5, and the load can be detected by the strain sensor 22.

図6ないし図8は、この発明の他の実施形態を示す。このセンサ付車輪用軸受では、図1〜図5の実施形態において、前記荷重推定手段30の前段に、センサユニット20の歪みセンサ22の出力信号を補正する補正手段31を設けている。また、外方部材1の内周には、インボード側列の転動体5の位置を検出する転動体検出手段40が設けられている。転動体検出手段40は複数の転動体センサ42を有し、前記補正手段31にはセンサユニット20の歪みセンサ22と前記転動体センサ42が接続される。その他の構成は図1〜図5に示す実施形態の場合と同様である。   6 to 8 show another embodiment of the present invention. In the sensor-equipped wheel bearing, in the embodiment shown in FIGS. 1 to 5, the correction means 31 for correcting the output signal of the strain sensor 22 of the sensor unit 20 is provided in the preceding stage of the load estimation means 30. In addition, on the inner periphery of the outer member 1, rolling element detection means 40 that detects the position of the rolling elements 5 in the inboard side row is provided. The rolling element detection unit 40 includes a plurality of rolling element sensors 42, and the correction unit 31 is connected to the strain sensor 22 of the sensor unit 20 and the rolling element sensor 42. Other configurations are the same as those of the embodiment shown in FIGS.

前記転動体検出手段40は外方部材1の内周に設けられ、図7(A),(B)に断面図および正面図で示すように、正面形状が軸受と同心の円弧状とされたセンサ支持部材41と、このセンサ支持部材41に取付けられた複数の転動体センサ42とでなる。センサ支持部材41は、外方部材1の内径面に嵌合する円筒部41aと、この円筒部41aの一端から内径側に延びる立板部41bとを有する断面L字状で、その立板部41bの周方向長さは、転動体5の配列ピッチPに相当する長さとされている。このセンサ支持部材41は、図6のように、その立板部41bがインボード側列の転走面4よりもインボード側の軸方向位置となり、インボード側列の転動体5と軸方向に対向するように外方部材1の内径面に取付けられる。複数の転動体センサ42は、図7(B)のように前記センサ支持部材41の立板部41bのアウトボード側を向く片面において、円周方向に等配して取付けられている。転動体センサ42としては、例えばホールセンサ、MRセンサ、MIセンサなどの磁気センサが使用され、その前面を転動体5が通過するのに伴う磁気変化を検出する。   The rolling element detecting means 40 is provided on the inner periphery of the outer member 1, and the front shape is an arc shape concentric with the bearing, as shown in the sectional view and the front view in FIGS. The sensor support member 41 and a plurality of rolling element sensors 42 attached to the sensor support member 41. The sensor support member 41 has an L-shaped cross section having a cylindrical portion 41a fitted to the inner diameter surface of the outer member 1 and a standing plate portion 41b extending from one end of the cylindrical portion 41a toward the inner diameter side. The circumferential length of 41b is a length corresponding to the arrangement pitch P of the rolling elements 5. As shown in FIG. 6, the sensor support member 41 has an upright plate portion 41 b positioned in the axial direction on the inboard side with respect to the rolling surface 4 in the inboard side row, and is axially aligned with the rolling elements 5 in the inboard side row Is attached to the inner diameter surface of the outer member 1 so as to face the outer surface. As shown in FIG. 7B, the plurality of rolling element sensors 42 are mounted on the one side of the sensor support member 41 facing the outboard side so as to be equally distributed in the circumferential direction. As the rolling element sensor 42, for example, a magnetic sensor such as a Hall sensor, MR sensor, or MI sensor is used, and a magnetic change accompanying the rolling element 5 passing through the front surface thereof is detected.

補正手段31は、転動体検出手段40が検出する転動体位置、つまり前記転動体センサ42の出力信号に基づき、センサユニット20の歪みセンサ22の出力信号を補正する手段である。
先述したように、センサユニット20の設置位置を工夫することにより、センサユニット20の歪みセンサ22の出力信号は通過する転動体5の影響を低減できるが、それでもその影響は残る。つまり、車輪用軸受の回転中には、センサユニット20の歪みセンサ22の出力信号の振幅に、図5に示す波形図のような周期的な変化が生じる。また、軸受の停止時においても、歪みセンサ22の出力信号は、転動体5の位置の影響を受ける。すなわち、図8(A),(B)のように転動体5がセンサユニット20における歪みセンサ22に最も近い位置を通過するとき(または、その位置に転動体5があるとき)、歪みセンサ22の出力信号の振幅は最大値となり、転動体5がその位置から遠ざかるにつれて(または、その位置から離れた位置に転動体5があるとき)低下する。軸受回転時には、転動体5は所定の配列ピッチPで前記センサユニット20の設置部の近傍を順次通過するので、歪みセンサ22の出力信号は、その振幅が転動体5の配列ピッチPを周期として図8(C)に実線で示すように周期的に変化する波形となる。そこで、前記補正手段31は、前記転動体検出手段40が検出する転動体位置に応じて、前記歪みセンサ22の出力信号を以下のように補正する。すなわち、例えば転動体5が歪みセンサ22に最も近い位置にあるときには、歪みセンサ22の出力信号の振幅(このとき最大値)を所定の最大値だけ減少補正する。歪みセンサ22に最も近い位置から±P/2離れた位置に転動体5があるときには、歪みセンサ22の出力信号の振幅(このとき最小値)を所定の最大量だけ増加補正する。転動体5が上記両位置の途中にあるときには、その位置に応じて直線補間等で、歪みセンサ22の出力信号の振幅を増減補正する。これにより、歪みセンサ22の出力信号の振幅は、図8(C)に鎖線で示すように補正され、転動体5の影響が解消される。
The correction means 31 is a means for correcting the output signal of the strain sensor 22 of the sensor unit 20 based on the rolling element position detected by the rolling element detection means 40, that is, the output signal of the rolling element sensor 42.
As described above, by devising the installation position of the sensor unit 20, the output signal of the strain sensor 22 of the sensor unit 20 can reduce the influence of the rolling element 5 that passes through, but the influence still remains. That is, during the rotation of the wheel bearing, a periodic change as shown in the waveform diagram of FIG. 5 occurs in the amplitude of the output signal of the strain sensor 22 of the sensor unit 20. Even when the bearing is stopped, the output signal of the strain sensor 22 is affected by the position of the rolling element 5. That is, when the rolling element 5 passes through the position closest to the strain sensor 22 in the sensor unit 20 as shown in FIGS. 8A and 8B (or when the rolling element 5 is at that position), the strain sensor 22. The output signal has a maximum amplitude and decreases as the rolling element 5 moves away from the position (or when the rolling element 5 is located away from the position). When the bearing rotates, the rolling elements 5 sequentially pass through the vicinity of the installation portion of the sensor unit 20 at a predetermined arrangement pitch P. Therefore, the output signal of the strain sensor 22 has an amplitude whose period is the arrangement pitch P of the rolling elements 5. As shown by a solid line in FIG. 8C, the waveform changes periodically. Therefore, the correction means 31 corrects the output signal of the strain sensor 22 as follows according to the rolling element position detected by the rolling element detection means 40. That is, for example, when the rolling element 5 is located closest to the strain sensor 22, the amplitude (maximum value at this time) of the output signal of the strain sensor 22 is corrected to decrease by a predetermined maximum value. When the rolling element 5 is located at a position ± P / 2 away from the position closest to the strain sensor 22, the amplitude of the output signal of the strain sensor 22 (at this time, the minimum value) is corrected to increase by a predetermined maximum amount. When the rolling element 5 is in the middle of both the positions, the amplitude of the output signal of the strain sensor 22 is corrected to increase or decrease by linear interpolation or the like according to the position. Thereby, the amplitude of the output signal of the strain sensor 22 is corrected as indicated by a chain line in FIG. 8C, and the influence of the rolling element 5 is eliminated.

センサユニット20の設置位置について工夫しても、センサユニット20の歪みセンサ22の出力信号には転動体5の位置の影響が残るが、この場合、転動体検出手段40の検出する転動体位置に基づき補正手段31が歪みセンサ22の出力信号を補正するので、軸受の回転時と停止時を問わず転動体5の位置による影響が解消される。これにより、荷重推定手段30では、車輪用軸受や、車輪のタイヤと路面間に作用する荷重(垂直方向荷重Fz ,駆動力や制動力となる荷重Fx ,軸方向荷重Fy )を精度良く推定できる。   Even if the installation position of the sensor unit 20 is devised, the influence of the position of the rolling element 5 remains in the output signal of the strain sensor 22 of the sensor unit 20, but in this case, the position of the rolling element detected by the rolling element detection means 40 is not detected. Since the correction means 31 corrects the output signal of the strain sensor 22 based on this, the influence of the position of the rolling element 5 is eliminated regardless of whether the bearing is rotating or stopped. As a result, the load estimating means 30 can accurately estimate the loads acting on the wheel bearings and the tires of the wheels and the road surface (vertical load Fz, load Fx serving as driving force and braking force, and axial load Fy). .

図9および図10は、この発明のさらに他の実施形態を示す。このセンサ付車輪用軸受では、図6〜図8の実施形態において、前記荷重推定手段30の前段に、補正手段として歪みセンサ22の出力信号を平均化する平均化処理手段33を設けている。また、軸受内における軸方向中間位置には、内方部材2の回転を検出する回転検出器43が設けられている。回転検出器43はラジアル型のものであって、パルサリング44と磁性体センサ45とで構成される。平均化処理手段33には、センサユニット20の歪みセンサ22と回転検出器43の磁性体センサ45が接続される。その他の構成は、図1〜図5に示した実施形態の場合と同様である。   9 and 10 show still another embodiment of the present invention. In this sensor-equipped wheel bearing, in the embodiment of FIGS. 6 to 8, an averaging processing means 33 that averages the output signal of the strain sensor 22 is provided as a correction means before the load estimation means 30. A rotation detector 43 that detects the rotation of the inner member 2 is provided at an intermediate position in the axial direction in the bearing. The rotation detector 43 is a radial type and includes a pulsar ring 44 and a magnetic sensor 45. The averaging processing means 33 is connected to the strain sensor 22 of the sensor unit 20 and the magnetic sensor 45 of the rotation detector 43. Other configurations are the same as those of the embodiment shown in FIGS.

回転検出器43は、内方部材1の外周に嵌合させたセンサターゲットであるパルサリング44と、外方部材1の内周に設けられ前記パルサリング44に対して径方向に対面する磁性体センサ45とで構成される。パルサリング44は、円周方向に磁極N,Sを並べた多極磁石であっても、ギヤ状の凹凸を円周方向に並べて形成した磁性体リング等、周方向に周期的な磁気変化を有するものであっても良い。磁性体センサ45は、内方部材2と一体に回転する前記パルサリング44の磁気変化を検出するものであり、ホールセンサ、MRセンサ、MIセンサなどが使用される。   The rotation detector 43 includes a pulsar ring 44 that is a sensor target fitted to the outer periphery of the inner member 1, and a magnetic sensor 45 that is provided on the inner periphery of the outer member 1 and faces the pulsar ring 44 in the radial direction. It consists of. Even if the pulsar ring 44 is a multipolar magnet in which the magnetic poles N and S are arranged in the circumferential direction, the pulsar ring 44 has a periodic magnetic change in the circumferential direction, such as a magnetic ring formed by arranging gear-shaped irregularities in the circumferential direction. It may be a thing. The magnetic sensor 45 detects a magnetic change of the pulsar ring 44 that rotates integrally with the inner member 2, and a Hall sensor, MR sensor, MI sensor, or the like is used.

平均化処理手段33は、転動体5が配列ピッチP分を公転する期間での歪みセンサ22の出力信号の振幅を図10(C)に鎖線で示すように平均化して、転動体5の影響を解消する。平均化処理手段33による平均化処理は、例えば以下のように行なわれる。先ず、回転検出器43の磁性体センサ45の出力信号から内方部材2の回転速度を演算し、演算した回転速度から、転動体5が配列ピッチPの区間を公転する所要時間Tを算出する。この所要時間T内に、所定の周期tでサンプリングした歪みセンサ22の出力信号の振幅値の相加平均を求める。なお、この場合のサンプリング周期tは前記所要時間Tに比べて十分短い値とする。   The averaging processing means 33 averages the amplitude of the output signal of the strain sensor 22 during the period in which the rolling elements 5 revolve around the arrangement pitch P as shown by the chain line in FIG. Is solved. The averaging process by the averaging processing unit 33 is performed as follows, for example. First, the rotational speed of the inner member 2 is calculated from the output signal of the magnetic sensor 45 of the rotation detector 43, and the required time T for the rolling elements 5 to revolve in the array pitch P is calculated from the calculated rotational speed. . Within this required time T, an arithmetic average of amplitude values of the output signal of the strain sensor 22 sampled at a predetermined period t is obtained. In this case, the sampling period t is sufficiently shorter than the required time T.

先述したように、歪みセンサ22の出力信号には、そのままでは転動体5の通過の影響が残るが、この場合、平均化処理手段33がその出力信号を平均化処理するので、転動体通過の影響が解消される。これにより、荷重推定手段30では、車輪用軸受や、車輪のタイヤと路面間に作用する荷重(垂直方向荷重Fz ,駆動力や制動力となる荷重Fx ,軸方向荷重Fy )を精度良く推定できる。   As described above, the output signal of the strain sensor 22 remains affected by the passage of the rolling element 5 as it is, but in this case, since the averaging processing means 33 averages the output signal, the output of the rolling element passes. The effect is eliminated. As a result, the load estimating means 30 can accurately estimate the loads acting on the wheel bearings and the tires of the wheels and the road surface (vertical load Fz, load Fx serving as driving force and braking force, and axial load Fy). .

図11は、この発明のさらに他の実施形態を示す。このセンサ付車輪用軸受では、図6〜図8の実施形態において、前記荷重推定手段30の前段に、補正手段として車輪用軸受の温度またはその周辺温度に応じて、センサユニット20の歪みセンサ22の出力信号を補正する温度補正手段34を設けている。また、外方部材1の外径面における各センサユニット20の設置部の近傍、あるいはセンサユニット20における歪み発生部材21の外面側に、温度センサ46が設けられている。温度センサ46としては、例えばサーミスタや白金抵抗素子を用いることができる。温度補正手段34には、センサユニット20の歪みセンサ22と温度センサ46が接続される。その他の構成は、図1〜図5に示した実施形態の場合と同様である。   FIG. 11 shows still another embodiment of the present invention. In the sensor-equipped wheel bearing, in the embodiment of FIGS. 6 to 8, the strain sensor 22 of the sensor unit 20 is arranged in front of the load estimating means 30 according to the temperature of the wheel bearing or its surrounding temperature as the correcting means. The temperature correction means 34 for correcting the output signal is provided. Further, a temperature sensor 46 is provided in the vicinity of the installation portion of each sensor unit 20 on the outer diameter surface of the outer member 1 or on the outer surface side of the strain generating member 21 in the sensor unit 20. As the temperature sensor 46, for example, a thermistor or a platinum resistance element can be used. The strain sensor 22 and the temperature sensor 46 of the sensor unit 20 are connected to the temperature correction unit 34. Other configurations are the same as those of the embodiment shown in FIGS.

温度補正手段34は、前記温度センサ46の出力信号に基づいて、対応するセンサユニット20の歪みセンサ22の出力信号を補正する。したがって、荷重推定手段30には、温度補正手段34によって補正された歪みセンサ22の出力信号が入力される。   The temperature correction unit 34 corrects the output signal of the strain sensor 22 of the corresponding sensor unit 20 based on the output signal of the temperature sensor 46. Therefore, the output signal of the strain sensor 22 corrected by the temperature correction unit 34 is input to the load estimation unit 30.

このように、この実施形態では、温度補正手段34が、外方部材1の外径面あるいはセンユニット20の歪み発生部材21に設けた温度センサ46の出力信号に応じて、歪みセンサ22の出力信号を補正するようにしているので、車輪用軸受やその周辺温度の測定値に応じて、歪みセンサ22の出力信号を補正することになり、荷重を精度良く推定できる。   Thus, in this embodiment, the temperature correction means 34 outputs the output of the strain sensor 22 according to the output signal of the temperature sensor 46 provided on the outer diameter surface of the outer member 1 or the strain generating member 21 of the sensor unit 20. Since the signal is corrected, the output signal of the strain sensor 22 is corrected in accordance with the measured values of the wheel bearing and its surrounding temperature, and the load can be estimated with high accuracy.

図12ないし図14は、この発明のさらに他の実施形態を示す。このセンサ付車輪用軸受では、図1〜図5の実施形態において、荷重推定手段30で推定される軸方向荷重Fy の方向を判別する手段である方向判別センサ47が設けられている。この方向判別センサ47は、歪み発生部材56と、この歪み発生部材56に取付けられて歪み発生部材56の歪みを検出するセンサ57を有するセンサユニット55を、外方部材1に固定したものである。   12 to 14 show still another embodiment of the present invention. In this sensor-equipped wheel bearing, in the embodiment shown in FIGS. 1 to 5, a direction discriminating sensor 47 which is a means for discriminating the direction of the axial load Fy estimated by the load estimating unit 30 is provided. This direction determination sensor 47 is a sensor unit 55 having a strain generating member 56 and a sensor 57 attached to the strain generating member 56 and detecting the strain of the strain generating member 56 fixed to the outer member 1. .

方向判別センサ47の歪み発生部材56は、図13に拡大して示すように、鋼材等の金属材からなる板材をL字状に折り曲げて形成され、外方部材1のフランジ1aにおけるねじ孔14の近傍のアウトボード側を向く側面に対向する径方向片56aと、外方部材1の外径面に対向する軸方向片56bとを有する。センサ57は径方向片56aの片面に固定される。この歪み発生部材56は、スペーサ58A,58Bを介して外方部材1の外周部に、ボルト59,60で締結される。すなわち、径方向片56aに形成されたボルト挿通孔61からスペーサ58Aのボルト挿通孔62に挿通させたボルト59を、外方部材1のフランジ1aにおける車体取付用のねじ孔14の近傍に設けられたねじ孔63に螺合させる。また、軸方向片56bに形成されたボルト挿通孔64から別のスペーサ58Bのボルト挿通孔65に挿通させたボルト60を、外方部材1の外径面に設けられたねじ孔66に螺合させる。これにより、歪み発生部材56が外方部材1に締結される。   As shown in an enlarged view in FIG. 13, the distortion generating member 56 of the direction determination sensor 47 is formed by bending a plate material made of a metal material such as a steel material into an L shape, and the screw hole 14 in the flange 1 a of the outer member 1. , A radial piece 56a that faces the side surface facing the outboard side, and an axial piece 56b that faces the outer diameter surface of the outer member 1. The sensor 57 is fixed to one surface of the radial piece 56a. The strain generating member 56 is fastened by bolts 59 and 60 to the outer peripheral portion of the outer member 1 through spacers 58A and 58B. That is, the bolt 59 inserted from the bolt insertion hole 61 formed in the radial piece 56a into the bolt insertion hole 62 of the spacer 58A is provided in the vicinity of the vehicle body mounting screw hole 14 in the flange 1a of the outer member 1. The screw hole 63 is screwed. Further, the bolt 60 inserted through the bolt insertion hole 65 of another spacer 58B from the bolt insertion hole 64 formed in the axial piece 56b is screwed into the screw hole 66 provided on the outer diameter surface of the outer member 1. Let Thereby, the distortion generating member 56 is fastened to the outer member 1.

方向判別センサ47の設置部位は、軸方向荷重Fy に対して変形量が大きいが、垂直方向荷重Fz や駆動力・制動力による荷重Fx のような径方向荷重に対して変形量の小さい部位である。この部位に設置すると、方向判別センサ47に作用する力が圧縮力と引っ張り力で切り替わるため、例えばその出力信号の大小判別を所定のしきい値に対して行なえば、軸方向荷重Fy の方向を判別することができる。方向判別センサ47の出力信号は、荷重推定手段30に入力され、その入力信号から荷重推定手段30は軸方向荷重Fy の方向を判別する。   The location of the direction determination sensor 47 is large in the amount of deformation with respect to the axial load Fy, but is small in the amount of deformation with respect to the radial load such as the vertical load Fz and the load Fx due to the driving force / braking force. is there. When installed at this location, the force acting on the direction discrimination sensor 47 is switched between the compression force and the pulling force. Therefore, for example, if the magnitude of the output signal is determined with respect to a predetermined threshold value, the direction of the axial load Fy is changed. Can be determined. The output signal of the direction determination sensor 47 is input to the load estimation means 30, and the load estimation means 30 determines the direction of the axial load Fy from the input signal.

この発明の一実施形態にかかるセンサ付車輪用軸受の断面図とその検出系の概念構成のブロック図とを組み合わせて示す図である。It is a figure showing combining the sectional view of the wheel bearing with a sensor concerning one embodiment of this invention, and the block diagram of the conceptual composition of the detection system. 同センサ付車輪用軸受の外方部材の正面図である。It is a front view of the outward member of the wheel bearing with a sensor. 同センサ付車輪用軸受におけるセンサユニットの拡大平面図である。It is an enlarged plan view of a sensor unit in the wheel bearing with sensor. 図3におけるIV−IV矢視断面図である。FIG. 4 is a cross-sectional view taken along arrow IV-IV in FIG. 3. 同センサ付車輪用軸受におけるセンサユニットの出力信号の波形図である。It is a wave form diagram of the output signal of the sensor unit in the bearing for wheels with the sensor. この発明の他の実施形態にかかるセンサ付車輪用軸受の断面図とその検出系の概念構成のブロック図とを組み合わせて示す図である。It is a figure showing combining the sectional view of the wheel bearing with a sensor concerning other embodiments of this invention, and the block diagram of the conceptual composition of the detection system. (A)は同センサ付車輪用軸受における転動体検出手段の断面図、(B)は同正面図である。(A) is sectional drawing of the rolling element detection means in the wheel bearing with a sensor, (B) is the same front view. センサユニットの出力信号に対する転動体位置の影響の説明図である。It is explanatory drawing of the influence of a rolling-element position with respect to the output signal of a sensor unit. この発明のさらに他の実施形態にかかるセンサ付車輪用軸受の断面図とその検出系の概念構成のブロック図とを組み合わせて示す図である。It is a figure which combines and shows the sectional view of the wheel bearing with a sensor concerning further another embodiment of this invention, and the block diagram of the conceptual structure of the detection system. センサユニットの出力信号に対する転動体公転の影響の説明図である。It is explanatory drawing of the influence of rolling element revolution with respect to the output signal of a sensor unit. この発明のさらに他の実施形態にかかるセンサ付車輪用軸受の断面図とその検出系の概念構成のブロック図とを組み合わせて示す図である。It is a figure which combines and shows the sectional view of the wheel bearing with a sensor concerning further another embodiment of this invention, and the block diagram of the conceptual structure of the detection system. この発明のさらに他の実施形態にかかるセンサ付車輪用軸受の断面図とその検出系の概念構成のブロック図とを組み合わせて示す図である。It is a figure which combines and shows the sectional view of the wheel bearing with a sensor concerning further another embodiment of this invention, and the block diagram of the conceptual structure of the detection system. 図12の一部拡大断面図である。It is a partially expanded sectional view of FIG. 同センサ付車輪用軸受の外方部材の正面図である。It is a front view of the outward member of the wheel bearing with a sensor.

符号の説明Explanation of symbols

1…外方部材
1a…車体取付用フランジ
2…内方部材
3,4…転走面
5…転動体
20…センサユニット
21…歪み発生部材
21a…接触固定部
21b…切欠き部
22…歪みセンサ
30…荷重推定手段
31…補正手段
33…平均化処理手段(補正手段)
34…温度補正手段
47…方向判別センサ(軸方向荷重方向判別手段)
56…歪み発生部材
57…センサ
DESCRIPTION OF SYMBOLS 1 ... Outer member 1a ... Body mounting flange 2 ... Inner members 3, 4 ... Rolling surface 5 ... Rolling body 20 ... Sensor unit 21 ... Strain generating member 21a ... Contact fixing | fixed part 21b ... Notch part 22 ... Strain sensor 30 ... Load estimation means 31 ... Correction means 33 ... Averaging processing means (correction means)
34 ... Temperature correction means 47 ... Direction discrimination sensor (Axial load direction discrimination means)
56 ... Strain generating member 57 ... Sensor

Claims (11)

複列の転走面が内周に形成された外方部材と、前記転走面と対向する転走面が外周に形成された内方部材と、両部材の対向する転走面間に介在した複列の転動体とを備え、車体に対して車輪を回転自在に支持する車輪用軸受において、
上記外方部材および内方部材のうちの固定側部材に接触して固定される2つ以上の接触固定部を有する歪み発生部材、およびこの歪み発生部材に取付けられてこの歪み発生部材の歪みを検出するセンサからなる1つ以上のセンサユニットを、その歪み発生部材が前記転動体の中心を通り転動体接触角をなす方向に延びる線分から外れた位置で、前記複列の転動体のうちのインボード側の転動体よりもさらにインボード側の位置に設けたことを特徴とするセンサ付車輪用軸受。
An outer member having a double row rolling surface formed on the inner periphery, an inner member having a rolling surface facing the rolling surface formed on the outer periphery, and interposed between the opposing rolling surfaces of both members A double row rolling element, and a wheel bearing for rotatably supporting the wheel with respect to the vehicle body,
The strain generating member having two or more contact fixing portions fixed in contact with the fixed side member of the outer member and the inner member, and the strain generating member attached to the strain generating member One or more sensor units composed of sensors to be detected are arranged at positions where the strain generating member is out of a line segment extending in a direction passing through the center of the rolling element and forming a rolling element contact angle. A sensor-equipped wheel bearing, wherein the bearing for a wheel is provided at a position closer to the inboard side than the rolling element on the inboard side.
請求項1において、前記固定側部材は前記外方部材であるセンサ付車輪用軸受。   The sensor-equipped wheel bearing according to claim 1, wherein the fixed-side member is the outer member. 請求項1または請求項2において、前記センサユニットを複数としたセンサ付車輪用軸受。   The sensor-equipped wheel bearing according to claim 1 or 2, wherein a plurality of the sensor units are provided. 請求項1ないし請求項3のいずれか1項において、前記センサユニットを少なくとも3つ以上設け、これらのセンサユニットのセンサの出力信号から車輪用軸受もしくはタイヤの径方向に作用する径方向荷重および車輪用軸受もしくはタイヤの軸方向に作用する軸方向荷重を推定する荷重推定手段を設けたセンサ付車輪用軸受。   4. The radial load and the wheel according to claim 1, wherein at least three sensor units are provided, and a radial load and a wheel acting in a radial direction of a wheel bearing or a tire from an output signal of a sensor of these sensor units are provided. Bearing for sensor or wheel bearing provided with load estimating means for estimating axial load acting in the axial direction of the bearing or tire. 請求項1ないし請求項4のいずれか1項において、前記センサユニットを、タイヤ接地面に対して上下位置および左右位置となる前記固定側部材の外径面の上面部、下面部、右面部、および左面部に配置したセンサ付車輪用軸受。   5. The sensor unit according to claim 1, wherein the sensor unit is an upper surface portion, a lower surface portion, a right surface portion of an outer diameter surface of the fixed side member that is in a vertical position and a horizontal position with respect to a tire ground contact surface. And a wheel bearing with sensor arranged on the left side. 請求項1ないし請求項5のいずれか1項において、前記センサユニットの歪み発生部材は、平面概形が帯状の薄板材からなるセンサ付車輪用軸受。   6. The sensor-equipped wheel bearing according to claim 1, wherein the strain generating member of the sensor unit is a thin plate material having a planar shape in a strip shape. 請求項6において、前記歪み発生部材は側辺部に切欠き部を有するセンサ付車輪用軸受。   The sensor-equipped wheel bearing according to claim 6, wherein the strain generating member has a notch portion on a side portion. 請求項1ないし請求項7のいずれか1項において、前記センサユニットの歪み発生部材は、前記固定側部材に作用する外力、またはタイヤと路面間に作用する作用力として、想定される最大の力が印加された状態においても塑性変形しないものとしたセンサ付車輪用軸受。   The distortion generating member of the sensor unit according to any one of claims 1 to 7, wherein a maximum force that is assumed as an external force that acts on the stationary member or an acting force that acts between the tire and a road surface. A bearing for a wheel with a sensor which is not plastically deformed even in a state where a pressure is applied. 請求項4ないし請求項8のいずれか1項において、前記荷重推定手段の前段に、前記センサユニットのセンサの出力信号を補正する補正手段を設けたセンサ付車輪用軸受。   9. The sensor-equipped wheel bearing according to any one of claims 4 to 8, wherein correction means for correcting an output signal of the sensor of the sensor unit is provided before the load estimation means. 請求項4ないし請求項9のいずれか1項において、さらに軸方向荷重の方向を判別する軸方向荷重方向判別手段を設けたセンサ付車輪用軸受。   10. The sensor-equipped wheel bearing according to any one of claims 4 to 9, further comprising an axial load direction discriminating means for discriminating an axial load direction. 請求項10において、前記固定側部材はその周面にフランジを有し、前記軸方向荷重方向判別手段が、前記固定側材の周面とフランジに跨がって設けられるL字状の歪み発生部材と、この歪み発生部材に取付けられて歪み発生部材の歪みを検出するセンサとを有する方向判別センサであるセンサ付車輪用軸受。   11. The L-shaped distortion generation according to claim 10, wherein the fixed-side member has a flange on a peripheral surface thereof, and the axial load direction determining means is provided across the peripheral surface of the fixed-side material and the flange. A sensor-equipped wheel bearing, which is a direction determination sensor having a member and a sensor that is attached to the strain generating member and detects the strain of the strain generating member.
JP2008302297A 2008-11-17 2008-11-27 Sensor equipped bearing for wheel Pending JP2010127376A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2008302297A JP2010127376A (en) 2008-11-27 2008-11-27 Sensor equipped bearing for wheel
EP09825890.8A EP2360384A4 (en) 2008-11-17 2009-11-10 Sensor-equipped bearing for wheel
PCT/JP2009/005971 WO2010055636A1 (en) 2008-11-17 2009-11-10 Sensor-equipped bearing for wheel
CN200980145679.0A CN102216635B (en) 2008-11-17 2009-11-10 With the wheel bearing of sensor
KR1020117010930A KR101596398B1 (en) 2008-11-17 2009-11-10 Sensor-equipped bearing for wheel
US13/067,134 US8578791B2 (en) 2008-11-17 2011-05-11 Sensor-equipped bearing for wheel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008302297A JP2010127376A (en) 2008-11-27 2008-11-27 Sensor equipped bearing for wheel

Publications (1)

Publication Number Publication Date
JP2010127376A true JP2010127376A (en) 2010-06-10

Family

ID=42327921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008302297A Pending JP2010127376A (en) 2008-11-17 2008-11-27 Sensor equipped bearing for wheel

Country Status (1)

Country Link
JP (1) JP2010127376A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012033018A1 (en) * 2010-09-10 2012-03-15 Ntn株式会社 Sensor-equipped bearing for wheel
JP2012058141A (en) * 2010-09-10 2012-03-22 Ntn Corp Wheel bearing with sensor
WO2020255861A1 (en) * 2019-06-21 2020-12-24 ミネベアミツミ株式会社 Rolling bearing, rotation device, bearing monitoring device, and bearing monitoring method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012033018A1 (en) * 2010-09-10 2012-03-15 Ntn株式会社 Sensor-equipped bearing for wheel
JP2012058141A (en) * 2010-09-10 2012-03-22 Ntn Corp Wheel bearing with sensor
US9518609B2 (en) 2010-09-10 2016-12-13 Ntn Corporation Wheel bearing with sensor
WO2020255861A1 (en) * 2019-06-21 2020-12-24 ミネベアミツミ株式会社 Rolling bearing, rotation device, bearing monitoring device, and bearing monitoring method
JP2021001661A (en) * 2019-06-21 2021-01-07 ミネベアミツミ株式会社 Rolling bearing, rotary device, bearing monitoring device and bearing monitoring method

Similar Documents

Publication Publication Date Title
JP5274343B2 (en) Wheel bearing with sensor
WO2010055636A1 (en) Sensor-equipped bearing for wheel
JP2010096565A (en) Bearing for wheel with sensor
JP5100567B2 (en) Wheel bearing with sensor
JP5153373B2 (en) Wheel bearing with sensor
JP5094457B2 (en) Wheel bearing with sensor
JP5063270B2 (en) Wheel bearing with sensor
JP5268756B2 (en) Wheel bearing with sensor
JP2009192389A (en) Wheel bearing with sensor
JP2010127376A (en) Sensor equipped bearing for wheel
JP5268755B2 (en) Wheel bearing with sensor
JP5142683B2 (en) Wheel bearing with sensor
JP2010230406A (en) Wheel bearing with sensor
JP2010121745A (en) Wheel bearing with sensor
JP5085290B2 (en) Wheel bearing with sensor
JP5300429B2 (en) Wheel bearing with sensor
JP5072608B2 (en) Wheel bearing with sensor
JP2010101720A (en) Wheel bearing with sensor
JP5072551B2 (en) Wheel bearing with sensor
JP5264206B2 (en) Wheel bearing with sensor
JP5224805B2 (en) Wheel bearing with sensor
JP5489929B2 (en) Wheel bearing with sensor
JP2010243190A (en) Wheel bearing with sensor
JP2009185888A (en) Wheel bearing with sensor
JP2011085439A (en) Wheel bearing with sensor