JP2009185888A - Wheel bearing with sensor - Google Patents

Wheel bearing with sensor Download PDF

Info

Publication number
JP2009185888A
JP2009185888A JP2008025990A JP2008025990A JP2009185888A JP 2009185888 A JP2009185888 A JP 2009185888A JP 2008025990 A JP2008025990 A JP 2008025990A JP 2008025990 A JP2008025990 A JP 2008025990A JP 2009185888 A JP2009185888 A JP 2009185888A
Authority
JP
Japan
Prior art keywords
sensor
load
wheel bearing
rolling
rolling element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008025990A
Other languages
Japanese (ja)
Inventor
Hiroshi Isobe
浩 磯部
Kentaro Nishikawa
健太郎 西川
Toru Takahashi
亨 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2008025990A priority Critical patent/JP2009185888A/en
Publication of JP2009185888A publication Critical patent/JP2009185888A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wheel bearing with a sensor accurately detecting a load on a wheel without being influenced by rolling elements. <P>SOLUTION: The wheel baring has the rolling elements 5 laid between opposed double row rolling surfaces 3, 4 of an outward member 1 and an inward member 2. It comprises a load detecting means 20 provided fixed-side one of the outward member 1 and the inward member 2 for detecting a load on the wheel bearing, a rolling element detecting means 40 for detecting the positions of the rolling elements, and a correcting means 30 for correcting an output signal from the load detecting means 20 in accordance with the positions of the rolling elements detected by the rolling element detecting means 40. Herein, an estimating means 31 is provided for estimating a load on a tire grounding surface or a load on the wheel bearing from the output signal from the load detecting means 20, corrected by the correcting means 30. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、車輪の軸受部にかかる荷重を検出する荷重センサを内蔵したセンサ付車輪用軸受に関する。   The present invention relates to a sensor-equipped wheel bearing with a built-in load sensor for detecting a load applied to a bearing portion of the wheel.

自動車の各車輪にかかる荷重を検出する技術として、車輪用軸受の固定輪である外輪のフランジ部外径面の歪みを検出することにより荷重を検出するセンサ付車輪用軸受が提案されている(例えば特許文献1)。また、車輪用軸受の外輪に歪みゲージを貼り付け、歪みを検出するようにした車輪用軸受も提案されている(例えば特許文献2)。   As a technique for detecting a load applied to each wheel of an automobile, a sensor-equipped wheel bearing that detects a load by detecting a distortion of an outer diameter surface of a flange portion of an outer ring that is a fixed ring of a wheel bearing has been proposed ( For example, Patent Document 1). There has also been proposed a wheel bearing in which a strain gauge is attached to the outer ring of the wheel bearing to detect the strain (for example, Patent Document 2).

さらに、歪み発生部材およびこの歪み発生部材に取付けた歪みセンサからなるセンサユニットを軸受の固定輪に取付け、前記歪み発生部材は、前記固定輪に対して少なくとも2箇所の接触固定部を有し、隣り合う接触固定部の間で少なくとも1箇所に切欠き部を有し、この切欠き部に前記歪みセンサを配置したセンサ付車輪用軸受が提案されている(例えば特許文献3)。   Furthermore, a sensor unit comprising a strain generating member and a strain sensor attached to the strain generating member is attached to a fixed ring of the bearing, and the strain generating member has at least two contact fixing portions with respect to the fixed ring, A sensor-equipped wheel bearing has been proposed that has at least one notch portion between adjacent contact fixing portions, and the strain sensor is disposed in the notch portion (for example, Patent Document 3).

特許文献3に開示のセンサ付車輪用軸受によると、車両走行に伴い回転輪に荷重が加わったとき、転動体を介して固定輪が変形するので、その変形がセンサユニットに歪みをもたらす。センサユニットに設けられた歪みセンサは、センサユニットの歪みを検出する。歪みと荷重の関係を予め実験やシミュレーションで求めておけば、歪みセンサの出力から車輪にかかる荷重等を検出することができる。
特開2002−098138号公報 特表2003−530565号公報 特開2007−57299号公報
According to the sensor-equipped wheel bearing disclosed in Patent Document 3, when a load is applied to the rotating wheel as the vehicle travels, the fixed wheel is deformed via the rolling elements, and this deformation causes distortion of the sensor unit. The strain sensor provided in the sensor unit detects the strain of the sensor unit. If the relationship between strain and load is obtained in advance through experiments and simulations, the load applied to the wheel can be detected from the output of the strain sensor.
JP 2002-098138 A Special table 2003-530565 gazette JP 2007-57299 A

特許文献1に開示の技術では、固定輪のフランジ部の変形により発生する歪みを検出している。しかし、固定輪のフランジ部の変形には、フランジ面とナックル面の間に、静止摩擦力を超える力が作用した場合に滑りが伴うため、繰返し荷重を印加すると、出力信号にヒステリシスが発生するといった問題がある。
例えば、車輪用軸受に対してある方向の荷重が大きくなる場合、固定輪フランジ面とナックル面の間は、最初は荷重よりも静止摩擦力の方が大きいため滑らないが、ある大きさを超えると静止摩擦力に打ち勝って滑るようになる。その状態で荷重を小さくしていくと、やはり最初は静止摩擦力により滑らないが、ある大きさになると滑るようになる。その結果、この変形が生じる部分で荷重を推定しようとすると、出力信号に図13のようなヒステリシスが生じる。ヒステリシスが生じると、検出分解能が低下する。
また、特許文献2に開示のように、外輪に歪みゲージを貼り付けるのでは、組立性に問題がある。
また、特許文献3に開示のセンサ付車輪用軸受では、車輪用軸受の転動体がセンサユニットの設置部の近傍を通過する毎にセンサユニットの出力信号の振幅が大きくなる。すなわち、センサユニットの出力信号が転動体の影響を受けた周期的な波形となり、荷重を精度良く検出できない。
In the technique disclosed in Patent Document 1, distortion generated by deformation of the flange portion of the fixed ring is detected. However, the deformation of the flange portion of the fixed ring involves slipping when a force exceeding the static friction force is applied between the flange surface and the knuckle surface, so that hysteresis is generated in the output signal when repeated loads are applied. There is a problem.
For example, when the load in a certain direction with respect to the wheel bearing increases, the static friction force between the fixed ring flange surface and the knuckle surface does not slip at first, but exceeds a certain size. And it comes to slip over the static friction force. If the load is reduced in that state, it will not slip due to static friction force at first, but it will slip when it reaches a certain size. As a result, when an attempt is made to estimate the load in the portion where this deformation occurs, hysteresis as shown in FIG. 13 occurs in the output signal. When hysteresis occurs, the detection resolution decreases.
Further, as disclosed in Patent Document 2, there is a problem in assembling if the strain gauge is attached to the outer ring.
Moreover, in the wheel bearing with sensor disclosed in Patent Document 3, the amplitude of the output signal of the sensor unit increases every time the rolling element of the wheel bearing passes near the installation portion of the sensor unit. That is, the output signal of the sensor unit has a periodic waveform affected by the rolling elements, and the load cannot be detected with high accuracy.

この発明の目的は、転動体の影響を受けることなく、車輪用軸受やタイヤ接地面に作用する荷重を正確に検出できるセンサ付車輪用軸受を提供することである。   An object of the present invention is to provide a wheel bearing with a sensor that can accurately detect a load acting on a wheel bearing or a tire ground contact surface without being affected by rolling elements.

この発明のセンサ付車輪用軸受は、複列の転走面が内周に形成された外方部材と、前記転走面と対向する転走面が外周に形成された内方部材と、両部材の対向する転走面間に介在した複列の転動体とを備え、車体に対して車輪を回転自在に支持する車輪用軸受において、上記外方部材および内方部材のうちの固定側部材に設けられ、車輪用軸受に作用する荷重を検出する荷重検出手段と、前記転動体の位置を検出する転動体検出手段と、この転動体検出手段が検出する転動体位置に基づき前記荷重検出手段の出力信号を補正する補正手段と、この補正手段で補正された前記荷重検出手段の出力信号からタイヤ接地面に作用する荷重もしくは車輪用軸受に作用する荷重を推定する推定手段とを設けたことを特徴とする。
車輪用軸受や、車輪のタイヤと路面間に荷重が作用すると、車輪用軸受の固定側部材(例えば外方部材)にも荷重が印加されて変形が生じ、その変形から荷重検出手段が荷重を検出する。荷重検出手段の出力信号は、そのままでは転動体の通過の影響を受けるが、転動体検出手段が検出する転動体位置に基づき補正手段が前記荷重検出手段の出力信号を補正するので、転動体通過の影響が解消される。これにより、推定手段では、転動体の影響を受けることなく、しかも停止時においても、車輪用軸受や、車輪のタイヤと路面間に作用する荷重(垂直方向荷重Fz ,駆動力や制動力となる荷重Fx ,軸方向荷重Fy )を精度良く推定できる。
The sensor-equipped wheel bearing according to the present invention includes an outer member having a double-row rolling surface formed on the inner periphery, an inner member having a rolling surface opposed to the rolling surface formed on the outer periphery, A wheel bearing comprising a double row rolling element interposed between opposing rolling surfaces of the member and rotatably supporting the wheel with respect to the vehicle body, wherein the fixed side member of the outer member and the inner member The load detecting means for detecting the load acting on the wheel bearing, the rolling element detecting means for detecting the position of the rolling element, and the load detecting means based on the rolling element position detected by the rolling element detecting means Correction means for correcting the output signal, and estimation means for estimating the load acting on the tire ground contact surface or the load acting on the wheel bearing from the output signal of the load detection means corrected by the correction means. It is characterized by.
When a load acts between a wheel bearing or a wheel tire and a road surface, the load is also applied to a stationary member (for example, an outer member) of the wheel bearing to cause deformation, and the load detection means applies the load from the deformation. To detect. The output signal of the load detection means is affected by the passage of the rolling element as it is, but the correction means corrects the output signal of the load detection means based on the position of the rolling element detected by the rolling element detection means. The effect of is eliminated. As a result, the estimation means becomes a load (vertical load Fz, driving force or braking force) that acts between the wheel bearing and the tire of the wheel and the road surface even when stopped without being affected by the rolling elements. The load Fx and the axial load Fy) can be accurately estimated.

この発明において、前記転動体検出手段は、保持器に設けられた被検出部と、前記固定側部材に設けられ前記被検出部を検出する検出部とでなるものであっても良い。
このように、転動体の位置を検出する転動体検出手段を、転動体と公転速度が同じである保持器に設けられた被検出部と、固定側部材に設けられ前記被検出部を検出する検出部とで構成すると、転動体の位置検出が容易となる。
In this invention, the said rolling element detection means may be comprised with the to-be-detected part provided in the holder | retainer, and the detection part which is provided in the said fixed side member and detects the said to-be-detected part.
In this way, the rolling element detection means for detecting the position of the rolling element detects the detected part provided in the cage having the same revolution speed as the rolling element and the detected part provided in the fixed member. If comprised with a detection part, the position detection of a rolling element will become easy.

この発明において、前記被検出部が複数の磁極N,Sを交互に周方向に等配した磁気エンコーダからなり、前記検出部が前記磁気エンコーダの磁極対を1周期として電気角で90度または270度の位相差となるように配置した2つの磁気センサからなるものであっても良い。
このように、被検出部と検出部を構成すると、回転方向が検出できて、保持器の絶対角度を検出でき、転動体の位置を正確に検出できる。
In the present invention, the detected portion is composed of a magnetic encoder in which a plurality of magnetic poles N and S are alternately arranged in the circumferential direction, and the detecting portion has an electrical angle of 90 degrees or 270 with one magnetic pole pair of the magnetic encoder as one cycle. It may consist of two magnetic sensors arranged so as to have a phase difference of degrees.
Thus, if a to-be-detected part and a detection part are comprised, a rotation direction can be detected, the absolute angle of a holder | retainer can be detected, and the position of a rolling element can be detected correctly.

この発明において、前記磁気エンコーダの磁極対数を転動体の個数と同一としても良い。このように、磁気エンコーダの磁極対の数を転動体の個数と同一とすると、転動体の配列ピッチごとに絶対角度を検出でき、それだけ転動体の位置検出精度が向上する。   In the present invention, the number of magnetic pole pairs of the magnetic encoder may be the same as the number of rolling elements. Thus, if the number of magnetic pole pairs of the magnetic encoder is the same as the number of rolling elements, the absolute angle can be detected for each arrangement pitch of the rolling elements, and the position detection accuracy of the rolling elements is improved accordingly.

この発明において、前記荷重検出手段は、前記固定側部材に接触して固定される2つ以上の接触固定部を有する歪み発生部材、およびこの歪み発生部材に取付けられてこの歪み発生部材の歪みを検出する歪みセンサを有するセンサユニットからなり、前記各接触固定部は、前記固定側部材の外径面に対して、軸方向に同寸法となるように設けても良い。この構成の場合、車輪用軸受や、車輪のタイヤと路面間に荷重が作用して生じる固定側部材の歪みが、センサユニットの歪み発生部材に拡大して伝達されるので、その歪みを歪みセンサで感度良く検出できる。   In the present invention, the load detecting means includes a strain generating member having two or more contact fixing portions fixed in contact with the fixed side member, and the strain generating member attached to the strain generating member. The contact fixing portion may be provided so as to have the same dimension in the axial direction with respect to the outer diameter surface of the fixing side member. In the case of this configuration, the distortion of the fixed-side member caused by the load acting between the wheel bearing and the tire of the wheel and the road surface is transmitted to the distortion generating member of the sensor unit. Can be detected with high sensitivity.

この発明において、前記歪み発生部材は、平面概形が均一幅の帯状、または平面概形が帯状で側辺部に切欠き部を有する薄板材からなるものであっても良い。
このように、平面概形が均一幅の帯状である薄板材で歪み発生部材を構成した場合、歪み発生部材をコンパクトで低コストなものとできる。
In the present invention, the strain generating member may be made of a strip having a uniform width in a planar shape or a thin plate material having a planar shape in a strip shape and having a notch in a side portion.
As described above, when the strain generating member is formed of a thin plate material having a planar shape with a uniform width, the strain generating member can be made compact and low cost.

この発明において、前記センサユニットを、タイヤ接地面に対して上下位置および左右位置となる前記固定側部材の外径面の上面部、下面部、右面部、および左面部に配置しても良い。この構成の場合、複数方向の荷重を推定することができる。すなわち、固定側部材の外径面における上面部と下面部に配置される2個のセンサユニットの出力信号から垂直方向荷重Fz と軸方向荷重Fy を推定でき、固定側部材の外径面における右面部と左面部に配置される2個のセンサユニットの出力信号から駆動力や制動力による荷重Fx を推定することができる。   In this invention, you may arrange | position the said sensor unit in the upper surface part of the outer diameter surface of the said fixed side member which becomes a vertical position and a left-right position with respect to a tire ground-contact surface, a lower surface part, a right surface part, and a left surface part. In the case of this configuration, loads in a plurality of directions can be estimated. That is, the vertical load Fz and the axial load Fy can be estimated from the output signals of the two sensor units arranged on the upper surface and the lower surface on the outer diameter surface of the fixed member, and the right side on the outer diameter surface of the fixed member. The load Fx caused by the driving force or the braking force can be estimated from the output signals of the two sensor units arranged on the surface portion and the left surface portion.

この発明のセンサ付車輪用軸受は、複列の転走面が内周に形成された外方部材と、前記転走面と対向する転走面が外周に形成された内方部材と、両部材の対向する転走面間に介在した複列の転動体とを備え、車体に対して車輪を回転自在に支持する車輪用軸受において、上記外方部材および内方部材のうちの固定側部材に設けられ、車輪用軸受に作用する荷重を検出する荷重検出手段と、前記転動体の位置を検出する転動体検出手段と、この転動体検出手段が検出する転動体位置に基づき前記荷重検出手段の出力信号を補正する補正手段と、この補正手段で補正された前記荷重検出手段の出力信号からタイヤ接地面に作用する荷重もしくは車輪用軸受に作用する荷重を推定する推定手段とを設けたため、転動体の影響を受けることなく、しかも停止時においても、車輪用軸受やタイヤ接地面に作用する荷重を正確に検出できる。   The sensor-equipped wheel bearing according to the present invention includes an outer member having a double-row rolling surface formed on the inner periphery, an inner member having a rolling surface opposed to the rolling surface formed on the outer periphery, A wheel bearing comprising a double row rolling element interposed between opposing rolling surfaces of the member and rotatably supporting the wheel with respect to the vehicle body, wherein the fixed side member of the outer member and the inner member The load detecting means for detecting the load acting on the wheel bearing, the rolling element detecting means for detecting the position of the rolling element, and the load detecting means based on the rolling element position detected by the rolling element detecting means Correction means for correcting the output signal, and estimation means for estimating the load acting on the tire contact surface or the load acting on the wheel bearing from the output signal of the load detection means corrected by the correction means. Without being affected by rolling elements, Also in the stop, the load acting on the wheel support bearing and the tire contact surface can be accurately detected.

この発明の一実施形態を図1ないし図7と共に説明する。この実施形態は、第3世代型の内輪回転タイプで、駆動輪支持用の車輪用軸受に適用したものである。なお、この明細書において、車両に取付けた状態で車両の車幅方向の外側寄りとなる側をアウトボード側と呼び、車両の中央寄りとなる側をインボード側と呼ぶ。   An embodiment of the present invention will be described with reference to FIGS. This embodiment is a third generation inner ring rotating type and is applied to a wheel bearing for driving wheel support. In this specification, the side closer to the outer side in the vehicle width direction of the vehicle when attached to the vehicle is referred to as the outboard side, and the side closer to the center of the vehicle is referred to as the inboard side.

このセンサ付車輪用軸受における軸受は、図1に断面図で示すように、内周に複列の転走面3を形成した外方部材1と、これら各転走面3に対向する転走面4を外周に形成した内方部材2と、これら外方部材1および内方部材2の転走面3,4間に介在した複列の転動体5とで構成される。この車輪用軸受は、複列のアンギュラ玉軸受型とされていて、転動体5はボールからなり、各列毎に保持器6で保持されている。上記転走面3,4は断面円弧状であり、ボール接触角が背面合わせとなるように形成されている。外方部材1と内方部材2との間の軸受空間の両端は、一対のシール7,8によってそれぞれ密封されている。   As shown in the sectional view of FIG. 1, the bearing for this sensor-equipped wheel bearing includes an outer member 1 in which a double row rolling surface 3 is formed on the inner periphery, and rolling facing each of these rolling surfaces 3. The inner member 2 has a surface 4 formed on the outer periphery, and the outer member 1 and the double row rolling elements 5 interposed between the rolling surfaces 3 and 4 of the inner member 2. This wheel bearing is a double-row angular ball bearing type, and the rolling elements 5 are made of balls and are held by a cage 6 for each row. The rolling surfaces 3 and 4 have an arc shape in cross section, and are formed so that the ball contact angle is aligned with the back surface. Both ends of the bearing space between the outer member 1 and the inner member 2 are sealed by a pair of seals 7 and 8, respectively.

外方部材1は固定側部材となるものであって、車体の懸架装置(図示せず)におけるナックル16に取付ける車体取付用フランジ1aを外周に有し、全体が一体の部品とされている。フランジ1aには周方向複数箇所にナックル取付用のボルト孔14が設けられ、インボード側よりナックル16のボルト挿通孔17に挿通したナックルボルト18を前記ボルト孔14に螺合することにより、車体取付用フランジ1aがナックル16に取付けられる。
内方部材2は回転側部材となるものであって、車輪取付用のハブフランジ9aを有するハブ輪9と、このハブ輪9の軸部9bのインボード側端の外周に嵌合した内輪10とでなる。これらハブ輪9および内輪10に、前記各列の転走面4が形成されている。ハブ輪9のインボード側端の外周には段差を持って小径となる内輪嵌合面12が設けられ、この内輪嵌合面12に内輪10が嵌合している。ハブ輪9の中心には貫通孔11が設けられている。ハブフランジ9aには、周方向複数箇所にハブボルト(図示せず)の圧入孔15が設けられている。ハブ輪9のハブフランジ9aの根元部付近には、車輪および制動部品(図示せず)を案内する円筒状のパイロット部13がアウトボード側に突出している。
The outer member 1 is a fixed side member, and has a vehicle body mounting flange 1a attached to a knuckle 16 in a suspension device (not shown) of the vehicle body on the outer periphery, and the whole is an integral part. Bolt holes 14 for attaching knuckles are provided in the flange 1a at a plurality of locations in the circumferential direction, and the knuckle bolts 18 inserted through the bolt insertion holes 17 of the knuckle 16 from the inboard side are screwed into the bolt holes 14, thereby allowing the A mounting flange 1 a is attached to the knuckle 16.
The inner member 2 is a rotating side member, and includes a hub wheel 9 having a hub flange 9a for wheel mounting, and an inner ring 10 fitted to the outer periphery of the end portion on the inboard side of the shaft portion 9b of the hub wheel 9. And become. The hub wheel 9 and the inner ring 10 are formed with the rolling surfaces 4 of the respective rows. An inner ring fitting surface 12 having a small diameter with a step is provided on the outer periphery of the inboard side end of the hub wheel 9, and the inner ring 10 is fitted to the inner ring fitting surface 12. A through hole 11 is provided at the center of the hub wheel 9. The hub flange 9a is provided with press-fitting holes 15 for hub bolts (not shown) at a plurality of locations in the circumferential direction. In the vicinity of the base portion of the hub flange 9a of the hub wheel 9, a cylindrical pilot portion 13 for guiding a wheel and a braking component (not shown) protrudes toward the outboard side.

図2は、この車輪用軸受の外方部材1をアウトボード側から見た正面図を示す。なお、図1は、図2におけるI−I矢視断面図を示す。前記車体取付用フランジ1aは、図2のように、各ボルト孔14が設けられた円周方向部分が他の部分よりも外径側へ突出した突片1aaとされている。   FIG. 2 shows a front view of the outer member 1 of the wheel bearing as viewed from the outboard side. 1 shows a cross-sectional view taken along the line II in FIG. As shown in FIG. 2, the vehicle body mounting flange 1 a is a projecting piece 1 aa in which a circumferential portion provided with each bolt hole 14 protrudes to the outer diameter side from the other portion.

固定側部材である外方部材1の外径面には、4個のセンサユニット20が設けられている。ここでは、これらのセンサユニット20が、タイヤ接地面に対して上下位置および前後位置となる外方部材1の外径面における上面部、下面部、右面部、および左面部に設けられている。   Four sensor units 20 are provided on the outer diameter surface of the outer member 1 which is a fixed member. Here, these sensor units 20 are provided on the upper surface portion, the lower surface portion, the right surface portion, and the left surface portion of the outer diameter surface of the outer member 1 that is in the vertical position and the front-rear position with respect to the tire ground contact surface.

これらのセンサユニット20は、図3および図4に拡大平面図および拡大断面図で示すように、歪み発生部材21と、この歪み発生部材21に取付けられて歪み発生部材21の歪みを検出する歪みセンサ22とでなる。歪み発生部材21は、鋼材等の弾性変形可能な金属製で3mm以下の薄板材からなり、平面概形が全長にわたり均一幅の帯状で中央の両側辺部に切欠き部21bを有する。切欠き部21bの隅部は断面円弧状とされている。また、歪み発生部材21は、外方部材1の外径面にスペーサ23を介して接触固定される2つの接触固定部21aを両端部に有する。なお、歪み発生部材21の形状によっては、接触固定部21aを2つ以上有するものとしても良い。また、歪み発生部材21の切欠き部21bは省略しても良い。歪みセンサ22は、歪み発生部材21における各方向の荷重に対して歪みが大きくなる箇所に貼り付けられる。ここでは、その箇所として、歪み発生部材21の外面側で両側辺部の切欠き部21bで挟まれる中央部位が選ばれており、歪みセンサ22は切欠き部21b周辺の周方向の歪みを検出する。なお、歪み発生部材21は、固定側部材である外方部材1に作用する外力、またはタイヤと路面間に作用する作用力として、想定される最大の力が印加された状態においても、塑性変形しないものとするのが望ましい。塑性変形が生じると、外方部材1の変形がセンサユニット20に伝わらず、歪みの測定に影響を及ぼすからである。   3 and 4, the sensor unit 20 includes a strain generating member 21 and a strain that is attached to the strain generating member 21 and detects the strain of the strain generating member 21. The sensor 22 is used. The strain generating member 21 is made of an elastically deformable metal such as a steel material and is made of a thin plate material having a thickness of 3 mm or less. The corner of the notch 21b has an arcuate cross section. Further, the strain generating member 21 has two contact fixing portions 21 a that are fixed to the outer diameter surface of the outer member 1 through spacers 23 at both ends. Note that, depending on the shape of the strain generating member 21, two or more contact fixing portions 21a may be provided. Further, the notch 21b of the strain generating member 21 may be omitted. The strain sensor 22 is affixed to a location where the strain increases with respect to the load in each direction on the strain generating member 21. Here, as the location, the central portion sandwiched between the notch portions 21b on both sides is selected on the outer surface side of the strain generating member 21, and the strain sensor 22 detects the strain in the circumferential direction around the notch portion 21b. To do. Note that the strain generating member 21 is plastically deformed even in a state in which an assumed maximum force is applied as an external force acting on the outer member 1 that is a fixed member or an acting force acting between the tire and the road surface. It is desirable not to do so. This is because when the plastic deformation occurs, the deformation of the outer member 1 is not transmitted to the sensor unit 20 and affects the measurement of strain.

前記センサユニット20は、その歪み発生部材21の2つの接触固定部21aが、外方部材1の軸方向に同寸法の位置で、かつ両接触固定部21aが互いに円周方向に離れた位置に来るように配置され、これら接触固定部21aがそれぞれスペーサ23を介してボルト24により外方部材1の外径面に固定される。前記各ボルト24は、それぞれ接触固定部21aに設けられた径方向に貫通するボルト挿通孔25からスペーサ23のボルト挿通孔26に挿通し、外方部材1の外周部に設けられたボルト孔27に螺合させる。このように、スペーサ23を介して外方部材1の外径面に接触固定部21aを固定することにより、薄板状である歪み発生部材21における切欠き部21bを有する中央部位が外方部材1の外径面から離れた状態となり、切欠き部21bの周辺の歪み変形が容易となる。接触固定部21aが配置される軸方向位置として、ここでは外方部材1のアウトボード側列の転走面3の周辺となる軸方向位置が選ばれる。ここでいうアウトボード側列の転走面3の周辺とは、インボード側列およびアウトボード側列の転走面3の中間位置からアウトボード側列の転走面3の形成部までの範囲である。外方部材1の外径面へセンサユニット20を安定良く固定する上で、外方部材1の外径面における前記スペーサ23が接触固定される箇所には平坦部1bが形成される。   In the sensor unit 20, the two contact fixing portions 21a of the strain generating member 21 are located at the same dimension in the axial direction of the outer member 1, and the two contact fixing portions 21a are separated from each other in the circumferential direction. These contact fixing portions 21a are fixed to the outer diameter surface of the outer member 1 by bolts 24 via spacers 23, respectively. Each bolt 24 is inserted into a bolt insertion hole 26 of the spacer 23 from a bolt insertion hole 25 penetrating in the radial direction provided in the contact fixing portion 21 a, and a bolt hole 27 provided in the outer peripheral portion of the outer member 1. Screwed on. In this way, by fixing the contact fixing portion 21a to the outer diameter surface of the outer member 1 via the spacer 23, the central portion having the notch portion 21b in the strain generating member 21 having a thin plate shape is the outer member 1. It becomes a state away from the outer diameter surface of this, and distortion deformation around the notch 21b becomes easy. As the axial position where the contact fixing portion 21a is disposed, an axial position that is the periphery of the rolling surface 3 of the outboard side row of the outer member 1 is selected here. Here, the periphery of the rolling surface 3 of the outboard side row is a range from the intermediate position of the rolling surface 3 of the inboard side row and the outboard side row to the formation portion of the rolling surface 3 of the outboard side row. It is. In order to stably fix the sensor unit 20 to the outer diameter surface of the outer member 1, a flat portion 1 b is formed at a location where the spacer 23 is contacted and fixed on the outer diameter surface of the outer member 1.

このほか、図5に断面図で示すように、外方部材1の外径面における前記歪み発生部材21の2つの接触固定部21aが固定される2箇所の中間部に溝1cを設けることで、前記スペーサ23を省略し、歪み発生部材21における切欠き部21bが位置する2つの接触固定部21bの中間部位を外方部材1の外径面から離すようにしても良い。   In addition, as shown in a cross-sectional view in FIG. 5, grooves 1 c are provided at two intermediate portions where the two contact fixing portions 21 a of the strain generating member 21 are fixed on the outer diameter surface of the outer member 1. The spacer 23 may be omitted, and the intermediate portion of the two contact fixing portions 21b where the notches 21b of the strain generating member 21 are located may be separated from the outer diameter surface of the outer member 1.

歪みセンサ22としては、種々のものを使用することができる。例えば、歪みセンサ22を金属箔ストレインゲージで構成することができる。その場合、通常、歪み発生部材21に対しては接着による固定が行なわれる。また、歪みセンサ22を歪み発生部材21上に厚膜抵抗体にて形成することもできる。   Various strain sensors 22 can be used. For example, the strain sensor 22 can be composed of a metal foil strain gauge. In that case, the distortion generating member 21 is usually fixed by adhesion. The strain sensor 22 can also be formed on the strain generating member 21 with a thick film resistor.

前記外方部材1の内周には、アウトボード側列の転動体5の位置を検出する転動体検出手段40が設けられている。この転動体検出手段40は、図6(A),(B)に断面図および正面図で示すように、正面形状が軸受と同心の円弧状とされたセンサ支持部材41と、このセンサ支持部材41に取付けられた複数の転動体センサ42とでなる。センサ支持部材41は、外方部材1の内径面に嵌合する円筒部41aと、この円筒部41aの一端から内径側に延びる立板部41bとを有する断面逆L字状で、その立板部41bの周方向長さは、転動体5の配列ピッチPに相当する長さとされている。このセンサ支持部材41は、図1のように、その立板部41bがアウトボード側列の転走面4よりもアウトボード側の軸方向位置となり、アウトボード側列の転動体5と軸方向に対向するように外方部材1の内径面に取付けられる。複数の転動体センサ42は、図6(B)のように前記センサ支持部材41の立板部41bのインボード側を向く片面において、円周方向に等配して取付けられている。転動体センサ42としては、例えばホールセンサ、MRセンサ、MIセンサなどの磁気センサが使用され、その前面を転動体5が通過するのに伴う磁気変化を検出する。なお、転動体センサ42としては、このほか超音波センサや光学式センサを使用しても良い。   On the inner periphery of the outer member 1, there is provided a rolling element detection means 40 for detecting the position of the rolling elements 5 in the outboard side row. This rolling element detection means 40 includes a sensor support member 41 whose front shape is an arc concentric with the bearing, as shown in FIGS. 6A and 6B, and a sensor support member. A plurality of rolling element sensors 42 attached to 41. The sensor support member 41 has an inverted L-shaped cross section having a cylindrical portion 41a fitted to the inner diameter surface of the outer member 1 and a standing plate portion 41b extending from one end of the cylindrical portion 41a toward the inner diameter side. The circumferential length of the portion 41 b is a length corresponding to the arrangement pitch P of the rolling elements 5. As shown in FIG. 1, the sensor support member 41 has an upright plate portion 41 b that is positioned on the outboard side with respect to the rolling surface 4 on the outboard side row, and is axially aligned with the rolling elements 5 on the outboard side row. Is attached to the inner diameter surface of the outer member 1 so as to face the outer surface. The plurality of rolling element sensors 42 are mounted with equal distribution in the circumferential direction on one side facing the inboard side of the standing plate portion 41b of the sensor support member 41 as shown in FIG. 6B. As the rolling element sensor 42, for example, a magnetic sensor such as a Hall sensor, MR sensor, or MI sensor is used, and a magnetic change accompanying the rolling element 5 passing through the front surface thereof is detected. In addition, as the rolling element sensor 42, an ultrasonic sensor or an optical sensor may be used.

センサユニット20の歪みセンサ22と、転動体検出手段40の転動体センサ42とは、それぞれ補正手段30に接続される。補正手段30は、転動体検出手段40が検出する転動体位置、つまり前記転動体センサ42の出力信号に基づき、荷重検出手段であるセンサユニット20の歪みセンサ22の出力信号を補正する手段である。
センサユニット20は、外方部材1のアウトボード側列の転走面3の周辺となる軸方向位置に設けられるので、歪みセンサ22の出力信号は、図7のようにセンサユニット20の設置部の近傍を通過する転動体5の影響を受ける。また、軸受の停止時においても、歪みセンサ22の出力信号は、転動体5の位置の影響を受ける。すなわち、図7(A),(B)のように転動体5がセンサユニット20における歪みセンサ22に最も近い位置を通過するとき(または、その位置に転動体5があるとき)、歪みセンサ22の出力信号の振幅は最大値となり、転動体5がその位置から遠ざかるにつれて(または、その位置から離れた位置に転動体5があるとき)低下する。軸受回転時には、転動体5は所定の配列ピッチPで前記センサユニット20の設置部の近傍を順次通過するので、歪みセンサ22の出力信号は、その振幅が転動体5の配列ピッチPを周期として図7(C)に実線で示すように周期的に変化する波形となる。そこで、前記補正手段30は、前記転動体検出手段40が検出する転動体位置に応じて、前記歪みセンサ22の出力信号を以下のように補正する。すなわち、例えば転動体5が歪みセンサ22に最も近い位置にあるときには、歪みセンサ22の出力信号の振幅(このとき最大値)を所定の最大量だけ減少補正する。歪みセンサ22に最も近い位置から±P/2離れた位置に転動体5があるときには、歪みセンサ22の出力信号の振幅(このとき最小値)を所定の最大量だけ増加補正する。転動体5が上記両位置の途中にあるときには、その位置に応じて直線補間等で、歪みセンサ22の出力信号の振幅を増減補正する。これにより、歪みセンサ22の出力信号の振幅は、図7(C)に鎖線で示すように補正され、転動体5の影響が解消される。なお、図7(A)では、センサユニット20として、図5の構成例のものを示している。
The strain sensor 22 of the sensor unit 20 and the rolling element sensor 42 of the rolling element detection means 40 are connected to the correction means 30, respectively. The correcting means 30 is a means for correcting the output signal of the strain sensor 22 of the sensor unit 20 which is a load detecting means based on the rolling element position detected by the rolling element detecting means 40, that is, the output signal of the rolling element sensor 42. .
Since the sensor unit 20 is provided at an axial position around the rolling surface 3 on the outboard side row of the outer member 1, the output signal of the strain sensor 22 is an installation portion of the sensor unit 20 as shown in FIG. 7. Is affected by the rolling element 5 passing through the vicinity of. Even when the bearing is stopped, the output signal of the strain sensor 22 is affected by the position of the rolling element 5. That is, when the rolling element 5 passes through the position closest to the strain sensor 22 in the sensor unit 20 as shown in FIGS. 7A and 7B (or when the rolling element 5 is at that position), the strain sensor 22. The output signal has a maximum amplitude and decreases as the rolling element 5 moves away from the position (or when the rolling element 5 is located away from the position). When the bearing rotates, the rolling elements 5 sequentially pass through the vicinity of the installation portion of the sensor unit 20 at a predetermined arrangement pitch P. Therefore, the output signal of the strain sensor 22 has an amplitude whose period is the arrangement pitch P of the rolling elements 5. As shown by a solid line in FIG. 7C, the waveform changes periodically. Therefore, the correction means 30 corrects the output signal of the strain sensor 22 as follows according to the rolling element position detected by the rolling element detection means 40. That is, for example, when the rolling element 5 is at a position closest to the strain sensor 22, the amplitude (the maximum value at this time) of the output signal of the strain sensor 22 is corrected to decrease by a predetermined maximum amount. When the rolling element 5 is located ± P / 2 away from the position closest to the strain sensor 22, the amplitude (minimum value at this time) of the output signal of the strain sensor 22 is corrected to be increased by a predetermined maximum amount. When the rolling element 5 is in the middle of both the positions, the amplitude of the output signal of the strain sensor 22 is corrected to increase or decrease by linear interpolation or the like according to the position. Thereby, the amplitude of the output signal of the strain sensor 22 is corrected as indicated by a chain line in FIG. 7C, and the influence of the rolling element 5 is eliminated. In FIG. 7A, the sensor unit 20 shown in the configuration example of FIG.

図7の説明では、その説明を簡単にするために、転動体検出手段40が、歪みセンサ22に最も近い位置を中心とする前後の転動体配列ピッチPの区間での転動体5の位置を検出するように設置されたものとしているが、転動体検出手段40の位置はセンサユニット20の設置位置から周方向に離れていても良い。この場合には、転動体検出手段40の位置とセンサユニット20の設置位置の間の位相差だけ、転動体検出手段40が検出する転動体位置を補正することにより、歪みセンサ22に最も近い位置を中心とする前後の転動体配列ピッチPの区間での転動体5の位置を割り出すことができる。   In the description of FIG. 7, in order to simplify the description, the rolling element detection unit 40 determines the position of the rolling element 5 in the section of the rolling element arrangement pitch P before and after the position closest to the strain sensor 22. Although installed so as to detect, the position of the rolling element detection means 40 may be separated from the installation position of the sensor unit 20 in the circumferential direction. In this case, the position closest to the strain sensor 22 is corrected by correcting the rolling element position detected by the rolling element detection means 40 by the phase difference between the position of the rolling element detection means 40 and the installation position of the sensor unit 20. The position of the rolling element 5 in the section of the rolling element arrangement pitch P before and after the center can be determined.

前記補正手段30の次段には推定手段31が設けられる。推定手段31は、前記補正手段30で補正された前記歪みセンサ22の出力信号から、車輪用軸受や車輪と路面間(タイヤ接地面)に作用する力(垂直方向荷重Fz ,駆動力や制動力となる荷重Fx ,軸方向荷重Fy )を推定する手段である。この推定手段31は、前記垂直方向荷重Fz ,駆動力や制動力となる荷重Fx ,軸方向荷重Fy と、歪みセンサ22の出力信号(補正済み)との関係を演算式またはテーブル等により設定した関係設定手段(図示せず)を有し、補正された歪みセンサ22の出力信号から前記関係設定手段を用いて作用力(垂直方向荷重Fz ,駆動力や制動力となる荷重Fx ,軸方向荷重Fy )を推定する。前記関係設定手段の設定内容は、予め試験やシミュレーションで求めておいて設定する。   An estimation unit 31 is provided at the next stage of the correction unit 30. The estimation means 31 uses the output signal of the strain sensor 22 corrected by the correction means 30 to generate a force (vertical load Fz, driving force or braking force) acting on the wheel bearing or between the wheel and the road surface (tire contact surface). The load Fx and the axial load Fy) are estimated. The estimation means 31 sets the relationship among the vertical load Fz, the load Fx and the axial load Fy as driving force and braking force, and the output signal (corrected) of the strain sensor 22 by an arithmetic expression or a table. It has a relation setting means (not shown), and using the relation setting means from the corrected output signal of the strain sensor 22, an acting force (vertical load Fz, load Fx serving as driving force or braking force, axial load) Fy) is estimated. The setting contents of the relationship setting means are obtained by a test or simulation in advance.

車輪用軸受や、車輪のタイヤと路面間に荷重が作用すると、車輪用軸受の固定側部材である外方部材1にも荷重が印加されて変形が生じる。センサユニット20における切欠き部21bを有する歪み発生部材21の2つの接触固定部21aが外方部材1に接触固定されているので、外方部材1の歪みが歪み発生部材21に拡大して伝達され、その歪みが歪みセンサ22で感度良く検出され、その出力信号から荷重を推定できる。ここでは、外方部材1の外径面における上面部と下面部に配置される2個のセンサユニット20の出力信号から垂直方向荷重Fz と軸方向荷重Fy を推定でき、外方部材1の外径面における右面部と左面部に配置される2個のセンサユニット20の出力信号から駆動力や制動力による荷重Fx を推定できる。   When a load acts between the wheel bearing or the wheel tire and the road surface, the load is also applied to the outer member 1 that is a stationary member of the wheel bearing, causing deformation. Since the two contact fixing portions 21a of the strain generating member 21 having the notch portion 21b in the sensor unit 20 are fixed in contact with the outer member 1, the strain of the outer member 1 is enlarged and transmitted to the strain generating member 21. Then, the distortion is detected with high sensitivity by the distortion sensor 22, and the load can be estimated from the output signal. Here, the vertical load Fz and the axial load Fy can be estimated from the output signals of the two sensor units 20 arranged on the upper surface portion and the lower surface portion on the outer diameter surface of the outer member 1, and The load Fx caused by the driving force or the braking force can be estimated from the output signals of the two sensor units 20 arranged on the right surface portion and the left surface portion of the radial surface.

この場合、歪みセンサ22の出力信号は、そのままでは転動体5の位置の影響を受けるが、転動体検出手段40の検出する転動体位置に基づき補正手段30が歪みセンサ22の出力信号を補正するので、軸受の回転時と停止時を問わず転動体3の位置による影響が解消される。これにより、推定手段31では、車輪用軸受や、車輪のタイヤと路面間に作用する荷重(垂直方向荷重Fz ,駆動力や制動力となる荷重Fx ,軸方向荷重Fy )を精度良く推定できる。また、ローパスフィルタが不要なため、検出分解能が向上する。   In this case, the output signal of the strain sensor 22 is influenced by the position of the rolling element 5 as it is, but the correction means 30 corrects the output signal of the strain sensor 22 based on the rolling element position detected by the rolling element detection means 40. Therefore, the influence by the position of the rolling element 3 is eliminated regardless of whether the bearing is rotating or stopped. As a result, the estimating means 31 can accurately estimate the loads acting on the wheel bearings and the tires of the wheels and the road surface (vertical load Fz, load Fx serving as driving force and braking force, and axial load Fy). In addition, since no low-pass filter is required, the detection resolution is improved.

固定側部材である外方部材1の外径面に固定されるセンサユニット20の各接触固定部21aの軸方向寸法が異なると、外方部材1の外径面から接触固定部21aを介して歪み発生部材21に伝達される歪みも異なる。この実施形態では、センサユニット20の各接触固定部21aを、外方部材1の外径面に対して軸方向に同寸法となるように設けているので、歪み発生部材21に歪みが集中しやすくなり、それだけ検出感度が向上する。   If the axial dimension of each contact fixing portion 21a of the sensor unit 20 fixed to the outer diameter surface of the outer member 1 which is a fixed member is different, the outer diameter surface of the outer member 1 passes through the contact fixing portion 21a. The strain transmitted to the strain generating member 21 is also different. In this embodiment, the contact fixing portions 21 a of the sensor unit 20 are provided so as to have the same dimension in the axial direction with respect to the outer diameter surface of the outer member 1, so that strain concentrates on the strain generating member 21. The detection sensitivity is improved accordingly.

また、この実施形態では、センサユニット20の歪み発生部材21は、平面概形が均一幅の帯状、または平面概形が帯状で側辺部に切欠き部21bを有する薄板材からなるものとしているので、外方部材1の歪みが歪み発生部材21に拡大して伝達され易く、その歪みが歪みセンサ22で感度良く検出され、その出力信号に生じるヒステリシスも小さくなり、荷重を精度良く推定できる。また、歪み発生部材21の形状も簡単なものとなり、コンパクトで低コストなものとできる。   In this embodiment, the strain generating member 21 of the sensor unit 20 is made of a strip having a uniform planar width, or a thin plate material having a planar planar shape and a cutout portion 21b on the side. Therefore, the distortion of the outer member 1 is easily transmitted to the distortion generating member 21, and the distortion is detected with high sensitivity by the distortion sensor 22. Hysteresis generated in the output signal is also reduced, and the load can be estimated with high accuracy. Further, the shape of the strain generating member 21 is also simple, and it can be made compact and low cost.

また、歪み発生部材21の切欠き部21bの隅部は断面円弧状とされているので、切欠き部21bの隅部に歪みが集中せず、塑性変形する可能性が低くなる。また、切欠き部21bの隅部に歪みが集中しなくなることで、歪み発生部材21における検出部つまり歪みセンサ22の取付け部での歪み分布のばらつきが小さくなり、歪みセンサ22の取付け位置が歪みセンサ22の出力信号に及ぼす影響も小さくなる。これにより、荷重をさらに精度良く推定できる。   In addition, since the corner of the notch 21b of the strain generating member 21 has an arcuate cross section, strain does not concentrate on the corner of the notch 21b, and the possibility of plastic deformation is reduced. Further, since the strain does not concentrate at the corner of the notch 21b, the variation in the strain distribution in the detection portion of the strain generating member 21, that is, the mounting portion of the strain sensor 22, is reduced, and the mounting position of the strain sensor 22 is distorted. The influence on the output signal of the sensor 22 is also reduced. Thereby, the load can be estimated with higher accuracy.

このセンサ付車輪用軸受から得られた検出荷重を自動車の車両制御に使用することにより、自動車の安定走行に寄与できる。また、このセンサ付車輪用軸受を用いると、車両にコンパクトに荷重センサを設置でき、量産性に優れたものとでき、コスト低減を図ることができる。   By using the detected load obtained from the sensor-equipped wheel bearing for vehicle control of the automobile, it is possible to contribute to stable running of the automobile. In addition, when this sensor-equipped wheel bearing is used, a load sensor can be installed in a compact vehicle, the mass productivity can be improved, and the cost can be reduced.

また、この実施形態では、固定側部材である外方部材1の車体取付用フランジ1aの円周方向複数箇所にナックル取付用のボルト孔14が設けられた周方向部分が他の部分よりも外径側へ突出した突片1aaとされるが、前記センサユニット20における歪み発生部材21の2つの接触固定部21aは、隣り合う突片1aa間の中央に配置されているので、ヒステリシスの原因となる突片1aaから離れた位置に歪み発生部材21が配置されることになり、それだけ歪みセンサ22の出力信号に生じるヒステリシスが小さくなり、荷重をより精度良く推定できる。   Moreover, in this embodiment, the circumferential direction part in which the bolt hole 14 for knuckle attachment was provided in multiple places of the circumferential direction of the vehicle body attachment flange 1a of the outer member 1 which is a fixed side member is outside the other part. Although the projecting piece 1aa protrudes to the radial side, the two contact fixing portions 21a of the strain generating member 21 in the sensor unit 20 are arranged at the center between the adjacent projecting pieces 1aa, which causes the hysteresis. The strain generating member 21 is arranged at a position away from the protruding piece 1aa, and the hysteresis generated in the output signal of the strain sensor 22 is reduced accordingly, and the load can be estimated with higher accuracy.

また、この実施形態では、センサユニット20を、外方部材1における複列の転走面3のうちのアウトボード側の転走面3の周辺となる軸方向位置、つまり比較的設置スペースが広く、タイヤ作用力が転動体5を介して外方部材1に伝達されて比較的変形量の大きい部位に配置しているので、検出感度が向上し、荷重をより精度良く推定できる。   In this embodiment, the sensor unit 20 has an axial position around the outboard side rolling surface 3 of the double row rolling surfaces 3 in the outer member 1, that is, a relatively large installation space. Since the tire acting force is transmitted to the outer member 1 via the rolling elements 5 and disposed at a portion having a relatively large deformation amount, the detection sensitivity is improved, and the load can be estimated with higher accuracy.

また、この実施形態では、固定側部材である外方部材1の外径面の上面部と下面部、および右面部と左面部にセンサユニット20を設けているので、どのような荷重条件においても、荷重を精度良く推定することができる。すなわち、ある方向への荷重が大きくなると、転動体5と転走面3が接触している部分と接触していない部分が180度位相差で現れるため、その方向に合わせてセンサユニット20を180度位相差で設置すれば、どちらかのセンサユニット20には必ず転動体5を介して外方部材1に印加される荷重が伝達され、その荷重を歪みセンサ22により検出可能となる。   In this embodiment, since the sensor unit 20 is provided on the upper surface portion and the lower surface portion, and the right surface portion and the left surface portion of the outer diameter surface of the outer member 1 that is a fixed side member, under any load condition. The load can be estimated with high accuracy. That is, when a load in a certain direction increases, a portion where the rolling element 5 and the rolling surface 3 are in contact with each other and a portion which is not in contact appear with a phase difference of 180 degrees. If it is installed with a phase difference, the load applied to the outer member 1 is always transmitted to one of the sensor units 20 via the rolling elements 5, and the load can be detected by the strain sensor 22.

なお、この実施形態において、以下の構成については特に限定しない。
・ センサユニット20の設置個数、設置場所や、接触固定部21a,歪みセンサ22 ,切欠き部21bの数
・ センサユニット20の形状、固定方法(接着、溶接など)、固定する向き(軸方向 の歪みを検出しても構わない)
In this embodiment, the following configuration is not particularly limited.
・ Number of sensor units 20 installed, location and number of contact fixing part 21a, strain sensor 22 and notch part 21b ・ Shape of sensor unit 20, fixing method (adhesion, welding, etc.), fixing direction (axial direction) Distortion may be detected)

図8および図9は、この発明の他の実施形態を示す。このセンサ付車輪用軸受では、図1〜図7に示す実施形態における転動体検出手段40に代えて、図8のように保持器6に設けられた被検出部である磁気エンコーダ43と、固定側部材である外方部材1の内周に設けられ前記磁気エンコーダ43の磁束変化を検出する検出部44とで構成された転動体検出手段40Aを用いている。   8 and 9 show another embodiment of the present invention. In this sensor-equipped wheel bearing, instead of the rolling element detection means 40 in the embodiment shown in FIGS. 1 to 7, a magnetic encoder 43 which is a detected portion provided in the cage 6 as shown in FIG. A rolling element detection means 40A is used which is provided on the inner periphery of the outer member 1 which is a side member and is configured by a detection unit 44 which detects a magnetic flux change of the magnetic encoder 43.

図9は、前記転動体検出手段40Aの正面図を示す。被検出部である前記磁気エンコーダ43は保持器6と同心の円環状で、複数の磁極N,Sを交互に円周方向に等配してなる。この磁気エンコーダ43は、その磁極N,Sの着磁面を軸方向に向けたアキシアル型とされている。その磁極対の数は転動体5の個数と同一とされている。図9では、磁気エンコーダ43の磁極対と転動体5の個数を9個とした例を示している。前記検出部44は、磁気エンコーダ43の磁極対を1周期として電気角で90度位相差となるように配置した2つの磁気センサ44A,44Bからなり、これら磁気センサ44A,44Bは磁気エンコーダ43の着磁面と所定間隔を介して軸方向に対峙するように、外方部材1の内径面に取付けられる。ここでは、磁気エンコーダ43が9対の磁極対からなるので、検出部44の2つの磁気センサ44A,44Bは、機械角(空間角)にして10度の位相差をなして周方向に離間して配置される。磁気センサ44A,44Bは、例えばホールセンサ、MRセンサ、MIセンサなどからなる。なお、上記2つの磁気センサ44A,44Bの位相差は、電気角で270度の位相差(9個の磁極対の場合、機械角(空間角)では30度)としても良い。その他の構成は図1〜図7に示した実施形態の場合と同様である。   FIG. 9 shows a front view of the rolling element detection means 40A. The magnetic encoder 43, which is a detected portion, has an annular shape that is concentric with the cage 6, and is formed by alternately arranging a plurality of magnetic poles N and S in the circumferential direction. The magnetic encoder 43 is an axial type in which the magnetic surfaces of the magnetic poles N and S are oriented in the axial direction. The number of magnetic pole pairs is the same as the number of rolling elements 5. FIG. 9 shows an example in which the number of magnetic pole pairs of the magnetic encoder 43 and the number of rolling elements 5 is nine. The detection unit 44 includes two magnetic sensors 44A and 44B arranged so as to have a phase difference of 90 degrees in electrical angle with the magnetic pole pair of the magnetic encoder 43 as one cycle, and these magnetic sensors 44A and 44B are It is attached to the inner diameter surface of the outer member 1 so as to face the magnetized surface in the axial direction with a predetermined interval. Here, since the magnetic encoder 43 is composed of nine magnetic pole pairs, the two magnetic sensors 44A and 44B of the detection unit 44 are separated in the circumferential direction by making a phase difference of 10 degrees in mechanical angle (space angle). Arranged. The magnetic sensors 44A and 44B include, for example, a hall sensor, an MR sensor, an MI sensor, or the like. The phase difference between the two magnetic sensors 44A and 44B may be a phase difference of 270 degrees in electrical angle (in the case of nine magnetic pole pairs, 30 degrees in mechanical angle (space angle)). Other configurations are the same as those of the embodiment shown in FIGS.

この実施形態では、転動体5の位置を検出する転動体検出手段40Aを、転動体5と公転速度が同じである保持器6に設けられた被検出部(磁気エンコーダ43)と、固定側部材である外方部材1に設けられ前記被検出部(磁気エンコーダ43)を検出する検出部44とで構成しているので、転動体5の位置検出が容易となる。   In this embodiment, the rolling element detection means 40A for detecting the position of the rolling element 5 includes a detected portion (magnetic encoder 43) provided in the cage 6 having the same revolution speed as the rolling element 5, and a fixed side member. Since it is comprised with the detection part 44 provided in the outward member 1 which detects the said to-be-detected part (magnetic encoder 43), the position detection of the rolling element 5 becomes easy.

とくに、複数の磁極N,Sを交互に周方向に等配した磁気エンコーダ43を前記被検出部とし、この磁気エンコーダ43の磁極対を1周期として電気角で90度位相差となるように配置した2つの磁気センサ44A,44Bで前記検出部44を構成しているので、保持器6の絶対角度を検出でき、転動体5の位置を正確に検出できる。   In particular, a magnetic encoder 43 in which a plurality of magnetic poles N and S are alternately arranged in the circumferential direction is used as the detected portion, and the magnetic pole pair of the magnetic encoder 43 is arranged so as to have a phase difference of 90 degrees in terms of electrical angle. Since the two magnetic sensors 44A and 44B constitute the detection unit 44, the absolute angle of the cage 6 can be detected, and the position of the rolling element 5 can be accurately detected.

また、前記磁気エンコーダ43の磁極対の数を転動体5の個数と同一としているので、転動体5の配列ピッチPごとに絶対角度を検出でき、それだけ転動体5の位置検出精度が向上する。   Further, since the number of magnetic pole pairs of the magnetic encoder 43 is the same as the number of rolling elements 5, the absolute angle can be detected for each arrangement pitch P of the rolling elements 5, and the position detection accuracy of the rolling elements 5 is improved accordingly.

図10ないし図12は、この発明のさらに他の実施形態を示す。このセンサ付車輪用軸受では、図8および図9に示す実施形態において、センサユニット20を以下のように構成している。この場合も、センサユニット20は、図12に拡大断面図で示すように、歪み発生部材21と、この歪み発生部材21に取付けられて歪み発生部材21の歪みを検出する歪みセンサ22とでなる。歪み発生部材21は、外方部材1の外径面に対向する内面側に張り出した2つの接触固定部21aを両端部に有し、これら接触固定部21aで外方部材1の外径面に接触して固定される。2つの接触固定部21aのうち、1つの接触固定部21aは、外方部材1のアウトボード側列の転走面3の周辺となる軸方向位置に配置され、この位置よりもアウトボード側の位置にもう1つの接触固定部21aが配置され、かつこれら両接触固定部21aは互いに外方部材1の円周方向における同位相の位置に配置される。つまり、センサユニット20は、その歪み発生部材21の2つの接触固定部21aが、固定側部材である外方部材1の同一周方向位置でかつ軸方向に互いに離れた位置となるように、外方部材1の外径面に配置される。ここでいうアウトボード側列の転走面3の周辺とは、インボード側列およびアウトボード側列の転走面3の中間位置からアウトボード側列の転走面3の形成部までの範囲である。この場合も、外方部材1の外径面へセンサユニット20を安定良く固定する上で、外方部材1の外径面における前記歪み発生部材21の接触固定部21aが接触固定される箇所に平坦部を形成するのが望ましい。
また、歪み発生部材21の中央部には内面側に開口する1つの切欠き部21bが形成されている。歪みセンサ22は、歪み発生部材21における各方向の荷重に対して歪みが大きくなる箇所に貼り付けられる。ここでは、その箇所として、前記切欠き部21bの周辺、具体的には歪み発生部材21の外面側で切欠き部21bの背面側となる位置が選ばれており、歪みセンサ22は切欠き部21b周辺の歪みを検出する。
10 to 12 show still another embodiment of the present invention. In this sensor-equipped wheel bearing, in the embodiment shown in FIGS. 8 and 9, the sensor unit 20 is configured as follows. Also in this case, the sensor unit 20 includes a strain generating member 21 and a strain sensor 22 that is attached to the strain generating member 21 and detects the strain of the strain generating member 21, as shown in an enlarged sectional view in FIG. . The strain generating member 21 has two contact fixing portions 21a projecting on the inner surface facing the outer diameter surface of the outer member 1 at both ends, and these contact fixing portions 21a are formed on the outer diameter surface of the outer member 1. Fixed in contact. Of the two contact fixing portions 21a, one contact fixing portion 21a is disposed at an axial position around the rolling surface 3 of the outboard side row of the outer member 1, and is located on the outboard side from this position. Another contact fixing portion 21a is arranged at the position, and both the contact fixing portions 21a are arranged at the same phase position in the circumferential direction of the outer member 1. That is, the sensor unit 20 is arranged so that the two contact fixing portions 21a of the distortion generating member 21 are located at the same circumferential direction position of the outer member 1 that is the fixed side member and at positions separated from each other in the axial direction. The outer member 1 is arranged on the outer diameter surface. Here, the periphery of the rolling surface 3 of the outboard side row is a range from the intermediate position of the rolling surface 3 of the inboard side row and the outboard side row to the formation portion of the rolling surface 3 of the outboard side row. It is. Also in this case, in order to stably fix the sensor unit 20 to the outer diameter surface of the outer member 1, the contact fixing portion 21 a of the strain generating member 21 on the outer diameter surface of the outer member 1 is fixed at a location where the sensor unit 20 is fixed. It is desirable to form a flat part.
In addition, one notch portion 21 b that opens to the inner surface side is formed in the central portion of the strain generating member 21. The strain sensor 22 is affixed to a location where the strain increases with respect to the load in each direction on the strain generating member 21. Here, as the location, the position around the notch portion 21b, specifically, the outer surface side of the strain generating member 21 and the back side of the notch portion 21b is selected, and the strain sensor 22 is the notch portion. The distortion around 21b is detected.

歪み発生部材21の2つの接触固定部21aは、それぞれボルト47により外方部材1の外径面へ締結することで固定される。具体的には、これらボルト47は、それぞれ接触固定部21aに設けられた径方向に貫通するボルト挿通孔48に挿通し、外方部材1の外周部に設けられたボルト孔49に螺合させる。なお、接触固定部21aの固定方法としては、ボルト47による締結のほか、接着剤などを用いても良い。歪み発生部材21の接触固定部21a以外の箇所では、外方部材1の外径面との間に隙間が生じている。その他の構成は、図8および図9に示した実施形態の場合と同様である。なお、図10は、車輪用軸受の外方部材1をアウトボード側から見た正面図を示す図11におけるX−X矢視断面図である。なお、この実施形態では、外方部材1の外径面における右面部および左面部に配置される2個のセンサユニット20は省略されている。その他の構成は、図8および図9に示す実施形態の場合と同様である。   The two contact fixing portions 21 a of the strain generating member 21 are fixed by being fastened to the outer diameter surface of the outer member 1 by bolts 47. Specifically, each of these bolts 47 is inserted into a bolt insertion hole 48 provided in the contact fixing portion 21a in the radial direction and screwed into a bolt hole 49 provided in the outer peripheral portion of the outer member 1. . In addition, as a fixing method of the contact fixing part 21a, in addition to fastening with the bolt 47, an adhesive or the like may be used. At locations other than the contact fixing portion 21 a of the strain generating member 21, a gap is generated between the outer member 1 and the outer diameter surface. Other configurations are the same as those of the embodiment shown in FIGS. FIG. 10 is a cross-sectional view taken along the line XX in FIG. 11 showing a front view of the outer member 1 of the wheel bearing as viewed from the outboard side. In this embodiment, the two sensor units 20 disposed on the right surface portion and the left surface portion of the outer diameter surface of the outer member 1 are omitted. Other configurations are the same as those of the embodiment shown in FIGS.

この発明の一実施形態にかかるセンサ付車輪用軸受の断面図とその検出系の概念構成のブロック図とを組み合わせて示す図である。It is a figure showing combining the sectional view of the wheel bearing with a sensor concerning one embodiment of this invention, and the block diagram of the conceptual composition of the detection system. 同センサ付車輪用軸受の外方部材をアウトボード側から見た正面図である。It is the front view which looked at the outer member of the wheel bearing with a sensor from the outboard side. 同センサ付車輪用軸受におけるセンサユニットの拡大平面図である。It is an enlarged plan view of a sensor unit in the wheel bearing with sensor. 図3におけるIV−IV矢視断面図である。FIG. 4 is a cross-sectional view taken along arrow IV-IV in FIG. 3. センサユニットの他の設置例を示す断面図である。It is sectional drawing which shows the other example of installation of a sensor unit. (A)は同センサ付車輪用軸受における転動体検出手段の断面図、(B)は同正面図である。(A) is sectional drawing of the rolling element detection means in the wheel bearing with a sensor, (B) is the same front view. センサユニットの出力信号に対する転動体位置の影響の説明図である。It is explanatory drawing of the influence of a rolling-element position with respect to the output signal of a sensor unit. この発明の他の実施形態にかかるセンサ付車輪用軸受の断面図とその検出系の概念構成のブロック図とを組み合わせて示す図である。It is a figure showing combining the sectional view of the wheel bearing with a sensor concerning other embodiments of this invention, and the block diagram of the conceptual composition of the detection system. 同センサ付車輪用軸受における転動体検出手段の正面図である。It is a front view of the rolling element detection means in the wheel bearing with a sensor. この発明のさらに他の実施形態にかかるセンサ付車輪用軸受の断面図である。It is sectional drawing of the bearing for wheels with a sensor concerning further another embodiment of this invention. 同センサ付車輪用軸受の外方部材をアウトボード側から見た正面図である。It is the front view which looked at the outer member of the wheel bearing with a sensor from the outboard side. 同センサ付車輪用軸受におけるセンサユニットの拡大断面図である。It is an expanded sectional view of the sensor unit in the wheel bearing with the sensor. 従来例での出力信号におけるヒステリシスの説明図である。It is explanatory drawing of the hysteresis in the output signal in a prior art example.

符号の説明Explanation of symbols

1…外方部材
2…内方部材
3,4…転走面
5…転動体
6…保持器
20…センサユニット(荷重検出手段)
21…歪み発生部材
21a…接触固定部
21b…切欠き部
22…歪みセンサ
30…補正手段
31…推定手段
40,40A…転動体検出手段
43…磁気エンコーダ(被検出部)
44…検出部
44A,44B…磁気センサ
DESCRIPTION OF SYMBOLS 1 ... Outer member 2 ... Inner member 3, 4 ... Rolling surface 5 ... Rolling body 6 ... Cage 20 ... Sensor unit (load detection means)
DESCRIPTION OF SYMBOLS 21 ... Strain generating member 21a ... Contact fixing | fixed part 21b ... Notch part 22 ... Strain sensor 30 ... Correction means 31 ... Estimation means 40, 40A ... Rolling body detection means 43 ... Magnetic encoder (detected part)
44 ... Detectors 44A, 44B ... Magnetic sensor

Claims (7)

複列の転走面が内周に形成された外方部材と、前記転走面と対向する転走面が外周に形成された内方部材と、両部材の対向する転走面間に介在した複列の転動体とを備え、車体に対して車輪を回転自在に支持する車輪用軸受において、
上記外方部材および内方部材のうちの固定側部材に設けられ、車輪用軸受に作用する荷重を検出する荷重検出手段と、前記転動体の位置を検出する転動体検出手段と、この転動体検出手段が検出する転動体位置に基づき前記荷重検出手段の出力信号を補正する補正手段と、この補正手段で補正された前記荷重検出手段の出力信号からタイヤ接地面に作用する荷重もしくは車輪用軸受に作用する荷重を推定する推定手段とを設けたことを特徴とするセンサ付車輪用軸受。
An outer member having a double row rolling surface formed on the inner periphery, an inner member having a rolling surface facing the rolling surface formed on the outer periphery, and interposed between the opposing rolling surfaces of both members A double row rolling element, and a wheel bearing for rotatably supporting the wheel with respect to the vehicle body,
A load detection means for detecting a load acting on a wheel bearing, provided on a fixed side member of the outer member and the inner member, a rolling element detection means for detecting a position of the rolling element, and the rolling element Correction means for correcting the output signal of the load detection means based on the rolling element position detected by the detection means, and a load or wheel bearing acting on the tire contact surface from the output signal of the load detection means corrected by the correction means A sensor-equipped wheel bearing, comprising: estimation means for estimating a load acting on the sensor.
請求項1において、前記転動体検出手段は、保持器に設けられた被検出部と、前記固定側部材に設けられ前記被検出部を検出する検出部とでなるセンサ付車輪用軸受。   The sensor-equipped wheel bearing according to claim 1, wherein the rolling element detection means includes a detected portion provided in a cage and a detection portion provided in the fixed-side member to detect the detected portion. 請求項2において、前記被検出部が複数の磁極N,Sを交互に周方向に等配した磁気エンコーダからなり、前記検出部が前記磁気エンコーダの磁極対を1周期として電気角で90度または270度の位相差となるように配置した2つの磁気センサからなるセンサ付車輪用軸受。   3. The detection target according to claim 2, wherein the detected part is composed of a magnetic encoder in which a plurality of magnetic poles N and S are alternately arranged in the circumferential direction. A sensor-equipped wheel bearing comprising two magnetic sensors arranged so as to have a phase difference of 270 degrees. 請求項3において、前記磁気エンコーダの磁極対数を転動体の個数と同一としたセンサ付車輪用軸受。   4. The wheel bearing with sensor according to claim 3, wherein the number of magnetic pole pairs of the magnetic encoder is the same as the number of rolling elements. 請求項1ないし請求項4のいずれか1項において、前記荷重検出手段は、前記固定側部材に接触して固定される2つ以上の接触固定部を有する歪み発生部材、およびこの歪み発生部材に取付けられてこの歪み発生部材の歪みを検出する歪みセンサを有するセンサユニットからなり、前記各接触固定部は、前記固定側部材の外径面に対して、軸方向に同寸法となるように設けたセンサ付車輪用軸受。   5. The strain generating member according to claim 1, wherein the load detecting means includes two or more contact fixing portions fixed in contact with the fixed side member, and the strain generating member. The sensor unit has a strain sensor that is attached and detects a strain of the strain generating member, and each of the contact fixing portions is provided so as to have the same dimension in the axial direction with respect to the outer diameter surface of the fixing side member. Bearing for wheel with sensor. 請求項5において、前記歪み発生部材は、平面概形が均一幅の帯状、または平面概形が帯状で側辺部に切欠き部を有する薄板材からなるセンサ付車輪用軸受。   6. The sensor-equipped wheel bearing according to claim 5, wherein the strain generating member is a strip having a uniform planar width, or a thin plate material having a planar planar shape and having a notch in a side portion. 請求項5または請求項6において、前記センサユニットを、タイヤ接地面に対して上下位置および左右位置となる前記固定側部材の外径面の上面部、下面部、右面部、および左面部に配置したセンサ付車輪用軸受。   7. The sensor unit according to claim 5, wherein the sensor unit is disposed on an upper surface portion, a lower surface portion, a right surface portion, and a left surface portion of an outer diameter surface of the fixed side member that is in a vertical position and a horizontal position with respect to a tire ground contact surface. Bearing for sensor wheel.
JP2008025990A 2008-02-06 2008-02-06 Wheel bearing with sensor Pending JP2009185888A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008025990A JP2009185888A (en) 2008-02-06 2008-02-06 Wheel bearing with sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008025990A JP2009185888A (en) 2008-02-06 2008-02-06 Wheel bearing with sensor

Publications (1)

Publication Number Publication Date
JP2009185888A true JP2009185888A (en) 2009-08-20

Family

ID=41069336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008025990A Pending JP2009185888A (en) 2008-02-06 2008-02-06 Wheel bearing with sensor

Country Status (1)

Country Link
JP (1) JP2009185888A (en)

Similar Documents

Publication Publication Date Title
JP5274343B2 (en) Wheel bearing with sensor
US8578791B2 (en) Sensor-equipped bearing for wheel
JP5019988B2 (en) Wheel bearing with sensor
JP5424565B2 (en) Wheel bearing with sensor
JP5094457B2 (en) Wheel bearing with sensor
JP5153373B2 (en) Wheel bearing with sensor
JP5268756B2 (en) Wheel bearing with sensor
JP5063270B2 (en) Wheel bearing with sensor
JP2006337356A (en) Rolling bearing unit with displacement measuring instrument, and rolling bearing unit with load measuring instrument
JP5142683B2 (en) Wheel bearing with sensor
JP2010127376A (en) Sensor equipped bearing for wheel
JP5085290B2 (en) Wheel bearing with sensor
JP2009185888A (en) Wheel bearing with sensor
JP5300429B2 (en) Wheel bearing with sensor
JP5264206B2 (en) Wheel bearing with sensor
JP2010121745A (en) Wheel bearing with sensor
WO2015005282A1 (en) Vehicle-wheel bearing device with sensor
JP5072551B2 (en) Wheel bearing with sensor
JP5224805B2 (en) Wheel bearing with sensor
JP5219424B2 (en) Wheel bearing with sensor
JP5219423B2 (en) Wheel bearing with sensor
JP2010243190A (en) Wheel bearing with sensor
JP2008249566A (en) Sensor-attached wheel bearing
JP2011085439A (en) Wheel bearing with sensor
JP2011085440A (en) Sensor-equipped wheel bearing