JP5264206B2 - Wheel bearing with sensor - Google Patents

Wheel bearing with sensor Download PDF

Info

Publication number
JP5264206B2
JP5264206B2 JP2008033921A JP2008033921A JP5264206B2 JP 5264206 B2 JP5264206 B2 JP 5264206B2 JP 2008033921 A JP2008033921 A JP 2008033921A JP 2008033921 A JP2008033921 A JP 2008033921A JP 5264206 B2 JP5264206 B2 JP 5264206B2
Authority
JP
Japan
Prior art keywords
sensor
thick
wheel bearing
fixed
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008033921A
Other languages
Japanese (ja)
Other versions
JP2009192390A (en
Inventor
亨 高橋
浩 磯部
健太郎 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to JP2008033921A priority Critical patent/JP5264206B2/en
Publication of JP2009192390A publication Critical patent/JP2009192390A/en
Application granted granted Critical
Publication of JP5264206B2 publication Critical patent/JP5264206B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/52Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions
    • F16C19/522Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions related to load on the bearing, e.g. bearings with load sensors or means to protect the bearing against overload
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/18Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls
    • F16C19/181Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact
    • F16C19/183Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles
    • F16C19/184Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement
    • F16C19/186Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement with three raceways provided integrally on parts other than race rings, e.g. third generation hubs

Description

この発明は、車輪の軸受部にかかる荷重を検出する荷重センサを内蔵したセンサ付車輪用軸受に関する。   The present invention relates to a sensor-equipped wheel bearing with a built-in load sensor for detecting a load applied to a bearing portion of the wheel.

自動車の各車輪にかかる荷重を検出する技術として、車輪用軸受の固定輪である外輪のフランジ部外径面の歪みを検出することにより荷重を検出するセンサ付車輪用軸受が提案されている(例えば特許文献1)。また、車輪用軸受の外輪に歪みゲージを貼り付け、歪みを検出するようにした車輪用軸受も提案されている(例えば特許文献2)。   As a technique for detecting a load applied to each wheel of an automobile, a sensor-equipped wheel bearing that detects a load by detecting a distortion of an outer diameter surface of a flange portion of an outer ring that is a fixed ring of a wheel bearing has been proposed ( For example, Patent Document 1). There has also been proposed a wheel bearing in which a strain gauge is attached to the outer ring of the wheel bearing to detect the strain (for example, Patent Document 2).

さらに、歪み発生部材およびこの歪み発生部材に取付けた歪みセンサからなるセンサユニットを軸受の固定輪に取付け、前記歪み発生部材は、前記固定輪に対して少なくとも2箇所の接触固定部を有し、隣り合う接触固定部の間で少なくとも1箇所に切欠き部を有し、この切欠き部に前記歪みセンサを配置したセンサ付車輪用軸受が提案されている(例えば特許文献3)。   Furthermore, a sensor unit comprising a strain generating member and a strain sensor attached to the strain generating member is attached to a fixed ring of the bearing, and the strain generating member has at least two contact fixing portions with respect to the fixed ring, A sensor-equipped wheel bearing has been proposed that has at least one notch portion between adjacent contact fixing portions, and the strain sensor is disposed in the notch portion (for example, Patent Document 3).

特許文献3に開示のセンサ付車輪用軸受によると、車両走行に伴い回転輪に荷重が加わったとき、転動体を介して固定輪が変形するので、その変形がセンサユニットに歪みをもたらす。センサユニットに設けられた歪みセンサは、センサユニットの歪みを検出する。歪みと荷重の関係を予め実験やシミュレーションで求めておけば、歪みセンサの出力から車輪にかかる荷重等を検出することができる。
特開2002−098138号公報 特表2003−530565号公報 特開2007−57299号公報
According to the sensor-equipped wheel bearing disclosed in Patent Document 3, when a load is applied to the rotating wheel as the vehicle travels, the fixed wheel is deformed via the rolling elements, and this deformation causes distortion of the sensor unit. The strain sensor provided in the sensor unit detects the strain of the sensor unit. If the relationship between strain and load is obtained in advance through experiments and simulations, the load applied to the wheel can be detected from the output of the strain sensor.
JP 2002-098138 A Special table 2003-530565 gazette JP 2007-57299 A

特許文献1に開示の技術では、固定輪のフランジ部の変形により発生する歪みを検出している。しかし、固定輪のフランジ部の変形には、フランジ面とナックル面の間に、静止摩擦力を超える力が作用した場合に滑りが伴うため、繰返し荷重を印加すると、出力信号にヒステリシスが発生するといった問題がある。
例えば、車輪用軸受に対してある方向の荷重が大きくなる場合、固定輪フランジ面とナックル面の間は、最初は荷重よりも静止摩擦力の方が大きいため滑らないが、ある大きさを超えると静止摩擦力に打ち勝って滑るようになる。その状態で荷重を小さくしていくと、やはり最初は静止摩擦力により滑らないが、ある大きさになると滑るようになる。その結果、この変形が生じる部分で荷重を推定しようとすると、出力信号に図11のようなヒステリシスが生じる。ヒステリシスが生じると、検出分解能が低下する。
特許文献2のように外輪に歪みゲージを貼り付けるのでは、組立性に問題がある。
また、特許文献3に開示のセンサ付車輪用軸受では、センサユニットが取付けられる軸受固定輪の外径面と内周の転走面の間の肉厚が薄く、しかも固定輪の外径面には焼入れ部があるため、センサユニットを堅固に固定できない。このため、センサユニットと軸受の固定輪外径面との間に滑りが生じ、その滑りに起因するヒステリシスがセンサユニットの出力信号に生じて、荷重を精度良く検出できない。
In the technique disclosed in Patent Document 1, distortion generated by deformation of the flange portion of the fixed ring is detected. However, the deformation of the flange portion of the fixed ring involves slipping when a force exceeding the static friction force is applied between the flange surface and the knuckle surface, so that hysteresis is generated in the output signal when a repeated load is applied. There is a problem.
For example, when the load in a certain direction with respect to the wheel bearing increases, the static friction force between the fixed ring flange surface and the knuckle surface does not slip at first, but exceeds a certain size. And it comes to slip over the static friction force. If the load is reduced in this state, it will not slip due to static friction force at first, but it will slip when it reaches a certain size. As a result, when an attempt is made to estimate the load at a portion where this deformation occurs, a hysteresis as shown in FIG. 11 occurs in the output signal. When hysteresis occurs, the detection resolution decreases.
When a strain gauge is attached to the outer ring as in Patent Document 2, there is a problem in assemblability.
Further, in the sensor-equipped wheel bearing disclosed in Patent Document 3, the thickness between the outer diameter surface of the bearing fixed ring to which the sensor unit is attached and the inner rolling surface is thin, and the outer diameter surface of the fixed ring is Because there is a hardened part, the sensor unit cannot be firmly fixed. For this reason, slip occurs between the sensor unit and the outer diameter surface of the fixed ring of the bearing, and hysteresis due to the slip occurs in the output signal of the sensor unit, and the load cannot be detected with high accuracy.

この発明の目的は、荷重検出手段を滑りなく堅固に軸受に固定できて、車輪用軸受やタイヤ接地面に作用する荷重を正確に検出できるセンサ付車輪用軸受を提供することである。   An object of the present invention is to provide a wheel bearing with a sensor that can firmly detect a load acting on a wheel bearing or a tire ground contact surface by firmly fixing the load detecting means to the bearing without slipping.

この発明のセンサ付車輪用軸受は、複列の転走面が内周に形成された外方部材と、前記転走面と対向する転走面が外周に形成された内方部材と、両部材の対向する転走面間に介在した複列の転動体とを備え、車体に対して車輪を回転自在に支持する車輪用軸受において、上記外方部材および内方部材のうちの固定側部材の一部に、部分的に厚肉となった厚肉部を設け、車輪用軸受に作用する荷重を検出する荷重検出手段を前記厚肉部の表面に固定したことを特徴とする。
この構成によると、固定側部材の厚肉部の表面に荷重検出手段を固定するので、その固定が堅固なものとなり、荷重検出手段と固定側部材との間での滑りを抑えることができ、荷重検出手段の出力信号に現れる前記滑りによるヒステリシスを小さくすることができる。その結果、車輪用軸受に作用する荷重を正確に検出できる。
The sensor-equipped wheel bearing according to the present invention includes an outer member having a double-row rolling surface formed on the inner periphery, an inner member having a rolling surface opposed to the rolling surface formed on the outer periphery, A wheel bearing comprising a double row rolling element interposed between opposing rolling surfaces of the member and rotatably supporting the wheel with respect to the vehicle body, wherein the fixed side member of the outer member and the inner member A thick-walled portion that is partially thick is provided in a part of the rim, and load detecting means for detecting a load acting on the wheel bearing is fixed to the surface of the thick-walled portion.
According to this configuration, since the load detection means is fixed to the surface of the thick part of the fixed side member, the fixation becomes firm, and slippage between the load detection means and the fixed side member can be suppressed, Hysteresis due to the slip appearing in the output signal of the load detecting means can be reduced. As a result, the load acting on the wheel bearing can be accurately detected.

記厚肉部は、固定側部材の円周方向の一部を、円周方向の他の部分よりも厚肉としたものである。 Before KiAtsu meat portion, a portion of the circumferential direction of the stationary member, in which a thicker than other portions of the circumferential direction.

この発明において、前記固定側部材の厚肉部における前記荷重検出手段の設置面を平坦面としても良い。この構成の場合、荷重検出手段を安定良く厚肉部の表面に固定できる。   In this invention, it is good also considering the installation surface of the said load detection means in the thick part of the said fixed side member as a flat surface. In the case of this configuration, the load detection means can be stably fixed to the surface of the thick portion.

この発明において、前記荷重検出手段は、前記固定側部材の厚肉部表面に接触して固定される2つ以上の接触固定部を有する歪み発生部材、およびこの歪み発生部材に取付けられてこの歪み発生部材の歪みを検出するセンサを有するセンサユニットからなり、前記各接触固定部は、前記固定側部材の厚肉部表面に対して、軸方向に同寸法となるように設けても良い。
この構成の場合、センサユニットにおける歪み発生部材の2つ以上の接触固定部が固定側部材に接触固定されているので、固定側部材の歪みが歪み発生部材に拡大して伝達され、その歪みがセンサで感度良く検出され、その出力信号から荷重を検出できる。
また、固定側部材の厚肉部の表面に固定されるセンサユニットの各接触固定部の軸方向寸法が異なると、固定側部材から接触固定部を介して歪み発生部材に伝達される歪みも異なる。この構成の場合、センサユニットの各接触固定部を、固定側部材の厚肉部表面に対して軸方向に同寸法となるように設けているので、歪み発生部材に歪みが集中しやすくなり、それだけ検出感度が向上する。
In the present invention, the load detecting means includes a strain generating member having two or more contact fixing portions fixed in contact with the surface of the thick portion of the fixed side member, and the strain generating member attached to the strain generating member. The contact unit may include a sensor unit having a sensor for detecting distortion of the generation member, and the contact fixing portions may be provided so as to have the same dimension in the axial direction with respect to the thick portion surface of the fixing side member.
In the case of this configuration, since two or more contact fixing portions of the strain generating member in the sensor unit are fixed in contact with the fixed side member, the strain of the fixed side member is enlarged and transmitted to the strain generating member. It is detected with high sensitivity by the sensor, and the load can be detected from the output signal.
Moreover, if the axial dimension of each contact fixing part of the sensor unit fixed to the surface of the thick part of the fixed side member is different, the strain transmitted from the fixed side member to the strain generating member via the contact fixing part is also different. . In the case of this configuration, since each contact fixing part of the sensor unit is provided so as to have the same dimension in the axial direction with respect to the surface of the thick part of the fixed side member, the distortion is likely to concentrate on the distortion generating member, The detection sensitivity is improved accordingly.

この発明において、前記歪み発生部材は、平面概形が均一幅の帯状、または平面概形が帯状で側辺部に切欠き部を有する薄板材からなるものであっても良い。
歪み発生部材が薄板材であると、固定側部材の歪みが歪み発生部材に拡大して伝達されやすく、その歪みがセンサで感度良く検出され、その出力信号に生じるヒステリシスも小さくなり、荷重を精度良く検出できる。また、歪み発生部材の形状が簡単なものとなり、量産性に優れたものとなる。その歪み発生部材を、平面概形が均一幅の帯状とした場合、さらに形状が簡単なものとなり、量産性が向上する。また、その歪み発生部材を、平面概形が帯状で側辺部に切欠き部を有するものとすると、固定側部材の歪みがさらに拡大されて歪み発生部材に伝達されるので、さらに精度良く荷重を検出できる。
In the present invention, the strain generating member may be made of a strip having a uniform width in a planar shape or a thin plate material having a planar shape in a strip shape and having a notch in a side portion.
If the strain generating member is a thin plate material, the distortion of the fixed side member is easily transmitted to the strain generating member, the strain is detected with high sensitivity by the sensor, the hysteresis generated in the output signal is also reduced, and the load is accurate. It can be detected well. In addition, the shape of the strain generating member is simple, and the mass productivity is excellent. When the distortion generating member is a strip having a uniform plane shape, the shape is further simplified, and mass productivity is improved. Further, if the distortion generating member has a planar outline and has a notch in the side portion, the distortion of the fixed side member is further enlarged and transmitted to the distortion generating member, so that the load is more accurately applied. Can be detected.

この発明において、前記固定側部材の厚肉部表面における前記センサユニットの隣り合う接触固定部の固定位置の間に溝を設けても良い。この構成の場合、接触固定部と厚肉部との間にスペーサを介在させることなく、歪み発生部材の隣り合う接触固定部の中間部位を厚肉部の表面から離して、検出感度を向上させることができ、センサユニットの取付け構造も簡単なものとなる。   In this invention, you may provide a groove | channel between the fixing positions of the contact fixing part which the said sensor unit adjoins in the thick part surface of the said fixed side member. In the case of this configuration, without interposing a spacer between the contact fixing part and the thick part, the intermediate part of the adjacent contact fixing part of the strain generating member is separated from the surface of the thick part to improve the detection sensitivity. The sensor unit mounting structure can be simplified.

この発明において、前記固定側部材の厚肉部、または厚肉部および前記溝を鍛造により形成しても良い。この構成の場合、固定側部材の鍛造工程において厚肉部や溝を形成できるので、製造工程を増やすことなく厚肉部や溝を容易に形成できる。   In this invention, you may form the thick part of the said fixed side member, or a thick part and the said groove | channel by forging. In the case of this configuration, the thick part and the groove can be formed in the forging process of the fixed side member, so that the thick part and the groove can be easily formed without increasing the manufacturing process.

この発明において、前記センサユニットを、タイヤ接地面に対して上下位置および左右位置となる前記固定側部材の外径面の上面部、下面部、右面部、および左面部に配置しても良い。この構成の場合、車輪用軸受に作用する垂直方向荷重Fz 、軸方向荷重Fy 、および駆動力や制動力による荷重Fx を精度良く検出できる。   In this invention, you may arrange | position the said sensor unit in the upper surface part of the outer diameter surface of the said fixed side member which becomes a vertical position and a left-right position with respect to a tire ground-contact surface, a lower surface part, a right surface part, and a left surface part. In the case of this configuration, it is possible to accurately detect the vertical load Fz, the axial load Fy, and the load Fx caused by the driving force and braking force acting on the wheel bearing.

この発明のセンサ付車輪用軸受は、複列の転走面が内周に形成された外方部材と、前記転走面と対向する転走面が外周に形成された内方部材と、両部材の対向する転走面間に介在した複列の転動体とを備え、車体に対して車輪を回転自在に支持する車輪用軸受において、上記外方部材および内方部材のうちの固定側部材の一部に、部分的に厚肉となった厚肉部を設け、車輪用軸受に作用する荷重を検出する荷重検出手段を前記厚肉部の表面に固定し、前記厚肉部は、固定側部材の円周方向の一部を、円周方向の他の部分よりも厚肉としたものであるため、荷重検出手段を滑りなく堅固に軸受に固定できて、車輪用軸受やタイヤ接地面に作用する荷重を正確に検出できる。 The sensor-equipped wheel bearing according to the present invention includes an outer member having a double-row rolling surface formed on the inner periphery, an inner member having a rolling surface opposed to the rolling surface formed on the outer periphery, A wheel bearing comprising a double row rolling element interposed between opposing rolling surfaces of the member and rotatably supporting the wheel with respect to the vehicle body, wherein the fixed side member of the outer member and the inner member A thick wall part that is partially thick is provided in a part of the wheel, and a load detecting means for detecting a load acting on the wheel bearing is fixed to the surface of the thick wall part, and the thick wall part is fixed. a part of the circumferential direction of the side members, because the is obtained by a thicker than other portions of the circumferential direction and can be fixed to firmly bearing without slippage load detecting means, wheel bearing and the tire contact The load acting on the ground can be accurately detected.

この発明の一実施形態を図1ないし図4と共に説明する。この実施形態は、第3世代型の内輪回転タイプで、駆動輪支持用の車輪用軸受に適用したものである。なお、この明細書において、車両に取付けた状態で車両の車幅方向の外側寄りとなる側をアウトボード側と呼び、車両の中央寄りとなる側をインボード側と呼ぶ。   An embodiment of the present invention will be described with reference to FIGS. This embodiment is a third generation inner ring rotating type and is applied to a wheel bearing for driving wheel support. In this specification, the side closer to the outer side in the vehicle width direction of the vehicle when attached to the vehicle is referred to as the outboard side, and the side closer to the center of the vehicle is referred to as the inboard side.

このセンサ付車輪用軸受における軸受は、図1に断面図で示すように、内周に複列の転走面3を形成した外方部材1と、これら各転走面3に対向する転走面4を外周に形成した内方部材2と、これら外方部材1および内方部材2の転走面3,4間に介在した複列の転動体5とで構成される。この車輪用軸受は、複列のアンギュラ玉軸受型とされていて、転動体5はボールからなり、各列毎に保持器6で保持されている。上記転走面3,4は断面円弧状であり、ボール接触角が背面合わせとなるように形成されている。外方部材1と内方部材2との間の軸受空間の両端は、一対のシール7,8によってそれぞれ密封されている。   As shown in the sectional view of FIG. 1, the bearing for this sensor-equipped wheel bearing includes an outer member 1 in which a double row rolling surface 3 is formed on the inner periphery, and rolling facing each of these rolling surfaces 3. The inner member 2 has a surface 4 formed on the outer periphery, and the outer member 1 and the double row rolling elements 5 interposed between the rolling surfaces 3 and 4 of the inner member 2. This wheel bearing is a double-row angular ball bearing type, and the rolling elements 5 are made of balls and are held by a cage 6 for each row. The rolling surfaces 3 and 4 have an arc shape in cross section, and are formed so that the ball contact angle is aligned with the back surface. Both ends of the bearing space between the outer member 1 and the inner member 2 are sealed by a pair of seals 7 and 8, respectively.

外方部材1は固定側部材となるものであって、車体の懸架装置(図示せず)におけるナックル16に取付ける車体取付用フランジ1aを外周に有し、全体が一体の部品とされている。フランジ1aには円周方向の複数箇所に車体取付用のボルト孔14が設けられ、インボード側よりナックル16のボルト挿通孔17に挿通したナックルボルト18を前記ボルト孔14に螺合することにより、車体取付用フランジ1aがナックル16に取付けられる。
内方部材2は回転側部材となるものであって、車輪取付用のハブフランジ9aを有するハブ輪9と、このハブ輪9の軸部9bのインボード側端の外周に嵌合した内輪10とでなる。これらハブ輪9および内輪10に、前記各列の転走面4が形成されている。ハブ輪9のインボード側端の外周には段差を持って小径となる内輪嵌合面12が設けられ、この内輪嵌合面12に内輪10が嵌合している。ハブ輪9の中心には貫通孔11が設けられている。ハブフランジ9aには、周方向複数箇所にハブボルト(図示せず)の圧入孔15が設けられている。ハブ輪9のハブフランジ9aの根元部付近には、車輪および制動部品(図示せず)を案内する円筒状のパイロット部13がアウトボード側に突出している。
The outer member 1 is a fixed side member, and has a vehicle body mounting flange 1a attached to a knuckle 16 in a suspension device (not shown) of the vehicle body on the outer periphery, and the whole is an integral part. Bolt holes 14 for mounting the vehicle body are provided at a plurality of locations in the circumferential direction on the flange 1a, and knuckle bolts 18 inserted into the bolt insertion holes 17 of the knuckle 16 from the inboard side are screwed into the bolt holes 14. The vehicle body mounting flange 1 a is attached to the knuckle 16.
The inner member 2 is a rotating side member, and includes a hub wheel 9 having a hub flange 9a for wheel mounting, and an inner ring 10 fitted to the outer periphery of the end portion on the inboard side of the shaft portion 9b of the hub wheel 9. And become. The hub wheel 9 and the inner ring 10 are formed with the rolling surfaces 4 of the respective rows. An inner ring fitting surface 12 having a small diameter with a step is provided on the outer periphery of the inboard side end of the hub wheel 9, and the inner ring 10 is fitted to the inner ring fitting surface 12. A through hole 11 is provided at the center of the hub wheel 9. The hub flange 9a is provided with press-fitting holes 15 for hub bolts (not shown) at a plurality of locations in the circumferential direction. In the vicinity of the base portion of the hub flange 9a of the hub wheel 9, a cylindrical pilot portion 13 for guiding a wheel and a braking component (not shown) protrudes toward the outboard side.

図2は、この車輪用軸受の外方部材1をアウトボード側から見た正面図を示す。なお、図1は、図2におけるI−I矢視断面図を示す。前記車体取付用フランジ1aは、図2のように、各ボルト孔14が設けられた円周方向部分が他の部分よりも外径側へ突出した突片1aaとされている。   FIG. 2 shows a front view of the outer member 1 of the wheel bearing as viewed from the outboard side. 1 shows a cross-sectional view taken along the line II in FIG. As shown in FIG. 2, the vehicle body mounting flange 1 a is a projecting piece 1 aa in which a circumferential portion provided with each bolt hole 14 protrudes to the outer diameter side from the other portion.

固定側部材である外方部材1の外径面には、車輪用軸受に作用する荷重を検出する荷重検出手段として、2つのセンサユニット20が設けられている。これら2つのセンサユニット20は、外方部材1の外径面の円周方向における180度の位相差をなす位置に配置される。ここでは、2つのセンサユニット20を、タイヤ接地面に対して上下位置となる外方部材1の外径面における上面部および下面部の2箇所に設けることで、車輪用軸受に作用する上下方向の荷重(垂直方向荷重)Fz を検出するようにしている。具体的には、図2のように、外方部材1の外径面における上面部の、隣り合う2つの突片1aaの間の中央部に1つのセンサユニット20が配置され、外方部材1の外径面における下面部の、隣り合う2つの突片1aaの間の中央部に他の1つのセンサユニット20が配置されている。
上記外方部材1の円周方向の一部である前記各センサユニット20が設置される上部および下部は、円周方向の他の部分よりも外径面が外径側に張り出して厚肉となった厚肉部1bとされている。これらの各厚肉部1bの表面に、前記各センサユニット20が固定されている。前記厚肉部1bは、外方部材1の鍛造形成において形成される。これにより、製造工程を増やすことなく厚肉部1bを容易に形成できる。
Two sensor units 20 are provided on the outer diameter surface of the outer member 1 which is a fixed member as load detecting means for detecting a load acting on the wheel bearing. These two sensor units 20 are arranged at positions that form a phase difference of 180 degrees in the circumferential direction of the outer diameter surface of the outer member 1. Here, the two sensor units 20 are provided at two locations, the upper surface portion and the lower surface portion, on the outer diameter surface of the outer member 1 that are in the vertical position with respect to the tire ground contact surface, so that the vertical direction acts on the wheel bearing. The load (vertical load) Fz is detected. Specifically, as shown in FIG. 2, one sensor unit 20 is arranged at the center between two adjacent projecting pieces 1 aa on the upper surface portion of the outer diameter surface of the outer member 1, and the outer member 1. Another one sensor unit 20 is arranged at the center portion between two adjacent projecting pieces 1aa on the lower surface portion of the outer diameter surface.
The upper part and the lower part in which each sensor unit 20 that is a part of the outer member 1 in the circumferential direction is installed are thicker with the outer diameter surface projecting to the outer diameter side than the other parts in the circumferential direction. The thick portion 1b is formed. The sensor units 20 are fixed to the surfaces of the thick portions 1b. The thick part 1 b is formed in the forging of the outer member 1. Thereby, the thick part 1b can be formed easily, without increasing a manufacturing process.

これらのセンサユニット20は、図3および図4に拡大平面図および拡大断面図で示すように、歪み発生部材21と、この歪み発生部材21に取付けられて歪み発生部材21の歪みを検出するセンサ22とでなる。歪み発生部材21は、鋼材等の弾性変形可能な金属製の3mm以下の薄板材からなり、平面概形が全長にわたり一定幅の帯状で中央の両側辺部に切欠き部21bを有する。なお、歪み発生部材21の平面概形は、前記切欠き部21bの無い単調な帯状としても良い。また、歪み発生部材21は、スペーサ23を介して外方部材1の前記厚肉部1bの表面に接触固定される2つの接触固定部21aを両端部に有する。なお、歪み発生部材21の形状によっては、接触固定部21aを2つ以上有するものとしても良い。センサ22は、歪み発生部材21における各方向の荷重に対して歪みが大きくなる箇所に貼り付けられる。ここでは、その箇所として、歪み発生部材21の外面側で両側辺部の切欠き部21bで挟まれる中央部位が選ばれている。なお、歪み発生部材21は、固定側部材である外方部材1に作用する外力、またはタイヤと路面間に作用する作用力として、想定される最大の力が印加された状態においても、塑性変形しないものとするのが望ましい。塑性変形が生じると、外方部材1の変形がセンサユニット20に伝わらず、歪みの測定に影響を及ぼすからである。   As shown in FIGS. 3 and 4 in an enlarged plan view and an enlarged cross-sectional view, these sensor units 20 are a strain generating member 21 and a sensor that is attached to the strain generating member 21 and detects the strain of the strain generating member 21. 22 The strain generating member 21 is made of an elastically deformable metal plate having a thickness of 3 mm or less, such as a steel material, and has a flat planar shape with a constant width over the entire length, and has notches 21b on both sides of the center. In addition, the planar outline of the strain generating member 21 may be a monotonous belt without the notch 21b. In addition, the strain generating member 21 has two contact fixing portions 21 a at both ends that are fixed to the surface of the thick portion 1 b of the outer member 1 through spacers 23. Note that, depending on the shape of the strain generating member 21, two or more contact fixing portions 21a may be provided. The sensor 22 is affixed to a location where the strain increases with respect to the load in each direction on the strain generating member 21. Here, the central part sandwiched between the notches 21b on both sides on the outer surface side of the strain generating member 21 is selected as the part. Note that the strain generating member 21 is plastically deformed even in a state in which an assumed maximum force is applied as an external force acting on the outer member 1 that is a fixed member or an acting force acting between the tire and the road surface. It is desirable not to do so. This is because when the plastic deformation occurs, the deformation of the outer member 1 is not transmitted to the sensor unit 20 and affects the measurement of strain.

前記センサユニット20は、その歪み発生部材21の2つの接触固定部21aが、外方部材1の軸方向に同寸法の位置で、かつ互いに円周方向に離れた位置に来るように配置され、これら接触固定部21aがそれぞれスペーサ23を介してボルト24により外方部材1の厚肉部1bの表面に固定される。前記各ボルト24は、それぞれ接触固定部21aに設けられた径方向に貫通するボルト挿通孔25からスペーサ23のボルト挿通孔26に挿通し、外方部材1の厚肉部1bに設けられたボルト孔27に螺合させる。このように、スペーサ23を介して外方部材1の厚肉部1bの表面に接触固定部21aを固定することにより、薄板状である歪み発生部材21における切欠き部21bを有する中央部位が厚肉部1bの表面から離れた状態となり、切欠き部21bの周辺の歪み変形が容易となる。接触固定部21aが配置される軸方向位置として、ここでは外方部材1のアウトボード側列の転走面3の周辺となる軸方向位置が選ばれる。ここでいうアウトボード側列の転走面3の周辺とは、インボード側列およびアウトボード側列の転走面3の中間位置からアウトボード側列の転走面3の形成部までの範囲である。外方部材1の厚肉部1b表面へセンサユニット20を安定良く固定する上で、厚肉部1bの表面は平坦面とするのが望ましい。   The sensor unit 20 is arranged such that the two contact fixing portions 21a of the strain generating member 21 are located at positions having the same dimension in the axial direction of the outer member 1 and being spaced apart from each other in the circumferential direction. These contact fixing portions 21a are fixed to the surface of the thick portion 1b of the outer member 1 by bolts 24 through spacers 23, respectively. Each of the bolts 24 is inserted into a bolt insertion hole 26 of the spacer 23 from a bolt insertion hole 25 penetrating in the radial direction provided in the contact fixing portion 21 a, and a bolt provided in the thick portion 1 b of the outer member 1. Screwed into the hole 27. Thus, by fixing the contact fixing portion 21a to the surface of the thick portion 1b of the outer member 1 through the spacer 23, the central portion having the notch portion 21b in the thin plate-like strain generating member 21 is thick. It will be in the state away from the surface of the meat part 1b, and distortion deformation of the periphery of the notch part 21b will become easy. As the axial position where the contact fixing portion 21a is disposed, an axial position that is the periphery of the rolling surface 3 of the outboard side row of the outer member 1 is selected here. Here, the periphery of the rolling surface 3 of the outboard side row is a range from the intermediate position of the rolling surface 3 of the inboard side row and the outboard side row to the formation portion of the rolling surface 3 of the outboard side row. It is. In order to stably fix the sensor unit 20 to the surface of the thick portion 1b of the outer member 1, it is desirable that the surface of the thick portion 1b be a flat surface.

センサ22としては、種々のものを使用することができる。例えば、センサ22を金属箔ストレインゲージで構成することができる。その場合、通常、歪み発生部材21に対しては接着による固定が行なわれる。また、センサ22を歪み発生部材21上に厚膜抵抗体にて形成することもできる。   Various sensors can be used as the sensor 22. For example, the sensor 22 can be composed of a metal foil strain gauge. In that case, the distortion generating member 21 is usually fixed by adhesion. The sensor 22 can also be formed on the strain generating member 21 with a thick film resistor.

センサユニット20のセンサ22は推定手段30に接続される。推定手段30は、センサ22の出力信号により、車輪用軸受や車輪と路面間(タイヤ接地面)に作用する力(垂直方向荷重Fz ,駆動力や制動力となる荷重Fx ,軸方向荷重Fy )を推定する手段であり、信号処理回路や補正回路などが含まれる。この推定手段30は、前記作用力とセンサ22の出力信号との関係を演算式またはテーブル等により設定した関係設定手段(図示せず)を有し、入力された出力信号から前記関係設定手段を用いて作用力の値を出力する。前記関係設定手段の設定内容は、予め試験やシミュレーションで求めておいて設定する。   The sensor 22 of the sensor unit 20 is connected to the estimation means 30. Based on the output signal of the sensor 22, the estimating means 30 is a force acting on the wheel bearing or between the wheel and the road surface (tire contact surface) (vertical load Fz, load Fx serving as driving force or braking force, axial load Fy). And includes a signal processing circuit and a correction circuit. The estimation means 30 has a relationship setting means (not shown) in which the relationship between the acting force and the output signal of the sensor 22 is set by an arithmetic expression or a table, and the relationship setting means is determined from the input output signal. Used to output the value of the acting force. The setting contents of the relationship setting means are obtained by a test or simulation in advance.

車輪のタイヤと路面間に荷重が作用すると、車輪用軸受の固定側部材である外方部材1にも荷重が印加されて変形が生じる。センサユニット20における歪み発生部材21の2つの接触固定部21aが外方部材1に接触固定されているので、外方部材1の歪みが歪み発生部材21に拡大して伝達され、その歪みがセンサ22で感度良く検出され、その出力信号から荷重を推定できる。とくに、荷重検出手段であるセンサユニット20を、固定側部材である外方部材1の外径面である厚肉部1bの表面に固定しているので、外方部材1の外径面へセンサユニット20を堅固に固定して、センサユニット20と外方部材1の外径面との間での滑りを抑えることができ、前記センサ22の出力信号に現れる前記滑りによるヒステリシスを小さくすることができる。その結果、荷重を精度良く推定できる。   When a load acts between the tire of the wheel and the road surface, the load is also applied to the outer member 1 that is a stationary member of the wheel bearing, causing deformation. Since the two contact fixing portions 21a of the strain generating member 21 in the sensor unit 20 are fixed to the outer member 1, the strain of the outer member 1 is transmitted to the strain generating member 21 in an enlarged manner, and the strain is transmitted to the sensor. 22 is detected with high sensitivity, and the load can be estimated from the output signal. In particular, since the sensor unit 20 that is the load detecting means is fixed to the surface of the thick portion 1b that is the outer diameter surface of the outer member 1 that is the stationary member, the sensor is moved to the outer diameter surface of the outer member 1. By firmly fixing the unit 20, slipping between the sensor unit 20 and the outer diameter surface of the outer member 1 can be suppressed, and hysteresis due to the slip appearing in the output signal of the sensor 22 can be reduced. it can. As a result, the load can be estimated with high accuracy.

固定側部材である外方部材1の外径面(厚肉部1bの表面)に固定されるセンサユニット20の各接触固定部21aの軸方向寸法が異なると、外方部材1の外径面から接触固定部21aを介して歪み発生部材21に伝達される歪みも異なる。この実施形態では、センサユニット20の各接触固定部21aを、外方部材の厚肉部1bの表面に対して軸方向に同寸法となるように設けているので、歪み発生部材21に歪みが集中しやすくなり、それだけ検出感度が向上する。   If the axial dimension of each contact fixing portion 21a of the sensor unit 20 fixed to the outer diameter surface (the surface of the thick portion 1b) of the outer member 1 which is a fixed member is different, the outer diameter surface of the outer member 1 The strain transmitted to the strain generating member 21 through the contact fixing portion 21a is also different. In this embodiment, the contact fixing portions 21a of the sensor unit 20 are provided so as to have the same dimension in the axial direction with respect to the surface of the thick portion 1b of the outer member. It becomes easier to concentrate and the detection sensitivity is improved accordingly.

また、歪み発生部材21が薄板材からなるので、外方部材1の歪みが歪み発生部材21に拡大して伝達され易く、その歪みがセンサ22で感度良く検出され、その出力信号に生じるヒステリシスも小さくなり、荷重を精度良く推定できる。また、歪み発生部材21の形状が簡単なものとなり、量産性に優れたものとなる。歪み発生部材21を、平面概形が単調な帯状とした場合、さらに形状が簡単なものとなり、量産性が向上する。また、歪み発生部材21を、図3のように平面概形が帯状で側辺部に切欠き部21bを有するものとすると、外方部材1の歪みがさらに拡大されて歪み発生部材21に伝達されるので、さらに精度良く荷重を推定できる。   Further, since the strain generating member 21 is made of a thin plate material, the strain of the outer member 1 is easily transmitted to the strain generating member 21 in an enlarged manner. It becomes smaller and the load can be estimated with high accuracy. In addition, the shape of the strain generating member 21 is simple, and the mass productivity is excellent. When the strain generating member 21 is a belt having a monotonous planar outline, the shape is further simplified, and mass productivity is improved. Further, when the strain generating member 21 has a planar outline as shown in FIG. 3 and has a notch portion 21b on the side portion, the strain of the outer member 1 is further enlarged and transmitted to the strain generating member 21. Therefore, the load can be estimated with higher accuracy.

上記説明では車輪のタイヤと路面間の作用力を検出する場合を示したが、車輪のタイヤと路面間の作用力だけでなく、車輪用軸受に作用する力(例えば予圧量)を検出するものとしても良い。
このセンサ付車輪用軸受から得られた検出荷重を車両制御に使用することにより、自動車の安定走行に寄与できる。また、このセンサ付車輪用軸受を用いると、車両にコンパクトに荷重センサを設置でき、量産性に優れたものとでき、コスト低減を図ることができる。
In the above description, the case where the acting force between the wheel tire and the road surface is detected is shown. However, not only the acting force between the wheel tire and the road surface but also the force acting on the wheel bearing (for example, the preload amount) is detected. It is also good.
By using the detected load obtained from the sensor-equipped wheel bearing for vehicle control, it is possible to contribute to stable running of the automobile. In addition, when this sensor-equipped wheel bearing is used, a load sensor can be installed in a compact vehicle, the mass productivity can be improved, and the cost can be reduced.

また、垂直方向荷重Fz に対しては、固定側部材である外方部材1は上面部と下面部で変形するが、この実施形態では、2つのセンサユニット20を、タイヤ接地面に対して上下位置となる外方部材1の外径面の上面部と下面部とに配置しているので、それらのセンサ22の出力信号から軸方向荷重Fy と垂直方向荷重Fz とを精度良く推定できる。   Further, for the vertical load Fz, the outer member 1 that is a fixed member is deformed at the upper surface portion and the lower surface portion. In this embodiment, the two sensor units 20 are moved up and down with respect to the tire ground contact surface. Since the outer member 1 is positioned on the upper surface and the lower surface of the outer diameter surface, the axial load Fy and the vertical load Fz can be accurately estimated from the output signals of the sensors 22.

なお、センサユニット20の他の設置例として、4つのセンサユニット20を、図5のように、タイヤ接地面に対して上下位置および左右位置となる外方部材1の外径面の上面部、下面部、右面部、および左面部に配置しても良い。この場合、外方部材1の外径面の右面部および左面部にも、上面部および下面部の厚肉部1bと同様の厚肉部1bを設け、それらの厚肉部1bの表面に各センサユニット20を固定する。駆動力や制動力による荷重Fx に対しては、固定側部材である外方部材1の右面部と左面部が変形するので、この場合には、それらのセンサ22の出力信号から、駆動力や制動力による荷重Fx とを精度良く推定できる。つまり、外方部材1の外径面の上面部、下面部、右面部、および左面部にセンサユニット20を配置した場合には、垂直方向荷重Fz 、軸方向荷重Fy 、および駆動力や制動力による荷重Fx を精度良く推定できる。   As another installation example of the sensor unit 20, as shown in FIG. 5, the upper surface portion of the outer diameter surface of the outer member 1 that is in the vertical position and the horizontal position with respect to the tire ground contact surface, You may arrange | position to a lower surface part, a right surface part, and a left surface part. In this case, a thick portion 1b similar to the thick portion 1b of the upper surface portion and the lower surface portion is also provided on the right surface portion and the left surface portion of the outer diameter surface of the outer member 1, and the surface of the thick portion 1b The sensor unit 20 is fixed. For the load Fx caused by the driving force or the braking force, the right surface portion and the left surface portion of the outer member 1 that is a fixed member are deformed. In this case, the driving force or The load Fx caused by the braking force can be accurately estimated. That is, when the sensor unit 20 is arranged on the upper surface portion, the lower surface portion, the right surface portion, and the left surface portion of the outer diameter surface of the outer member 1, the vertical load Fz, the axial load Fy, the driving force and the braking force Can accurately estimate the load Fx.

図6および図7は、この発明の他の実施形態を示す。この実施形態では、図1〜図4に示す実施形態のセンサ付車輪用軸受において、図7に拡大断面図で示すように、外方部材1の外径面(厚肉部1bの表面)における歪み発生部材21の2つの接触固定部21aが固定される2箇所の中間部に溝1cを設けることで、前記スペーサ23を省略し、歪み発生部材21における切欠き部21bが位置する2つの接触固定部21aの中間部位を外方部材1の厚肉部1bの表面から離すようにしている。この場合の前記厚肉部1bおよびその表面の溝1cは、外方部材1の鍛造形成において形成される。これにより、製造工程を増やすことなく厚肉部1bおよび溝1cを容易に形成できる。その他の構成は図1〜図4の実施形態の場合と同様である。   6 and 7 show another embodiment of the present invention. In this embodiment, in the sensor-equipped wheel bearing of the embodiment shown in FIGS. 1 to 4, as shown in an enlarged cross-sectional view in FIG. 7, the outer diameter surface of the outer member 1 (the surface of the thick portion 1 b). By providing the groove 1c in two intermediate portions where the two contact fixing portions 21a of the strain generating member 21 are fixed, the spacer 23 is omitted, and the two contacts where the notch portion 21b in the strain generating member 21 is located. The intermediate part of the fixing part 21a is separated from the surface of the thick part 1b of the outer member 1. In this case, the thick portion 1b and the groove 1c on the surface thereof are formed in the forging of the outer member 1. Thereby, the thick part 1b and the groove | channel 1c can be formed easily, without increasing a manufacturing process. Other configurations are the same as those in the embodiment of FIGS.

このように、厚肉部1bの表面における2つの接触固定部21aが固定される2箇所の中間部に溝1cを設けると、スペーサ23を省略して歪み発生部材21の中間部位を厚肉部1bの表面から離すことができるので、厚肉部1bへのセンサユニット20の取付け構造が簡単なものとなる。   As described above, when the groove 1c is provided at the two intermediate portions where the two contact fixing portions 21a are fixed on the surface of the thick portion 1b, the spacer 23 is omitted and the intermediate portion of the strain generating member 21 is the thick portion. Since it can remove | separate from the surface of 1b, the attachment structure of the sensor unit 20 to the thick part 1b becomes simple.

図8ないし図10は、この発明のさらに他の実施形態を示す。このセンサ付車輪用軸受では、図1〜図4に示す実施形態において、センサユニット20を以下のように構成している。この場合も、センサユニット20は、図10に拡大断面図で示すように、歪み発生部材21と、この歪み発生部材21に取付けられて歪み発生部材21の歪みを検出するセンサ22とでなる。歪み発生部材21は、外方部材1の外径面に対向する内面側に張り出した2つの接触固定部21aを両端部に有し、これら接触固定部21aで外方部材1の外径面に接触して固定される。図9のように、外方部材1にはその外径面の一部が外径側に張出した厚肉部1bが設けられ、その厚肉部1bの表面に2つの接触固定部21aが固定されることは図1〜図4の実施形態と同じである。なお、図8は、図9のVIII− VIII 矢視断面図を示す。2つの接触固定部21aのうち、1つの接触固定部21aは、外方部材1のアウトボード側列の転走面3の周辺となる軸方向位置に配置され、この位置よりもアウトボード側の位置にもう1つの接触固定部21aが配置され、かつこれら両接触固定部21aは互いに外方部材1の円周方向における同位相の位置に配置される。つまり、センサユニット20は、その歪み発生部材21の2つの接触固定部21aが、固定側部材である外方部材1の同一周方向位置でかつ軸方向に互いに離れた位置となるように、外方部材1の厚肉部1b表面に配置される。ここでいうアウトボード側列の転走面3の周辺とは、インボード側列およびアウトボード側列の転走面3の中間位置からアウトボード側列の転走面3の形成部までの範囲である。この場合も、外方部材1の厚肉部1b表面へセンサユニット20を安定良く固定する上で、厚肉部1bの表面を平坦面に形成するのが望ましい。
また、歪み発生部材21の中央部には内面側に開口する1つの切欠き部21bが形成されている。歪みセンサ22は、歪み発生部材21における各方向の荷重に対して歪みが大きくなる箇所に貼り付けられる。ここでは、その箇所として、前記切欠き部21bの周辺、具体的には歪み発生部材21の外面側で切欠き部21bの背面側となる位置が選ばれており、歪みセンサ22は切欠き部21bの周辺の歪みを検出する。
8 to 10 show still another embodiment of the present invention. In this sensor-equipped wheel bearing, in the embodiment shown in FIGS. 1 to 4, the sensor unit 20 is configured as follows. Also in this case, the sensor unit 20 includes a strain generating member 21 and a sensor 22 that is attached to the strain generating member 21 and detects the strain of the strain generating member 21, as shown in an enlarged cross-sectional view in FIG. The strain generating member 21 has two contact fixing portions 21a projecting on the inner surface facing the outer diameter surface of the outer member 1 at both ends, and these contact fixing portions 21a are formed on the outer diameter surface of the outer member 1. Fixed in contact. As shown in FIG. 9, the outer member 1 is provided with a thick part 1 b in which a part of the outer diameter surface projects to the outer diameter side, and two contact fixing parts 21 a are fixed to the surface of the thick part 1 b. This is the same as the embodiment of FIGS. 8 shows a cross-sectional view taken along arrow VIII-VIII in FIG. Of the two contact fixing portions 21a, one contact fixing portion 21a is disposed at an axial position around the rolling surface 3 of the outboard side row of the outer member 1, and is located on the outboard side from this position. Another contact fixing portion 21a is arranged at the position, and both the contact fixing portions 21a are arranged at the same phase position in the circumferential direction of the outer member 1. That is, the sensor unit 20 is arranged so that the two contact fixing portions 21a of the distortion generating member 21 are located at the same circumferential direction position of the outer member 1 that is the fixed side member and at positions separated from each other in the axial direction. It arrange | positions at the thick part 1b surface of the direction member 1. FIG. Here, the periphery of the rolling surface 3 of the outboard side row is a range from the intermediate position of the rolling surface 3 of the inboard side row and the outboard side row to the formation portion of the rolling surface 3 of the outboard side row. It is. Also in this case, in order to stably fix the sensor unit 20 to the surface of the thick part 1b of the outer member 1, it is desirable to form the surface of the thick part 1b as a flat surface.
In addition, one notch portion 21 b that opens to the inner surface side is formed in the central portion of the strain generating member 21. The strain sensor 22 is affixed to a location where the strain increases with respect to the load in each direction on the strain generating member 21. Here, as the location, the position around the notch portion 21b, specifically, the outer surface side of the strain generating member 21 and the back side of the notch portion 21b is selected, and the strain sensor 22 is the notch portion. The distortion around 21b is detected.

歪み発生部材21の2つの接触固定部21aは、それぞれボルト47により外方部材1の厚肉部1bの表面へ締結することで固定される。具体的には、これらボルト47は、それぞれ接触固定部21aに設けられた径方向に貫通するボルト挿通孔48に挿通し、外方部材1の外周部に設けられたボルト孔49に螺合させる。なお、接触固定部21aの固定方法としては、ボルト47による締結のほか、接着剤などを用いても良い。歪み発生部材21の接触固定部21a以外の箇所では、外方部材1の外径面との間に隙間が生じている。   The two contact fixing portions 21a of the strain generating member 21 are fixed by fastening to the surface of the thick portion 1b of the outer member 1 with bolts 47, respectively. Specifically, each of these bolts 47 is inserted into a bolt insertion hole 48 provided in the contact fixing portion 21a in the radial direction and screwed into a bolt hole 49 provided in the outer peripheral portion of the outer member 1. . In addition, as a fixing method of the contact fixing part 21a, in addition to fastening with the bolt 47, an adhesive or the like may be used. At locations other than the contact fixing portion 21 a of the strain generating member 21, a gap is generated between the outer member 1 and the outer diameter surface.

この実施形態では、前記センサニット20のほかに、図8に示すように、内方部材2の回転を検出する回転検出器40が設けられる。この回転検出器40は、インボード側のシール8のスリンガに共用される磁気エンコーダ51と、この磁気エンコーダ51に対して軸方向に対面する磁気センサ52とでなるアキシアル型の回転検出器である。   In this embodiment, in addition to the sensor unit 20, a rotation detector 40 for detecting the rotation of the inner member 2 is provided as shown in FIG. The rotation detector 40 is an axial rotation detector including a magnetic encoder 51 shared by the slinger of the inboard side seal 8 and a magnetic sensor 52 facing the magnetic encoder 51 in the axial direction. .

センサユニット20のセンサ22と回転検出器40の磁気センサ52とは平均化処理手段29に接続される。平均化処理手段29は、センサ22の出力信号を平均化する手段である。
センサユニット20は、外方部材1のアウトボード側列の転走面3の周辺となる軸方向位置に設けられるので、センサ22の出力信号は転動体5の影響を受ける。すなわち、転動体5がセンサユニット20におけるセンサ22に最も近い位置を通過するとき、センサ22の出力信号の振幅はピーク値となり、転動体5がその位置から遠ざかるにつれて低下する。転動体5は所定の配列ピッチで前記センサユニット20の設置部の近傍を順次通過するので、センサ22の出力信号は、その振幅が転動体の配列ピッチを周期とする波形となる。そこで、前記平均化処理手段29は、転動体5が配列ピッチ分公転する期間での前記出力信号の振幅を平均化して、転動体5の影響を解消する。この平均化処理手段29の次段に推定手段30が設けられる。推定手段30は、前記平均化処理手段29で求められた前記センサ22の出力信号の平均値から、車輪用軸受や車輪と路面間(タイヤ接地面)に作用する力(垂直方向荷重Fz ,駆動力や制動力となる荷重Fx ,軸方向荷重Fy )を推定する。その他の構成は、図1〜図4の実施形態の場合と同様である。
The sensor 22 of the sensor unit 20 and the magnetic sensor 52 of the rotation detector 40 are connected to the averaging processing means 29. The averaging processing means 29 is means for averaging the output signal of the sensor 22.
Since the sensor unit 20 is provided at an axial position around the rolling surface 3 in the outboard side row of the outer member 1, the output signal of the sensor 22 is affected by the rolling elements 5. That is, when the rolling element 5 passes through the position closest to the sensor 22 in the sensor unit 20, the amplitude of the output signal of the sensor 22 has a peak value, and decreases as the rolling element 5 moves away from the position. Since the rolling elements 5 sequentially pass through the vicinity of the installation portion of the sensor unit 20 at a predetermined arrangement pitch, the output signal of the sensor 22 has a waveform whose amplitude is the arrangement pitch of the rolling elements. Therefore, the averaging processing means 29 averages the amplitude of the output signal during the period in which the rolling elements 5 revolve by the arrangement pitch to eliminate the influence of the rolling elements 5. An estimation unit 30 is provided in the next stage of the averaging processing unit 29. The estimation means 30 calculates the force (vertical load Fz, drive) acting on the wheel bearing or between the wheel and the road surface (tire contact surface) from the average value of the output signal of the sensor 22 obtained by the averaging processing means 29. The load Fx and the axial load Fy) are estimated. Other configurations are the same as those in the embodiment of FIGS.

なお、以上の各実施形態では、外方部材1が固定側部材である場合につき説明したが、この発明は、内方部材が固定側部材である車輪用軸受にも適用することができ、その場合、センサユニット20は内方部材の内周となる周面に設ける。
また、前記各実施形態では第3世代型の車輪用軸受に適用した場合につき説明したが、この発明は、軸受部分とハブとが互いに独立した部品となる第1または第2世代型の車輪用軸受や、内方部材の一部が等速ジョイントの外輪で構成される第4世代型の車輪用軸受にも適用することができる。また、このセンサ付車輪用軸受は、従動輪用の車輪用軸受にも適用でき、さらに各世代形式のテーパころタイプの車輪用軸受にも適用することができる。
In each of the above embodiments, the case where the outer member 1 is a fixed side member has been described. However, the present invention can also be applied to a wheel bearing in which the inner member is a fixed side member. In this case, the sensor unit 20 is provided on the peripheral surface that is the inner periphery of the inner member.
In each of the above embodiments, the case where the present invention is applied to a third generation type wheel bearing has been described. However, the present invention is for a first or second generation type wheel in which the bearing portion and the hub are independent parts. The present invention can also be applied to a bearing or a fourth-generation type wheel bearing in which a part of the inner member is composed of an outer ring of a constant velocity joint. The sensor-equipped wheel bearing can also be applied to a wheel bearing for a driven wheel, and can also be applied to a tapered roller type wheel bearing of each generation type.

この発明の一実施形態にかかるセンサ付車輪用軸受の断面図とその検出系の概念構成のブロック図とを組み合わせて示す図である。It is a figure showing combining the sectional view of the wheel bearing with a sensor concerning one embodiment of this invention, and the block diagram of the conceptual composition of the detection system. 同センサ付車輪用軸受の外方部材をアウトボード側から見た正面図である。It is the front view which looked at the outer member of the wheel bearing with a sensor from the outboard side. 同センサ付車輪用軸受におけるセンサユニットの拡大平面図である。It is an enlarged plan view of a sensor unit in the wheel bearing with sensor. 図3におけるIV−IV矢視断面図である。FIG. 4 is a cross-sectional view taken along arrow IV-IV in FIG. 3. センサユニットの他の設置例を示す外方部材の正面図である。It is a front view of the outward member which shows the other example of installation of a sensor unit. この発明の他の実施形態にかかるセンサ付車輪用軸受の外方部材をアウトボード側から見た正面図である。It is the front view which looked at the outward member of the bearing for wheels with a sensor concerning other embodiments of this invention from the outboard side. 同センサ付車輪用軸受におけるセンサユニットの拡大断面図である。It is an expanded sectional view of the sensor unit in the wheel bearing with the sensor. この発明のさらに他の実施形態にかかるセンサ付車輪用軸受の断面図とその検出系の概念構成のブロック図とを組み合わせて示す図である。It is a figure which combines and shows the sectional view of the wheel bearing with a sensor concerning further another embodiment of this invention, and the block diagram of the conceptual structure of the detection system. 同センサ付車輪用軸受の外方部材をアウトボード側から見た正面図である。It is the front view which looked at the outer member of the wheel bearing with a sensor from the outboard side. 同センサ付車輪用軸受におけるセンサユニットの拡大断面図である。It is an expanded sectional view of the sensor unit in the wheel bearing with the sensor. 従来例での出力信号におけるヒステリシスの説明図である。It is explanatory drawing of the hysteresis in the output signal in a prior art example.

符号の説明Explanation of symbols

1…外方部材
1b…厚肉部
1c…溝
2…内方部材
3,4…転走面
5…転動体
20…センサユニット(荷重検出手段)
21…歪み発生部材
21a…接触固定部
21b…切欠き部
22…センサ
DESCRIPTION OF SYMBOLS 1 ... Outer member 1b ... Thick part 1c ... Groove 2 ... Inner member 3, 4 ... Rolling surface 5 ... Rolling body 20 ... Sensor unit (load detection means)
21 ... Strain generating member 21a ... Contact fixing part 21b ... Notch part 22 ... Sensor

Claims (7)

複列の転走面が内周に形成された外方部材と、前記転走面と対向する転走面が外周に形成された内方部材と、両部材の対向する転走面間に介在した複列の転動体とを備え、車体に対して車輪を回転自在に支持する車輪用軸受において、
上記外方部材および内方部材のうちの固定側部材の一部に、部分的に厚肉となった厚肉部を設け、車輪用軸受に作用する荷重を検出する荷重検出手段を前記厚肉部の表面に固定し、前記厚肉部は、固定側部材の円周方向の一部を、円周方向の他の部分よりも厚肉としたものであることを特徴とするセンサ付車輪用軸受。
An outer member having a double row rolling surface formed on the inner periphery, an inner member having a rolling surface facing the rolling surface formed on the outer periphery, and interposed between the opposing rolling surfaces of both members A double row rolling element, and a wheel bearing for rotatably supporting the wheel with respect to the vehicle body,
A part of the fixed member of the outer member and the inner member is provided with a thick portion that is partially thick, and load detecting means for detecting a load acting on the wheel bearing is provided with the thick wall portion. fixed on the surface of the part, the thick section, a portion of the circumferential direction of the stationary member, for the sensor with a wheel, wherein the this is obtained by a thicker than other portions of the circumferential direction bearing.
請求項において、前記固定側部材の厚肉部における前記荷重検出手段の設置面を平坦面としたセンサ付車輪用軸受。 The sensor-equipped wheel bearing according to claim 1 , wherein an installation surface of the load detection means in the thick part of the fixed side member is a flat surface. 請求項1または請求項2において、前記荷重検出手段は、前記固定側部材の厚肉部表面に接触して固定される2つ以上の接触固定部を有する歪み発生部材、およびこの歪み発生部材に取付けられてこの歪み発生部材の歪みを検出するセンサを有するセンサユニットからなり、前記各接触固定部は、前記固定側部材の厚肉部表面に対して、軸方向に同寸法となるように設けたセンサ付車輪用軸受。 3. The strain generating member according to claim 1 , wherein the load detecting means includes two or more contact fixing portions that are fixed in contact with the surface of the thick portion of the fixed side member, and the strain generating member. The sensor unit includes a sensor unit that is attached and detects a strain of the strain generating member, and each of the contact fixing portions is provided to have the same dimension in the axial direction with respect to the surface of the thick portion of the fixing side member. Bearing for wheel with sensor. 請求項において、前記歪み発生部材は、平面概形が均一幅の帯状、または平面概形が帯状で側辺部に切欠き部を有する薄板材からなるセンサ付車輪用軸受。 4. The sensor-equipped wheel bearing according to claim 3 , wherein the strain generating member is a strip having a uniform planar width, or a thin plate material having a planar planar shape and having a notch in a side portion. 請求項3または請求項4において、前記固定側部材の厚肉部表面における前記センサユニットの隣り合う接触固定部の固定位置の間に溝を設けたセンサ付車輪用軸受。 5. The sensor-equipped wheel bearing according to claim 3 or 4 , wherein a groove is provided between fixing positions of adjacent contact fixing portions of the sensor unit on a surface of the thick portion of the fixed side member. 請求項において、前記固定側部材の厚肉部、または厚肉部および前記溝を鍛造により形成したセンサ付車輪用軸受。 6. The sensor-equipped wheel bearing according to claim 5 , wherein the fixed-side member has a thick portion or a thick portion and the groove formed by forging. 請求項3ないし請求項6のいずれか1項において、前記センサユニットを、タイヤ接地面に対して上下位置および左右位置となる前記固定側部材の外径面の上面部、下面部、右面部、および左面部に配置したセンサ付車輪用軸受。 The sensor unit according to any one of claims 3 to 6 , wherein the sensor unit is an upper surface portion, a lower surface portion, a right surface portion of an outer diameter surface of the fixed side member that is in a vertical position and a horizontal position with respect to a tire ground contact surface. And a wheel bearing with sensor arranged on the left side.
JP2008033921A 2008-02-15 2008-02-15 Wheel bearing with sensor Expired - Fee Related JP5264206B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008033921A JP5264206B2 (en) 2008-02-15 2008-02-15 Wheel bearing with sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008033921A JP5264206B2 (en) 2008-02-15 2008-02-15 Wheel bearing with sensor

Publications (2)

Publication Number Publication Date
JP2009192390A JP2009192390A (en) 2009-08-27
JP5264206B2 true JP5264206B2 (en) 2013-08-14

Family

ID=41074534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008033921A Expired - Fee Related JP5264206B2 (en) 2008-02-15 2008-02-15 Wheel bearing with sensor

Country Status (1)

Country Link
JP (1) JP5264206B2 (en)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07120334A (en) * 1993-10-21 1995-05-12 Nippon Seiko Kk Apparatus for measuring thrust load at rotary supporting part
JPH0989692A (en) * 1995-09-25 1997-04-04 Nissan Motor Co Ltd Steering torque sensor
JP2003336653A (en) * 2002-05-17 2003-11-28 Koyo Seiko Co Ltd Hub unit with sensor
JP2004142577A (en) * 2002-10-24 2004-05-20 Nsk Ltd Rolling bearing unit for wheel
JP4434704B2 (en) * 2003-11-27 2010-03-17 エスケーエフ インダストリー ソシエタ ペル アテオニ Device for supplying pressurized air to wheel tires of automobiles via wheel hubs
JP2006058162A (en) * 2004-08-20 2006-03-02 Honda Motor Co Ltd Load sensor integrated hub unit
JP2008540962A (en) * 2005-05-10 2008-11-20 ザ ティムケン カンパニー Sensor device integrated bearing assembly
JP4889324B2 (en) * 2006-03-08 2012-03-07 Ntn株式会社 Wheel bearing with sensor
JP2007255562A (en) * 2006-03-23 2007-10-04 Jtekt Corp Rolling bearing
JP2008020050A (en) * 2006-07-14 2008-01-31 Jtekt Corp Rolling bearing device for wheel

Also Published As

Publication number Publication date
JP2009192390A (en) 2009-08-27

Similar Documents

Publication Publication Date Title
JP5274343B2 (en) Wheel bearing with sensor
WO2010055636A1 (en) Sensor-equipped bearing for wheel
JP5019988B2 (en) Wheel bearing with sensor
JP5100567B2 (en) Wheel bearing with sensor
JP2010096565A (en) Bearing for wheel with sensor
JP5424565B2 (en) Wheel bearing with sensor
JP5094457B2 (en) Wheel bearing with sensor
JP5153373B2 (en) Wheel bearing with sensor
JP5063270B2 (en) Wheel bearing with sensor
JP5142683B2 (en) Wheel bearing with sensor
JP2010127376A (en) Sensor equipped bearing for wheel
WO2009119068A1 (en) Sensor-equipped bearing for wheel
JP5264206B2 (en) Wheel bearing with sensor
JP2010230406A (en) Wheel bearing with sensor
JP5072551B2 (en) Wheel bearing with sensor
JP5072608B2 (en) Wheel bearing with sensor
JP2009128264A (en) Wheel bearing with sensor
JP5224805B2 (en) Wheel bearing with sensor
WO2015005282A1 (en) Vehicle-wheel bearing device with sensor
JP5219423B2 (en) Wheel bearing with sensor
JP5300429B2 (en) Wheel bearing with sensor
JP4986786B2 (en) Wheel bearing with sensor
JP5219424B2 (en) Wheel bearing with sensor
JP2009236525A (en) Wheel bearing with sensor
JP2009185888A (en) Wheel bearing with sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130430

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130430

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5264206

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees