JP4986759B2 - Wheel bearing with sensor - Google Patents

Wheel bearing with sensor Download PDF

Info

Publication number
JP4986759B2
JP4986759B2 JP2007199220A JP2007199220A JP4986759B2 JP 4986759 B2 JP4986759 B2 JP 4986759B2 JP 2007199220 A JP2007199220 A JP 2007199220A JP 2007199220 A JP2007199220 A JP 2007199220A JP 4986759 B2 JP4986759 B2 JP 4986759B2
Authority
JP
Japan
Prior art keywords
sensor
sensor unit
strain generating
wheel bearing
generating member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007199220A
Other languages
Japanese (ja)
Other versions
JP2009036556A (en
Inventor
浩 磯部
亨 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to JP2007199220A priority Critical patent/JP4986759B2/en
Priority to EP08790277.1A priority patent/EP2184182B1/en
Priority to PCT/JP2008/002013 priority patent/WO2009016820A1/en
Priority to CN2008801012935A priority patent/CN101765519B/en
Priority to US12/452,909 priority patent/US8434947B2/en
Publication of JP2009036556A publication Critical patent/JP2009036556A/en
Application granted granted Critical
Publication of JP4986759B2 publication Critical patent/JP4986759B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Rolling Contact Bearings (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Description

この発明は、車輪の軸受部にかかる荷重を検出する荷重センサを内蔵したセンサ付車輪用軸受に関する。   The present invention relates to a sensor-equipped wheel bearing with a built-in load sensor for detecting a load applied to a bearing portion of the wheel.

自動車の各車輪にかかる荷重を検出する技術として、車輪用軸受の外輪フランジの外径面の歪みを検出することにより荷重を検出するセンサ付車輪用軸受が提案されている(例えば特許文献1)。また、固定輪のフランジ部と外径部にわたってL字型部材からなる歪み拡大機構を取付け、その歪み拡大機構の一部に歪みゲージを貼り付けた車輪用軸受が提案されている(例えば特許文献2)。
特開2002−098138号公報 特開2006−077807号公報
As a technique for detecting a load applied to each wheel of an automobile, a sensor-equipped wheel bearing that detects a load by detecting distortion of an outer diameter surface of an outer ring flange of the wheel bearing has been proposed (for example, Patent Document 1). . In addition, a wheel bearing has been proposed in which a strain increasing mechanism composed of an L-shaped member is attached to the flange portion and the outer diameter portion of the fixed ring, and a strain gauge is attached to a part of the strain expanding mechanism (for example, Patent Documents). 2).
JP 2002-098138 A JP 2006-0777807 A

特許文献1に開示の技術では、固定輪のフランジ部の変形により発生する歪みを検出している。しかし、固定輪のフランジ部の変形には、フランジ面とナックル面の間の摩擦(滑り)が伴うため、繰返し荷重を印加すると、出力信号にヒステリシスが発生するといった問題がある。
例えば、車輪用軸受に対してある方向の荷重が大きくなる場合、固定輪フランジ面とナックル面の間は、最初は荷重よりも静止摩擦力の方が大きいため滑らないが、ある大きさを超えると静止摩擦力に打ち勝って滑るようになる。その状態で荷重を小さくしていくと、やはり最初は静止摩擦力により滑らないが、ある大きさになると滑るようになる。その結果、この変形が生じる部分で荷重を推定しようとすると、出力信号に図13のようなヒステリシスが生じる。
また、特許文献2に開示の技術においても、L字型部材からなる歪み拡大機構のフランジ面に固定されている部位が、フランジ面とナックル面の摩擦(滑り)の影響を受けるため、同様の問題が生じる。
また、車輪用軸受に作用する上下方向の荷重Fz を検出する場合、荷重Fz に対する固定輪変形量が小さいため歪み量も小さく、上記した技術では検出感度が低く、荷重Fz を精度良く検出できない。
In the technique disclosed in Patent Document 1, distortion generated by deformation of the flange portion of the fixed ring is detected. However, since the deformation of the flange portion of the fixed ring involves friction (slip) between the flange surface and the knuckle surface, there is a problem that hysteresis is generated in the output signal when a repeated load is applied.
For example, when the load in a certain direction with respect to the wheel bearing increases, the static friction force between the fixed ring flange surface and the knuckle surface does not slip at first, but exceeds a certain size. And it comes to slip over the static friction force. If the load is reduced in this state, it will not slip due to static friction force at first, but it will slip when it reaches a certain size. As a result, when an attempt is made to estimate the load at a portion where this deformation occurs, a hysteresis as shown in FIG. 13 occurs in the output signal.
Also in the technique disclosed in Patent Document 2, the portion fixed to the flange surface of the distortion expanding mechanism made of an L-shaped member is affected by the friction (slip) between the flange surface and the knuckle surface. Problems arise.
Further, when detecting the load Fz in the vertical direction acting on the wheel bearing, the amount of deformation of the fixed wheel with respect to the load Fz is small, so that the amount of distortion is small.

この発明の目的は、ヒステリシスの影響を受けることなく車輪にかかる荷重を精度良く検出できるセンサ付車輪用軸受を提供することである。   An object of the present invention is to provide a sensor-equipped wheel bearing capable of accurately detecting a load applied to a wheel without being affected by hysteresis.

この発明のセンサ付車輪用軸受は、複列の転走面が内周に形成された外方部材と、上記転走面と対向する転走面が外周に形成された内方部材と、両部材の対向する転走面間に介在した複列の転動体とを備え、車体に対して車輪を回転自在に支持する車輪用軸受において、上記外方部材および内方部材のうちの固定側部材の外径面に、この外径面に接触して固定される2つの接触固定部とこれら2つの接触固定部の間に位置する切欠き部とを有する歪み発生部材およびこの歪み発生部材に取付けられてこの歪み発生部材の歪みを検出するセンサを有する1つ以上のセンサユニットを設け、このセンサユニットの前記2つの接触固定部は互いに前記固定側部材の円周方向における同位相の位置に配置し、前記2つのうちの一つの接触固定部は前記複列の転走面のうちのアウトボード側の転走面の周辺となる軸方向位置に、他の一つの接触固定部は、前記一つの接触固定部よりもさらにアウトボード側に配置し、前記センサユニットの切欠き部は前記2つの接触固定部間の中央位置よりもアウトボード側に配置したことを特徴とする。
車輪のタイヤと路面間に荷重が作用すると、車輪用軸受の固定側部材(例えば外方部材)にも荷重が印加されて変形が生じる。ここでは、センサユニットにおける歪み発生部材の1つの接触固定部が、外方部材の外径面におけるアウトボード側列の転走面の周辺となる軸方向位置に固定されており、この軸方向位置はタイヤの接地面に加わった荷重が内方部材から転動体を介して伝達される部位であるため、比較的に変形量の大きい部位となる。一方、歪み発生部材の他の1つの接触固定部は、前記1つの接触固定部よりもさらにアウトボード側の軸方向位置に固定されており、この軸方向位置は先の軸方向位置に比べて変形量の小さい部位となる。その結果、外方部材の外径面の歪みが歪み発生部材に拡大して伝達され、その拡大された歪みがセンサで検出される。また、荷重の印加に伴い外方部材に生じる変形量は軸方向の各位置で異なるが、ここでは、センサユニットにおける歪み発生部材の2つの接触固定部を、外方部材の外径面に対して円周方向に同位相として固定しているので、歪み発生部材に歪みが集中しやすくなり、それだけ検出感度が向上する。また、センサユニットの歪み発生部材に切欠き部が設けられ、その切欠き部の周辺にセンサが設けられているので、外方部材の外径面から歪み発生部材に拡大されて伝達される歪みが切欠き部に集中しやすくなり、センサによる検出感度がさらに向上する。しかも、切欠き部は、歪み発生部材における2つの接触固定部の間の中央位置よりもアウトボード側に配置されているので、変形量の大きい軸方向位置に固定される接触固定部と切欠き部との距離が長くなり、モーメントが作用して切欠き部の周辺が変形し、切欠き部の周辺に歪みが集中することになり、さらに検出感度が向上する。上記したように、センサユニットは、ヒステリシスの主な原因となる外方部材フランジの突片に固定していないので、センサの出力信号に生じるヒステリシスが小さくなり、荷重を正確に検出することができる。これにより、ヒステリシスの影響を受けることなく車輪にかかる荷重を精度良く検出できる。
The sensor-equipped wheel bearing according to the present invention includes an outer member having a double-row rolling surface formed on the inner periphery, an inner member having a rolling surface opposed to the rolling surface formed on the outer periphery, A wheel bearing comprising a double row rolling element interposed between opposing rolling surfaces of the member and rotatably supporting the wheel with respect to the vehicle body, wherein the fixed side member of the outer member and the inner member A strain generating member having two contact fixing portions fixed in contact with the outer diameter surface and a notch portion positioned between the two contact fixing portions, and an attachment to the strain generating member One or more sensor units having a sensor for detecting the distortion of the distortion generating member are provided, and the two contact fixing portions of the sensor unit are arranged at the same phase position in the circumferential direction of the fixed side member. And one of the two contact fixing parts is the Of the rolling surfaces of the row, in the axial position around the rolling surface on the outboard side, the other one contact fixing part is further arranged on the outboard side than the one contact fixing part, The notch part of the sensor unit is arranged on the outboard side from the center position between the two contact fixing parts.
When a load acts between the tire of the wheel and the road surface, the load is also applied to the fixed side member (for example, the outer member) of the wheel bearing, causing deformation. Here, one contact fixing portion of the strain generating member in the sensor unit is fixed to an axial position around the rolling surface of the outboard side row on the outer diameter surface of the outer member, and this axial position Is a part where the load applied to the ground contact surface of the tire is transmitted from the inner member through the rolling elements, and thus the part has a relatively large deformation amount. On the other hand, the other one contact fixing portion of the strain generating member is further fixed at an axial position on the outboard side than the one contact fixing portion, and this axial position is compared with the previous axial position. It becomes a site | part with a small deformation amount. As a result, the distortion of the outer diameter surface of the outer member is enlarged and transmitted to the distortion generating member, and the enlarged distortion is detected by the sensor. In addition, the amount of deformation that occurs in the outer member due to the application of a load differs at each position in the axial direction. Since the same phase is fixed in the circumferential direction, the strain tends to concentrate on the strain generating member, and the detection sensitivity is improved accordingly. Further, since the notch is provided in the strain generating member of the sensor unit, and the sensor is provided around the notch, the strain transmitted from the outer diameter surface of the outer member to the strain generating member is enlarged. Becomes easier to concentrate on the notch, and the detection sensitivity of the sensor is further improved. In addition, since the notch portion is disposed on the outboard side with respect to the center position between the two contact fixing portions of the strain generating member, the contact fixing portion and the notch that are fixed at the axial position where the deformation amount is large. The distance to the portion becomes longer, the moment acts, the periphery of the notch is deformed, and the distortion concentrates around the notch, further improving the detection sensitivity. As described above, since the sensor unit is not fixed to the projecting piece of the outer member flange which is a main cause of hysteresis, the hysteresis generated in the output signal of the sensor is reduced, and the load can be accurately detected. . Thereby, it is possible to accurately detect the load applied to the wheel without being affected by hysteresis.

この発明において、前記センサユニットの切欠き部は、前記歪み発生部材の外面側から内面側に向けて切り欠いても良い。この構成の場合、一つの接触固定部が外方部材の外径面における比較的変形量の大きいアウトボード側の転走面の周辺となる軸方向位置に固定され、他の一つの接触固定部が比較的変形量の小さいさらにアウトボード側の軸方向位置に固定されていることから、外方部材の外径面の変形により切欠き部の周辺が引っ張られて、切欠き部の周辺の歪みが大きくなり、さらに感度良く荷重を推定することができる。   In this invention, the notch part of the sensor unit may be notched from the outer surface side to the inner surface side of the strain generating member. In the case of this configuration, one contact fixing portion is fixed at an axial position around the outboard side rolling surface with a relatively large deformation amount on the outer diameter surface of the outer member, and the other one contact fixing portion. Is fixed at an axial position on the outboard side where the amount of deformation is relatively small, the deformation of the outer diameter surface of the outer member causes the periphery of the notch to be pulled, and the distortion around the notch And the load can be estimated with higher sensitivity.

この発明において、前記センサユニットの切欠き部は、前記歪み発生部材の2つの接触固定部の並び方向に対して直交する幅方向の両側面から幅方向に向けて更に欠いても良い。この構成の場合、歪みが分散せず、一部に集中しやすくなるため、さらに感度よく荷重を推定することができる。   In the present invention, the notch portion of the sensor unit may be further notched in the width direction from both side surfaces in the width direction orthogonal to the arrangement direction of the two contact fixing portions of the strain generating member. In the case of this configuration, the strain is not dispersed and tends to concentrate on a part, so that the load can be estimated with higher sensitivity.

この発明において、前記センサユニットの切欠き部の幅寸法を2mm以下としても良い。切欠き部の幅が広いと歪みが分散してしまうが、切欠き部の幅寸法を2mm以下にすると、さらに歪みが分散せず、一部に集中しやすくなるため、さらに感度良く荷重を推定することができる。   In this invention, the width dimension of the notch of the sensor unit may be 2 mm or less. If the width of the notch is wide, the strain will disperse. However, if the width of the notch is set to 2 mm or less, the strain will not disperse and it will be easier to concentrate on the part. can do.

この発明において、前記センサユニットの歪み発生部材は、前記固定側部材に作用する外力、またはタイヤと路面間に作用する作用力として、想定される最大の力が印加された状態においても、塑性変形しないものとしても良い。想定される最大の力が印加された状態になるまでに塑性変形が生じると、外方部材の変形がセンサユニットに正確に伝わらず、歪みの測定に影響を及ぼすので、想定される最大の力が印加された状態においても、塑性変形しないものとするのが望ましい。   In the present invention, the strain generating member of the sensor unit may be plastically deformed even in a state in which an assumed maximum force is applied as an external force acting on the stationary member or an acting force acting between the tire and the road surface. It is good to not. If plastic deformation occurs before the assumed maximum force is applied, the deformation of the outer member will not be transmitted accurately to the sensor unit and will affect the strain measurement. It is desirable that plastic deformation does not occur even in a state where is applied.

この発明において、前記センサユニットは、その歪み発生部材の切欠き部の周辺に前記センサを設け、前記歪み発生部材におけるセンサ設置面を含む所定面部の全面を平坦面としても良い。この構成の場合、センサユニットの加工やセンサの設置が容易となる。   In the present invention, the sensor unit may be provided with the sensor around the notch of the strain generating member, and the entire predetermined surface portion including the sensor installation surface of the strain generating member may be a flat surface. In the case of this configuration, processing of the sensor unit and installation of the sensor are facilitated.

この発明において、歪み発生部材におけるセンサ設置面を含む所定面部の全面を平坦面とし、前記センサは、前記歪み発生部材におけるセンサ設置面に絶縁層を印刷および焼成により形成し、前記絶縁層の上に電極および歪み測定用抵抗体を印刷および焼成により形成しても良い。この構成の場合、歪み発生部材にセンサを容易に形成できる。このようにしてセンサを形成すると、歪み発生部材のセンサ設置面に接着剤で固定する場合のような径年変化による接着強度の低下がなく、センサユニットの信頼性を向上させることができる。また、加工も容易であるため、コストダウンを図れる。   In the present invention, the entire surface of the predetermined surface portion including the sensor installation surface in the strain generating member is a flat surface, and the sensor is formed by printing and baking on the sensor installation surface of the strain generating member. Further, an electrode and a strain measuring resistor may be formed by printing and baking. In the case of this configuration, the sensor can be easily formed on the strain generating member. When the sensor is formed in this manner, the adhesive strength is not lowered due to a change in diameter as in the case where the strain generating member is fixed to the sensor installation surface with an adhesive, and the reliability of the sensor unit can be improved. Further, since the processing is easy, the cost can be reduced.

この発明において、センサユニットの歪み発生部材におけるセンサ設置面を含む所定面部の全面を平坦面とし、歪み発生部材は、スペーサを介して前記固定側部材の外径面に固定しても良い。歪み発生部材におけるセンサ設置面を含む所定面部が、前記固定側部材の外径面に対向する内側面である場合、歪み発生部材の内側面におけるスペーサの介在箇所以外の箇所では、固定側部材の外径面との間に隙間が生じることとなり、センサも固定側部材の外径面と干渉することなく切欠き部の付近に容易に設置できる。   In the present invention, the entire surface of the predetermined surface portion including the sensor installation surface of the strain generating member of the sensor unit may be a flat surface, and the strain generating member may be fixed to the outer diameter surface of the fixed side member via a spacer. When the predetermined surface portion including the sensor installation surface in the strain generating member is an inner surface facing the outer diameter surface of the fixed side member, the fixed side member A gap is formed between the outer diameter surface and the sensor can be easily installed in the vicinity of the notch without interfering with the outer diameter surface of the stationary member.

この発明において、歪み発生部材の切欠き部の周辺にセンサを設け、歪み発生部材におけるセンサ設置面を含む所定面部の全面を平坦面とし、かつ前記固定側部材の外径面における前記センサユニットの2つの接触固定部の固定位置の間に溝を設けても良い。このように、固定側部材の外径面に溝を設けると、歪み発生部材の前記平坦面が固定側部材の外径面に対向する内側面である場合に、2つの接触固定部を固定側部材の外径面に直接固定しても、固定側部材の外径面と歪み発生部材の平坦面とした内側面との間に隙間が生じるので、センサも固定側部材の外径面と干渉することなく切欠き部の付近に容易に設置できる。   In this invention, a sensor is provided around the notch portion of the strain generating member, the entire surface of the predetermined surface portion including the sensor installation surface in the strain generating member is a flat surface, and the sensor unit on the outer diameter surface of the fixed side member A groove may be provided between the fixing positions of the two contact fixing portions. Thus, when the groove is provided on the outer diameter surface of the fixed side member, when the flat surface of the strain generating member is the inner surface facing the outer diameter surface of the fixed side member, the two contact fixing portions are fixed to the fixed side member. Even if it is directly fixed to the outer diameter surface of the member, a gap is created between the outer diameter surface of the fixed side member and the inner surface of the strain generating member that is a flat surface, so that the sensor also interferes with the outer diameter surface of the fixed side member. It can be easily installed in the vicinity of the notch without any need to do so.

この発明において、前記固定側部材の外周に、ナックルに取付ける車体取付用のフランジが設けられ、このフランジの円周方向複数箇所にボルト孔が設けられ、前記フランジは各ボルト孔が設けられた円周方向部分が他の部分よりも外径側に突出した突片とされ、前記センサユニットは、隣合う前記突片の間の中央に配置しても良い。この構成の場合、ヒステリシスの原因となる突片から離れた位置にセンサユニットを設けることとなり、センサの出力信号のヒステリシスがさらに小さくなり、荷重をさらに精度良く検出することができる。   In this invention, a flange for mounting a vehicle body to be attached to a knuckle is provided on the outer periphery of the fixed side member, bolt holes are provided at a plurality of circumferential directions of the flange, and the flange is a circle in which each bolt hole is provided. The circumferential part may be a protruding piece that protrudes to the outer diameter side from the other part, and the sensor unit may be arranged at the center between the adjacent protruding pieces. In the case of this configuration, the sensor unit is provided at a position away from the projecting piece causing the hysteresis, the hysteresis of the output signal of the sensor is further reduced, and the load can be detected with higher accuracy.

この発明において、前記センサユニットの1つは、タイヤ接地面に対して外方部材の外径面の上面部に設けても良い。この構成の場合、外方部材の外径面において、上下方向の荷重Fz や前後方向の荷重Fy が印加された場合でも常に転動体の荷重が印加される位置、つまりタイヤ接地面に対して上面部となる位置に1つのセンサユニットを設けると、どのような場合でも荷重を精度良く検出することができる。   In the present invention, one of the sensor units may be provided on the upper surface portion of the outer diameter surface of the outer member with respect to the tire ground contact surface. In the case of this configuration, even when a vertical load Fz or a longitudinal load Fy is applied to the outer diameter surface of the outer member, the position where the rolling element load is always applied, that is, the upper surface with respect to the tire ground contact surface If one sensor unit is provided at a position to be a part, the load can be detected with high accuracy in any case.

この発明において、前記センサの出力信号により、車輪用軸受に作用する外力、またはタイヤと路面間の作用力を推定する推定手段を設けても良い。
センサの出力信号により、タイヤと路面間の作用力を推定手段で推定すると、静止時や低速時を問わず車輪のタイヤと路面間の作用力を感度良く検出することができるタイヤと路面間の作用力だけでなく、車輪用軸受に作用する力(例えば予圧量)を推定手段で推定することもできる
In the present invention, an estimation means for estimating an external force acting on the wheel bearing or an acting force between the tire and the road surface may be provided based on the output signal of the sensor.
When the force between the tire and the road surface is estimated by the estimation means based on the output signal of the sensor, the force between the tire and the road surface of the wheel can be detected with high sensitivity regardless of when stationary or at low speed. Not only the acting force but also the force acting on the wheel bearing (for example, the preload amount) can be estimated by the estimating means.

この発明において、前記推定手段は、前記センサ信号の絶対値、および前記出力信号の平均値、および前記出力信号の振幅のうちの、少なくともいずれか一つにより、車輪用軸受に作用する外力、またはタイヤと路面間の作用力を推定するものとしても良い。
車輪用軸受の回転中には、転走面におけるセンサユニットの近傍部位を通過する転動体の有無によって、センサユニットのセンサの出力信号の振幅に周期的な変化が生じる場合がある。そこで、検出信号における振幅の周期を推定手段で測定することにより、転動体の通過速度つまり車輪の回転数を検出することができる。このように、出力信号に変動が見られる場合は、出力信号の平均値や振幅により作用力を算出することができる。変動が見られない場合は、絶対値より作用力を算出することができる。
In this invention, the estimating means is an external force acting on the wheel bearing by at least one of an absolute value of the sensor signal, an average value of the output signal, and an amplitude of the output signal, or The acting force between the tire and the road surface may be estimated.
During the rotation of the wheel bearing, there may be a periodic change in the amplitude of the output signal of the sensor of the sensor unit depending on the presence or absence of rolling elements passing through the vicinity of the sensor unit on the rolling surface. Therefore, the passage speed of the rolling element, that is, the rotational speed of the wheel can be detected by measuring the period of the amplitude in the detection signal by the estimation means. Thus, when the output signal varies, the acting force can be calculated from the average value and amplitude of the output signal. When there is no change, the acting force can be calculated from the absolute value.

この発明のセンサ付車輪用軸受は、複列の転走面が内周に形成された外方部材と、上記転走面と対向する転走面が外周に形成された内方部材と、両部材の対向する転走面間に介在した複列の転動体とを備え、車体に対して車輪を回転自在に支持する車輪用軸受において、上記外方部材および内方部材のうちの固定側部材の外径面に、この外径面に接触して固定される2つの接触固定部とこれら2つの接触固定部の間に位置する切欠き部とを有する歪み発生部材およびこの歪み発生部材に取付けられてこの歪み発生部材の歪みを検出するセンサを有する1つ以上のセンサユニットを設け、このセンサユニットの前記2つの接触固定部は互いに前記固定側部材の円周方向における同位相の位置に配置し、前記2つのうちの一つの接触固定部は前記複列の転走面のうちのアウトボード側の転走面の周辺となる軸方向位置に、他の一つの接触固定部は、前記一つの接触固定部よりもさらにアウトボード側に配置し、前記センサユニットの切欠き部は前記2つの接触固定部間の中央位置よりもアウトボード側に配置したため、ヒステリシスの影響を受けることなく車輪にかかる荷重を精度良く検出することができる。   The sensor-equipped wheel bearing according to the present invention includes an outer member having a double-row rolling surface formed on the inner periphery, an inner member having a rolling surface opposed to the rolling surface formed on the outer periphery, A wheel bearing comprising a double row rolling element interposed between opposing rolling surfaces of the member and rotatably supporting the wheel with respect to the vehicle body, wherein the fixed side member of the outer member and the inner member A strain generating member having two contact fixing portions fixed in contact with the outer diameter surface and a notch portion positioned between the two contact fixing portions, and an attachment to the strain generating member One or more sensor units having a sensor for detecting the distortion of the distortion generating member are provided, and the two contact fixing portions of the sensor unit are arranged at the same phase position in the circumferential direction of the fixed side member. And one of the two contact fixing parts is the Of the rolling surfaces of the row, in the axial position around the rolling surface on the outboard side, the other one contact fixing part is further arranged on the outboard side than the one contact fixing part, Since the notch portion of the sensor unit is disposed on the outboard side with respect to the center position between the two contact fixing portions, it is possible to accurately detect the load applied to the wheel without being affected by hysteresis.

この発明の一実施形態を図1ないし図6と共に説明する。この実施形態は、第3世代型の内輪回転タイプで、駆動輪支持用の車輪用軸受に適用したものである。なお、この明細書において、車両に取り付けた状態で車両の車幅方向の外側寄りとなる側をアウトボード側と呼び、車両の中央寄りとなる側をインボード側と呼ぶ。   An embodiment of the present invention will be described with reference to FIGS. This embodiment is a third generation inner ring rotating type and is applied to a wheel bearing for driving wheel support. In this specification, the side closer to the outer side in the vehicle width direction of the vehicle when attached to the vehicle is referred to as the outboard side, and the side closer to the center of the vehicle is referred to as the inboard side.

このセンサ付車輪用軸受における軸受は、図1に断面図で示すように、内周に複列の転走面3を形成した外方部材1と、これら各転走面3に対向する転走面4を形成した内方部材2と、これら外方部材1および内方部材2の転走面3,4間に介在した複列の転動体5とで構成される。この車輪用軸受は、複列のアンギュラ玉軸受型とされていて、転動体5はボールからなり、各列毎に保持器6で保持されている。上記転走面3,4は断面円弧状であり、ボール接触角が背面合わせとなるように形成されている。外方部材1と内方部材2との間の軸受空間の両端は、一対のシール7,8によってそれぞれ密封されている。   As shown in the sectional view of FIG. 1, the bearing for this sensor-equipped wheel bearing includes an outer member 1 in which a double row rolling surface 3 is formed on the inner periphery, and rolling facing each of these rolling surfaces 3. The inner member 2 formed with the surface 4 and the double row rolling elements 5 interposed between the outer member 1 and the rolling surfaces 3 and 4 of the inner member 2 are constituted. This wheel bearing is a double-row angular ball bearing type, and the rolling elements 5 are made of balls and are held by a cage 6 for each row. The rolling surfaces 3 and 4 have an arc shape in cross section, and are formed so that the ball contact angle is aligned with the back surface. Both ends of the bearing space between the outer member 1 and the inner member 2 are sealed by a pair of seals 7 and 8, respectively.

外方部材1は固定側部材となるものであって、車体の懸架装置(図示せず)におけるナックル16に取付ける車体取付用フランジ1aを外周に有し、全体が一体の部品とされている。フランジ1aには円周方向の複数箇所に車体取付用のボルト孔14が設けられ、インボード側よりナックル16のボルト挿通孔17に挿通したナックルボルト18を前記ボルト孔14に螺合することにより、車体取付用フランジ1aがナックル16に取付けられる。
内方部材2は回転側部材となるものであって、車輪取付用のハブフランジ9aを有するハブ輪9と、このハブ輪9の軸部9bのインボード側端の外周に嵌合した内輪10とでなる。これらハブ輪9および内輪10に、前記各列の転走面4が形成されている。ハブ輪9のインボード側端の外周には段差を持って小径となる内輪嵌合面12が設けられ、この内輪嵌合面12に内輪10が嵌合している。ハブ輪9の中心には貫通孔11が設けられている。ハブフランジ9aには、周方向複数箇所にハブボルト(図示せず)の圧入孔15が設けられている。ハブ輪9のハブフランジ9aの根元部付近には、車輪および制動部品(図示せず)を案内する円筒状のパイロット部13がアウトボード側に突出している。
The outer member 1 is a fixed side member, and has a vehicle body mounting flange 1a attached to a knuckle 16 in a suspension device (not shown) of the vehicle body on the outer periphery, and the whole is an integral part. Bolt holes 14 for mounting the vehicle body are provided at a plurality of locations in the circumferential direction on the flange 1a, and knuckle bolts 18 inserted into the bolt insertion holes 17 of the knuckle 16 from the inboard side are screwed into the bolt holes 14. The vehicle body mounting flange 1 a is attached to the knuckle 16.
The inner member 2 is a rotating side member, and includes a hub wheel 9 having a hub flange 9a for wheel mounting, and an inner ring 10 fitted to the outer periphery of the end portion on the inboard side of the shaft portion 9b of the hub wheel 9. And become. The hub wheel 9 and the inner ring 10 are formed with the rolling surfaces 4 of the respective rows. An inner ring fitting surface 12 having a small diameter with a step is provided on the outer periphery of the inboard side end of the hub wheel 9, and the inner ring 10 is fitted to the inner ring fitting surface 12. A through hole 11 is provided at the center of the hub wheel 9. The hub flange 9a is provided with press-fitting holes 15 for hub bolts (not shown) at a plurality of locations in the circumferential direction. In the vicinity of the base portion of the hub flange 9a of the hub wheel 9, a cylindrical pilot portion 13 for guiding a wheel and a braking component (not shown) protrudes toward the outboard side.

図2は、この車輪用軸受の外方部材1をアウトボード側から見た正面図を示す。なお、図1は、図2におけるI−I矢視断面図を示す。前記車体取付用フランジ1aは、図2のように、各ボルト孔14が設けられた円周方向部分が他の部分よりも外径側へ突出した突片1aaとされている。   FIG. 2 shows a front view of the outer member 1 of the wheel bearing as viewed from the outboard side. 1 shows a cross-sectional view taken along the line II in FIG. As shown in FIG. 2, the vehicle body mounting flange 1 a is a projecting piece 1 aa in which a circumferential portion provided with each bolt hole 14 protrudes to the outer diameter side from the other portion.

固定側部材である外方部材1の外径面にはセンサユニット19が設けられている。ここでは、2つのセンサユニット19を、タイヤ接地面に対して上位置となる外方部材1の外径面における上面部および下面部の2箇所に設けることで、車輪用軸受に作用する上下方向の荷重Fz を検出するようにしている。具体的には、図2のように、外方部材1の外径面における上面部の、隣り合う2つの突片1aaの間の中央部に1つのセンサユニット19が配置され、外方部材1の外径面における下面部の、隣り合う2つの突片1aaの間の中央部に他の1つのセンサユニット19が配置されている。   A sensor unit 19 is provided on the outer diameter surface of the outer member 1 that is a stationary member. Here, the two sensor units 19 are provided in two locations, the upper surface portion and the lower surface portion, on the outer diameter surface of the outer member 1 that is located above the tire ground contact surface, so that the vertical direction acts on the wheel bearing. The load Fz is detected. Specifically, as shown in FIG. 2, one sensor unit 19 is arranged at the center between two adjacent projecting pieces 1 aa on the upper surface portion of the outer diameter surface of the outer member 1, and the outer member 1. Another sensor unit 19 is arranged at the center between the two adjacent projecting pieces 1aa on the lower surface portion of the outer diameter surface.

これらのセンサユニット19は、図3に拡大断面図で示すように、歪み発生部材20と、この歪み発生部材20に取付けられて歪み発生部材20の歪みを検出するセンサ21とでなる。歪み発生部材20は、鋼材等の弾性変形可能な金属材からなる。歪み発生部材20は、外方部材1の外径面に対向する内面側に張り出した2つの接触固定部20aを両端部に有し、これら接触固定部20aで外方部材1の外径面に直接に固定される。2つの接触固定部20aのうち、1つの接触固定部20aは、外方部材1のアウトボード側列の転走面3の周辺となる軸方向位置に配置され、この位置よりもアウトボード側の位置にもう1つの接触固定部20aが配置され、かつこれら両接触固定部20aは互いに外方部材1の円周方向における同位相の位置に配置される。ここでいうアウトボード側列の転走面3の周辺とは、インボード側列およびアウトボード側列の転走面3の中間位置からアウトボード側列の転走面3の形成部までの範囲である。なお、外方部材1の外径面へセンサユニット19を安定良く固定する上で、外方部材1の外径面における前記歪み発生部材20の接触固定部20aが接触固定される箇所に平坦部を形成するのが望ましい。   As shown in an enlarged sectional view in FIG. 3, these sensor units 19 include a strain generating member 20 and a sensor 21 that is attached to the strain generating member 20 and detects the strain of the strain generating member 20. The strain generating member 20 is made of an elastically deformable metal material such as a steel material. The strain generating member 20 has two contact fixing portions 20a projecting on the inner surface facing the outer diameter surface of the outer member 1 at both ends, and these contact fixing portions 20a are formed on the outer diameter surface of the outer member 1. Directly fixed. Of the two contact fixing portions 20a, one contact fixing portion 20a is disposed at an axial position around the rolling surface 3 of the outboard side row of the outer member 1, and is located on the outboard side from this position. Another contact fixing portion 20a is arranged at the position, and both the contact fixing portions 20a are arranged at the same phase position in the circumferential direction of the outer member 1. Here, the periphery of the rolling surface 3 of the outboard side row is a range from the intermediate position of the rolling surface 3 of the inboard side row and the outboard side row to the formation portion of the rolling surface 3 of the outboard side row. It is. In order to stably fix the sensor unit 19 to the outer diameter surface of the outer member 1, a flat portion is provided at a location where the contact fixing portion 20 a of the strain generating member 20 is contact-fixed on the outer diameter surface of the outer member 1. It is desirable to form.

また、歪み発生部材20の前記2つの接触固定部20aの間の中央位置よりもアウトボード側には切欠き部20bが形成されている。図4(A),(B)にセンサユニット19の一構成例の正面図および底面図(外方部材1の外径面に対向する内面側から見た図)を示すように、この例では、前記切欠き部20bは、歪み発生部材20の外面側から内面側に向けて切り欠いた形状とされている。切欠き部20bの幅寸法は2mm以下とされている。センサ21は、歪み発生部材20における各方向の荷重に対して歪みが大きくなる箇所に貼り付けられる。ここでは、その箇所として、前記切欠き部20bの周辺、具体的には歪み発生部材20の内面側で切欠き部20bの背面側となる位置が選ばれており、センサ21は切欠き部20b周辺の歪みを検出する。なお、歪み発生部材20は、固定側部材である外方部材1に作用する外力、またはタイヤと路面間に作用する作用力として、想定される最大の力が印加された状態においても、塑性変形しないものとするのが望ましい。塑性変形が生じると、外方部材1の変形がセンサユニット19に正確に伝わらず、歪みの測定に影響を及ぼすからである。上記の想定される最大の力は、例えば、この車輪用軸受が軸受としての正常な運転が阻害される損傷を生じない最大の力である。   Further, a notch portion 20b is formed on the outboard side from the center position between the two contact fixing portions 20a of the strain generating member 20. 4A and 4B, a front view and a bottom view of one configuration example of the sensor unit 19 (a view seen from the inner surface facing the outer diameter surface of the outer member 1) are shown in this example. The notch 20b has a shape that is notched from the outer surface side to the inner surface side of the strain generating member 20. The width dimension of the notch 20b is 2 mm or less. The sensor 21 is affixed to a location where the strain increases with respect to the load in each direction in the strain generating member 20. Here, as the location, the position around the notch 20b, specifically the position on the inner surface side of the strain generating member 20 and the back side of the notch 20b, is selected, and the sensor 21 has the notch 20b. Detect peripheral distortion. It should be noted that the strain generating member 20 is plastically deformed even in a state where the maximum force assumed as an external force acting on the outer member 1 that is a fixed member or an acting force acting between the tire and the road surface is applied. It is desirable not to do so. This is because when plastic deformation occurs, the deformation of the outer member 1 is not accurately transmitted to the sensor unit 19 and affects the measurement of strain. The maximum force assumed above is, for example, the maximum force that does not cause damage that impedes normal operation of the wheel bearing as a bearing.

図5(A),(B)は、センサユニット19の他の構成例の正面図および底面図を示す。この構成例では、図4(A),(B)の実施例に対して、更に歪み発生部材20の2つの接触固定部20aの並び方向に対して直交する幅方向の両側面から、幅方向に向けてセンサ21の配置部に至る途中までそれぞれ切り欠いて、切欠き部20b’ を形成している。その他の構成は図4の構成例の場合と同様である。   5A and 5B show a front view and a bottom view of another configuration example of the sensor unit 19. In this configuration example, compared to the embodiment shown in FIGS. 4A and 4B, the width direction from both side surfaces in the width direction orthogonal to the arrangement direction of the two contact fixing portions 20 a of the strain generating member 20. The notches 20b 'are formed by cutting each halfway toward the placement portion of the sensor 21 toward the end. Other configurations are the same as those in the configuration example of FIG.

歪み発生部材20の接触固定部20aの外方部材1の外径面への固定は、接触固定部20aに設けられた径方向に貫通するボルト挿通孔22に挿通したボルト23を、外方部材1の外周部に設けられたボルト孔24に螺合させて締結することで行なわれるが、接着剤などにより固定しても良い。歪み発生部材20の接触固定部20a以外の箇所では、外方部材1の外径面との間に隙間が生じている。   The contact fixing portion 20a of the strain generating member 20 is fixed to the outer diameter surface of the outer member 1 by using a bolt 23 inserted through a bolt insertion hole 22 provided in the contact fixing portion 20a in the radial direction. 1 is screwed into a bolt hole 24 provided on the outer peripheral portion of the 1 and fastened, but may be fixed with an adhesive or the like. At locations other than the contact fixing portion 20a of the strain generating member 20, a gap is generated between the outer member 1 and the outer diameter surface.

センサユニット19のセンサ21は推定手段25に接続される。推定手段25は、ここではセンサ21の出力信号により、車輪のタイヤと路面間の作用力を推定する手段であり、信号処理回路や補正回路などが含まれる。推定手段25は、車輪のタイヤと路面間の作用力とセンサ21の出力信号との関係を演算式またはテーブル等により設定した関係設定手段(図示せず)を有し、入力された出力信号から前記関係設定手段を用いて作用力を出力する。前記関係設定手段の設定内容は、予め試験やシミュレーションで求めておいて設定する。   The sensor 21 of the sensor unit 19 is connected to the estimation means 25. Here, the estimation means 25 is means for estimating the acting force between the tire of the wheel and the road surface from the output signal of the sensor 21, and includes a signal processing circuit and a correction circuit. The estimation means 25 has relationship setting means (not shown) in which the relationship between the acting force between the tire of the wheel and the road surface and the output signal of the sensor 21 is set by an arithmetic expression or a table or the like, and from the input output signal The acting force is output using the relationship setting means. The setting contents of the relationship setting means are obtained by a test or simulation in advance.

車輪のタイヤと路面間に荷重が作用すると、車輪用軸受の固定側部材である外方部材1にも荷重が印加されて変形が生じる。前記センサユニット19を例えば外方部材フランジ1aの突片1aaに設置して、フランジ1aの変形から荷重を推定しようとすると、従来例の説明におけるように出力信号にヒステリシスが生じる。
ここでは、センサユニット19における歪み発生部材20の1つの接触固定部20aが、外方部材1の外径面におけるアウトボード側列の転走面3の周辺となる軸方向位置に固定されており、この軸方向位置はタイヤの接地面に加わった荷重が内方部材2から転動体5を介して伝達される部位であるため、比較的に変形量の大きい部位となる。一方、歪み発生部材20の他の1つの接触固定部20aは、前記1つの接触固定部20aよりもさらにアウトボード側の軸方向位置に固定されており、この軸方向位置は先の軸方向位置に比べて変形量の小さい部位となる。その結果、外方部材1の外径面の歪みが歪み発生部材20に拡大して伝達され、その拡大された歪みがセンサ21で検出される。また、荷重の印加に伴い外方部材1に生じる変形量は軸方向の各位置で異なるが、ここでは、センサユニット19における歪み発生部材20の2つの接触固定部20aを、外方部材1の外径面に対して円周方向に同位相として固定しているので、歪み発生部材20に歪みが集中しやすくなり、それだけ検出感度が向上する。
When a load acts between the tire of the wheel and the road surface, the load is also applied to the outer member 1 that is a stationary member of the wheel bearing, causing deformation. For example, when the sensor unit 19 is installed on the projecting piece 1aa of the outer member flange 1a and the load is estimated from the deformation of the flange 1a, hysteresis occurs in the output signal as in the description of the conventional example.
Here, one contact fixing portion 20 a of the strain generating member 20 in the sensor unit 19 is fixed at an axial position that is the periphery of the rolling surface 3 of the outboard side row on the outer diameter surface of the outer member 1. This axial position is a portion where the load applied to the ground contact surface of the tire is transmitted from the inner member 2 via the rolling elements 5, and thus the portion having a relatively large amount of deformation. On the other hand, the other one contact fixing portion 20a of the strain generating member 20 is fixed to an axial position on the outboard side further than the one contact fixing portion 20a, and this axial position is the previous axial position. It becomes a part with a small amount of deformation compared to. As a result, the distortion of the outer diameter surface of the outer member 1 is enlarged and transmitted to the distortion generating member 20, and the enlarged distortion is detected by the sensor 21. Further, the amount of deformation generated in the outer member 1 due to the application of a load is different at each position in the axial direction, but here, the two contact fixing portions 20 a of the strain generating member 20 in the sensor unit 19 are connected to the outer member 1. Since the same phase is fixed in the circumferential direction with respect to the outer diameter surface, the strain tends to concentrate on the strain generating member 20, and the detection sensitivity is improved accordingly.

また、センサユニット19の歪み発生部材20に切欠き部20bが設けられ、その切欠き部20bの周辺にセンサ21が設けられているので、外方部材1の外径面から歪み発生部材20に拡大されて伝達される歪みが切欠き部20bに集中しやすくなり、センサ21による検出感度がさらに向上する。しかも、切欠き部20bは、歪み発生部材20における2つの接触固定部20aの間の中央位置よりもアウトボード側に配置されているので、変形量の大きい軸方向位置に固定される接触固定部20aと切欠き部20bとの距離が長くなり、モーメントが作用して切欠き部20bの周辺が変形し、切欠き部20bの周辺に歪みが集中することになり、さらに検出感度が向上する。   In addition, since the notch 20b is provided in the strain generating member 20 of the sensor unit 19 and the sensor 21 is provided around the notch 20b, the strain generating member 20 is connected to the strain generating member 20 from the outer diameter surface of the outer member 1. The enlarged and transmitted distortion is easily concentrated on the notch 20b, and the detection sensitivity of the sensor 21 is further improved. Moreover, since the notch 20b is disposed on the outboard side of the center position between the two contact fixing portions 20a in the strain generating member 20, the contact fixing portion is fixed to the axial position where the deformation amount is large. The distance between 20a and notch 20b is increased, the moment acts and the periphery of notch 20b is deformed, strain is concentrated around notch 20b, and detection sensitivity is further improved.

推定手段25は、前記センサ21の出力信号から車輪用軸受に作用する荷重を推定する。これにより、静止時や低速時を問わず車輪のタイヤと路面間の作用力を感度良く検出することができる。上記したように、センサユニット19は、ヒステリシスの主な原因となる外方部材フランジ1aの突片1aaに固定していないので、センサ21の出力信号に生じるヒステリシスが小さくなり、荷重を正確に推定することができる。   The estimating means 25 estimates the load acting on the wheel bearing from the output signal of the sensor 21. This makes it possible to detect the acting force between the wheel tire and the road surface with high sensitivity regardless of whether the vehicle is stationary or at low speed. As described above, since the sensor unit 19 is not fixed to the projecting piece 1aa of the outer member flange 1a which is a main cause of hysteresis, the hysteresis generated in the output signal of the sensor 21 is reduced, and the load is accurately estimated. can do.

この実施形態において、センサユニット19の切欠き部20bを、図4に示した構成例のように、歪み発生部材20の外面側から内面側に向けて切り欠いた形状とした場合、一つの接触固定部20aが外方部材1の外径面における比較的変形量の大きいアウトボード側の転走面3の周辺となる軸方向位置に固定され、他の一つの接触固定部20aが比較的変形量の小さいさらにアウトボード側の軸方向位置に固定されていることから、外方部材1の外径面の変形により切欠き部20bの周辺が引っ張られて、切欠き部20bの周辺の歪みが大きくなり、さらに感度良く荷重を推定することができる。   In this embodiment, when the cutout portion 20b of the sensor unit 19 is cut out from the outer surface side to the inner surface side of the strain generating member 20 as in the configuration example shown in FIG. The fixing portion 20a is fixed to an axial position around the outboard side rolling surface 3 having a relatively large deformation amount on the outer diameter surface of the outer member 1, and the other one contact fixing portion 20a is relatively deformed. Since the amount is further fixed at the axial position on the outboard side, the periphery of the notch 20b is pulled by the deformation of the outer diameter surface of the outer member 1, and the distortion of the periphery of the notch 20b is caused. The load becomes larger and the load can be estimated with higher sensitivity.

また、この実施形態において、センサユニット19の切欠き部20bを、図5に示した構成例のように、歪み発生部材20の2つの接触固定部20aの並び方向に対して直交する幅方向の両側面から幅方向に向けて切り欠いた形状とした場合、歪みが分散せず、一部に集中しやすくなるため、さらに感度よく荷重を推定することができる。   Further, in this embodiment, the notch portion 20b of the sensor unit 19 is arranged in the width direction orthogonal to the arrangement direction of the two contact fixing portions 20a of the strain generating member 20 as in the configuration example shown in FIG. When the shape is cut out in the width direction from the both side surfaces, the strain is not dispersed and it becomes easy to concentrate on a part, so that the load can be estimated with higher sensitivity.

また、切欠き部20bの幅が広いと歪みが分散してしまうが、この実施形態では、切欠き部20bの幅寸法を2mm以下にしているので、さらに歪みが分散せず、一部に集中しやすくなるため、さらに感度良く荷重を推定することができる。   Further, when the width of the cutout portion 20b is wide, the distortion is dispersed. However, in this embodiment, since the width dimension of the cutout portion 20b is 2 mm or less, the distortion is not further dispersed and concentrated in a part. Therefore, the load can be estimated with higher sensitivity.

上記説明では車輪のタイヤと路面間の作用力を検出する場合を示したが、車輪のタイヤと路面間の作用力だけでなく、車輪用軸受に作用する力(例えば軸受の予圧量)を検出するものとしても良い。
このセンサ付車輪用軸受から得られた検出荷重を自動車の車両制御に使用することにより、自動車の安定走行に寄与できる。また、このセンサ付車輪用軸受を用いると、車両にコンパクトに荷重センサを設置でき、量産性に優れたものとでき、コスト低減を図ることができる。
In the above description, the case where the acting force between the wheel tire and the road surface is detected is shown, but not only the acting force between the wheel tire and the road surface but also the force acting on the wheel bearing (for example, the preload amount of the bearing) is detected. It is good to do.
By using the detected load obtained from the sensor-equipped wheel bearing for vehicle control of the automobile, it is possible to contribute to stable running of the automobile. In addition, when this sensor-equipped wheel bearing is used, a load sensor can be installed in a compact vehicle, the mass productivity can be improved, and the cost can be reduced.

また、車輪用軸受の回転中には、転走面3におけるセンサユニット19の近傍部位を通過する転動体5の有無によって、センサユニット19のセンサ21の出力信号の振幅に、図6に示す波形図のように周期的な変化が生じる場合がある。その理由は、転動体5の通過時とそうでない場合とで変形量が異なり、転動体5の通過周期ごとにセンサ21の出力信号の振幅がピーク値を持つためである。そこで、検出信号におけるこのピーク値の周期を、例えば推定手段25で測定することにより、転動体5の通過速度つまり車輪の回転数を検出することも可能となる。このように、出力信号に変動が見られる場合は、出力信号の平均値や振幅により荷重を算出することができる。変動が見られない場合は、絶対値より荷重を算出することができる。   Further, during the rotation of the wheel bearing, the amplitude of the output signal of the sensor 21 of the sensor unit 19 depends on the presence or absence of the rolling element 5 passing through the vicinity of the sensor unit 19 on the rolling surface 3 as shown in FIG. Periodic changes may occur as shown. The reason is that the amount of deformation differs between when the rolling element 5 passes and when it does not, and the amplitude of the output signal of the sensor 21 has a peak value for each passing period of the rolling element 5. Therefore, by measuring the period of the peak value in the detection signal by, for example, the estimating means 25, it is possible to detect the passing speed of the rolling element 5, that is, the rotational speed of the wheel. As described above, when the output signal varies, the load can be calculated from the average value or amplitude of the output signal. If no change is observed, the load can be calculated from the absolute value.

また、この実施形態では、センサユニット19を、外方部材1の外径面において、外方部材フランジ1aの隣り合う2つの突片1aaの間の中央部相当位置に配置しているので、ヒステリシスの原因となる突片1aaから離れた位置にセンサユニット19を設けることとなり、センサ21の出力信号のヒステリシスがさらに小さくなり、荷重をさらに正確に推定できる。   In this embodiment, the sensor unit 19 is arranged on the outer diameter surface of the outer member 1 at a position corresponding to the center between the two adjacent projecting pieces 1aa of the outer member flange 1a. Thus, the sensor unit 19 is provided at a position away from the projecting piece 1aa that causes the above-described problem, and the hysteresis of the output signal of the sensor 21 is further reduced, so that the load can be estimated more accurately.

また、この実施形態では、外方部材1の外径面において、上下方向の荷重Fz や前後方向の荷重Fy が印加された場合でも常に転動体5の荷重が印加される位置、つまりタイヤ接地面に対して上面部となる位置に1つのセンサユニット19が設けられているので、どのような場合でも荷重を正確に推定することができる。また、センサユニット19は、微小な歪みでも拡大して検出するものであるため、外方部材1の変形量が小さい上下方向の荷重Fz でも感度良く検出することができる。   Further, in this embodiment, even when a vertical load Fz or a longitudinal load Fy is applied to the outer diameter surface of the outer member 1, a position where the load of the rolling element 5 is always applied, that is, a tire ground contact surface. Since one sensor unit 19 is provided at a position that becomes the upper surface portion, the load can be accurately estimated in any case. Further, since the sensor unit 19 detects even a small strain in an enlarged manner, it can detect with high sensitivity even a load Fz in the vertical direction with a small deformation amount of the outer member 1.

なお、この実施形態において、以下の構成については特に限定しない。
・ センサユニット19の設置個数、設置場所や、接触固定部20a,センサ21,切 欠き部20bの数
・ センサユニット19の形状、固定方法(接着、溶接など)
In this embodiment, the following configuration is not particularly limited.
-Number of sensor units 19 installed, location, number of contact fixing parts 20a, sensors 21, and notches 20b-Shape and fixing method of sensor unit 19 (adhesion, welding, etc.)

図7ないし図10は、この発明の他の実施形態を示す。なお、図8は、この車輪用軸受の外方部材1をアウトボード側から見た正面図を示し、図7は、図8におけるVII − VII矢視断面図を示す。この実施形態は、図1〜図3に示す実施形態のセンサ付車輪用軸受において、図7の一部を拡大して示す図9のように、センサユニット19の歪み発生部材20をスペーサ26を介して外方部材1の外径面に固定したものである。このため、センサユニット19の正面図および底面図を示す図10(A),(B)のように、センサ21の設置面を含む歪み発生部材20の内側面は、先の実施形態の場合のように接触固定部20aが内面側に張り出しておらず、全面が平坦面とされている。その他の構成は先の実施形態の場合と同様である。   7 to 10 show another embodiment of the present invention. 8 shows a front view of the outer member 1 of the wheel bearing as viewed from the outboard side, and FIG. 7 shows a sectional view taken along arrow VII-VII in FIG. In this embodiment, in the sensor-equipped wheel bearing of the embodiment shown in FIGS. 1 to 3, as shown in FIG. It is fixed to the outer diameter surface of the outer member 1 via. Therefore, as shown in FIGS. 10A and 10B showing a front view and a bottom view of the sensor unit 19, the inner side surface of the strain generating member 20 including the installation surface of the sensor 21 is the same as in the previous embodiment. Thus, the contact fixing portion 20a does not protrude to the inner surface side, and the entire surface is a flat surface. Other configurations are the same as those in the previous embodiment.

これにより、スペーサ26を介して歪み発生部材20を外方部材1の外径面にボルト23で締結した固定状態で、歪み発生部材20の内側面におけるスペース26の介在箇所以外の箇所では、外方部材1の外径面との間に隙間が生じることとなり、センサ21も外方部材1の外径面と干渉することなく切欠き部20bの付近に容易に設置できる。また、歪み発生部材20の内側面を全面に渡って平坦面とするので、センサユニット19の加工やセンサ21の設置が容易となる。なお、ボルト23は、歪み発生部材20の接触固定部20aに設けられた径方向に貫通するボルト挿通孔22からスペーサ26のボルト挿通孔27に挿通されて、外方部材1の外周部に設けられたボルト孔24に螺合する。   As a result, in a fixed state where the strain generating member 20 is fastened to the outer diameter surface of the outer member 1 with the bolts 23 via the spacers 26, the outer side of the inner surface of the strain generating member 20 is outside the space 26 intervening place. A gap is generated between the outer member 1 and the outer member 1 so that the sensor 21 can be easily installed in the vicinity of the notch 20 b without interfering with the outer member 1. Moreover, since the inner surface of the strain generating member 20 is a flat surface over the entire surface, the processing of the sensor unit 19 and the installation of the sensor 21 are facilitated. The bolt 23 is inserted into the bolt insertion hole 27 of the spacer 26 from the bolt insertion hole 22 that penetrates in the radial direction provided in the contact fixing portion 20 a of the strain generating member 20, and is provided on the outer peripheral portion of the outer member 1. The bolt hole 24 is screwed.

また、歪み発生部材20の内側面を平坦面とすると、その内側面におけるセンサ設置面に、絶縁層を印刷および焼成により形成し、その絶縁層の上に電極および歪み測定用抵抗体を印刷および焼成により形成することで、歪み発生部材20の内側面にセンサ21を容易に形成できる。このようにしてセンサ21を形成すると、歪み発生部材20のセンサ設置面に接着剤で固定する場合のような径年変化による接着強度の低下がなく、センサユニット19の信頼性を向上させることができる。また、加工も容易であるため、コストダウンを図れる。   If the inner surface of the strain generating member 20 is a flat surface, an insulating layer is formed on the sensor installation surface on the inner surface by printing and baking, and an electrode and a strain measurement resistor are printed on the insulating layer. By forming by baking, the sensor 21 can be easily formed on the inner surface of the strain generating member 20. When the sensor 21 is formed in this way, there is no decrease in the adhesive strength due to a change in diameter and the time when the sensor 21 is fixed to the sensor installation surface of the strain generating member 20, and the reliability of the sensor unit 19 can be improved. it can. Further, since the processing is easy, the cost can be reduced.

図11および図12は、この発明のさらに他の実施形態を示す。この実施形態は、図7〜図10に示す実施形態のセンサ付車輪用軸受において、センサユニット19の歪み発生部材20と外方部材1の外径面の間にスペーサ26を介在させるのに代えて、外方部材1の外径面における歪み発生部材20の2つの接触固定部20aの固定位置の間に溝27を設けたものである。その他の構成は図7〜図10の実施形態の場合と同様である。   11 and 12 show still another embodiment of the present invention. In this embodiment, the sensor-equipped wheel bearing shown in FIGS. 7 to 10 is replaced with a spacer 26 interposed between the strain generating member 20 of the sensor unit 19 and the outer diameter surface of the outer member 1. Thus, a groove 27 is provided between the fixing positions of the two contact fixing portions 20a of the strain generating member 20 on the outer diameter surface of the outer member 1. Other configurations are the same as those of the embodiment of FIGS.

このように、外方部材1の外径面に溝27を設けると、歪み発生部材20の内側面の全面を平坦面として2つの接触固定部20aを外方部材1の外径面に直接固定しても、外方部材1の外径面と歪み発生部材20の内側面との間に隙間が生じるので、センサ21も外方部材1の外径面と干渉することなく切欠き部20bの付近に容易に設置できる。   As described above, when the groove 27 is provided on the outer diameter surface of the outer member 1, the two contact fixing portions 20 a are directly fixed to the outer diameter surface of the outer member 1 with the entire inner surface of the strain generating member 20 as a flat surface. Even so, a gap is formed between the outer diameter surface of the outer member 1 and the inner side surface of the strain generating member 20, so that the sensor 21 does not interfere with the outer diameter surface of the outer member 1. Easy to install in the vicinity.

この発明の一実施形態にかかるセンサ付車輪用軸受の断面図である。It is sectional drawing of the bearing for wheels with a sensor concerning one Embodiment of this invention. 同センサ付車輪用軸受における外方部材の正面図である。It is a front view of the outward member in the wheel bearing with a sensor. 図1におけるセンサユニット設置部の拡大断面図である。It is an expanded sectional view of the sensor unit installation part in FIG. (A)は同センサ付車輪用軸受におけるセンサユニットの一構成例の正面図、(B)は同センサユニットの底面図である。(A) is a front view of one structural example of the sensor unit in the wheel bearing with the sensor, and (B) is a bottom view of the sensor unit. (A)は同センサ付車輪用軸受におけるセンサユニットの他の構成例の正面図、(B)は同センサユニットの底面図である。(A) is a front view of another configuration example of the sensor unit in the wheel bearing with sensor, and (B) is a bottom view of the sensor unit. 同センサ付車輪用軸受におけるセンサの出力信号の波形図である。It is a wave form diagram of the output signal of the sensor in the bearing for wheels with the sensor. この発明の他の実施形態にかかるセンサ付車輪用軸受の断面図である。It is sectional drawing of the bearing for wheels with a sensor concerning other embodiment of this invention. 同センサ付車輪用軸受における外方部材の正面図である。It is a front view of the outward member in the wheel bearing with a sensor. 図7におけるセンサユニット設置部の拡大断面図である。It is an expanded sectional view of the sensor unit installation part in FIG. (A)は同センサ付車輪用軸受におけるセンサユニットの一構成例の正面図、(B)は同センサユニットの底面図である。(A) is a front view of one structural example of the sensor unit in the wheel bearing with the sensor, and (B) is a bottom view of the sensor unit. この発明のさらに他の実施形態にかかるセンサ付車輪用軸受の断面図である。It is sectional drawing of the bearing for wheels with a sensor concerning further another embodiment of this invention. 図11におけるセンサユニット設置部の拡大断面図である。It is an expanded sectional view of the sensor unit installation part in FIG. 従来例での出力信号におけるヒステリシスの説明図である。It is explanatory drawing of the hysteresis in the output signal in a prior art example.

符号の説明Explanation of symbols

1…外方部材
1a…車体取付用フランジ
1aa…突片
2…内方部材
3,4…転走面
5…転動体
14…車体取付用のボルト孔
16…ナックル
19…センサユニット
20…歪み発生部材
20a…接触固定部
20b…切欠き部
21…センサ
25…推定手段
26…スペーサ
27…溝
DESCRIPTION OF SYMBOLS 1 ... Outer member 1a ... Car body mounting flange 1aa ... Projection piece 2 ... Inner member 3, 4 ... Rolling surface 5 ... Rolling body 14 ... Bolt hole 16 for vehicle body mounting ... Knuckle 19 ... Sensor unit 20 ... Strain generation Member 20a ... Contact fixing part 20b ... Notch 21 ... Sensor 25 ... Estimating means 26 ... Spacer 27 ... Groove

Claims (13)

複列の転走面が内周に形成された外方部材と、上記転走面と対向する転走面が外周に形成された内方部材と、両部材の対向する転走面間に介在した複列の転動体とを備え、車体に対して車輪を回転自在に支持する車輪用軸受において、
上記外方部材および内方部材のうちの固定側部材の外径面に、この外径面に接触して固定される2つの接触固定部とこれら2つの接触固定部の間に位置する切欠き部とを有する歪み発生部材およびこの歪み発生部材に取付けられてこの歪み発生部材の歪みを検出するセンサを有する1つ以上のセンサユニットを設け、このセンサユニットの前記2つの接触固定部は互いに前記固定側部材の円周方向における同位相の位置に配置し、前記2つのうちの一つの接触固定部は前記複列の転走面のうちのアウトボード側の転走面の周辺となる軸方向位置に、他の一つの接触固定部は、前記一つの接触固定部よりもさらにアウトボード側に配置し、前記センサユニットの切欠き部は前記2つの接触固定部間の中央位置よりもアウトボード側に配置したことを特徴とするセンサ付車輪用軸受。
An outer member having a double row rolling surface formed on the inner periphery, an inner member having a rolling surface facing the rolling surface formed on the outer periphery, and interposed between the opposing rolling surfaces of both members A double row rolling element, and a wheel bearing for rotatably supporting the wheel with respect to the vehicle body,
Two contact fixing portions fixed to the outer diameter surface of the fixed side member of the outer member and the inner member in contact with the outer diameter surface, and a notch positioned between the two contact fixing portions. And at least one sensor unit having a sensor that is attached to the strain generating member and detects a strain of the strain generating member, and the two contact fixing portions of the sensor unit are connected to each other. The fixed side member is disposed at the same phase position in the circumferential direction, and one of the two contact fixing portions is an axial direction around the outboard side rolling surface of the double row rolling surface. The other one of the contact fixing portions is arranged on the outboard side further than the one contact fixing portion, and the notch portion of the sensor unit is outboard than the central position between the two contact fixing portions. This is located on the side Sensor equipped wheel support bearing assembly according to claim.
請求項1において、前記センサユニットの切欠き部は、前記歪み発生部材の外面側から内面側に向けて更に切り欠いたことを特徴とするセンサ付車輪用軸受。   2. The sensor-equipped wheel bearing according to claim 1, wherein the notch portion of the sensor unit is further notched from the outer surface side to the inner surface side of the strain generating member. 請求項2において、前記センサユニットの切欠き部は、前記歪み発生部材の2つの接触固定部の並び方向に対して直交する幅方向の両側面から幅方向に向けて切り欠いたことを特徴とするセンサ付車輪用軸受。   The notch part of the sensor unit according to claim 2, wherein the notch part is notched in the width direction from both side surfaces in the width direction orthogonal to the direction in which the two contact fixing parts of the strain generating member are arranged. Bearing for wheel with sensor. 請求項1ないし請求項3のいずれか1項において、前記センサユニットの切欠き部の幅寸法を2mm以下としたことを特徴とするセンサ付車輪用軸受。   4. The wheel bearing with sensor according to claim 1, wherein the width dimension of the notch portion of the sensor unit is 2 mm or less. 5. 請求項1ないし請求項4のいずれか1項において、前記センサユニットの歪み発生部材は、前記固定側部材に作用する外力、またはタイヤと路面間に作用する作用力として、想定される最大の力が印加された状態においても、塑性変形しないものとしたことを特徴とするセンサ付車輪用軸受。   5. The strain generating member of the sensor unit according to claim 1, wherein the strain generating member is a maximum force assumed as an external force acting on the fixed side member or an acting force acting between the tire and the road surface. The sensor-equipped wheel bearing is characterized in that it is not plastically deformed even in a state in which is applied. 請求項1ないし請求項5のいずれか1項において、前記センサユニットは、その歪み発生部材の切欠き部の周辺に前記センサを設け、前記歪み発生部材におけるセンサ設置面を含む所定面部の全面を平坦面としたことを特徴とするセンサ付車輪用軸受。   6. The sensor unit according to claim 1, wherein the sensor unit is provided with the sensor around a notch portion of the strain generating member, and the entire predetermined surface portion including the sensor installation surface of the strain generating member is provided. A wheel bearing with sensor, characterized by a flat surface. 請求項6において、前記センサは、前記歪み発生部材におけるセンサ設置面に絶縁層を印刷および焼成により形成し、前記絶縁層の上に電極および歪み測定用抵抗体を印刷および焼成により形成したことを特徴とするセンサ付車輪用軸受。   7. The sensor according to claim 6, wherein an insulating layer is formed on the sensor installation surface of the strain generating member by printing and firing, and an electrode and a strain measurement resistor are formed on the insulating layer by printing and firing. Features wheel bearing with sensor. 請求項6または請求項7において、前記センサユニットの歪み発生部材は、スペーサを介して前記固定側部材の外径面に固定したことを特徴とするセンサ付車輪用軸受。   8. The sensor-equipped wheel bearing according to claim 6, wherein the strain generating member of the sensor unit is fixed to an outer diameter surface of the stationary member via a spacer. 請求項6または請求項7において、前記固定側部材の外径面における前記センサユニットの2つの接触固定部の固定位置の間に溝を設けたことを特徴とするセンサ付車輪用軸受。   The sensor-equipped wheel bearing according to claim 6 or 7, wherein a groove is provided between the fixed positions of the two contact fixing portions of the sensor unit on the outer diameter surface of the fixed-side member. 請求項1ないし請求項9のいずれか1項において、前記固定側部材の外周に、ナックルに取付ける車体取付用のフランジが設けられ、このフランジの円周方向複数箇所にボルト孔が設けられ、前記フランジは各ボルト孔が設けられた円周方向部分が他の部分よりも外径側にへ突出した突片とされ、前記センサユニットは、隣合う前記突片の間の中央に配置したことを特徴とするセンサ付車輪用軸受。   In any one of Claims 1 thru | or 9, the flange for a vehicle body attachment attached to a knuckle is provided in the outer periphery of the said fixed side member, The bolt hole is provided in the circumferential direction several places, The said The flange is a projecting piece in which the circumferential part provided with each bolt hole protrudes to the outer diameter side than the other part, and the sensor unit is arranged at the center between the adjacent projecting pieces. Features wheel bearing with sensor. 請求項1ないし請求項10のいずれか1項において、前記センサユニット1の1つは、タイヤ接地面に対して外方部材の外径面の上面部に設けたことを特徴とするセンサ付車輪用軸受。   11. The sensor-equipped wheel according to claim 1, wherein one of the sensor units 1 is provided on an upper surface portion of an outer diameter surface of the outer member with respect to a tire ground contact surface. Bearings. 請求項1ないし請求項11のいずれか1項において、前記センサの出力信号により、車輪用軸受に作用する外力、またはタイヤと路面間の作用力を推定する推定手段を設けたことを特徴とするセイサ付車輪用軸受。   12. The method according to claim 1, further comprising an estimation unit that estimates an external force acting on a wheel bearing or an acting force between a tire and a road surface based on an output signal of the sensor. Seisa wheel bearings. 請求項12において、前記推定手段は、前記センサ信号の絶対値、および前記出力信号の平均値、および前記出力信号の振幅のうちの、少なくともいずれか一つにより、車輪用軸受に作用する外力、またはタイヤと路面間の作用力を推定するものとしたことを特徴とするセンサ付車輪用軸受。
13. The external force acting on the wheel bearing according to claim 12, wherein the estimation means uses at least one of an absolute value of the sensor signal, an average value of the output signal, and an amplitude of the output signal. Or the wheel bearing with a sensor characterized by estimating the action force between a tire and a road surface.
JP2007199220A 2007-07-31 2007-07-31 Wheel bearing with sensor Expired - Fee Related JP4986759B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2007199220A JP4986759B2 (en) 2007-07-31 2007-07-31 Wheel bearing with sensor
EP08790277.1A EP2184182B1 (en) 2007-07-31 2008-07-29 Sensor-equipped bearing for wheel
PCT/JP2008/002013 WO2009016820A1 (en) 2007-07-31 2008-07-29 Sensor-equipped bearing for wheel
CN2008801012935A CN101765519B (en) 2007-07-31 2008-07-29 Sensor-equipped bearing for wheel
US12/452,909 US8434947B2 (en) 2007-07-31 2008-07-29 Sensor-equipped bearing for wheel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007199220A JP4986759B2 (en) 2007-07-31 2007-07-31 Wheel bearing with sensor

Publications (2)

Publication Number Publication Date
JP2009036556A JP2009036556A (en) 2009-02-19
JP4986759B2 true JP4986759B2 (en) 2012-07-25

Family

ID=40438616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007199220A Expired - Fee Related JP4986759B2 (en) 2007-07-31 2007-07-31 Wheel bearing with sensor

Country Status (1)

Country Link
JP (1) JP4986759B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012202791A (en) * 2011-03-25 2012-10-22 Jatco Ltd Rotation state detecting device
JP6642394B2 (en) * 2016-11-30 2020-02-05 株式会社デンソー Strain detector

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4925625B2 (en) * 2005-08-23 2012-05-09 Ntn株式会社 Wheel bearing with sensor
JP2007057258A (en) * 2005-08-22 2007-03-08 Ntn Corp Wheel bearing with sensor
JP2007057259A (en) * 2005-08-22 2007-03-08 Ntn Corp Wheel bearing with sensor
JP2007078615A (en) * 2005-09-16 2007-03-29 Ntn Corp Bearing with sensor for wheel
JP5089041B2 (en) * 2005-12-08 2012-12-05 Ntn株式会社 Wheel bearing with sensor
JP4864441B2 (en) * 2005-12-08 2012-02-01 Ntn株式会社 Wheel bearing with sensor

Also Published As

Publication number Publication date
JP2009036556A (en) 2009-02-19

Similar Documents

Publication Publication Date Title
JP5274343B2 (en) Wheel bearing with sensor
JP5019988B2 (en) Wheel bearing with sensor
US20100129017A1 (en) Sensor-equipped bearing for wheel
WO2010055636A1 (en) Sensor-equipped bearing for wheel
JP5100567B2 (en) Wheel bearing with sensor
JP5424565B2 (en) Wheel bearing with sensor
JP5063270B2 (en) Wheel bearing with sensor
JP5094457B2 (en) Wheel bearing with sensor
JP4986759B2 (en) Wheel bearing with sensor
JP5142683B2 (en) Wheel bearing with sensor
JP5085290B2 (en) Wheel bearing with sensor
JP2010127376A (en) Sensor equipped bearing for wheel
JP5219423B2 (en) Wheel bearing with sensor
JP5219424B2 (en) Wheel bearing with sensor
JP2008303892A (en) Wheel bearing with sensor
JP5072608B2 (en) Wheel bearing with sensor
JP4986786B2 (en) Wheel bearing with sensor
JP5072551B2 (en) Wheel bearing with sensor
JP2008241359A (en) Bearing with sensor for wheel
JP5014107B2 (en) Wheel bearing with sensor
JP5224805B2 (en) Wheel bearing with sensor
JP5264206B2 (en) Wheel bearing with sensor
JP5300429B2 (en) Wheel bearing with sensor
JP2009036247A (en) Wheel bearing with sensor
JP2008213561A (en) Wheel bearing with sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120424

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120424

R150 Certificate of patent or registration of utility model

Ref document number: 4986759

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees