JP2010242921A - Wheel bearing with sensor - Google Patents

Wheel bearing with sensor Download PDF

Info

Publication number
JP2010242921A
JP2010242921A JP2009094561A JP2009094561A JP2010242921A JP 2010242921 A JP2010242921 A JP 2010242921A JP 2009094561 A JP2009094561 A JP 2009094561A JP 2009094561 A JP2009094561 A JP 2009094561A JP 2010242921 A JP2010242921 A JP 2010242921A
Authority
JP
Japan
Prior art keywords
sensor
strain
temperature sensor
rolling
rolling surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009094561A
Other languages
Japanese (ja)
Inventor
Kentaro Nishikawa
健太郎 西川
Toru Takahashi
亨 高橋
Takayuki Norimatsu
孝幸 乗松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2009094561A priority Critical patent/JP2010242921A/en
Publication of JP2010242921A publication Critical patent/JP2010242921A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wheel bearing with sensors, capable of highly accurately detecting a load acting on the wheel bearing and the ground contact surface of a tire by correcting a detection error due to the temperature difference between the inside and outside of the bearing and in which the sensors are easy to assemble. <P>SOLUTION: Rollers 5 are interposed between opposing double-row rolling faces 3, 4 of an outer member 1 and an inner member 2. Of the outer member 1 and the inner member 2, one or more sensor units 20 are provided to a fixed side member. The sensor units 20 includes: a strain generation member 21 fixed in contact with the outer diameter surface of the fixed side member; strain sensors 22, which detect the strain; sensor-part-temperature sensors 28, which detect the temperatures of the sensor installation parts; and rolling-face-temperature sensors 29, which detect the temperatures near the rolling face 3 of the fixed side member. An estimation means 30 is provided which corrects the output signals of the strain sensors 22 with the outputs of the sensor-part-temperature sensors 28 and the rolling-face-temperature sensors 29 and estimates a load that acts on the wheels from the corrected signal. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

この発明は、車輪の軸受部にかかる荷重を検出する荷重センサを装備したセンサ付車輪用軸受に関する。   The present invention relates to a sensor-equipped wheel bearing equipped with a load sensor that detects a load applied to a bearing portion of the wheel.

自動車の各車輪にかかる荷重を検出する技術として、車輪用軸受の固定輪である外輪のフランジ部外径面の歪みを検出することにより荷重を検出するセンサ付車輪用軸受が提案されている(例えば特許文献1)。また、車輪用軸受の外輪に歪みゲージを貼り付け、歪みを検出するようにした車輪用軸受も提案されている(例えば特許文献2)。   As a technique for detecting a load applied to each wheel of an automobile, a sensor-equipped wheel bearing that detects a load by detecting a distortion of an outer diameter surface of a flange portion of an outer ring that is a fixed ring of a wheel bearing has been proposed ( For example, Patent Document 1). There has also been proposed a wheel bearing in which a strain gauge is attached to the outer ring of the wheel bearing to detect the strain (for example, Patent Document 2).

特開2002−098138号公報JP 2002-098138 A 特表2003−530565号公報Special table 2003-530565 gazette

特許文献1に開示の技術では、固定輪のフランジ部の変形により発生する歪みを検出している。しかし、固定輪のフランジ部の変形には、フランジ面とナックル面の間に、静止摩擦力を超える力が作用した場合に滑りが伴うため、繰返し荷重を印加すると、出力信号にヒステリシスが発生するといった問題がある。
例えば、車輪用軸受に対してある方向の荷重が大きくなる場合、固定輪フランジ面とナックル面の間は、最初は荷重よりも静止摩擦力の方が大きいため滑らないが、ある大きさを超えると静止摩擦力に打ち勝って滑るようになる。その状態で荷重を小さくしていくと、やはり最初は静止摩擦力により滑らないが、ある大きさになると滑るようになる。その結果、この変形が生じる部分で荷重を推定しようとするとヒステリシスが生じる。ヒステリシスが生じると、検出分解能が低下する。
また、特許文献2のように外輪に歪みゲージを貼り付けるのでは、組立性に問題がある。
In the technique disclosed in Patent Document 1, distortion generated by deformation of the flange portion of the fixed ring is detected. However, the deformation of the flange portion of the fixed ring involves slipping when a force exceeding the static friction force is applied between the flange surface and the knuckle surface, so that hysteresis is generated in the output signal when a repeated load is applied. There is a problem.
For example, when the load in a certain direction with respect to the wheel bearing increases, the static friction force between the fixed ring flange surface and the knuckle surface does not slip at first, but exceeds a certain size. And it comes to slip over the static friction force. If the load is reduced in this state, it will not slip due to static friction force at first, but it will slip when it reaches a certain size. As a result, hysteresis occurs when an attempt is made to estimate the load at the portion where this deformation occurs. When hysteresis occurs, the detection resolution decreases.
In addition, when a strain gauge is attached to the outer ring as in Patent Document 2, there is a problem in assemblability.

そこで、本発明者等は、上記課題を解決するものとして、以下の構成としたセンサ付車輪用軸受を提案した(例えば、特願2008−314165号)。このセンサ付車輪用軸受における車輪用軸受は、図19のように、複列の転走面43が内周に形成された外方部材41と、上記転走面43と対向する転走面44が外周に形成された内方部材42と、両部材41,42の対向する転走面43,44間に介在した複列の転動体45とを備え、車体に対して車輪を回転自在に支持する。上記外方部材41および内方部材42のうち、固定側部材となる外方部材41の外径面に、図20のように複数のセンサユニット50を設ける。センサユニット50は、図21および図22に拡大平面図および拡大断面図で示すように、外方部材41の外径面に接触して固定される2つの接触固定部51aを有する歪み発生部材51、およびこの歪み発生部材51に取付けられてこの歪み発生部材51の歪みを検出する歪みセンサ52を有するものとする。歪み発生部材51の2つの接触固定部51aの間には切欠き部51bが形成される。   Therefore, the present inventors have proposed a sensor-equipped wheel bearing having the following configuration as a means for solving the above problems (for example, Japanese Patent Application No. 2008-314165). As shown in FIG. 19, the wheel bearing in this sensor-equipped wheel bearing includes an outer member 41 having a double-row rolling surface 43 formed on the inner periphery, and a rolling surface 44 that faces the rolling surface 43. Includes an inner member 42 formed on the outer periphery and a double row rolling element 45 interposed between the opposing rolling surfaces 43, 44 of both members 41, 42, and supports the wheel rotatably with respect to the vehicle body. To do. Among the outer member 41 and the inner member 42, a plurality of sensor units 50 are provided on the outer diameter surface of the outer member 41 serving as a fixed member as shown in FIG. As shown in FIGS. 21 and 22 in an enlarged plan view and an enlarged cross-sectional view, the sensor unit 50 has a strain generating member 51 having two contact fixing portions 51 a fixed in contact with the outer diameter surface of the outer member 41. And a strain sensor 52 which is attached to the strain generating member 51 and detects the strain of the strain generating member 51. A notch 51 b is formed between the two contact fixing portions 51 a of the strain generating member 51.

図22では、歪み発生部材51の接触固定部51aと外方部材41との間にスペーサ53を介在させることで、歪み発生部材51における歪みセンサ52の取付け部を外方部材51から離して、歪みを発生し易くしている。このほか、図23のように、外方部材41の外径面の一部に溝41cを設けることで、歪み発生部材51における歪みセンサ52の取付け部を外方部材51から離すようにしても良い。   In FIG. 22, the spacer 53 is interposed between the contact fixing portion 51 a of the strain generating member 51 and the outer member 41, thereby separating the mounting portion of the strain sensor 52 in the strain generating member 51 from the outer member 51. It is easy to generate distortion. In addition, as shown in FIG. 23, by providing a groove 41 c in a part of the outer diameter surface of the outer member 41, the strain sensor 52 mounting portion of the strain generating member 51 may be separated from the outer member 51. good.

このセンサ付車輪用軸受では、車両走行に伴い回転側部材である内方部材42に荷重が加わったとき、転動体45を介して固定側部材である外方部材41が変形するので、その変形がセンサユニット50に歪みをもたらす。センサユニット50に設けられた歪みセンサ52は、センサユニット50の歪みを検出する。歪みと荷重の関係を予め実験やシミュレーションで求めておくことにより、推定手段60では歪みセンサ52の出力信号から車輪にかかる荷重を演算・推定することができる。   In this sensor-equipped wheel bearing, when a load is applied to the inner member 42 that is the rotation-side member as the vehicle travels, the outer member 41 that is the fixed-side member is deformed via the rolling elements 45, so that deformation Causes distortion in the sensor unit 50. The strain sensor 52 provided in the sensor unit 50 detects the strain of the sensor unit 50. By obtaining the relationship between strain and load in advance through experiments and simulations, the estimating means 60 can calculate and estimate the load applied to the wheel from the output signal of the strain sensor 52.

上記構成では、温度が変化した場合に、歪みセンサ52の温度特性および外方部材41とセンサユニット50との線膨張率の差などにより歪みセンサ52の出力信号が変動する。このため、歪みセンサ52の出力信号から車輪用軸受にかかる荷重を演算・推定した場合、荷重の誤差が大きくなる。そこで、ここでは歪み発生部材51に歪みセンサ52の近傍の温度を検出するセンサ部温度センサ58を取付け、このセンサ部温度センサ58の出力により歪みセンサ52の出力信号を補正している。   With the above configuration, when the temperature changes, the output signal of the strain sensor 52 varies depending on the temperature characteristics of the strain sensor 52 and the difference in linear expansion coefficient between the outer member 41 and the sensor unit 50. For this reason, when the load applied to the wheel bearing is calculated and estimated from the output signal of the strain sensor 52, the error of the load becomes large. Therefore, here, a sensor section temperature sensor 58 that detects the temperature in the vicinity of the strain sensor 52 is attached to the strain generating member 51, and the output signal of the strain sensor 52 is corrected by the output of the sensor section temperature sensor 58.

しかし、車輪用軸受の外方部材41の内部温度と表面の温度とは、荷重による軸受内部(転走面付近)の発熱や、外気との接触条件の変化(風、水分、気温)により異なっていることが多い。この状態では、歪みセンサ52の出力信号に、外方部材41の内部から表面にかけての温度勾配による熱歪みが重畳することになる。この熱歪みは、上記したセンサ部温度センサ58の出力による補正では低減できず、検出誤差が大きくなる。   However, the internal temperature and the surface temperature of the outer member 41 of the wheel bearing differ depending on the heat generation inside the bearing (near the rolling surface) due to the load and changes in the contact conditions with the outside air (wind, moisture, temperature). There are many. In this state, the thermal strain due to the temperature gradient from the inside of the outer member 41 to the surface is superimposed on the output signal of the strain sensor 52. This thermal distortion cannot be reduced by the correction by the output of the sensor unit temperature sensor 58 described above, and the detection error increases.

そこで、本発明者等は、上記構成のセンサ付車輪用軸受において、図24や図25に示すように、外方部材41におけるセンサユニット50の近傍の周方向位置に、転走面43近傍の温度を検出する転走面温度センサ59を設け、センサユニット50の歪みセンサ52の出力信号を前記センサ部温度センサ58および転走面温度センサ59の出力で補正し、その補正した信号から荷重を推定することも提案している。この場合、軸受内外部の温度差による検出誤差を補正するので、外気温の変化や、荷重変化による軸受内部発熱の変動の影響を低減することが可能となり、車輪用軸受やタイヤ接地面に作用する荷重を高い精度で安定良く検出できる。   Therefore, the present inventors, in the sensor-equipped wheel bearing with the above-described configuration, are located near the rolling surface 43 in the circumferential position near the sensor unit 50 in the outer member 41 as shown in FIGS. A rolling surface temperature sensor 59 for detecting the temperature is provided, and the output signal of the strain sensor 52 of the sensor unit 50 is corrected by the outputs of the sensor temperature sensor 58 and the rolling surface temperature sensor 59, and the load is calculated from the corrected signal. It is also proposed to estimate. In this case, the detection error due to the temperature difference between the inside and outside of the bearing is corrected, so it is possible to reduce the influence of changes in the outside air temperature and fluctuations in the internal heat generation of the bearing due to load changes. Load can be detected with high accuracy and stability.

しかし、図24や図25の構成では、センサユニット50と転走面温度センサ59とが一体でないため、これらを別々に軸受の外方部材41に組み付ける必要があり、組付けのための工数が増加する。また、軸受内部に転走面温度センサ59を組み付ける場合の工程も複雑となる。さらにシール、配線、カバーを施す場合、センサユニット50と転走面温度センサ59に別々に作業を行う必要があり、コストも増大してしまう。   However, in the configuration shown in FIGS. 24 and 25, the sensor unit 50 and the rolling contact surface temperature sensor 59 are not integrated. Therefore, it is necessary to separately assemble them on the outer member 41 of the bearing. To increase. Further, the process for assembling the rolling contact surface temperature sensor 59 inside the bearing is complicated. Furthermore, when sealing, wiring, and a cover are provided, it is necessary to separately perform operations on the sensor unit 50 and the rolling contact surface temperature sensor 59, which increases costs.

この発明の目的は、軸受内外部の温度差による検出誤差を補正して、車輪に作用する荷重を高い精度で安定良く検出でき、かつ取付工数を増やすことなく温度センサの設置が行えるセンサ付車輪用軸受を提供することである。   An object of the present invention is to correct a detection error due to a temperature difference between the inside and outside of a bearing, detect a load acting on the wheel stably with high accuracy, and install a temperature sensor without increasing the number of mounting steps. It is to provide a bearing for an automobile.

この発明のセンサ付車輪用軸受は、複列の転走面が内周に形成された外方部材と、前記転走面と対向する転走面が外周に形成された内方部材と、両部材の対向する転走面間に介在した複列の転動体とを備え、車体に対して車輪を回転自在に支持する車輪用軸受において、上記外方部材および内方部材のうちの固定側部材の外径面に1つ以上のセンサユニットを設け、前記センサユニットは、前記固定側部材の外径面に接触して固定される2つ以上の接触固定部を有する歪み発生部材、この歪み発生部材に取付けられてこの歪み発生部材の歪みを検出する歪みセンサ、前記歪み発生部材に取付けられて前記歪みセンサの設置部の温度を検出するセンサ部温度センサ、および前記固定側部材における前記転走面近傍の温度を検出する転走面温度センサを有し、前記センサユニットの歪みセンサの出力信号を前記センサ部温度センサおよび転走面温度センサの出力で補正し、その補正した信号から車輪に加わる荷重を推定する推定手段を設けたことを特徴とする。前記固定側部材は例えば外方部材であっても良い。推定手段における車輪に加わる荷重の推定は、直接的には車輪用軸受に加わる荷重を推定するものとしても良く、車輪用軸受に加わる荷重から車輪に加わる荷重が算出できる。   The sensor-equipped wheel bearing according to the present invention includes an outer member having a double-row rolling surface formed on the inner periphery, an inner member having a rolling surface opposed to the rolling surface formed on the outer periphery, A wheel bearing comprising a double row rolling element interposed between opposing rolling surfaces of the member and rotatably supporting the wheel with respect to the vehicle body, wherein the fixed side member of the outer member and the inner member One or more sensor units are provided on the outer diameter surface of the strain generating member, and the sensor unit has two or more contact fixing portions fixed in contact with the outer diameter surface of the fixed-side member, and this strain generation A strain sensor attached to the member for detecting the strain of the strain generating member, a sensor temperature sensor attached to the strain generating member for detecting the temperature of the installation portion of the strain sensor, and the rolling in the fixed side member Rolling surface temperature sensor that detects the temperature near the surface Provided with an estimation means for correcting the output signal of the strain sensor of the sensor unit with the output of the sensor unit temperature sensor and the rolling surface temperature sensor, and estimating the load applied to the wheel from the corrected signal. It is characterized by. The stationary member may be an outward member, for example. The estimation of the load applied to the wheel in the estimation means may be performed by directly estimating the load applied to the wheel bearing, and the load applied to the wheel can be calculated from the load applied to the wheel bearing.

車輪と路面間に荷重が作用すると、車輪用軸受の固定側部材、例えば外方部材にも荷重が印加されて変形が生じる。センサユニットにおける歪み発生部材の接触固定部が固定側部材に接触固定されているので、固定側部材の歪みが歪み発生部材に拡大して伝達され、その歪みがセンサで感度良く検出され、荷重を精度良く推定できる。
また、荷重を推定する推定手段において、センサユニットの歪み発生部材に取付けられてセンサ設置部の温度を検出するセンサ部温度センサ、および固定側部材における転走面近傍の温度を検出する転走面温度センサの出力により、センサユニットの歪みセンサの出力信号を補正し、その補正した信号から車輪に加わる荷重を推定するようにしているので、軸受内外部の温度差による検出誤差を補正することで、外気温の変化や、荷重変化による軸受内部発熱の変動の影響を低減することが可能となり、車輪に作用する荷重を高い精度で安定良く検出できる。
特に、転走面温度センサもセンサユニットの一部として取付けているので、固定側部材への組付け工数を低減でき、その作業も容易となる。またセンサ部温度センサや転走面温度センサの配線を歪みセンサの配線と共に歪み発生部材の上にまとめることができて、配線処理も容易になる。さらに、センサユニットを保護カバーで被覆するだけで、転走面温度センサの被覆も可能となる。その結果、固定側部材へのセンサ組付けが容易となる。
When a load acts between the wheel and the road surface, the load is also applied to a stationary member of the wheel bearing, for example, an outer member, and deformation occurs. Since the contact fixing part of the strain generating member in the sensor unit is fixed in contact with the fixed side member, the strain of the fixed side member is enlarged and transmitted to the strain generating member, and the strain is detected with high sensitivity by the sensor. It can be estimated with high accuracy.
In addition, in the estimation means for estimating the load, a sensor part temperature sensor that is attached to the strain generating member of the sensor unit and detects the temperature of the sensor installation part, and a rolling surface that detects the temperature in the vicinity of the rolling surface in the fixed member The output signal of the strain sensor of the sensor unit is corrected by the output of the temperature sensor, and the load applied to the wheels is estimated from the corrected signal. By correcting the detection error due to the temperature difference inside and outside the bearing, Thus, it becomes possible to reduce the influence of fluctuations in the internal heat of the bearing due to changes in the outside air temperature and load changes, and the load acting on the wheels can be detected stably with high accuracy.
In particular, since the rolling surface temperature sensor is also attached as a part of the sensor unit, the number of assembling steps to the fixed member can be reduced, and the work can be facilitated. Further, the wiring of the sensor part temperature sensor and the rolling surface temperature sensor can be combined on the strain generating member together with the wiring of the strain sensor, and the wiring process becomes easy. Furthermore, the rolling surface temperature sensor can be covered only by covering the sensor unit with a protective cover. As a result, the sensor can be easily assembled to the fixed member.

この発明において、前記センサユニットを3つ以上設け、前記推定手段は、前記3つ以上のセンサユニットの歪みセンサの出力信号から、車輪に加わる左右方向および上下方向の径方向荷重、および軸方向荷重を推定するものとしても良い。なお、この明細書で言う左右方向とは、車輪を軸方向に見た左右方向であり、左右方向の径方向荷重は、駆動力または制動力となる荷重である。   In the present invention, three or more sensor units are provided, and the estimating means is configured to apply a radial load in the left-right direction and a vertical direction applied to the wheel from an output signal of a strain sensor of the three or more sensor units, and an axial load. It is good also as what estimates. In this specification, the left-right direction is the left-right direction when the wheel is viewed in the axial direction, and the radial load in the left-right direction is a load that becomes a driving force or a braking force.

この発明において、前記センサユニットを4つ以上設け、前記推定手段は、前記4つ以上のセンサユニットの歪みセンサの出力信号から、車輪に加わる左右方向および上下方向の径方向荷重、軸方向荷重、およびステアリングモーメント荷重を推定するものとしても良い。   In this invention, four or more of the sensor units are provided, and the estimation means is configured to output a radial load in the horizontal direction and a vertical direction applied to the wheel, an axial load, The steering moment load may be estimated.

この発明において、前記センサユニットを4つ設け、これらのセンサユニットを、車輪のタイヤ接地面に対して上下位置および左右位置となる前記固定側部材の外径面の上面部、下面部、右面部、および左面部に、周方向に互いに90度の位相差をなすように配置しても良い。
この構成の場合、どのような荷重条件においても、荷重を精度良く推定することができる。すなわち,ある方向への荷重が大きくなると、転動体と転走面が接触している部分と接触していない部分が180度位相差で現れるため、その方向に合わせてセンサユニットを180度位相差で設置すれば、どちらかのセンサユニットには必ず転動体を介して固定側部材に印加される荷重が伝達され、その荷重をセンサにより検出可能となる。
In the present invention, the four sensor units are provided, and these sensor units are arranged in an up-down position and a left-right position with respect to the tire ground contact surface of the wheel. , And the left surface portion may be arranged so as to form a phase difference of 90 degrees in the circumferential direction.
In this configuration, the load can be accurately estimated under any load condition. That is, when the load in a certain direction increases, the portion where the rolling element and the rolling surface are in contact with each other and the portion not in contact appear with a 180-degree phase difference. If installed, the load applied to the stationary member is always transmitted to one of the sensor units via the rolling elements, and the load can be detected by the sensor.

この発明において、前記推定手段は、前記センサ部温度センサの出力と前記転走面温度センサの出力との差により、前記センサユニットの歪みセンサの出力信号を補正し、この補正による補正量は、設定された前記両温度センサの出力差と補正量との一次近似関係式から決定するものとしても良い。
この構成の場合、センサユニットのセンサの出力信号に重畳するオフセット量、つまり固定側部材の内部から表面にかけての温度勾配による熱歪みを十分に低減でき、荷重推定値の精度を向上させることができる。
In this invention, the estimation means corrects the output signal of the strain sensor of the sensor unit based on the difference between the output of the sensor unit temperature sensor and the output of the rolling surface temperature sensor, and the correction amount by this correction is: It may be determined from a linear approximate relational expression between the set output difference between the two temperature sensors and the correction amount.
In the case of this configuration, the amount of offset superimposed on the sensor output signal of the sensor unit, that is, the thermal distortion due to the temperature gradient from the inside to the surface of the stationary member can be sufficiently reduced, and the accuracy of the load estimated value can be improved. .

この発明において、前記センサユニットにおける転走面温度センサを、前記固定側部材に設けた転走面付近に達する孔の内部に埋めても良い。   In this invention, the rolling surface temperature sensor in the sensor unit may be buried in a hole reaching the vicinity of the rolling surface provided in the fixed side member.

このように孔の内部に転走面温度センサを埋める構成とする場合に、前記センサユニットにおける転走面温度センサを、前記歪み発生部材に設けられた温度センサ取付片の先端に取付け、この温度センサ取付片を前記固定側部材に設けられた転走面付近に達する孔に圧入して固定しても良い。   Thus, when it is set as the structure which embeds a rolling surface temperature sensor in the inside of a hole, the rolling surface temperature sensor in the said sensor unit is attached to the front-end | tip of the temperature sensor attachment piece provided in the said distortion generation member, and this temperature The sensor mounting piece may be fixed by being press-fitted into a hole reaching the vicinity of the rolling surface provided in the fixed side member.

前記のように孔の内部に転走面温度センサを埋める構成とする場合に、前記センサユニットにおける転走面温度センサと前記孔の内面との間に高熱伝導性のモールド材でモールドしても良い。この構成の場合、固定側部材の転走面の近傍の温度を転走面温度センサで正確に検出することができる。前記高熱伝導性のモールド材とは、熱伝導率の高いアルミナ(AL2O3)、シリカ(SiO2)、シリコンカーバイド(SiC)、などのセラミック粉末や、カーボンブラックを添加剤として混合することで、熱伝導率を高めた樹脂系もしくはゴム系のモールド材、もしくは熱可塑性エラストマーなどを言う。 In the case where the rolling surface temperature sensor is embedded in the hole as described above, even if molding is performed with a mold material having high thermal conductivity between the rolling surface temperature sensor in the sensor unit and the inner surface of the hole. good. In the case of this configuration, the temperature in the vicinity of the rolling surface of the fixed member can be accurately detected by the rolling surface temperature sensor. The high thermal conductivity molding material is a mixture of ceramic powder such as alumina (AL 2 O 3 ), silica (SiO 2 ), silicon carbide (SiC), etc. having high thermal conductivity, or carbon black as an additive. The term refers to a resin-based or rubber-based molding material with increased thermal conductivity, or a thermoplastic elastomer.

この発明において、前記歪み発生部材の一部を前記固定側部材の径方向に向けて折り曲げた板状の温度センサ取付片を設け、この温度センサ取付片の先端に前記転走面温度センサを配置しても良い。   In the present invention, a plate-shaped temperature sensor mounting piece is formed by bending a part of the strain generating member toward the radial direction of the fixed side member, and the rolling surface temperature sensor is disposed at the tip of the temperature sensor mounting piece. You may do it.

このような折り曲げ片からなる板状の温度センサ取付片に転走面温度センサを配置する場合に、前記歪み発生部材における歪みセンサの配置される部分となる平面部と、転走面温度センサの配置される温度センサ取付片との両方に配線パターンを形成しても良い。
この場合に、前記歪み発生部材における歪みセンサの配置される平面部の配線パターンと、転走面温度センサの配置される温度センサ取付片の配線パターンとを、前記温度センサ取付片の基端付近で導線により接続しても良い。
このように配線パターンを形成することで、転走面温度センサの出力を歪みセンサやセンサ部温度センサの出力と共に、歪み発生部材の上の一箇所に集めることができ、各センサ出力信号の取り出しを容易に行うことができる。
When the rolling surface temperature sensor is disposed on the plate-shaped temperature sensor mounting piece made of such a bent piece, a flat surface portion serving as a portion where the strain sensor is disposed in the strain generating member, and a rolling surface temperature sensor A wiring pattern may be formed on both of the temperature sensor mounting pieces to be arranged.
In this case, the wiring pattern of the plane portion where the strain sensor is arranged in the strain generating member and the wiring pattern of the temperature sensor mounting piece where the rolling surface temperature sensor is arranged are near the base end of the temperature sensor mounting piece. May be connected by a conductive wire.
By forming the wiring pattern in this way, the output of the rolling surface temperature sensor can be collected together with the output of the strain sensor and the sensor temperature sensor in one place on the strain generating member, and each sensor output signal can be extracted. Can be easily performed.

この発明において、前記推定手段は、荷重推定に用いる前記センサユニットの歪みセンサの出力信号として、前記転動体の通過に伴い変化する信号の数周期分の出力信号の平均値を用いるものとしても良い。例えば、平均値演算の対象を1周期毎にずらせて行く移動平均を求めるようにしても良い。数周期とは、2〜3周期ないし5〜6周期であり、2〜6周期であれば良い。複数周期の平均値を用いることで、歪みセンサの出力信号を精度良く得ることができ、また数周期分の範囲に抑えることで、迅速な演算が行える。   In this invention, the estimation means may use an average value of output signals for several cycles of a signal that changes as the rolling element passes as an output signal of a strain sensor of the sensor unit used for load estimation. . For example, you may make it obtain | require the moving average which shifts the object of average value calculation for every period. The several cycles are 2-3 cycles or 5-6 cycles, and may be 2-6 cycles. By using an average value of a plurality of cycles, the output signal of the strain sensor can be obtained with high accuracy, and by performing the calculation within a range of several cycles, a quick calculation can be performed.

この発明において、前記センサユニットにおける歪み発生部材は、前記固定側部材の外径面に接触して固定される3つ以上の接触固定部を有し、この歪み発生部材には少なくとも2つの歪みセンサが取付けられ、前記接触固定部は、2つの歪みセンサの出力信号の位相差が前記転動体の配列ピッチの1/2もしくはその整数倍となる間隔で配置され、前記推定手段は、前記センサ部温度センサおよび転走面温度センサの出力で補正した前記2つの歪みセンサの出力信号の和を求め、この和から車輪に加わる荷重を推定するものとして良い。
この構成の場合、2つの歪みセンサの出力信号の和により、転動体の位置の影響が相殺されるので、転動体の影響を受けることなく、しかも停止時においても、車輪用軸受や、車輪のタイヤと路面間に作用する荷重を精度良く検出できる。
In this invention, the strain generating member in the sensor unit has three or more contact fixing portions fixed in contact with the outer diameter surface of the fixed side member, and the strain generating member includes at least two strain sensors. And the contact fixing part is arranged at an interval at which the phase difference between the output signals of the two strain sensors is 1/2 or an integer multiple of the arrangement pitch of the rolling elements. A sum of output signals of the two strain sensors corrected by outputs of the temperature sensor and the rolling surface temperature sensor may be obtained, and a load applied to the wheel may be estimated from the sum.
In the case of this configuration, the influence of the position of the rolling element is canceled out by the sum of the output signals of the two strain sensors, so that it is not affected by the rolling element and even when stopped, The load acting between the tire and the road surface can be detected with high accuracy.

この発明のセンサ付車輪用軸受は、この発明の前記いずれかの構成のセンサ付車輪用軸受において、前記歪み発生部材における、前記固定側部材の外径面に接触して固定される接触固定部と前記固定側部材との間にスペーサを介在させ、転走面温度センサを前記歪み発生部材に取付ける構成に代えて、転走面温度センサを前記スペーサに取付けたものとしても良い。   The sensor-equipped wheel bearing according to the present invention is the sensor-equipped wheel bearing according to any one of the above-described configurations of the present invention, wherein the strain generating member is in contact with and fixed to the outer diameter surface of the stationary-side member. Instead of a configuration in which a spacer is interposed between the fixed-side member and a rolling surface temperature sensor is attached to the strain generating member, a rolling surface temperature sensor may be attached to the spacer.

この発明のセンサ付車輪用軸受は、複列の転走面が内周に形成された外方部材と、前記転走面と対向する転走面が外周に形成された内方部材と、両部材の対向する転走面間に介在した複列の転動体とを備え、車体に対して車輪を回転自在に支持する車輪用軸受において、上記外方部材および内方部材のうちの固定側部材の外径面に1つ以上のセンサユニットを設け、前記センサユニットは、前記固定側部材の外径面に接触して固定される2つ以上の接触固定部を有する歪み発生部材、この歪み発生部材に取付けられてこの歪み発生部材の歪みを検出する歪みセンサ、前記歪み発生部材に取付けられて前記歪みセンサの設置部の温度を検出するセンサ部温度センサ、および前記固定側部材における前記転走面近傍の温度を検出する転走面温度センサを有し、前記センサユニットの歪みセンサの出力信号を前記センサ部温度センサおよび転走面温度センサの出力で補正し、その補正した信号から車輪に加わる荷重を推定する推定手段を設けたため、軸受内外部の温度差による検出誤差を補正して、車輪に作用する荷重を高い精度で安定良く検出でき、かつ取付工数を増やすことなく温度センサの設置が行える。具体的には、次の各効果が得られる。
軸受の固定側部材の内部の温度差による歪みセンサの検出誤差が補正できて、外気温の変化や荷重変化による内部発熱の影響が低減され、より高い精度で安定した荷重検出が可能になる。
走行中の降雨や外気温の変化があっても影響を受け難く、高い荷重がかかる条件で走行する場合でも、検出精度が悪化せず、正確な車両制御ができて安全性を高めることが可能になる。
各温度センサが歪みセンサと一体になっているため、取付工数を増やすことなく、温度センサを設置できる。
The sensor-equipped wheel bearing according to the present invention includes an outer member having a double-row rolling surface formed on the inner periphery, an inner member having a rolling surface opposed to the rolling surface formed on the outer periphery, A wheel bearing comprising a double row rolling element interposed between opposing rolling surfaces of the member and rotatably supporting the wheel with respect to the vehicle body, wherein the fixed side member of the outer member and the inner member One or more sensor units are provided on the outer diameter surface of the strain generating member, and the sensor unit has two or more contact fixing portions fixed in contact with the outer diameter surface of the fixed-side member, and this strain generation A strain sensor attached to the member for detecting the strain of the strain generating member, a sensor temperature sensor attached to the strain generating member for detecting the temperature of the installation portion of the strain sensor, and the rolling in the fixed side member Rolling surface temperature sensor that detects the temperature near the surface Since the output signal of the strain sensor of the sensor unit is corrected with the output of the sensor unit temperature sensor and the rolling surface temperature sensor, and the estimation means for estimating the load applied to the wheel from the corrected signal is provided, The detection error due to the temperature difference between the inside and outside of the bearing is corrected, the load acting on the wheel can be detected stably with high accuracy, and the temperature sensor can be installed without increasing the number of mounting steps. Specifically, the following effects can be obtained.
The detection error of the strain sensor due to the temperature difference inside the fixed member of the bearing can be corrected, the influence of internal heat generation due to changes in the outside air temperature and load changes is reduced, and stable load detection with higher accuracy becomes possible.
Even if it is raining during driving or changes in outside air temperature, it is not easily affected, and even when driving under heavy load conditions, detection accuracy does not deteriorate and accurate vehicle control can be performed to increase safety. become.
Since each temperature sensor is integrated with the strain sensor, the temperature sensor can be installed without increasing the number of mounting steps.

この発明の一実施形態にかかるセンサ付車輪用軸受の断面図とその検出系の概念構成のブロック図とを組み合わせて示す図である。It is a figure showing combining the sectional view of the wheel bearing with a sensor concerning one embodiment of this invention, and the block diagram of the conceptual composition of the detection system. 同センサ付車輪用軸受の外方部材をアウトボード側から見た正面図である。It is the front view which looked at the outer member of the wheel bearing with a sensor from the outboard side. 同センサ付車輪用軸受における転走面温度センサの設置部の拡大断面図である。It is an expanded sectional view of the installation part of the rolling surface temperature sensor in the wheel bearing with the same sensor. 同センサ付車輪用軸受におけるセンサユニットの拡大平面図である。It is an enlarged plan view of a sensor unit in the wheel bearing with sensor. 図4におけるV−V矢視断面図である。It is a VV arrow sectional view in FIG. 外方部材の内外温度差と歪みセンサ出力との関係を示すグラフである。It is a graph which shows the relationship between the internal / external temperature difference of an outer member, and a distortion sensor output. 他の構成例のセンサユニットを用いた場合のセンサ付車輪用軸受における転走面温度センサの設置部の拡大断面図である。It is an expanded sectional view of the installation part of the rolling surface temperature sensor in the wheel bearing with a sensor at the time of using the sensor unit of the other structural example. 同センサユニットの拡大平面図である。It is an enlarged plan view of the sensor unit. 図8におけるIX−IX矢視断面図である。It is IX-IX arrow sectional drawing in FIG. さらに他の構成例のセンサユニットの拡大断面図である。It is an expanded sectional view of the sensor unit of other composition examples. 同センサユニットを展開して示す平面図である。It is a top view which expands and shows the sensor unit. さらに他の構成例のセンサユニットを展開して示す平面図である。It is a top view which expands and shows the sensor unit of other structural examples. この発明の他の実施形態にかかるセンサ付車輪用軸受の断面図とその検出系の概念構成のブロック図とを組み合わせて示す図である。It is a figure showing combining the sectional view of the wheel bearing with a sensor concerning other embodiments of this invention, and the block diagram of the conceptual composition of the detection system. 同センサ付車輪用軸受の外方部材をアウトボード側から見た正面図である。It is the front view which looked at the outer member of the wheel bearing with a sensor from the outboard side. 同センサ付車輪用軸受におけるセンサユニットの拡大平面図である。It is an enlarged plan view of a sensor unit in the wheel bearing with sensor. 図15におけるXVI −XV1 矢視断面図である。It is XVI-XV1 arrow sectional drawing in FIG. 同センサ付車輪用軸受におけるセンサユニットの他の設置例を示す断面図である。It is sectional drawing which shows the other example of installation of the sensor unit in the bearing for wheels with a sensor. 同センサユニットの出力信号に対する転動体位置の影響の説明図である。It is explanatory drawing of the influence of a rolling-element position with respect to the output signal of the sensor unit. 従来例のセンサ付車輪用軸受の断面図とその検出系の概念構成のブロック図とを組み合わせて示す図である。It is a figure which combines and shows the sectional view of the bearing for sensors with a wheel of a prior art example, and the block diagram of the conceptual structure of the detection system. 同センサ付車輪用軸受の外方部材をアウトボード側から見た正面図である。It is the front view which looked at the outer member of the wheel bearing with a sensor from the outboard side. 同センサ付車輪用軸受におけるセンサユニットの拡大平面図である。It is an enlarged plan view of a sensor unit in the wheel bearing with sensor. 図21におけるXXII−XXII矢視断面図である。It is XXII-XXII arrow sectional drawing in FIG. 同センサ付車輪用軸受におけるセンサユニットの他の設置例を示す断面図である。It is sectional drawing which shows the other example of installation of the sensor unit in the bearing for wheels with a sensor. 同センサ付車輪用軸受における転走面温度センサの設置部の拡大断面図である。It is an expanded sectional view of the installation part of the rolling surface temperature sensor in the wheel bearing with the same sensor. 同センサ付車輪用軸受における転走面温度センサの他の設置例を示す拡大断面図である。It is an expanded sectional view which shows the other example of installation of the rolling surface temperature sensor in the wheel bearing with a sensor.

この発明の第1の実施形態を図1ないし図12と共に説明する。この実施形態は、第3世代型の内輪回転タイプで、駆動輪支持用の車輪用軸受に適用したものである。なお、この明細書において、車両に取付けた状態で車両の車幅方向の外側寄りとなる側をアウトボード側と呼び、車両の中央寄りとなる側をインボード側と呼ぶ。   A first embodiment of the present invention will be described with reference to FIGS. This embodiment is a third generation inner ring rotating type and is applied to a wheel bearing for driving wheel support. In this specification, the side closer to the outer side in the vehicle width direction of the vehicle when attached to the vehicle is referred to as the outboard side, and the side closer to the center of the vehicle is referred to as the inboard side.

このセンサ付車輪用軸受における軸受は、図1に断面図で示すように、内周に複列の転走面3を形成した外方部材1と、これら各転走面3に対向する転走面4を外周に形成した内方部材2と、これら外方部材1および内方部材2の転走面3,4間に介在した複列の転動体5とで構成される。この車輪用軸受は、複列のアンギュラ玉軸受型とされていて、転動体5はボールからなり、各列毎に保持器6で保持されている。上記転走面3,4は断面円弧状であり、ボール接触角が背面合わせとなるように形成されている。外方部材1と内方部材2との間の軸受空間の両端は、一対のシール7,8によってそれぞれ密封されている。   As shown in the sectional view of FIG. 1, the bearing for this sensor-equipped wheel bearing includes an outer member 1 in which a double row rolling surface 3 is formed on the inner periphery, and rolling facing each of these rolling surfaces 3. The inner member 2 has a surface 4 formed on the outer periphery, and the outer member 1 and the double row rolling elements 5 interposed between the rolling surfaces 3 and 4 of the inner member 2. This wheel bearing is a double-row angular ball bearing type, and the rolling elements 5 are made of balls and are held by a cage 6 for each row. The rolling surfaces 3 and 4 have an arc shape in cross section, and are formed so that the ball contact angle is aligned with the back surface. Both ends of the bearing space between the outer member 1 and the inner member 2 are sealed by a pair of seals 7 and 8, respectively.

外方部材1は固定側部材となるものであって、車体の懸架装置(図示せず)におけるナックル16に取付ける車体取付用フランジ1aを外周に有し、全体が一体の部品とされている。フランジ1aには周方向複数箇所にナックル取付用のねじ孔14が設けられ、インボード側よりナックル16のボルト挿通孔17に挿通したナックルボルト(図示せず)を前記ねじ孔14に螺合することで、車体取付用フランジ1aがナックル16に取付けられる。
内方部材2は回転側部材となるものであって、車輪取付用のハブフランジ9aを有するハブ輪9と、このハブ輪9の軸部9bのインボード側端の外周に嵌合した内輪10とでなる。これらハブ輪9および内輪10に、前記各列の転走面4が形成されている。ハブ輪9のインボード側端の外周には段差を持って小径となる内輪嵌合面12が設けられ、この内輪嵌合面12に内輪10が嵌合している。ハブ輪9の中心には貫通孔11が設けられている。ハブフランジ9aには、周方向複数箇所にハブボルト(図示せず)の圧入孔15が設けられている。ハブ輪9のハブフランジ9aの根元部付近には、車輪および制動部品(図示せず)を案内する円筒状のパイロット部13がアウトボード側に突出している。
The outer member 1 is a fixed side member, and has a vehicle body mounting flange 1a attached to a knuckle 16 in a suspension device (not shown) of the vehicle body on the outer periphery, and the whole is an integral part. The flange 1a is provided with screw holes 14 for attaching a knuckle at a plurality of locations in the circumferential direction, and knuckle bolts (not shown) inserted into the bolt insertion holes 17 of the knuckle 16 from the inboard side are screwed into the screw holes 14. Thus, the vehicle body mounting flange 1a is attached to the knuckle 16.
The inner member 2 is a rotating side member, and includes a hub wheel 9 having a hub flange 9a for wheel mounting, and an inner ring 10 fitted to the outer periphery of the end portion on the inboard side of the shaft portion 9b of the hub wheel 9. And become. The hub wheel 9 and the inner ring 10 are formed with the rolling surfaces 4 of the respective rows. An inner ring fitting surface 12 having a small diameter with a step is provided on the outer periphery of the inboard side end of the hub wheel 9, and the inner ring 10 is fitted to the inner ring fitting surface 12. A through hole 11 is provided at the center of the hub wheel 9. The hub flange 9a is provided with press-fitting holes 15 for hub bolts (not shown) at a plurality of locations in the circumferential direction. In the vicinity of the base portion of the hub flange 9a of the hub wheel 9, a cylindrical pilot portion 13 for guiding a wheel and a braking component (not shown) protrudes toward the outboard side.

図2は、この車輪用軸受の外方部材1をアウトボード側から見た正面図を示す。なお、図1は、図2におけるI−I矢視断面図を示す。前記車体取付用フランジ1aは、図2のように、各ねじ孔14が設けられた円周方向部分が他の部分よりも外径側へ突出した突片1aaとされている。   FIG. 2 shows a front view of the outer member 1 of the wheel bearing as viewed from the outboard side. 1 shows a cross-sectional view taken along the line II in FIG. As shown in FIG. 2, the vehicle body mounting flange 1 a is a projecting piece 1 aa in which a circumferential portion provided with each screw hole 14 protrudes to the outer diameter side from the other portion.

固定側部材である外方部材1の外径面には、4個のセンサユニット20が設けられている。ここでは、これらのセンサユニット20が、タイヤ接地面に対して上下位置および前後位置となる外方部材1の外径面における上面部、下面部、右面部、および左面部に、周方向に相互に90度の位相差をなすように設けられている。   Four sensor units 20 are provided on the outer diameter surface of the outer member 1 which is a fixed member. Here, these sensor units 20 are arranged in the circumferential direction on the upper surface portion, the lower surface portion, the right surface portion, and the left surface portion of the outer diameter surface of the outer member 1 that is in the vertical position and the front and rear position with respect to the tire ground contact surface. Are provided so as to form a phase difference of 90 degrees.

これらのセンサユニット20は、図4および図5に拡大平面図および拡大断面図で示すように、歪み発生部材21と、この歪み発生部材21に取付けられて歪み発生部材21の歪みを検出する歪みセンサ22と、歪み発生部材21に取付けられて歪みセンサ22の設置部の温度を検出するセンサ部温度センサ28と、歪み発生部材21に取付けられて固定側部材である外方部材1における前記転走面3の近傍の温度を検出する転走面温度センサ29とでなる。歪み発生部材21は、鋼材等の弾性変形可能な金属製の薄板材等の板材からなり、平面概形が全長にわたり均一幅の帯状で中央の両側辺部に切欠き部21bを有する。また、歪み発生部材21は、外方部材1の外径面にスペーサ23を介して接触固定される2つの接触固定部21aを有する。なお、歪み発生部材21の形状によっては、接触固定部21aを3つ以上有するものとしても良い。歪みセンサ22は、歪み発生部材21における各方向の荷重に対して歪みが大きくなる箇所に貼り付けられる。ここでは、その箇所として、歪み発生部材21の外面側で両側辺部の切欠き部21bで挟まれる中央部位が選ばれており、歪みセンサ22は切欠き部21bの周辺の周方向の歪みを検出する。なお、歪み発生部材21は、固定側部材である外方部材1に作用する外力、またはタイヤと路面間に作用する作用力として、想定される最大の力が印加された状態においても、塑性変形しないものとするのが望ましい。塑性変形が生じると、外方部材1の変形がセンサユニット20に伝わらず、歪みの測定に影響を及ぼすからである。想定される最大の力は、軸受に過大な荷重が作用しても、その荷重が除かれると、センサ系を除く軸受としての正常な機能が復元される範囲の最大の力である。   4 and 5, the sensor unit 20 includes a strain generating member 21 and a strain that is attached to the strain generating member 21 and detects the strain of the strain generating member 21. The sensor 22, the sensor part temperature sensor 28 that is attached to the strain generation member 21 and detects the temperature of the installation part of the strain sensor 22, and the rolling in the outer member 1 that is attached to the strain generation member 21 and is a fixed side member. It comprises a rolling surface temperature sensor 29 that detects the temperature in the vicinity of the running surface 3. The strain generating member 21 is made of a plate material such as an elastically deformable metal thin plate material such as a steel material, and the planar outline is a belt having a uniform width over the entire length, and has notches 21b on both sides of the center. Further, the strain generating member 21 has two contact fixing portions 21 a that are contact-fixed to the outer diameter surface of the outer member 1 via the spacers 23. Note that, depending on the shape of the strain generating member 21, it may have three or more contact fixing portions 21 a. The strain sensor 22 is affixed to a location where the strain increases with respect to the load in each direction on the strain generating member 21. Here, as the location, a central portion sandwiched between the notch portions 21b on both sides is selected on the outer surface side of the strain generating member 21, and the strain sensor 22 measures the circumferential strain around the notch portion 21b. To detect. Note that the strain generating member 21 is plastically deformed even in a state in which an assumed maximum force is applied as an external force acting on the outer member 1 that is a fixed member or an acting force acting between the tire and the road surface. It is desirable not to do so. This is because when plastic deformation occurs, the deformation of the outer member 1 is not transmitted to the sensor unit 20 and affects the measurement of strain. Even if an excessive load is applied to the bearing, the assumed maximum force is the maximum force within a range in which the normal function as the bearing excluding the sensor system is restored when the load is removed.

前記センサユニット20は、その歪み発生部材21の2つの接触固定部21aが、外方部材1の軸方向に同寸法の位置で、かつ両接触固定部21aが互いに円周方向に離れた位置に来るように配置され、これら接触固定部21aがそれぞれスペーサ23を介してボルト24により外方部材1の外径面に固定される。前記各ボルト24は、それぞれ接触固定部21aに設けられた径方向に貫通するボルト挿通孔25からスペーサ23のボルト挿通孔26に挿通し、外方部材1の外周部に設けられたねじ孔27に螺合させる。このように、スペーサ23を介して外方部材1の外径面に接触固定部21aを固定することにより、薄板状である歪み発生部材21における切欠き部21bを有する中央部位が外方部材1の外径面から離れた状態となり、切欠き部21bの周辺の歪み変形が容易となる。接触固定部21aが配置される軸方向位置として、ここでは外方部材1のアウトボード側列の転走面3の周辺となる軸方向位置が選ばれる。ここでいうアウトボード側列の転走面3の周辺とは、インボード側列およびアウトボード側列の転走面3の中間位置からアウトボード側列の転走面3の形成部までの範囲である。外方部材1の外径面へセンサユニット20を安定良く固定する上で、外方部材1の外径面における前記スペーサ23が接触固定される箇所には平坦部1bが形成される。   In the sensor unit 20, the two contact fixing portions 21a of the strain generating member 21 are located at the same dimension in the axial direction of the outer member 1, and the two contact fixing portions 21a are separated from each other in the circumferential direction. These contact fixing portions 21a are fixed to the outer diameter surface of the outer member 1 by bolts 24 via spacers 23, respectively. Each bolt 24 is inserted into a bolt insertion hole 26 of the spacer 23 from a bolt insertion hole 25 penetrating in the radial direction provided in the contact fixing portion 21 a, and a screw hole 27 provided in the outer peripheral portion of the outer member 1. Screwed on. In this way, by fixing the contact fixing portion 21a to the outer diameter surface of the outer member 1 via the spacer 23, the central portion having the notch portion 21b in the strain generating member 21 having a thin plate shape is the outer member 1. It becomes a state away from the outer diameter surface of the, and distortion deformation around the notch 21b becomes easy. As the axial position where the contact fixing portion 21a is disposed, an axial position that is the periphery of the rolling surface 3 of the outboard side row of the outer member 1 is selected here. Here, the periphery of the rolling surface 3 of the outboard side row is a range from the intermediate position of the rolling surface 3 of the inboard side row and the outboard side row to the formation portion of the rolling surface 3 of the outboard side row. It is. In order to stably fix the sensor unit 20 to the outer diameter surface of the outer member 1, a flat portion 1 b is formed at a location where the spacer 23 is contacted and fixed on the outer diameter surface of the outer member 1.

歪みセンサ22としては、種々のものを使用することができる。例えば、歪みセンサ22を金属箔ストレインゲージで構成することができる。その場合、通常、歪み発生部材21に対しては接着による固定が行なわれる。また、歪みセンサ22を歪み発生部材21上に厚膜抵抗体にて形成することもできる。
センサ部温度センサ28および転走面温度センサ29には、例えば、サーミスタ等の半導体温度計、熱電対、測温抵抗体等が用いられる。
Various strain sensors 22 can be used. For example, the strain sensor 22 can be composed of a metal foil strain gauge. In that case, the distortion generating member 21 is usually fixed by adhesion. The strain sensor 22 can also be formed on the strain generating member 21 with a thick film resistor.
For the sensor temperature sensor 28 and the rolling contact surface temperature sensor 29, for example, a semiconductor thermometer such as a thermistor, a thermocouple, a resistance temperature detector, or the like is used.

センサ部温度センサ28は、歪みセンサ22と同様に、前記歪み発生部材21の表面に取付けられる。歪み発生部材21は、図5のように、その一端を外方部材1の径方向に向けて折り曲げた断面L字状とされている。そのL字状の一辺を成す折り曲げ片からなる温度センサ取付片21cの先端面に、転走面温度センサ29が設置される。また、外方部材1には、その外径面における各センサユニット20の設置部から径方向に延びて前記転走面3の付近に達する温度センサ埋込用孔32が設けられる。この温度センサ埋込用孔32に、前記歪み発生部材21の温度センサ取付片21cが埋め込まれ、これにより温度センサ埋込用孔32内の転走面3に近い底部に前記転走面温度センサ29が埋設される。ここでは、前記温度センサ取付片21cの先端部位に転走面温度センサ29が配置され、温度センサ取付片21cは前記温度センサ埋込用孔32に圧入される。温度センサ取付片21c内には、その伸長方向に延びて歪み発生部材21の表面に開口する配線用孔33が形成され、この配線用孔33を経て転走面温度センサ29に接続された信号線34が歪み発生部材21の表面に引き出される。温度センサ埋込用孔32の底部は、この孔32の形成により軸受寿命が低下することのない範囲で、転走面3に近いほど好ましく、例えば、転走面3の焼入れ硬化処理層と未硬化部分との境界付近とされる。固定側部材である前記外方部材1の外周には、前記各センサユニット20を覆う保護カバー35(図1)が設けられている。   Similar to the strain sensor 22, the sensor part temperature sensor 28 is attached to the surface of the strain generating member 21. As shown in FIG. 5, the strain generating member 21 has an L-shaped cross section in which one end is bent toward the radial direction of the outer member 1. A rolling surface temperature sensor 29 is installed on the tip surface of the temperature sensor mounting piece 21c formed of a bent piece forming one side of the L shape. Further, the outer member 1 is provided with a temperature sensor embedding hole 32 that extends in a radial direction from an installation portion of each sensor unit 20 on the outer diameter surface and reaches the vicinity of the rolling surface 3. The temperature sensor mounting piece 21c of the strain generating member 21 is embedded in the temperature sensor embedding hole 32, whereby the rolling surface temperature sensor is located at the bottom of the temperature sensor embedding hole 32 near the rolling surface 3. 29 is buried. Here, a rolling surface temperature sensor 29 is disposed at the tip of the temperature sensor mounting piece 21c, and the temperature sensor mounting piece 21c is press-fitted into the temperature sensor embedding hole 32. In the temperature sensor mounting piece 21c, a wiring hole 33 is formed which extends in the extending direction and opens on the surface of the strain generating member 21, and a signal connected to the rolling surface temperature sensor 29 through the wiring hole 33. The line 34 is drawn out to the surface of the distortion generating member 21. The bottom of the temperature sensor embedding hole 32 is preferably closer to the rolling surface 3 within a range in which the bearing life is not reduced by the formation of the hole 32. The vicinity of the boundary with the hardened portion. A protective cover 35 (FIG. 1) that covers each sensor unit 20 is provided on the outer periphery of the outer member 1 that is a stationary member.

センサユニット20の歪みセンサ22、センサ部温度センサ28、および転走面温度センサ29は、図1の推定手段30に接続される。推定手段30は、歪みセンサ22の出力信号により、車輪に路面との間(タイヤ接地面)で作用する力(垂直方向荷重Fz ,駆動力または制動力ととなる荷重Fx ,軸方向荷重Fy )を推定する手段であり、前記センサ部温度センサ28および前記転走面温度センサ29の出力で前記歪みセンサ22の出力信号を補正する温度補正手段31を有する。前記垂直方向荷重Fz 、および駆動力または制動力となる荷重Fx は、換言すれば、それぞれ車輪に加わる左右方向および上下方向の径方向荷重である。この明細書で言う左右方向は、前述のように車輪を軸方向に見た左右方向である。推定手段30では、前記温度補正手段31で補正した歪みセンサ22の出力信号から、前記垂直方向荷重Fz 、駆動力または制動力となる荷重Fx 、および軸方向荷重Fy を推定する。なお、これらの荷重のほか、推定手段30でステアリングモーメント荷重Mz を推定するものとしても良い。   The strain sensor 22, the sensor part temperature sensor 28, and the rolling surface temperature sensor 29 of the sensor unit 20 are connected to the estimation means 30 in FIG. 1. The estimation means 30 is a force (vertical load Fz, load Fx serving as driving force or braking force, axial load Fy) acting on the wheel between the road surface (tire contact surface) and the output signal of the strain sensor 22. Temperature correction means 31 for correcting the output signal of the strain sensor 22 with the outputs of the sensor temperature sensor 28 and the rolling surface temperature sensor 29. In other words, the vertical load Fz and the load Fx serving as the driving force or the braking force are radial loads in the left-right direction and the up-down direction applied to the wheels, respectively. The left-right direction referred to in this specification is the left-right direction when the wheel is viewed in the axial direction as described above. The estimation unit 30 estimates the vertical load Fz, the load Fx serving as the driving force or the braking force, and the axial load Fy from the output signal of the strain sensor 22 corrected by the temperature correction unit 31. In addition to these loads, the estimating means 30 may estimate the steering moment load Mz.

歪みセンサ22の出力信号には温度ドリフト特性があるため、センサユニット20に設けられたセンサ部温度センサ28で測定されるセンサユニット20の温度や外気温で歪みセンサ2の出力信号を補正すれば、温度ドリフト特性による検出誤差を低減することができる。しかし、軸受内部の発熱量や、軸受の外気への放熱状態が変化すると、外方部材1の熱歪み成分が歪みセンサ22の出力信号に重畳して検出精度を悪化させる。   Since the output signal of the strain sensor 22 has a temperature drift characteristic, if the output signal of the strain sensor 2 is corrected by the temperature of the sensor unit 20 measured by the sensor temperature sensor 28 provided in the sensor unit 20 or the outside air temperature. Detection errors due to temperature drift characteristics can be reduced. However, if the amount of heat generated inside the bearing or the state of heat radiation to the outside air of the bearing changes, the thermal strain component of the outer member 1 is superimposed on the output signal of the strain sensor 22 to deteriorate the detection accuracy.

そこで、前記推定手段30における温度補正手段31では、センサ部温度センサ28が検出する歪みセンサ22の設置部の温度Ts と、転走面温度センサ29が検出する外方部材1の内部温度である転走面3の近傍の温度Ti とにより、次のように前記歪みセンサ22の出力信号を補正する。
先ず、外方部材1の内外温度差として、ΔT=Ti −Ts を求める。外方部材1の内外の温度勾配と歪みセンサ22の出力信号に重畳するオフセット量との関係は、外方部材1の構造などによって決まり、図6にグラフで示すような比例関係で近似できる。このような比例関係を示す係数aを、試験等で求めておいて温度補正手段31に設定しておく。なお、図6では、センサユニット20の温度を一定とし、温度差ΔT=0のときの歪みセンサ22の出力信号をS0 としている。
次に、温度補正手段31では、図6のグラフの比例関係を示す前記係数aを用い、前記内外温度差ΔTを用いて、歪みセンサ22の出力信号の補正後の値となる補正値を、
補正値=(歪みセンサ22の出力)+(センサ部温度によるオフセットO(Ts ))
+(温度勾配によるオフセットG(ΔT))
として求める。ただし、
O(Ts ):線膨張の差によるオフセット量+歪みセンサ22の温度特性、
G(ΔT):温度勾配によるオフセット量、
である。
なお、G(ΔT)=(係数a)×ΔTである。
Therefore, the temperature correction means 31 in the estimation means 30 includes the temperature Ts of the installation part of the strain sensor 22 detected by the sensor part temperature sensor 28 and the internal temperature of the outer member 1 detected by the rolling contact surface temperature sensor 29. Based on the temperature Ti in the vicinity of the rolling surface 3, the output signal of the strain sensor 22 is corrected as follows.
First, ΔT = Ti−Ts is obtained as the temperature difference between the inside and outside of the outer member 1. The relationship between the temperature gradient inside and outside the outer member 1 and the offset amount superimposed on the output signal of the strain sensor 22 is determined by the structure of the outer member 1 and can be approximated by a proportional relationship as shown in the graph of FIG. A coefficient a indicating such a proportional relationship is obtained by a test or the like and set in the temperature correction means 31. In FIG. 6, the temperature of the sensor unit 20 is constant, and the output signal of the strain sensor 22 when the temperature difference ΔT = 0 is S0.
Next, the temperature correction means 31 uses the coefficient a indicating the proportional relationship of the graph of FIG. 6 and uses the internal / external temperature difference ΔT to obtain a correction value that is a value after correction of the output signal of the strain sensor 22.
Correction value = (output of strain sensor 22) + (offset O (Ts) due to sensor temperature)
+ (Offset G (ΔT) due to temperature gradient)
Asking. However,
O (Ts): offset amount due to difference in linear expansion + temperature characteristic of strain sensor 22
G (ΔT): offset amount due to temperature gradient,
It is.
Note that G (ΔT) = (coefficient a) × ΔT.

推定手段30は、マイクロコンピュータ等のコンピュータまたは電子回路等からなる。推定手段30は、前記作用力と前記温度補正手段31で求めた歪みセンサ22の出力信号の補正値との関係を演算式またはテーブル等により設定した関係設定手段(図示せず)を有し、入力された補正値から前記関係設定手段を用いて作用力の値を演算出力する。前記関係設定手段の設定内容は、予め試験やシミュレーションで求めておいて設定する。   The estimation means 30 includes a computer such as a microcomputer or an electronic circuit. The estimation unit 30 includes a relationship setting unit (not shown) in which the relationship between the acting force and the correction value of the output signal of the strain sensor 22 obtained by the temperature correction unit 31 is set by an arithmetic expression or a table. The value of the acting force is calculated and output from the input correction value using the relationship setting means. The setting contents of the relationship setting means are obtained by a test or simulation in advance.

センサユニット20は、外方部材1のアウトボード側列の転走面3の周辺となる軸方向位置に設けられるので、歪みセンサ22の出力信号は、センサユニット20の設置部の近傍を通過する転動体5の影響を受ける。すなわち、転動体5がセンサユニット20における歪みセンサ22に最も近い位置を通過するとき出力信号の振幅は最大値となり、その位置から転動体5が遠ざかるにつれて低下する。これにより、軸受回転時には歪みセンサ22の出力信号は、その振幅が転動体5の配列ピッチを周期として変化する正弦波に近い波形となる。   Since the sensor unit 20 is provided at an axial position around the rolling surface 3 of the outer board 1 on the outboard side row, the output signal of the strain sensor 22 passes in the vicinity of the installation portion of the sensor unit 20. It is affected by the rolling element 5. That is, when the rolling element 5 passes the position closest to the strain sensor 22 in the sensor unit 20, the amplitude of the output signal becomes the maximum value, and decreases as the rolling element 5 moves away from the position. Thereby, during rotation of the bearing, the output signal of the strain sensor 22 has a waveform close to a sine wave whose amplitude changes with the arrangement pitch of the rolling elements 5 as a period.

そこで、推定手段30で荷重の演算に用意される演算式は、例えば各センサユニット20の歪みセンサ22の温度補正済みの出力信号の振幅値を変数とし、この変数に所定の補正係数を乗算した一次式として表される。この一次式における前記補正係数や定数が演算パラメータとなる。また、演算式の他の例として、各センサユニット20の歪みセンサ22の出力信号の平均値(直流成分)を変数とし、この変数に所定の補正係数を乗算した一次式を用意しても良い。この場合の平均値としては、転動体5の通過に伴い変化する信号振幅の数周期分の出力信号の平均値を用いる。例えば、平均値演算の対象を1周期毎にずらせて行く移動平均を求めるようにしても良い。数周期とは、2〜3周期ないし5〜6周期であり、2〜6周期であれば良い。また、演算式のさらに他の例として、各センサユニット20の歪みセンサ22の出力信号の平均値および振幅値を変数とし、これらの変数にそれぞれ所定の補正係数を乗算した一次式を設定しても良い。前記一次式における各補正係数や定数の値は、予め試験やシミュレーションで求めておいて設定する。   Therefore, the calculation formula prepared for the load calculation by the estimation means 30 is, for example, the variable of the amplitude value of the temperature-corrected output signal of the strain sensor 22 of each sensor unit 20, and this variable is multiplied by a predetermined correction coefficient. Expressed as a linear expression. The correction coefficients and constants in this linear expression are calculation parameters. As another example of the arithmetic expression, a linear expression in which an average value (DC component) of the output signal of the strain sensor 22 of each sensor unit 20 is used as a variable and a predetermined correction coefficient is multiplied by this variable may be prepared. . As the average value in this case, the average value of the output signal for several cycles of the signal amplitude that changes as the rolling element 5 passes is used. For example, you may make it obtain | require the moving average which shifts the object of average value calculation for every period. The several cycles are 2-3 cycles or 5-6 cycles, and may be 2-6 cycles. As yet another example of the arithmetic expression, an average value and an amplitude value of the output signal of the strain sensor 22 of each sensor unit 20 are used as variables, and a linear expression obtained by multiplying these variables by a predetermined correction coefficient is set. Also good. The values of the correction coefficients and constants in the linear equation are determined and set in advance through tests and simulations.

車輪のタイヤと路面間に荷重が作用すると、車輪用軸受の固定側部材である外方部材1にも荷重が印加されて変形が生じる。センサユニット20における歪み発生部材21の2つの接触固定部21aが外方部材1に接触固定されているので、外方部材1の歪みが歪み発生部材21に拡大して伝達され、その歪みが歪みセンサ22で感度良く検出され、荷重を精度良く推定できる。
また、センサユニット20の歪み発生部材21に歪みセンサ22の設置部の温度を検出するセンサ部温度センサ28と、外方部材1における転走面3の近傍の温度を検出する転走面温度センサ29とを設け、推定手段30では、温度補正手段31により、歪みセンサ22の出力信号をセンサ部温度センサ28および転走面温度センサ29の出力で補正し、その補正した信号から車輪用軸受もしくはタイヤに加わる荷重を推定するようにしているので、外気温の変化や、荷重変化による軸受内部発熱の変動の影響を低減することが可能となり、車輪用軸受やタイヤ接地面に作用する荷重を高い精度で安定良く検出でき、走行中の降雨や外気温の変化があっても荷重検出に影響を受けにくくなる。
特に、転走面温度センサ29もセンサユニット20の一部として歪み発生部材21に取付けているので、外方部材1への組付け工数を低減でき、その作業も容易となる。また、センサ部温度センサ28や転走面温度センサ29の配線を歪みセンサ22の配線と共に歪み発生部材21の上にまとめることができるので、配線処理も容易になる。さらに、センサユニット20を保護カバー35で被覆するだけで、転走面温度センサ29の被覆も可能となる。
When a load acts between the tire of the wheel and the road surface, the load is also applied to the outer member 1 that is a stationary member of the wheel bearing, causing deformation. Since the two contact fixing portions 21a of the strain generating member 21 in the sensor unit 20 are fixed in contact with the outer member 1, the strain of the outer member 1 is transmitted to the strain generating member 21 in an enlarged manner, and the strain is distorted. It is detected with high sensitivity by the sensor 22 and the load can be estimated with high accuracy.
Further, a sensor part temperature sensor 28 for detecting the temperature of the installation part of the strain sensor 22 on the strain generating member 21 of the sensor unit 20, and a rolling surface temperature sensor for detecting the temperature in the vicinity of the rolling surface 3 in the outer member 1. 29, and in the estimation means 30, the temperature correction means 31 corrects the output signal of the strain sensor 22 with the outputs of the sensor part temperature sensor 28 and the rolling surface temperature sensor 29, and the wheel bearing or Since the load applied to the tire is estimated, it becomes possible to reduce the influence of changes in the outside air temperature and fluctuations in the internal heat generation of the bearing due to the load change, and the load acting on the wheel bearing and tire contact surface is high. It can be detected accurately and stably, and even when there is rainfall or a change in the outside air temperature, it is less affected by load detection.
In particular, since the rolling surface temperature sensor 29 is also attached to the strain generating member 21 as a part of the sensor unit 20, the number of assembling steps to the outer member 1 can be reduced, and the work is facilitated. Moreover, since the wiring of the sensor part temperature sensor 28 and the rolling surface temperature sensor 29 can be collected on the strain generating member 21 together with the wiring of the strain sensor 22, wiring processing is facilitated. Furthermore, the rolling surface temperature sensor 29 can be covered only by covering the sensor unit 20 with the protective cover 35.

上記説明では車輪のタイヤと路面間の作用力を検出する場合を示したが、車輪のタイヤと路面間の作用力だけでなく、さらに車輪用軸受に作用する力(例えば予圧量)を検出するものとしても良い。
このセンサ付車輪用軸受から得られた検出荷重を車両制御に使用することにより、高い荷重がかかる条件で走行する場合でも検出精度が悪化することがなく、正確な車両制御により安全性を高めることができる。
Although the case where the acting force between the wheel tire and the road surface is detected has been described in the above description, not only the acting force between the wheel tire and the road surface but also the force acting on the wheel bearing (for example, the preload amount) is detected. It is good as a thing.
By using the detection load obtained from this sensor-equipped wheel bearing for vehicle control, the detection accuracy will not deteriorate even when traveling under conditions with high load, and safety will be improved by accurate vehicle control. Can do.

また、この実施形態では、センサユニット20を4つ設け、これらのセンサユニット20を、タイヤ接地面に対して上下位置および左右位置となる外方部材1の外径面の上面部、下面部、右面部および左面部に、周方向に互いに90度の位相差をなすように配置しているので、どのような荷重条件においても、荷重を精度良く推定することができる。すなわち,ある方向への荷重が大きくなると、転動体5と転走面3,4が接触している部分と接触していない部分が180度位相差で現れるため、その方向に合わせてセンサユニット20を180度位相差で設置すれば、どちらかのセンサユニット20には必ず転動体5を介して外方部材1に印加される荷重が伝達され、その荷重を歪みセンサ22により検出可能となる。   Further, in this embodiment, four sensor units 20 are provided, and these sensor units 20 are arranged on the upper surface portion, the lower surface portion, and the outer diameter surface of the outer member 1 that are in the vertical position and the horizontal position with respect to the tire ground contact surface. Since the right surface portion and the left surface portion are arranged so as to have a phase difference of 90 degrees in the circumferential direction, the load can be accurately estimated under any load condition. That is, when a load in a certain direction increases, a portion where the rolling element 5 and the rolling surfaces 3 and 4 are in contact with each other and a portion which is not in contact appear with a phase difference of 180 degrees. Is installed with a phase difference of 180 degrees, a load applied to the outer member 1 is always transmitted to one of the sensor units 20 via the rolling elements 5, and the load can be detected by the strain sensor 22.

また、この実施形態では、前記推定手段30の温度補正手段31により、前記センサ部温度センサ28の出力と前記転走面温度センサ29の出力との差によりセンサユニット20の歪みセンサ22の出力信号を補正するものとし、その補正量は予め作成した前記両温度センサ28,29の出力差と補正量との一次近似関係式(図6)から決定するものとしているので、歪みセンサ22の出力信号に重畳しているオフセット量、つまり外方部材1の内部から表面にかけての温度勾配による熱歪みを十分に低減でき、荷重推定値の精度を向上させることができる。   In this embodiment, the temperature correction means 31 of the estimation means 30 causes the output signal of the strain sensor 22 of the sensor unit 20 based on the difference between the output of the sensor unit temperature sensor 28 and the output of the rolling surface temperature sensor 29. The correction amount is determined from the first-order approximate relational expression (FIG. 6) between the output difference between the temperature sensors 28 and 29 and the correction amount prepared in advance. The amount of offset superimposed on the outer member 1, that is, the thermal distortion due to the temperature gradient from the inside to the surface of the outer member 1, can be sufficiently reduced, and the accuracy of the estimated load value can be improved.

図7および図8は、前記実施形態におけるセンサユニット20の他の構成例を示す。この構成例では、歪み発生部材21のボルト24で固定される一端部における外方部材1の軸方向に向く部分に、外方部材1の径方向内側に向けて折り曲げた折り曲げ片からなる温度センサ取付片21dを設け、この温度センサ取付片21dの先端部位に転走面温度センサ29を配置している。この温度センサ取付片21dが、外方部材1の外径面におけるセンサユニット20の設置部から径方向に延びて前記転走面3付近に達する温度センサ埋込用孔32に圧入されることで、温度センサ埋込用孔32内の転走面3に近い底部に前記転走面温度センサ29が埋設される。その他の構成は、図4および図5に示す構成例の場合と同様である。   7 and 8 show another configuration example of the sensor unit 20 in the embodiment. In this configuration example, the temperature sensor is formed of a bent piece that is bent inward in the radial direction of the outer member 1 at a portion facing the axial direction of the outer member 1 at one end portion fixed by the bolt 24 of the strain generating member 21. A mounting piece 21d is provided, and a rolling contact surface temperature sensor 29 is arranged at the tip of the temperature sensor mounting piece 21d. The temperature sensor mounting piece 21d is press-fitted into the temperature sensor embedding hole 32 that extends in the radial direction from the installation portion of the sensor unit 20 on the outer diameter surface of the outer member 1 and reaches the vicinity of the rolling surface 3. The rolling surface temperature sensor 29 is embedded at the bottom near the rolling surface 3 in the temperature sensor embedding hole 32. Other configurations are the same as those of the configuration examples shown in FIGS.

図9は、前記実施形態におけるセンサユニット20のさらに他の構成例を示す。この構成例では、歪み発生部材21の接触固定部21aと外方部材1の外径面との間に介在させるスペーサ23の一つに、外方部材1の径方向に向けて延びる突出部からなる温度センサ取付片23aを設け、この温度センサ取付片23aの先端面に転走面温度センサ29を配置している。この温度センサ取付片23aが、外方部材1の外径面におけるセンサユニット20の設置部から径方向に延びて前記転走面3付近に達する温度センサ埋込用孔32に圧入されることで、温度センサ埋込用孔32内の転走面3に近い底部に前記転走面温度センサ29が埋設される。温度センサ取付片23a内には、その伸長方向に延びて表面に開口する配線用孔33Aが形成され、歪み発生部材21には厚み方向に貫通して前記配線用孔33Aに整合する配線用孔33Bが形成される。これにより、転走面温度センサ29に接続された信号線(図示せず)が前記配線用孔33A,33Bを経て歪み発生部材21の表面に引き出される。その他の構成は、図4および図5に示す構成例と同様である。   FIG. 9 shows still another configuration example of the sensor unit 20 in the embodiment. In this configuration example, from one of the spacers 23 interposed between the contact fixing portion 21 a of the strain generating member 21 and the outer diameter surface of the outer member 1, a protrusion extending in the radial direction of the outer member 1. A temperature sensor mounting piece 23a is provided, and a rolling surface temperature sensor 29 is disposed on the tip surface of the temperature sensor mounting piece 23a. The temperature sensor mounting piece 23 a is press-fitted into the temperature sensor embedding hole 32 extending in the radial direction from the installation portion of the sensor unit 20 on the outer diameter surface of the outer member 1 and reaching the vicinity of the rolling surface 3. The rolling surface temperature sensor 29 is embedded at the bottom near the rolling surface 3 in the temperature sensor embedding hole 32. In the temperature sensor mounting piece 23a, a wiring hole 33A extending in the extending direction and opening on the surface is formed, and the strain generating member 21 is penetrated in the thickness direction and aligned with the wiring hole 33A. 33B is formed. As a result, a signal line (not shown) connected to the rolling surface temperature sensor 29 is drawn out to the surface of the strain generating member 21 through the wiring holes 33A and 33B. Other configurations are the same as the configuration examples shown in FIGS. 4 and 5.

図10および図11は、前記実施形態におけるセンサユニット20のさらに他の構成例を示す。この構成例では、ボルト24で固定される歪み発生部材21の一端に、外方部材1の径方向内側に向けて折り曲げた折り曲げ片からなる温度センサ取付片21cを設け、この温度センサ取付片21cの正面となる平面部の先端に転走面温度センサ29を配置している。なお図11では、前記温度センサ取付片21cを折り曲げる前の展開図として示している。この温度センサ取付片21cが、外方部材1の外径面におけるセンサユニット20の設置部から径方向に延びて前記転走面3付近に達する温度センサ埋込用孔32に埋め込まれる。ここでは、温度センサ埋込用孔32に埋め込まれた転走面温度センサ29の設置部、つまり前記温度センサ取付片21cが、高熱伝導性のモールド材36でモールドされる。ここで言う高熱伝導性のモールド材36とは、熱伝導率の高いアルミナ(AL2O3)、シリカ(SiO2)、シリコンカーバイド(SiC)、などのセラミック粉末や、カーボンブラックを添加剤として混合することで、熱伝導率を高めた樹脂系もしくはゴム系のモールド材、もしくは熱可塑性エラストマーなどである。 10 and 11 show still another configuration example of the sensor unit 20 in the embodiment. In this configuration example, a temperature sensor mounting piece 21c made of a bent piece bent toward the radially inner side of the outer member 1 is provided at one end of the strain generating member 21 fixed by the bolt 24, and the temperature sensor mounting piece 21c. A rolling contact surface temperature sensor 29 is disposed at the tip of the flat surface portion that is the front surface. In addition, in FIG. 11, it has shown as the expanded view before bending the said temperature sensor attachment piece 21c. The temperature sensor mounting piece 21c is embedded in a temperature sensor embedding hole 32 that extends in the radial direction from the installation portion of the sensor unit 20 on the outer diameter surface of the outer member 1 and reaches the vicinity of the rolling surface 3. Here, the installation part of the rolling contact surface temperature sensor 29 embedded in the temperature sensor embedding hole 32, that is, the temperature sensor mounting piece 21c is molded with the molding material 36 having high thermal conductivity. The high thermal conductivity molding material 36 referred to here is ceramic powder such as alumina (AL 2 O 3 ), silica (SiO 2 ), silicon carbide (SiC), etc. having high thermal conductivity, or carbon black as an additive. By mixing, it is a resin-based or rubber-based molding material whose thermal conductivity is increased, or a thermoplastic elastomer.

歪み発生部材21がある程度以上に薄い薄板である場合、図5の構成例の場合のように温度センサ取付片21cに配線用孔33を設けることができない。そこで、この構成例では、図10のように温度センサ取付片21cの先端平面部に転走面温度センサ29を配置することで、転走面温度センサ29に接続される信号線を温度センサ取付片21cの表面を経て引き出すようにしている。また、温度センサ取付片21cを熱伝導率の良いモールド材36でモールドしているので、外方部材1の転走面3の近傍の温度を転走面温度センサ29で正確に検出することができる。また、温度センサ埋込用孔32がモールド材36で密封されるので配線処理が容易となり、温度センサ埋込用孔32を介して外方部材1の内部にに水分が浸入するのを防止できる。   When the strain generating member 21 is a thin plate that is thinner than a certain degree, the wiring hole 33 cannot be provided in the temperature sensor mounting piece 21c as in the configuration example of FIG. Therefore, in this configuration example, the rolling contact surface temperature sensor 29 is arranged on the tip flat portion of the temperature sensor attachment piece 21c as shown in FIG. 10, so that the signal line connected to the rolling contact surface temperature sensor 29 is connected to the temperature sensor attachment. It pulls out through the surface of the piece 21c. Further, since the temperature sensor mounting piece 21c is molded with the molding material 36 having good thermal conductivity, the temperature in the vicinity of the rolling surface 3 of the outer member 1 can be accurately detected by the rolling surface temperature sensor 29. it can. Further, since the temperature sensor embedding hole 32 is sealed with the molding material 36, wiring processing is facilitated, and moisture can be prevented from entering the outer member 1 through the temperature sensor embedding hole 32. .

図12は、前記実施形態におけるセンサユニット20のさらに他の構成例を示す。この構成例では、ボルト24で固定される歪み発生部材21の一端に、外方部材1の径方向に向けて折り曲げた温度センサ取付片21cを設け、この温度センサ取付片21cの先端平面部に転走面温度センサ29を配置している。なお、同図では、前記温度センサ取付片21cを折り曲げる前の展開図として示しており、センサ部温度センサ28は図示を省略している。転走面温度センサ29が配置される温度センサ取付片21cの平面部には転走面温度センサ29に接続される配線パターン37Aが形成され、また歪みセンサ22およびセンサ部温度センサ28が配置される平面部にも配線パターン37B,37C,37Dが形成される。そして、両平面部の境界付近で、転走面温度センサ29の配置される平面部の配線パターン37Aの電極37Aaと、歪みセンサ22の配置される平面部の配線パターン37B,37Cの電極37Ba,37Caとが導線38により接続されている。また、導線38部分も他部と同様に印刷成形しても良い。歪みセンサ22の配置される平面部の各配線パターン37B,37C,37Dおよび図示しないセンサ部温度センサ28は、別のケーブル39に接続される。このケーブル39を介して、歪みセンサ22、センサ部温度センサ28および転走面温度センサ29の各出力信号が外部に取り出される。   FIG. 12 shows still another configuration example of the sensor unit 20 in the embodiment. In this configuration example, a temperature sensor mounting piece 21c bent toward the radial direction of the outer member 1 is provided at one end of the strain generating member 21 fixed by the bolt 24, and the tip end flat portion of the temperature sensor mounting piece 21c is provided. A rolling surface temperature sensor 29 is disposed. In the drawing, the temperature sensor mounting piece 21c is shown as a development before being bent, and the sensor temperature sensor 28 is not shown. A wiring pattern 37A connected to the rolling surface temperature sensor 29 is formed on the flat surface portion of the temperature sensor mounting piece 21c where the rolling surface temperature sensor 29 is disposed, and the strain sensor 22 and the sensor portion temperature sensor 28 are disposed. Wiring patterns 37B, 37C, and 37D are also formed on the planar portion. Then, in the vicinity of the boundary between both plane portions, the electrode 37Aa of the wiring pattern 37A in the plane portion where the rolling contact surface temperature sensor 29 is arranged, and the electrodes 37Ba of the wiring patterns 37B and 37C in the plane portion where the strain sensor 22 is arranged. 37Ca is connected by the conducting wire 38. Moreover, you may print-mold the conductor 38 part similarly to another part. Each wiring pattern 37B, 37C, 37D on the plane portion where the strain sensor 22 is arranged and the sensor portion temperature sensor 28 (not shown) are connected to another cable 39. The output signals of the strain sensor 22, the sensor part temperature sensor 28, and the rolling contact surface temperature sensor 29 are taken out through the cable 39.

このように、歪みセンサ22の配置される平面部と、転走面温度センサ29の配置される平面部の両方に配線パターン配線パターン37A,37B,37C,37Dを形成して、歪みセンサ22の配置される平面部の配線パターン37B,37Cと、転走面温度センサ29の配置される平面部の配線パターン37Aとを、前記両平面部の境界付近で導線38により接続することで、転走面温度センサ29の出力を歪みセンサ22やセンサ部温度センサ28の出力と共に、歪み発生部材21の上の一箇所に集めることができ、各センサ出力信号の取り出しを容易に行うことができる。   In this manner, the wiring pattern wiring patterns 37A, 37B, 37C, and 37D are formed on both the plane portion where the strain sensor 22 is arranged and the plane portion where the rolling contact surface temperature sensor 29 is arranged, and the strain sensor 22 By connecting the wiring patterns 37B and 37C of the flat part to be arranged and the wiring pattern 37A of the flat part where the rolling contact surface temperature sensor 29 is arranged by a conductor 38 in the vicinity of the boundary between the two flat parts, rolling The output of the surface temperature sensor 29 can be collected together with the outputs of the strain sensor 22 and the sensor temperature sensor 28 at one place on the strain generating member 21, and the output signals of the sensors can be easily taken out.

図13ないし図18は、この発明の他の実施形態を示す。なお、図13は、図14におけるXIII−XIII矢視断面図を示す。この実施形態では、図1〜図11に示す実施形態において、センサユニット20が、図15および図16に拡大平面図および拡大断面図で示すように、歪み発生部材21と、この歪み発生部材21に取付けられて歪み発生部材21の歪みを検出する2つ以上(ここでは2つ)の歪みセンサ22と、センサ部温度センサ28と、転走面温度センサ29とでなる。歪み発生部材21は、外方部材1の外径面にスペーサ23を介して接触固定される2つ以上(ここでは3つ)の接触固定部21aを有する。3つの接触固定部21aは、歪み発生部材21の長手方向に向け1列に並べて配置される。2つの歪みセンサ22は、歪み発生部材21の外面側で隣り合う接触固定部21aの間に配置される。左端の接触固定部21aと中央の接触固定部21aとの間に1つの歪みセンサ22Aが配置され、中央の接触固定部21aと右端の接触固定部21aとの間に他の1つの歪みセンサ22Bが配置される。歪み発生部材21の表面にセンサ部温度センサ28が取付けられること、歪み発生部材21の一端に外方部材1の径方向に延びる温度センサ取付片21cが形成され、この温度センサ取付片21cの先端部位に転走面温度センサ29が配置されること、および温度センサ取付片21cが外方部材1の温度センサ埋込用孔32に埋め込まれることは図1〜図11に示す実施形態の場合と同様である。   13 to 18 show another embodiment of the present invention. 13 shows a cross-sectional view taken along arrow XIII-XIII in FIG. In this embodiment, in the embodiment shown in FIGS. 1 to 11, the sensor unit 20 includes a strain generating member 21 and the strain generating member 21 as shown in FIGS. 15 and 16 in an enlarged plan view and an enlarged sectional view. And two or more (two in this case) strain sensors 22 that detect the strain of the strain generating member 21, a sensor section temperature sensor 28, and a rolling surface temperature sensor 29. The strain generating member 21 has two or more (here, three) contact fixing portions 21 a that are fixed to the outer diameter surface of the outer member 1 through spacers 23. The three contact fixing portions 21 a are arranged in a line in the longitudinal direction of the strain generating member 21. The two strain sensors 22 are arranged between the contact fixing portions 21 a adjacent on the outer surface side of the strain generating member 21. One strain sensor 22A is disposed between the contact fixing portion 21a at the left end and the contact fixing portion 21a at the center, and another strain sensor 22B is provided between the contact fixing portion 21a at the center and the contact fixing portion 21a at the right end. Is placed. The sensor part temperature sensor 28 is attached to the surface of the strain generating member 21, and the temperature sensor attaching piece 21c extending in the radial direction of the outer member 1 is formed at one end of the strain generating member 21, and the tip of the temperature sensor attaching piece 21c is formed. The rolling surface temperature sensor 29 is disposed at the site, and the temperature sensor mounting piece 21c is embedded in the temperature sensor embedding hole 32 of the outer member 1 in the case of the embodiment shown in FIGS. It is the same.

なお、上記したセンサユニット20の設置構成として、図17に断面図で示すように、外方部材1の外径面における前記歪み発生部材21の3つの接触固定部21aが固定される3箇所の各中間部に溝1cを設けることで、前記スペーサ23を省略し、歪み発生部材21における切欠き部21bが位置する各部位を外方部材1の外径面から離すようにしても良い。   As shown in the cross-sectional view of FIG. 17, the sensor unit 20 is installed at three locations where the three contact fixing portions 21 a of the strain generating member 21 on the outer diameter surface of the outer member 1 are fixed. By providing the groove 1c in each intermediate portion, the spacer 23 may be omitted, and each portion where the notch portion 21b in the strain generating member 21 is located may be separated from the outer diameter surface of the outer member 1.

各センサユニット20の2つの歪みセンサ22は推定手段30に接続される。推定手段30において、2つの歪みセンサ22の出力信号が、センサ部温度センサ28および転走面温度センサ29の出力信号に基づいて温度補正されることは、図1〜図11の実施形態の場合と同様である。この実施形態の場合、推定手段30では、センサユニット20の2つの歪みセンサ22の温度補正された出力信号の和を求め、この和から車輪用軸受や車輪と路面間(タイヤ接地面)に作用する力(垂直方向荷重Fz ,駆動力または制動力となる荷重Fx ,軸方向荷重Fy )およびステアリングモーメント荷重Mz を推定する。   The two strain sensors 22 of each sensor unit 20 are connected to the estimation means 30. In the embodiment shown in FIGS. 1 to 11, the estimation means 30 corrects the temperatures of the output signals of the two strain sensors 22 based on the output signals of the sensor section temperature sensor 28 and the rolling surface temperature sensor 29. It is the same. In the case of this embodiment, the estimating means 30 obtains the sum of the temperature-corrected output signals of the two strain sensors 22 of the sensor unit 20, and acts on the wheel bearing or between the wheel and the road surface (tire contact surface) from this sum. To be estimated (vertical load Fz, driving force or braking force Fx, axial load Fy) and steering moment load Mz.

先の実施形態でも説明したように、センサユニット20は、外方部材1のアウトボード側列の転走面3の周辺となる軸方向位置に設けられるので、歪みセンサ22A,22Bの出力信号A,Bは、図18のようにセンサユニット20の設置部の近傍を通過する転動体5の影響を受ける。また、軸受の停止時においても、歪みセンサ22A,22Bの出力信号A,Bは、転動体5の位置の影響を受ける。すなわち、転動体5がセンサユニット20における歪みセンサ22A,22Bに最も近い位置を通過するとき、またはその位置に転動体5があるときに、歪みセンサ22A,22Bの出力信号A,Bは最大値となり、図18(A),(B)のように転動体5がその位置から遠ざかるにつれて低下する。軸受回転時には、転動体5は所定の配列ピッチPで前記センサユニット20の設置部の近傍を順次通過するので、歪みセンサ22A,22Bの出力信号A,Bは、転動体5の配列ピッチPを周期として図18(C)に実線で示すように周期的に変化する正弦波に近い波形となる。   As described in the previous embodiment, the sensor unit 20 is provided at the axial position around the rolling surface 3 of the outboard side row of the outer member 1, and therefore the output signal A of the strain sensors 22 </ b> A and 22 </ b> B. , B are affected by the rolling element 5 passing near the installation part of the sensor unit 20 as shown in FIG. Even when the bearing is stopped, the output signals A and B of the strain sensors 22A and 22B are affected by the position of the rolling element 5. That is, when the rolling element 5 passes through the position closest to the strain sensors 22A and 22B in the sensor unit 20, or when the rolling element 5 is at that position, the output signals A and B of the strain sensors 22A and 22B are maximum values. As shown in FIGS. 18A and 18B, the rolling element 5 decreases as the distance from the position increases. Since the rolling elements 5 sequentially pass through the vicinity of the installation portion of the sensor unit 20 at a predetermined arrangement pitch P when the bearing rotates, the output signals A and B of the strain sensors 22A and 22B indicate the arrangement pitch P of the rolling elements 5. As a cycle, as shown by a solid line in FIG. 18C, the waveform is close to a sine wave that periodically changes.

この実施形態の場合、推定手段30では前記2つの歪みセンサ22A,22Bの出力信号A、Bの和から、推定手段30が車輪用軸受や車輪と路面間(タイヤ接地面)に作用する力(垂直方向荷重Fz ,駆動力または制動力となる荷重Fx ,軸方向荷重Fy )およびステアリングモーメント荷重Mz を推定する。この場合の2つの歪みセンサ22A,22Bの出力信号A,Bの和は、先の実施形態における1つの歪みセンサ22の出力信号の平均値(直流成分)に相当する。これにより、2つの歪みセンサ22A,22Bの各出力信号A,Bに現れる転動体5の位置の影響を相殺することができ、車輪用軸受やタイヤ接地面に作用する荷重を正確に検出することができる。   In the case of this embodiment, the estimating means 30 uses the sum of the output signals A and B of the two strain sensors 22A and 22B to determine the force that the estimating means 30 acts between the wheel bearings and the wheels and the road surface (tire contact surface) ( Estimate the vertical load Fz, the driving force or braking force Fx, the axial load Fy) and the steering moment load Mz. In this case, the sum of the output signals A and B of the two strain sensors 22A and 22B corresponds to the average value (DC component) of the output signals of the one strain sensor 22 in the previous embodiment. Thereby, it is possible to cancel the influence of the position of the rolling element 5 appearing in the output signals A and B of the two strain sensors 22A and 22B, and to accurately detect the load acting on the wheel bearing and the tire ground contact surface. Can do.

センサユニット20として、図17の設置例のものを示す図18においては、固定側部材である外方部材1の外径面の円周方向に並ぶ3つの接触固定部21aのうち、その配列の両端に位置する2つの接触固定部21aの間隔を、転動体5の配列ピッチPと同一に設定している。この場合、隣り合う接触固定部21aの中間位置にそれぞれ配置される2つの歪みセンサ22A,22Bの間で前記円周方向の間隔は、転動体5の配列ピッチPの略1/2となる。その結果、2つの歪みセンサ22A,22Bの出力信号A,Bは略180度の位相差を有することになり、その平均値(A+B)/2は、図18(C)に鎖線で示すように転動体5の位置の影響を十分相殺した値となる。これにより、2つの歪みセンサ22A,22Bの出力信号A,Bの和から、推定手段30によって推定される車輪用軸受や車輪と路面間(タイヤ接地面)に作用する力(垂直方向荷重Fz ,駆動力または制動力となる荷重Fx ,軸方向荷重Fy )およびステアリングモーメント荷重Mz は、転動体5の位置の影響をより確実に排除した正確なものとなる。   In FIG. 18 showing the installation example of FIG. 17 as the sensor unit 20, among the three contact fixing portions 21a arranged in the circumferential direction of the outer diameter surface of the outer member 1 which is a fixed side member, The interval between the two contact fixing portions 21 a located at both ends is set to be the same as the arrangement pitch P of the rolling elements 5. In this case, the circumferential interval between the two strain sensors 22A and 22B respectively disposed at the intermediate positions of the adjacent contact fixing portions 21a is approximately ½ of the arrangement pitch P of the rolling elements 5. As a result, the output signals A and B of the two strain sensors 22A and 22B have a phase difference of about 180 degrees, and the average value (A + B) / 2 is as indicated by a chain line in FIG. This is a value that sufficiently offsets the influence of the position of the rolling element 5. As a result, the force (vertical load Fz, F), acting on the wheel bearings or between the wheel and the road surface (tire contact surface) estimated by the estimating means 30 from the sum of the output signals A and B of the two strain sensors 22A and 22B. The driving force or braking force Fx, axial load Fy) and steering moment load Mz are accurate with the influence of the position of the rolling element 5 removed more reliably.

なお、歪み発生部材21の3つの接触固定部21aの間隔を前記のように設定するのに替えて、2つの歪みセンサ22A,22Bの円周方向の間隔を、転動体5の配列ピッチPの1/2の整数倍、もしくはこれらの値に近似した値としても良い。この場合にも、両歪みセンサ22A,22Bの出力信号A,Bの平均値(A+B)/2は、転動体5の位置の影響を相殺した値となる。   Instead of setting the interval between the three contact fixing portions 21a of the strain generating member 21 as described above, the interval between the two strain sensors 22A and 22B in the circumferential direction is equal to the arrangement pitch P of the rolling elements 5. It may be an integer multiple of 1/2 or a value approximate to these values. Also in this case, the average value (A + B) / 2 of the output signals A and B of both strain sensors 22A and 22B is a value that cancels out the influence of the position of the rolling element 5.

1…外方部材
2…内方部材
3,4…転走面
5…転動体
20…センサユニット
21…歪み発生部材
21a…接触固定部
21c…温度センサ取付片
22…歪みセンサ
23…スペーサ
23a…温度センサ取付片
28…センサ部温度センサ
29…転走面温度センサ
30…推定手段
31…温度補正手段
32…温度センサ埋込用孔
36…モールド材
37A,37B,37C…配線パターン
38…導線
DESCRIPTION OF SYMBOLS 1 ... Outer member 2 ... Inner member 3, 4 ... Rolling surface 5 ... Rolling body 20 ... Sensor unit 21 ... Strain generating member 21a ... Contact fixing | fixed part 21c ... Temperature sensor attachment piece 22 ... Strain sensor 23 ... Spacer 23a ... Temperature sensor mounting piece 28 ... sensor temperature sensor 29 ... rolling surface temperature sensor 30 ... estimating means 31 ... temperature correcting means 32 ... temperature sensor embedding hole 36 ... mold material 37A, 37B, 37C ... wiring pattern 38 ... conductor

Claims (15)

複列の転走面が内周に形成された外方部材と、前記転走面と対向する転走面が外周に形成された内方部材と、両部材の対向する転走面間に介在した複列の転動体とを備え、車体に対して車輪を回転自在に支持する車輪用軸受において、
上記外方部材および内方部材のうちの固定側部材の外径面に1つ以上のセンサユニットを設け、前記センサユニットは、前記固定側部材の外径面に接触して固定される2つ以上の接触固定部を有する歪み発生部材、この歪み発生部材に取付けられてこの歪み発生部材の歪みを検出する歪みセンサ、前記歪み発生部材に取付けられて前記歪みセンサの設置部の温度を検出するセンサ部温度センサ、および前記固定側部材における前記転走面近傍の温度を検出する転走面温度センサを有し、前記センサユニットの歪みセンサの出力信号を前記センサ部温度センサおよび転走面温度センサの出力で補正し、その補正した信号から車輪に加わる荷重を推定する推定手段を設けたことを特徴とするセンサ付車輪用軸受。
An outer member having a double row rolling surface formed on the inner periphery, an inner member having a rolling surface facing the rolling surface formed on the outer periphery, and interposed between the opposing rolling surfaces of both members A double row rolling element, and a wheel bearing for rotatably supporting the wheel with respect to the vehicle body,
One or more sensor units are provided on the outer diameter surface of the fixed side member of the outer member and the inner member, and the sensor unit is fixed in contact with the outer diameter surface of the fixed side member. A strain generating member having the above-described contact fixing portion, a strain sensor attached to the strain generating member to detect strain of the strain generating member, and a temperature of an installation portion of the strain sensor attached to the strain generating member. A sensor part temperature sensor, and a rolling surface temperature sensor for detecting a temperature in the vicinity of the rolling surface of the stationary member, and output signals of the strain sensor of the sensor unit are output to the sensor part temperature sensor and the rolling surface temperature. A sensor-equipped wheel bearing, comprising: an estimation means for correcting a load applied to a wheel from the corrected signal by correcting with an output of the sensor.
請求項1において、前記固定側部材が前記外方部材であるセンサ付車輪用軸受。   The sensor-equipped wheel bearing according to claim 1, wherein the fixed-side member is the outer member. 請求項1または請求項2において、前記センサユニットを3つ以上設け、前記推定手段は、前記3つ以上のセンサユニットの歪みセンサの出力信号から、車輪に加わる左右方向および上下方向の径方向荷重、および軸方向荷重を推定するものとしたセンサ付車輪用軸受。   3. The three or more sensor units are provided according to claim 1, and the estimation unit is configured to apply a radial load in a lateral direction and a vertical direction applied to a wheel from an output signal of a strain sensor of the three or more sensor units. And a bearing for a wheel with a sensor for estimating an axial load. 請求項1または請求項2において、前記センサユニットを4つ以上設け、前記推定手段は、前記4つ以上のセンサユニットの歪みセンサの出力信号から、車輪に加わる左右方向および上下方向の径方向荷重、軸方向荷重、およびステアリングモーメント荷重を推定するものとしたセンサ付車輪用軸受。   4. The sensor unit according to claim 1, wherein four or more of the sensor units are provided, and the estimation unit is configured to apply a radial load in a horizontal direction and a vertical direction applied to a wheel from an output signal of a strain sensor of the four or more sensor units. A wheel bearing with sensor that estimates the axial load and steering moment load. 請求項1ないし請求項4のいずれか1項において、前記センサユニットを4つ設け、これらのセンサユニットを、車輪のタイヤ接地面に対して上下位置および左右位置となる前記固定側部材の外径面の上面部、下面部、右面部、および左面部に、周方向に互いに90度の位相差をなすように配置したセンサ付車輪用軸受。   5. The outer diameter of the fixed-side member according to claim 1, wherein four sensor units are provided, and the sensor units are arranged in a vertical position and a horizontal position with respect to a tire ground contact surface of a wheel. A sensor-equipped wheel bearing disposed on an upper surface portion, a lower surface portion, a right surface portion, and a left surface portion of the surface so as to form a phase difference of 90 degrees in the circumferential direction. 請求項1ないし請求項5のいずれか1項において、前記推定手段は、前記センサ部温度センサの出力と前記転走面温度センサの出力との差により、前記センサユニットの歪みセンサの出力信号を補正し、この補正による補正量は、設定された前記両温度センサの出力差と補正量との一次近似関係式から決定するものとしたセンサ付車輪用軸受。   6. The method according to claim 1, wherein the estimating means outputs an output signal of a strain sensor of the sensor unit based on a difference between an output of the sensor unit temperature sensor and an output of the rolling surface temperature sensor. A sensor-equipped wheel bearing in which correction is performed and a correction amount by the correction is determined from a linear approximate relational expression between the set output difference between the two temperature sensors and the correction amount. 請求項1ないし請求項6のいずれか1項において、前記センサユニットにおける転走面温度センサを、前記固定側部材に設けた転走面付近に達する孔の内部に埋めたセンサ付車輪用軸受。   7. The wheel bearing with sensor according to claim 1, wherein the rolling surface temperature sensor in the sensor unit is buried in a hole reaching the vicinity of the rolling surface provided in the fixed side member. 請求項7において、前記センサユニットにおける転走面温度センサを、前記歪み発生部材に設けられた温度センサ取付片の先端に取付け、この温度センサ取付片を前記固定側部材に設けられた転走面付近に達する孔に圧入して固定したセンサ付車輪用軸受。   In Claim 7, The rolling surface temperature sensor in the said sensor unit is attached to the front-end | tip of the temperature sensor attachment piece provided in the said distortion generation member, and this temperature sensor attachment piece is provided in the said fixed side member. Sensor-equipped wheel bearing fixed by press-fitting into a hole that reaches the vicinity. 請求項7において、前記センサユニットにおける転走面温度センサと前記孔の内面との間に高熱伝導性のモールド材でモールドしたセンサ付車輪用軸受。   The wheel bearing with sensor according to claim 7, wherein the sensor unit is molded with a mold material having high thermal conductivity between a rolling surface temperature sensor and an inner surface of the hole. 請求項1ないし請求項9のいずれか1項において、前記歪み発生部材の一部を前記固定側部材の径方向に向けて折り曲げた板状の温度センサ取付片を設け、この温度センサ取付片の先端に前記転走面温度センサを配置したセンサ付車輪用軸受。   The plate-shaped temperature sensor mounting piece obtained by bending a part of the distortion generating member toward the radial direction of the fixed side member according to any one of claims 1 to 9, A sensor-equipped wheel bearing in which the rolling surface temperature sensor is arranged at the tip. 請求項10において、前記歪み発生部材における歪みセンサの配置される部分となる平面部と、転走面温度センサの配置される温度センサ取付片との両方に配線パターンを形成したセンサ付車輪用軸受。   11. The sensor-equipped wheel bearing according to claim 10, wherein a wiring pattern is formed on both of a flat surface portion where the strain sensor is disposed in the strain generating member and a temperature sensor mounting piece where the rolling surface temperature sensor is disposed. . 請求項11において、前記歪み発生部材における歪みセンサの配置される平面部の配線パターンと、転走面温度センサの配置される温度センサ取付片の配線パターンとを、前記温度センサ取付片の基端付近で導線により接続したセンサ付車輪用軸受。   In Claim 11, the wiring pattern of the plane part by which the strain sensor in the said strain generation member is arrange | positioned, and the wiring pattern of the temperature sensor attachment piece by which a rolling surface temperature sensor is arrange | positioned are the base ends of the said temperature sensor attachment piece. Sensor-equipped wheel bearing connected by a conducting wire in the vicinity. 請求項1ないし請求項12のいずれか1項において、前記推定手段は、荷重推定に用いる前記センサユニットの歪みセンサの出力信号として、前記転動体の通過に伴い変化する信号の数周期分の出力信号の平均値を用いるものとしたセンサ付車輪用軸受。   13. The method according to claim 1, wherein the estimating means outputs, as an output signal of a strain sensor of the sensor unit used for load estimation, a signal corresponding to several cycles of a signal that changes as the rolling element passes. Wheel bearing with sensor that uses the average value of the signal. 請求項1ないし請求項12のいずれか1項において、前記センサユニットにおける歪み発生部材は、前記固定側部材の外径面に接触して固定される3つ以上の接触固定部を有し、この歪み発生部材には少なくとも2つの歪みセンサが取付けられ、前記接触固定部は、2つの歪みセンサの出力信号の位相差が前記転動体の配列ピッチの1/2もしくはその整数倍となる間隔で配置され、前記推定手段は、前記センサ部温度センサおよび転走面温度センサの出力で補正した前記2つの歪みセンサの出力信号の和を求め、この和から車輪に加わる荷重を推定するものとしたセンサ付車輪用軸受。   13. The strain generating member in the sensor unit according to claim 1, wherein the strain generating member includes three or more contact fixing portions that are fixed in contact with an outer diameter surface of the fixing side member. At least two strain sensors are attached to the strain generating member, and the contact fixing portions are arranged at intervals at which the phase difference between the output signals of the two strain sensors is 1/2 or an integer multiple of the arrangement pitch of the rolling elements. The estimation means obtains a sum of output signals of the two strain sensors corrected by outputs of the sensor temperature sensor and the rolling surface temperature sensor, and estimates a load applied to the wheel from the sum. Wheel bearing. 請求項1ないし請求項14のいずれか1項において、前記歪み発生部材における、前記固定側部材の外径面に接触して固定される接触固定部と前記固定側部材との間にスペーサを介在させ、転走面温度センサを前記歪み発生部材に取付ける構成に代えて、転走面温度センサを前記スペーサに取付けたセンサ付車輪用軸受。
15. The spacer according to claim 1, wherein a spacer is interposed between the fixed member and the contact fixing part that is fixed in contact with the outer diameter surface of the fixed member in the strain generating member. In addition, instead of a configuration in which a rolling surface temperature sensor is attached to the strain generating member, a wheel bearing with sensor in which a rolling surface temperature sensor is attached to the spacer.
JP2009094561A 2009-04-09 2009-04-09 Wheel bearing with sensor Pending JP2010242921A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009094561A JP2010242921A (en) 2009-04-09 2009-04-09 Wheel bearing with sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009094561A JP2010242921A (en) 2009-04-09 2009-04-09 Wheel bearing with sensor

Publications (1)

Publication Number Publication Date
JP2010242921A true JP2010242921A (en) 2010-10-28

Family

ID=43096122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009094561A Pending JP2010242921A (en) 2009-04-09 2009-04-09 Wheel bearing with sensor

Country Status (1)

Country Link
JP (1) JP2010242921A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014009952A (en) * 2012-06-27 2014-01-20 Ntn Corp Vehicle-wheel bearing device with sensors
JP2016186441A (en) * 2015-03-27 2016-10-27 富士重工業株式会社 Device for detecting action force of rotor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014009952A (en) * 2012-06-27 2014-01-20 Ntn Corp Vehicle-wheel bearing device with sensors
JP2016186441A (en) * 2015-03-27 2016-10-27 富士重工業株式会社 Device for detecting action force of rotor

Similar Documents

Publication Publication Date Title
KR101574304B1 (en) Sensor-equipped bearing for wheel
JP5274343B2 (en) Wheel bearing with sensor
US8578791B2 (en) Sensor-equipped bearing for wheel
JP5100567B2 (en) Wheel bearing with sensor
JP5171589B2 (en) Wheel bearing with sensor
JP5143039B2 (en) Wheel bearing with sensor
JP5424565B2 (en) Wheel bearing with sensor
JP5063270B2 (en) Wheel bearing with sensor
JP5094457B2 (en) Wheel bearing with sensor
WO2009098843A1 (en) Bearing for wheel with sensor
JP2010242921A (en) Wheel bearing with sensor
JP6195768B2 (en) Calibration method for wheel bearing with sensor
JP2010127376A (en) Sensor equipped bearing for wheel
JP2010230406A (en) Wheel bearing with sensor
JP5355118B2 (en) Wheel bearing with sensor
JP2010242902A (en) Wheel bearing with sensor
JP2010101720A (en) Wheel bearing with sensor
JP5072608B2 (en) Wheel bearing with sensor
JP2010138959A (en) Sensor-equipped bearing for wheel
JP2014001822A (en) Wheel bearing device with sensor
JP5014107B2 (en) Wheel bearing with sensor
JP6067241B2 (en) Wheel bearing with sensor
JP5264206B2 (en) Wheel bearing with sensor
JP5300429B2 (en) Wheel bearing with sensor
JP2011247622A (en) Wheel bearing with sensor