JP2010138959A - Sensor-equipped bearing for wheel - Google Patents

Sensor-equipped bearing for wheel Download PDF

Info

Publication number
JP2010138959A
JP2010138959A JP2008314165A JP2008314165A JP2010138959A JP 2010138959 A JP2010138959 A JP 2010138959A JP 2008314165 A JP2008314165 A JP 2008314165A JP 2008314165 A JP2008314165 A JP 2008314165A JP 2010138959 A JP2010138959 A JP 2010138959A
Authority
JP
Japan
Prior art keywords
sensor
rolling
temperature sensor
temperature
rolling surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008314165A
Other languages
Japanese (ja)
Inventor
Kentaro Nishikawa
健太郎 西川
Toru Takahashi
亨 高橋
Yushiro Ono
祐志郎 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2008314165A priority Critical patent/JP2010138959A/en
Priority to CN2009801409126A priority patent/CN102187189B/en
Priority to PCT/JP2009/005251 priority patent/WO2010044228A1/en
Priority to KR1020117008618A priority patent/KR101574304B1/en
Priority to EP09820406.8A priority patent/EP2341327B1/en
Publication of JP2010138959A publication Critical patent/JP2010138959A/en
Priority to US13/064,738 priority patent/US8567260B2/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sensor-equipped bearing for a wheel which can stably detect with high accuracy a load acting on the bearing for the wheel or a tire contact area by correcting a detection error due to a temperature difference between bearing interior and exterior sections. <P>SOLUTION: Rolling bodies 5 are interposed between opposed double-row rolling surfaces 3, 4 of an outer member 1 and an inner member 2. The outer member 1 or the inner member 2, which is a fixed side member, is provided with one or more sensor units 20. The sensor unit 20 comprises a distortion generating member 21 making contact with and fixed to the fixed side member, a sensor 22 detecting the distortion, and a sensor section temperature sensor 28 detecting a temperature of an installation section of the sensor. A rolling surface temperature sensor 29 detecting a temperature of a location adjacent to the rolling surface 3 is provided in the fixed side member, and an estimating means 30 is provided to estimate the load acting on the bearing for the wheel or the tire from a correction signal obtained by correcting a sensor output signal of the sensor unit 20 with outputs of the sensor section temperature sensor 28 and the rolling surface temperature sensor 29. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、車輪の軸受部にかかる荷重を検出する荷重センサを内蔵したセンサ付車輪用軸受に関する。   The present invention relates to a sensor-equipped wheel bearing with a built-in load sensor for detecting a load applied to a bearing portion of the wheel.

自動車の各車輪にかかる荷重を検出する技術として、車輪用軸受の固定輪である外輪のフランジ部外径面の歪みを検出することにより荷重を検出するセンサ付車輪用軸受が提案されている(例えば特許文献1)。また、車輪用軸受の外輪に歪みゲージを貼り付け、歪みを検出するようにした車輪用軸受も提案されている(例えば特許文献2)。   As a technique for detecting a load applied to each wheel of an automobile, a sensor-equipped wheel bearing that detects a load by detecting a distortion of an outer diameter surface of a flange portion of an outer ring that is a fixed ring of a wheel bearing has been proposed ( For example, Patent Document 1). There has also been proposed a wheel bearing in which a strain gauge is attached to the outer ring of the wheel bearing to detect the strain (for example, Patent Document 2).

さらに、歪み発生部材およびこの歪み発生部材に取付けた歪みセンサからなるセンサユニットを軸受の固定輪に取付け、前記歪み発生部材は、前記固定輪に対して少なくとも2箇所の接触固定部を有し、隣り合う接触固定部の間で少なくとも1箇所に切欠き部を有し、この切欠き部に前記歪みセンサを配置したセンサ付車輪用軸受が提案されている(例えば特許文献3)。   Furthermore, a sensor unit comprising a strain generating member and a strain sensor attached to the strain generating member is attached to a fixed ring of the bearing, and the strain generating member has at least two contact fixing portions with respect to the fixed ring, A sensor-equipped wheel bearing has been proposed that has at least one notch portion between adjacent contact fixing portions, and the strain sensor is disposed in the notch portion (for example, Patent Document 3).

特許文献3に開示のセンサ付車輪用軸受によると、車両走行に伴い回転輪に荷重が加わったとき、転動体を介して固定輪が変形するので、その変形がセンサユニットに歪みをもたらす。センサユニットに設けられた歪みセンサは、センサユニットの歪みを検出する。歪みと荷重の関係を予め実験やシミュレーションで求めておけば、歪みセンサの出力から車輪にかかる荷重等を検出することができる。
特開2002−098138号公報 特表2003−530565号公報 特開2007−57299号公報
According to the sensor-equipped wheel bearing disclosed in Patent Document 3, when a load is applied to the rotating wheel as the vehicle travels, the fixed wheel is deformed via the rolling elements, and this deformation causes distortion of the sensor unit. The strain sensor provided in the sensor unit detects the strain of the sensor unit. If the relationship between strain and load is obtained in advance through experiments and simulations, the load applied to the wheel can be detected from the output of the strain sensor.
JP 2002-098138 A Special table 2003-530565 gazette JP 2007-57299 A

特許文献1に開示の技術では、固定輪のフランジ部の変形により発生する歪みを検出している。しかし、固定輪のフランジ部の変形には、フランジ面とナックル面の間に、静止摩擦力を超える力が作用した場合に滑りが伴うため、繰返し荷重を印加すると、出力信号にヒステリシスが発生するといった問題がある。
例えば、車輪用軸受に対してある方向の荷重が大きくなる場合、固定輪フランジ面とナックル面の間は、最初は荷重よりも静止摩擦力の方が大きいため滑らないが、ある大きさを超えると静止摩擦力に打ち勝って滑るようになる。その状態で荷重を小さくしていくと、やはり最初は静止摩擦力により滑らないが、ある大きさになると滑るようになる。その結果、この変形が生じる部分で荷重を推定しようとするとヒステリシスが生じる。ヒステリシスが生じると、検出分解能が低下する。
また、特許文献2のように外輪に歪みゲージを貼り付けるのでは、組立性に問題がある。
In the technique disclosed in Patent Document 1, distortion generated by deformation of the flange portion of the fixed ring is detected. However, the deformation of the flange portion of the fixed ring involves slipping when a force exceeding the static friction force is applied between the flange surface and the knuckle surface, so that hysteresis is generated in the output signal when a repeated load is applied. There is a problem.
For example, when the load in a certain direction with respect to the wheel bearing increases, the static friction force between the fixed ring flange surface and the knuckle surface does not slip at first, but exceeds a certain size. And it comes to slip over the static friction force. If the load is reduced in this state, it will not slip due to static friction force at first, but it will slip when it reaches a certain size. As a result, hysteresis occurs when an attempt is made to estimate the load at the portion where this deformation occurs. When hysteresis occurs, the detection resolution decreases.
In addition, when a strain gauge is attached to the outer ring as in Patent Document 2, there is a problem in assemblability.

また、特許文献1や特許文献2の例に限らず、特許文献3に開示のセンサ付車輪用軸受においても、車輪用軸受の固定輪に歪みセンサが設けられているので、温度が変化した場合、歪みセンサの出力信号が変動する。すなわち、例えば特許文献3に開示のセンサ付車輪用軸受では、温度が変化した場合に、歪みセンサの温度特性および固定輪とセンサユニットとの線膨張率の差などにより歪みセンサの出力信号が変動する。このため、歪みセンサの出力信号から車輪用軸受にかかる荷重を演算・推定した場合、荷重の誤差が大きくなる。   Further, not only in the examples of Patent Document 1 and Patent Document 2, but also in the wheel bearing with sensor disclosed in Patent Document 3, since the strain sensor is provided on the fixed ring of the wheel bearing, the temperature changes. The output signal of the strain sensor fluctuates. That is, for example, in the sensor-equipped wheel bearing disclosed in Patent Document 3, when the temperature changes, the output signal of the strain sensor fluctuates due to the temperature characteristics of the strain sensor and the difference in linear expansion coefficient between the fixed ring and the sensor unit. To do. For this reason, when the load applied to the wheel bearing is calculated and estimated from the output signal of the strain sensor, the error of the load becomes large.

上記した温度変化による推定荷重の誤差を低減するために、例えば特許文献3に開示のセンサ付車輪用軸受において、歪みセンサの近傍に温度センサを設置し、この温度センサの出力により、上記した線膨張率の差による歪みセンサ出力信号の補正、および歪みセンサ自体の温度特性の補正を行うことが考えられる。   In order to reduce the error of the estimated load due to the temperature change described above, for example, in the sensor-equipped wheel bearing disclosed in Patent Document 3, a temperature sensor is installed in the vicinity of the strain sensor, and the above-described line is obtained by the output of the temperature sensor. It is conceivable to correct the strain sensor output signal due to the difference in expansion coefficient and the temperature characteristics of the strain sensor itself.

しかし、車輪用軸受の固定輪である例えば外輪の内部温度と表面の温度とは、荷重による軸受内部(転走面付近)の発熱や、外気との接触条件の変化(風、水分、気温)により異なっていることが多い。この状態では、歪みセンサ出力信号に、外輪内部から表面にかけての温度勾配による熱歪みが重畳することになる。この熱歪みは、上記した温度センサの出力による補正では低減できず、検出誤差が大きくなってしまう。そこで、高い精度で荷重検出を行うためには、上記した熱歪みの影響を補正する新たな対策が必要である。   However, for example, the internal temperature and surface temperature of the outer ring, which is a fixed ring of the wheel bearing, are the heat generated inside the bearing (near the rolling surface) due to the load and changes in contact conditions with the outside air (wind, moisture, temperature). It is often different for each. In this state, the thermal strain due to the temperature gradient from the outer ring to the surface is superimposed on the strain sensor output signal. This thermal distortion cannot be reduced by the correction by the output of the temperature sensor described above, and the detection error becomes large. Therefore, in order to detect the load with high accuracy, a new measure for correcting the influence of the thermal distortion described above is required.

この発明の目的は、軸受内外部の温度差による検出誤差を補正して、車輪用軸受やタイヤ接地面に作用する荷重を高い精度で安定良く検出できるセンサ付車輪用軸受を提供することである。   An object of the present invention is to provide a sensor-equipped wheel bearing capable of correcting a detection error due to a temperature difference between the inside and outside of the bearing and stably detecting a load acting on the wheel bearing and the tire ground contact surface with high accuracy. .

この発明のセンサ付車輪用軸受は、複列の転走面が内周に形成された外方部材と、前記転走面と対向する転走面が外周に形成された内方部材と、両部材の対向する転走面間に介在した複列の転動体とを備え、車体に対して車輪を回転自在に支持する車輪用軸受において、上記外方部材および内方部材のうちの固定側部材に接触して固定される2つ以上の接触固定部を有する歪み発生部材、この歪み発生部材に取付けられてこの歪み発生部材の歪みを検出するセンサ、および前記歪み発生部材に取付けられて前記センサ設置部の温度を検出するセンサ部温度センサからなる1つ以上のセンサユニットを設け、さらに前記固定側部材における前記センサユニットの近傍の周方向位置に、転走面近傍の温度を検出する転走面温度センサを設け、前記センサユニットのセンサの出力信号を前記センサ部温度センサおよび転走面温度センサの出力で補正し、その補正した信号から車輪用軸受もしくはタイヤに加わる荷重を推定する推定手段を設けたことを特徴とする。前記固定側部材は例えば外方部材であっても良い。前記転走面温度センサを設けるセンサユニットの近傍の周方向位置とは、センサユニットと同じ周方向位置であっても良く、またその近傍であっても良い。
車輪用軸受や、車輪のタイヤと路面間に荷重が作用すると、車輪用軸受の固定側部材(例えば外方部材)にも荷重が印加されて変形が生じる。センサユニットにおける歪み発生部材の接触固定部が外方部材に接触固定されているので、外方部材の歪みが歪み発生部材に拡大して伝達され、その歪みがセンサで感度良く検出され、その出力信号に生じるヒステリシスも小さくなり、荷重を精度良く推定できる。
とくに、荷重を推定する推定手段において、センサユニットの歪み発生部材に取付けられてセンサ設置部の温度を検出するセンサ部温度センサ、および固定側部材におけるセンサユニットの近傍の周方向位置に設けられて転走面近傍の温度を検出する転走面温度センサの出力により、センサユニットのセンサの出力信号を補正し、その補正した信号から車輪用軸受もしくはタイヤに加わる荷重を推定するようにしているので、軸受内外部の温度差による検出誤差を補正することで、外気温の変化や、荷重変化による軸受内部発熱の変動の影響を低減することが可能となり、車輪用軸受やタイヤ接地面に作用する荷重を高い精度で安定良く検出できる。
The sensor-equipped wheel bearing according to the present invention includes an outer member having a double-row rolling surface formed on the inner periphery, an inner member having a rolling surface opposed to the rolling surface formed on the outer periphery, A wheel bearing comprising a double row rolling element interposed between opposing rolling surfaces of the member and rotatably supporting the wheel with respect to the vehicle body, wherein the fixed side member of the outer member and the inner member A strain generating member having two or more contact fixing portions fixed in contact with the sensor, a sensor attached to the strain generating member to detect strain of the strain generating member, and the sensor attached to the strain generating member One or more sensor units comprising a sensor part temperature sensor for detecting the temperature of the installation part are provided, and rolling is performed to detect the temperature in the vicinity of the rolling surface at a circumferential position in the vicinity of the sensor unit in the stationary member. A surface temperature sensor, A sensor unit sensor output signal is corrected by the sensor unit temperature sensor and the rolling surface temperature sensor output, and an estimation means for estimating a load applied to the wheel bearing or the tire from the corrected signal is provided. To do. The stationary member may be an outward member, for example. The circumferential position in the vicinity of the sensor unit on which the rolling surface temperature sensor is provided may be the same circumferential position as the sensor unit, or may be in the vicinity thereof.
When a load acts between the wheel bearing or the tire of the wheel and the road surface, the load is also applied to the stationary side member (for example, the outer member) of the wheel bearing to cause deformation. Since the contact fixing portion of the strain generating member in the sensor unit is fixed in contact with the outer member, the strain of the outer member is transmitted to the strain generating member in an enlarged manner, and the strain is detected with high sensitivity by the sensor, and the output Hysteresis generated in the signal is also reduced, and the load can be estimated with high accuracy.
In particular, in the estimation means for estimating the load, the sensor unit temperature sensor that is attached to the strain generating member of the sensor unit and detects the temperature of the sensor installation unit, and the circumferential member in the vicinity of the sensor unit in the fixed side member are provided. Because the output signal of the sensor of the sensor unit is corrected by the output of the rolling surface temperature sensor that detects the temperature near the rolling surface, the load applied to the wheel bearing or tire is estimated from the corrected signal. By correcting the detection error due to the temperature difference between the inside and outside of the bearing, it becomes possible to reduce the influence of changes in the outside air temperature and fluctuations in the internal heat generation of the bearing due to load changes, acting on the wheel bearings and the tire ground contact surface The load can be detected with high accuracy and stability.

この発明において、前記センサユニットを3つ以上設け、これらのセンサユニットのセンサの出力信号から、前記推定手段は車輪用軸受もしくはタイヤに加わる径方向荷重および軸方向荷重を推定するものとしても良い。   In this invention, it is good also as what provides three or more said sensor units, and the said estimation means estimates the radial direction load and axial load which are added to the wheel bearing or a tire from the output signal of the sensor of these sensor units.

この発明において、前記センサユニットを4つ設け、これらのセンサユニットを、タイヤ接地面に対して上下位置および左右位置となる前記固定側部材の外径面の上面部、下面部、右面部、および左面部に、周方向に互いに90度の位相差をなすように配置しても良い。この構成の場合、どのような荷重条件においても、荷重を精度良く推定することができる。すなわち,ある方向への荷重が大きくなると、転動体と転走面が接触している部分と接触していない部分が180度位相差で現れるため、その方向に合わせてセンサユニットを180度位相差で設置すれば、どちらかのセンサユニットには必ず転動体を介して固定側部材に印加される荷重が伝達され、その荷重をセンサにより検出可能となる。   In the present invention, four sensor units are provided, and these sensor units are arranged in an up-down position and a left-right position with respect to a tire ground contact surface. You may arrange | position so that a 90 degree phase difference may be made | formed in the circumferential direction on the left surface part. In this configuration, the load can be accurately estimated under any load condition. That is, when the load in a certain direction increases, the portion where the rolling element and the rolling surface are in contact with each other and the portion not in contact appear with a 180-degree phase difference. If installed, the load applied to the stationary member is always transmitted to one of the sensor units via the rolling elements, and the load can be detected by the sensor.

この発明において、前記転走面温度センサの個数を、センサユニットの個数と同数とし、かつ前記固定側部材における各センサユニットの周方向位置と位相を合わせて各転走面温度センサを設けても良い。この構成の場合、各センサユニットに対応した転走面近傍の温度を検出することができ、前記推定手段による温度補正をより精度良く行うことができ、それだけ荷重の検出精度を向上させることができる。   In this invention, the number of rolling surface temperature sensors may be the same as the number of sensor units, and each rolling surface temperature sensor may be provided in accordance with the circumferential position and phase of each sensor unit in the fixed side member. good. In the case of this configuration, the temperature in the vicinity of the rolling surface corresponding to each sensor unit can be detected, the temperature correction by the estimation means can be performed with higher accuracy, and the load detection accuracy can be improved accordingly. .

この発明において、前記推定手段は、前記センサ部温度センサの出力と前記転走面温度センサの出力との差により前記センサユニットのセンサの出力信号を補正するものとし、その補正量は予め作成した前記両温度センサの出力差と補正量との一次近似関係式から決定するものとしても良い。この構成の場合、センサユニットのセンサの出力信号に重畳するオフセット量、つまり固定側部材の内部から表面にかけての温度勾配による熱歪みを十分に低減でき、荷重推定値の精度を向上させることができる。   In this invention, the estimation means corrects the output signal of the sensor of the sensor unit based on the difference between the output of the sensor unit temperature sensor and the output of the rolling surface temperature sensor, and the correction amount is prepared in advance. It is good also as what determines from the linear approximation relational expression of the output difference of both said temperature sensors, and a correction amount. In the case of this configuration, the amount of offset superimposed on the sensor output signal of the sensor unit, that is, the thermal distortion due to the temperature gradient from the inside to the surface of the stationary member can be sufficiently reduced, and the accuracy of the load estimated value can be improved. .

この発明において、前記固定側部材に転走面付近に達する孔を設け、この孔の内部に前記転走面温度センサを埋設しても良い。   In this invention, the fixed side member may be provided with a hole reaching the vicinity of the rolling surface, and the rolling surface temperature sensor may be embedded in the hole.

この発明において、前記固定側部材の複列の転走面の中間位置において径方向に貫通する貫通孔を設け、この貫通孔に挿通される信号線に接続された前記転走面温度センサを転走面近傍に設けても良い。この構成の場合、固定側部材の転走面近傍に転走面温度センサを容易に設置できる。   In the present invention, a through-hole penetrating in the radial direction is provided at an intermediate position between the double-row rolling surfaces of the fixed side member, and the rolling surface temperature sensor connected to the signal line inserted through the through-hole is rolled. It may be provided near the running surface. In the case of this configuration, the rolling surface temperature sensor can be easily installed near the rolling surface of the fixed member.

この発明において、前記固定側部材の転走面が形成される周面にリング状の温度センサ支持部材を嵌合させ、この温度センサ支持部材に前記転走面温度センサを埋設しても良い。この構成の場合、転走面温度センサの固定や位置合わせ作業を簡単に行うことができる。   In this invention, a ring-shaped temperature sensor support member may be fitted to the peripheral surface on which the rolling surface of the fixed member is formed, and the rolling surface temperature sensor may be embedded in the temperature sensor support member. In the case of this configuration, the rolling surface temperature sensor can be fixed and aligned easily.

この発明において、前記温度センサ支持部材の内部に、前記転走面温度センサの実装および配線のためのフレキシブル基板を設けても良い。この構成の場合、フレキシブル基板を利用し温度センサ支持部材内部での転走面温度センサの配線処理を行なえるので、配線処理が容易で、構成がコンパクトになり、断線などの発生も解消できる。また、複数の転走面温度センサを配置する場合でも、配線・固定作業を簡単に行うことができる。   In this invention, you may provide the flexible substrate for mounting and wiring of the said rolling surface temperature sensor inside the said temperature sensor support member. In the case of this configuration, since the wiring process of the rolling surface temperature sensor can be performed inside the temperature sensor support member using the flexible substrate, the wiring process is easy, the configuration becomes compact, and the occurrence of disconnection or the like can be eliminated. Even when a plurality of rolling contact surface temperature sensors are arranged, wiring and fixing work can be easily performed.

この発明において、前記転走面温度センサを複数個設け、これらの温度センサに接続される信号線を1つの貫通孔に挿通してこの貫通孔を密封しても良い。この構成の場合、配線処理が容易となり、貫通孔を介して固定側部材の内部に水分が浸入するのを防止できる。   In the present invention, a plurality of rolling surface temperature sensors may be provided, and signal lines connected to these temperature sensors may be inserted into one through hole to seal the through hole. In the case of this configuration, wiring processing is facilitated, and moisture can be prevented from entering the inside of the fixed side member through the through hole.

この発明のセンサ付車輪用軸受は、複列の転走面が内周に形成された外方部材と、前記転走面と対向する転走面が外周に形成された内方部材と、両部材の対向する転走面間に介在した複列の転動体とを備え、車体に対して車輪を回転自在に支持する車輪用軸受において、上記外方部材および内方部材のうちの固定側部材に接触して固定される2つ以上の接触固定部を有する歪み発生部材、この歪み発生部材に取付けられてこの歪み発生部材の歪みを検出するセンサ、および前記歪み発生部材に取付けられて前記センサ設置部の温度を検出するセンサ部温度センサからなる1つ以上のセンサユニットを設け、さらに前記固定側部材における前記センサユニットの近傍の周方向位置に、転走面近傍の温度を検出する転走面温度センサを設け、前記センサユニットのセンサの出力信号を前記センサ部温度センサおよび転走面温度センサの出力で補正し、その補正した信号から車輪用軸受もしくはタイヤに加わる荷重を推定する推定手段を設けたため、軸受内外部の温度差による検出誤差を補正して、車輪用軸受やタイヤ接地面に作用する荷重を高い精度で安定良く検出できる。   The sensor-equipped wheel bearing according to the present invention includes an outer member having a double-row rolling surface formed on the inner periphery, an inner member having a rolling surface opposed to the rolling surface formed on the outer periphery, A wheel bearing comprising a double row rolling element interposed between opposing rolling surfaces of the member and rotatably supporting the wheel with respect to the vehicle body, wherein the fixed side member of the outer member and the inner member A strain generating member having two or more contact fixing portions fixed in contact with the sensor, a sensor attached to the strain generating member to detect strain of the strain generating member, and the sensor attached to the strain generating member One or more sensor units comprising a sensor part temperature sensor for detecting the temperature of the installation part are provided, and rolling is performed to detect the temperature in the vicinity of the rolling surface at a circumferential position in the vicinity of the sensor unit in the stationary member. A surface temperature sensor, The sensor unit sensor output signal is corrected by the sensor unit temperature sensor and the rolling surface temperature sensor output, and the estimation means for estimating the load applied to the wheel bearing or tire from the corrected signal is provided. By correcting the detection error due to the temperature difference, it is possible to stably detect the load acting on the wheel bearing and the tire ground contact surface with high accuracy and stability.

この発明の一実施形態を図1ないし図6と共に説明する。この実施形態は、第3世代型の内輪回転タイプで、駆動輪支持用の車輪用軸受に適用したものである。なお、この明細書において、車両に取付けた状態で車両の車幅方向の外側寄りとなる側をアウトボード側と呼び、車両の中央寄りとなる側をインボード側と呼ぶ。   An embodiment of the present invention will be described with reference to FIGS. This embodiment is a third generation inner ring rotating type and is applied to a wheel bearing for driving wheel support. In this specification, the side closer to the outer side in the vehicle width direction of the vehicle when attached to the vehicle is referred to as the outboard side, and the side closer to the center of the vehicle is referred to as the inboard side.

このセンサ付車輪用軸受における軸受は、図1に断面図で示すように、内周に複列の転走面3を形成した外方部材1と、これら各転走面3に対向する転走面4を外周に形成した内方部材2と、これら外方部材1および内方部材2の転走面3,4間に介在した複列の転動体5とで構成される。この車輪用軸受は、複列のアンギュラ玉軸受型とされていて、転動体5はボールからなり、各列毎に保持器6で保持されている。上記転走面3,4は断面円弧状であり、ボール接触角が背面合わせとなるように形成されている。外方部材1と内方部材2との間の軸受空間の両端は、一対のシール7,8によってそれぞれ密封されている。   As shown in the sectional view of FIG. 1, the bearing for this sensor-equipped wheel bearing includes an outer member 1 in which a double row rolling surface 3 is formed on the inner periphery, and rolling facing each of these rolling surfaces 3. The inner member 2 has a surface 4 formed on the outer periphery, and the outer member 1 and the double row rolling elements 5 interposed between the rolling surfaces 3 and 4 of the inner member 2. This wheel bearing is a double-row angular ball bearing type, and the rolling elements 5 are made of balls and are held by a cage 6 for each row. The rolling surfaces 3 and 4 have an arc shape in cross section, and are formed so that the ball contact angle is aligned with the back surface. Both ends of the bearing space between the outer member 1 and the inner member 2 are sealed by a pair of seals 7 and 8, respectively.

外方部材1は固定側部材となるものであって、車体の懸架装置(図示せず)におけるナックル16に取付ける車体取付用フランジ1aを外周に有し、全体が一体の部品とされている。フランジ1aには周方向複数箇所にナックル取付用のねじ孔14が設けられ、インボード側よりナックル16のボルト挿通孔17に挿通したナックルボルト18を前記ねじ孔14に螺合することで、車体取付用フランジ1aがナックル16に取付けられる。
内方部材2は回転側部材となるものであって、車輪取付用のハブフランジ9aを有するハブ輪9と、このハブ輪9の軸部9bのインボード側端の外周に嵌合した内輪10とでなる。これらハブ輪9および内輪10に、前記各列の転走面4が形成されている。ハブ輪9のインボード側端の外周には段差を持って小径となる内輪嵌合面12が設けられ、この内輪嵌合面12に内輪10が嵌合している。ハブ輪9の中心には貫通孔11が設けられている。ハブフランジ9aには、周方向複数箇所にハブボルト(図示せず)の圧入孔15が設けられている。ハブ輪9のハブフランジ9aの根元部付近には、車輪および制動部品(図示せず)を案内する円筒状のパイロット部13がアウトボード側に突出している。
The outer member 1 is a fixed side member, and has a vehicle body mounting flange 1a attached to a knuckle 16 in a suspension device (not shown) of the vehicle body on the outer periphery, and the whole is an integral part. The flange 1a is provided with screw holes 14 for knuckle attachment at a plurality of locations in the circumferential direction, and the knuckle bolts 18 inserted into the bolt insertion holes 17 of the knuckle 16 from the inboard side are screwed into the screw holes 14, thereby A mounting flange 1 a is attached to the knuckle 16.
The inner member 2 is a rotating side member, and includes a hub wheel 9 having a hub flange 9a for wheel mounting, and an inner ring 10 fitted to the outer periphery of the end portion on the inboard side of the shaft portion 9b of the hub wheel 9. And become. The hub wheel 9 and the inner ring 10 are formed with the rolling surfaces 4 of the respective rows. An inner ring fitting surface 12 having a small diameter with a step is provided on the outer periphery of the inboard side end of the hub wheel 9, and the inner ring 10 is fitted to the inner ring fitting surface 12. A through hole 11 is provided at the center of the hub wheel 9. The hub flange 9a is provided with press-fitting holes 15 for hub bolts (not shown) at a plurality of locations in the circumferential direction. In the vicinity of the base portion of the hub flange 9a of the hub wheel 9, a cylindrical pilot portion 13 for guiding a wheel and a braking component (not shown) protrudes toward the outboard side.

図2は、この車輪用軸受の外方部材1をアウトボード側から見た正面図を示す。なお、図1は、図2におけるI−I矢視断面図を示す。前記車体取付用フランジ1aは、図2のように、各ねじ孔14が設けられた円周方向部分が他の部分よりも外径側へ突出した突片1aaとされている。   FIG. 2 shows a front view of the outer member 1 of the wheel bearing as viewed from the outboard side. 1 shows a cross-sectional view taken along the line II in FIG. As shown in FIG. 2, the vehicle body mounting flange 1 a is a projecting piece 1 aa in which a circumferential portion provided with each screw hole 14 protrudes to the outer diameter side from the other portion.

固定側部材である外方部材1の外径面には、4個のセンサユニット20が設けられている。ここでは、これらのセンサユニット20が、タイヤ接地面に対して上下位置および前後位置となる外方部材1の外径面における上面部、下面部、右面部、および左面部に、周方向に相互に90度の位相差をなすように設けられている。   Four sensor units 20 are provided on the outer diameter surface of the outer member 1 which is a fixed member. Here, these sensor units 20 are arranged in the circumferential direction on the upper surface portion, the lower surface portion, the right surface portion, and the left surface portion of the outer diameter surface of the outer member 1 that is in the vertical position and the front and rear position with respect to the tire ground contact surface. Are provided so as to form a phase difference of 90 degrees.

これらのセンサユニット20は、図3および図4に拡大平面図および拡大断面図で示すように、歪み発生部材21と、この歪み発生部材21に取付けられて歪み発生部材21の歪みを検出する歪みセンサ22と、歪み発生部材21に取付けられて歪みセンサ22の設置部の温度を検出するセンサ部温度センサ28とでなる。歪み発生部材21は、鋼材等の弾性変形可能な金属製で2mm以下の薄板材からなり、平面概形が全長にわたり均一幅の帯状で中央の両側辺部に切欠き部21bを有する。また、歪み発生部材21は、外方部材1の外径面にスペーサ23を介して接触固定される2つの接触固定部21aを両端部に有する。なお、歪み発生部材21の形状によっては、接触固定部21aを2つ以上有するものとしても良い。歪みセンサ22は、歪み発生部材21における各方向の荷重に対して歪みが大きくなる箇所に貼り付けられる。ここでは、その箇所として、歪み発生部材21の外面側で両側辺部の切欠き部21bで挟まれる中央部位が選ばれており、歪みセンサ22は切欠き部21b周辺の周方向の歪みを検出する。なお、歪み発生部材21は、固定側部材である外方部材1に作用する外力、またはタイヤと路面間に作用する作用力として、想定される最大の力が印加された状態においても、塑性変形しないものとするのが望ましい。塑性変形が生じると、外方部材1の変形がセンサユニット20に伝わらず、歪みの測定に影響を及ぼすからである。想定される最大の力は、軸受に過大な荷重が作用しても、その荷重が除かれると、センサ系を除く軸受としての正常な機能が復元される範囲の最大の力である。   3 and 4, the sensor unit 20 includes a strain generating member 21 and a strain that is attached to the strain generating member 21 and detects the strain of the strain generating member 21. The sensor 22 includes a sensor temperature sensor 28 that is attached to the strain generating member 21 and detects the temperature of the installation portion of the strain sensor 22. The strain generating member 21 is made of an elastically deformable metal such as a steel material and is made of a thin plate material having a thickness of 2 mm or less. The strain generating member 21 is a strip having a uniform plane over the entire length and has notches 21b on both sides of the center. Further, the strain generating member 21 has two contact fixing portions 21a that are fixed to the outer diameter surface of the outer member 1 through spacers 23 at both ends. Note that, depending on the shape of the strain generating member 21, two or more contact fixing portions 21a may be provided. The strain sensor 22 is affixed to a location where the strain increases with respect to the load in each direction on the strain generating member 21. Here, as the location, the central portion sandwiched between the notch portions 21b on both sides is selected on the outer surface side of the strain generating member 21, and the strain sensor 22 detects the strain in the circumferential direction around the notch portion 21b. To do. Note that the strain generating member 21 is plastically deformed even in a state in which an assumed maximum force is applied as an external force acting on the outer member 1 that is a fixed member or an acting force acting between the tire and the road surface. It is desirable not to do so. This is because when plastic deformation occurs, the deformation of the outer member 1 is not transmitted to the sensor unit 20 and affects the measurement of strain. Even if an excessive load is applied to the bearing, the assumed maximum force is the maximum force within a range in which the normal function as the bearing excluding the sensor system is restored when the load is removed.

前記センサユニット20は、その歪み発生部材21の2つの接触固定部21aが、外方部材1の軸方向に同寸法の位置で、かつ両接触固定部21aが互いに円周方向に離れた位置に来るように配置され、これら接触固定部21aがそれぞれスペーサ23を介してボルト24により外方部材1の外径面に固定される。前記各ボルト24は、それぞれ接触固定部21aに設けられた径方向に貫通するボルト挿通孔25からスペーサ23のボルト挿通孔26に挿通し、外方部材1の外周部に設けられたねじ孔27に螺合させる。このように、スペーサ23を介して外方部材1の外径面に接触固定部21aを固定することにより、薄板状である歪み発生部材21における切欠き部21bを有する中央部位が外方部材1の外径面から離れた状態となり、切欠き部21bの周辺の歪み変形が容易となる。接触固定部21aが配置される軸方向位置として、ここでは外方部材1のアウトボード側列の転走面3の周辺となる軸方向位置が選ばれる。ここでいうアウトボード側列の転走面3の周辺とは、インボード側列およびアウトボード側列の転走面3の中間位置からアウトボード側列の転走面3の形成部までの範囲である。外方部材1の外径面へセンサユニット20を安定良く固定する上で、外方部材1の外径面における前記スペーサ23が接触固定される箇所には平坦部1bが形成される。   In the sensor unit 20, the two contact fixing portions 21a of the strain generating member 21 are located at the same dimension in the axial direction of the outer member 1, and the two contact fixing portions 21a are separated from each other in the circumferential direction. These contact fixing portions 21a are fixed to the outer diameter surface of the outer member 1 by bolts 24 via spacers 23, respectively. Each bolt 24 is inserted into a bolt insertion hole 26 of the spacer 23 from a bolt insertion hole 25 penetrating in the radial direction provided in the contact fixing portion 21 a, and a screw hole 27 provided in the outer peripheral portion of the outer member 1. Screwed on. In this way, by fixing the contact fixing portion 21a to the outer diameter surface of the outer member 1 via the spacer 23, the central portion having the notch portion 21b in the strain generating member 21 having a thin plate shape is the outer member 1. It becomes a state away from the outer diameter surface of the, and distortion deformation around the notch 21b becomes easy. As the axial position where the contact fixing portion 21a is disposed, an axial position that is the periphery of the rolling surface 3 of the outboard side row of the outer member 1 is selected here. Here, the periphery of the rolling surface 3 of the outboard side row is a range from the intermediate position of the rolling surface 3 of the inboard side row and the outboard side row to the formation portion of the rolling surface 3 of the outboard side row. It is. In order to stably fix the sensor unit 20 to the outer diameter surface of the outer member 1, a flat portion 1 b is formed at a location where the spacer 23 is contacted and fixed on the outer diameter surface of the outer member 1.

歪みセンサ22としては、種々のものを使用することができる。例えば、歪みセンサ22を金属箔ストレインゲージで構成することができる。その場合、通常、歪み発生部材21に対しては接着による固定が行なわれる。また、歪みセンサ22を歪み発生部材21上に厚膜抵抗体にて形成することもできる。   Various strain sensors 22 can be used. For example, the strain sensor 22 can be composed of a metal foil strain gauge. In that case, the distortion generating member 21 is usually fixed by adhesion. The strain sensor 22 can also be formed on the strain generating member 21 with a thick film resistor.

固定側部材である前記外方部材1の外周には、前記各センサユニット20を覆う保護カバー35が設けられている。この保護カバー35は、図1のように軸方向に延びる円筒部35aと、この円筒部35aのアウトボード側端から内径側に延びる立板部35bとを有する断面L字状で、外方部材1と同心のリング状部材からなる。保護カバー35の立片部35bの内径側端を外方部材1の外径面に、また保護カバー35の円筒部35aのインボード側端を外方部材1の車体取付用フランジ1aのアウトボード側を向く側面にそれぞれ固定することで、外方部材1の外径面に設けられる全てのセンサユニット20を覆うように、保護カバー35が外方部材1に取付けられる。保護カバー35の円筒部35aのインボード側端と、外方部材1の外径面との間には隙間が設けられている。保護カバー35の材質は、プラスチックやゴムであっても良く、また金属製であっても良い。   A protective cover 35 that covers each sensor unit 20 is provided on the outer periphery of the outer member 1 that is a stationary member. As shown in FIG. 1, the protective cover 35 has an L-shaped cross section having a cylindrical portion 35a extending in the axial direction and a standing plate portion 35b extending from the end of the cylindrical portion 35a toward the inner diameter side. 1 and a concentric ring-shaped member. The inner diameter side end of the standing piece portion 35b of the protective cover 35 is the outer diameter surface of the outer member 1, and the inboard side end of the cylindrical portion 35a of the protective cover 35 is the outboard of the vehicle body mounting flange 1a of the outer member 1. The protective cover 35 is attached to the outer member 1 so as to cover all the sensor units 20 provided on the outer diameter surface of the outer member 1 by being fixed to the side surfaces facing each other. A gap is provided between the inboard side end of the cylindrical portion 35 a of the protective cover 35 and the outer diameter surface of the outer member 1. The material of the protective cover 35 may be plastic or rubber, or may be made of metal.

また、図1のように、保護カバー35で覆われる全てのセンサユニット20における歪みセンサ22の信号線36、センサ部温度センサ28の信号線37、および後述する転走面温度センサ29の信号線38が、保護カバー35の一箇所から保護カバーの外側に引き出される。例えば図1の例では、全ての歪みセンサ22の信号線36、全てのセンサ部温度センサ28の信号線37、および全ての転走面温度センサ29の信号線38を、保護カバー35の円筒部35aの内周面における周方向の一箇所からインボード側に延ばして、外方部材1の車体取付用フランジ1aにおける谷部、つまり周方向に隣り合う2つの突片1aa(図2)の中間位置から外部に引き出すようにしている。   Further, as shown in FIG. 1, the signal line 36 of the strain sensor 22, the signal line 37 of the sensor temperature sensor 28, and the signal line of the rolling contact surface temperature sensor 29 described later in all the sensor units 20 covered with the protective cover 35. 38 is pulled out from one place of the protective cover 35 to the outside of the protective cover. For example, in the example of FIG. 1, the signal lines 36 of all strain sensors 22, the signal lines 37 of all sensor temperature sensors 28, and the signal lines 38 of all rolling surface temperature sensors 29 are connected to the cylindrical portion of the protective cover 35. 35a extending from one place in the circumferential direction on the inner circumferential surface of 35a to the inboard side, a trough in the vehicle body mounting flange 1a of the outer member 1, that is, between the two projecting pieces 1aa (FIG. 2) adjacent in the circumferential direction. I try to pull it out from the position.

また、図5に拡大断面図で示すように、固定側部材である外方部材1には、その複列の転走面3のうちアウトボード側列の転走面3の近傍の温度を検出する転走面温度センサ29が設けられている。この転走面温度センサ29は、外方部材1の外径面に設けられる4つのセンサユニット20に対応させて4つ設けられる。各転走面温度センサ29は、固定側部材である外方部材1におけるセンサユニット20の近傍の周方向位置に配置される。具体的には、各転走面温度センサ29は、外方部材1には、その外径面における前記各センサユニット20の設置部の近傍から径方向に延びて前記転走面3付近に達する4つの温度センサ埋込用孔32が設けられ、これら各孔32内の転走面3に近い底部に前記各転走面温度センサ29がそれぞれ埋設される。各孔32の底部は、これらの孔32の形成により軸受寿命が低下することのない範囲で、転走面3に近いほど好ましく、例えば、転走面3の焼入れ硬化処理層と未硬化部分との境界付近とされる。これら各転走面温度センサ29に接続された信号線38は、前記温度センサ埋込用孔32から対応するセンサユニット20を経て、他の信号線36,37と共に、上記したように前記保護カバー35から外部に引き出される。   Further, as shown in an enlarged cross-sectional view in FIG. 5, the outer member 1 that is a fixed side member detects the temperature in the vicinity of the rolling surface 3 in the outboard side row among the rolling rows 3 in the double row. A rolling surface temperature sensor 29 is provided. Four rolling surface temperature sensors 29 are provided corresponding to the four sensor units 20 provided on the outer diameter surface of the outer member 1. Each rolling contact surface temperature sensor 29 is arranged at a circumferential position in the vicinity of the sensor unit 20 in the outer member 1 that is a fixed member. Specifically, each rolling contact surface temperature sensor 29 extends to the outer member 1 in the radial direction from the vicinity of the installation portion of each sensor unit 20 on the outer diameter surface and reaches the vicinity of the rolling contact surface 3. Four temperature sensor embedding holes 32 are provided, and the rolling surface temperature sensors 29 are embedded in the bottom portions of the holes 32 near the rolling surface 3. The bottom of each hole 32 is preferably as close to the rolling surface 3 as long as the bearing life is not reduced by the formation of these holes 32. For example, the quench hardening layer and the uncured portion of the rolling surface 3 Near the boundary. The signal line 38 connected to each of the rolling surface temperature sensors 29 passes through the corresponding sensor unit 20 from the temperature sensor embedding hole 32 and together with the other signal lines 36 and 37, as described above, the protective cover. It is pulled out from 35.

センサユニット20の歪みセンサ22、センサ部温度センサ28、および転走面温度センサ29は、推定手段30に接続される。推定手段30は、歪みセンサ22の出力信号により、車輪用軸受や車輪と路面間(タイヤ接地面)に作用する力(垂直方向荷重Fz ,駆動力となる荷重Fx ,軸方向荷重Fy )を推定する手段であり、前記センサ部温度センサ28および前記転走面温度センサ29の出力で前記歪みセンサ22の出力信号を補正する温度補正手段31を有する。推定手段30では、前記温度補正手段31で補正した歪みセンサ22の出力信号から、前記垂直方向荷重Fz 、駆動力となる荷重Fx 、および軸方向荷重Fy を推定する。   The strain sensor 22, the sensor part temperature sensor 28, and the rolling surface temperature sensor 29 of the sensor unit 20 are connected to the estimation unit 30. The estimation means 30 estimates the force (vertical load Fz, load Fx serving as driving force, axial load Fy) acting between the wheel bearing and the wheel and the road surface (tire contact surface) based on the output signal of the strain sensor 22. Temperature correction means 31 for correcting the output signal of the strain sensor 22 with the outputs of the sensor part temperature sensor 28 and the rolling surface temperature sensor 29. The estimation unit 30 estimates the vertical load Fz, the load Fx as a driving force, and the axial load Fy from the output signal of the strain sensor 22 corrected by the temperature correction unit 31.

歪みセンサ22の出力信号には温度ドリフト特性があるため、センサユニット20に設けられたセンサ部温度センサ28で測定されるセンサユニット20の温度や外気温で歪みセンサ2の出力信号を補正すれば、温度ドリフト特性による検出誤差を低減することができる。しかし、軸受内部の発熱量や、軸受の外気への放熱状態が変化すると、外方部材1の熱歪み成分が歪みセンサ22の出力信号に重畳して検出精度を悪化させる。   Since the output signal of the strain sensor 22 has a temperature drift characteristic, if the output signal of the strain sensor 2 is corrected by the temperature of the sensor unit 20 measured by the sensor temperature sensor 28 provided in the sensor unit 20 or the outside air temperature. Detection errors due to temperature drift characteristics can be reduced. However, if the amount of heat generated inside the bearing or the state of heat radiation to the outside air of the bearing changes, the thermal strain component of the outer member 1 is superimposed on the output signal of the strain sensor 22 to deteriorate the detection accuracy.

そこで、前記推定手段30における温度補正手段31では、センサ部温度センサ28が検出する歪みセンサ22の設置部の温度Ts と、転走面温度センサ29が検出する外方部材1の内部温度である転走面3の近傍の温度Ti とにより、次のように前記歪みセンサ22の出力信号を補正する。
先ず、外方部材1の内外温度差として、ΔT=Ti −Ts を求める。外方部材1の内外の温度勾配と歪みセンサ22の出力信号に重畳するオフセット量との関係は、外方部材1の構造などによって決まり、図6にグラフで示すような比例関係で近似できる。なお、図6では、センサユニット20の温度を一定とし、温度差ΔT=0のときの歪みセンサ22の出力信号をS0 としている。
次に、温度補正手段31では、図6のグラフから係数を求めておいて、前記内外温度差ΔTを用いて、歪みセンサ22の出力信号の補正値を、
補正値=(歪みセンサ22の出力)+(センサ部温度によるオフセットO(Ts ))
+(温度勾配によるオフセットG(ΔT))
として求める。ただし、
O(Ts ):線膨張の差によるオフセット量+歪みセンサ22の温度特性
G(ΔT):温度勾配によるオフセット量
Therefore, the temperature correction means 31 in the estimation means 30 includes the temperature Ts of the installation part of the strain sensor 22 detected by the sensor part temperature sensor 28 and the internal temperature of the outer member 1 detected by the rolling contact surface temperature sensor 29. Based on the temperature Ti in the vicinity of the rolling surface 3, the output signal of the strain sensor 22 is corrected as follows.
First, ΔT = Ti−Ts is obtained as the temperature difference between the inside and outside of the outer member 1. The relationship between the temperature gradient inside and outside the outer member 1 and the offset amount superimposed on the output signal of the strain sensor 22 is determined by the structure of the outer member 1 and can be approximated by a proportional relationship as shown in the graph of FIG. In FIG. 6, the temperature of the sensor unit 20 is constant, and the output signal of the strain sensor 22 when the temperature difference ΔT = 0 is S0.
Next, the temperature correction unit 31 obtains a coefficient from the graph of FIG. 6, and uses the internal / external temperature difference ΔT to calculate the correction value of the output signal of the strain sensor 22.
Correction value = (output of strain sensor 22) + (offset O (Ts) due to sensor temperature)
+ (Offset G (ΔT) due to temperature gradient)
Asking. However,
O (Ts): offset amount due to difference in linear expansion + temperature characteristic of strain sensor 22 G (ΔT): offset amount due to temperature gradient

推定手段30は、前記作用力と前記温度補正手段31で求めた歪みセンサ22の出力信号の補正値との関係を演算式またはテーブル等により設定した関係設定手段(図示せず)を有し、入力された補正値から前記関係設定手段を用いて作用力の値を出力する。前記関係設定手段の設定内容は、予め試験やシミュレーションで求めておいて設定する。   The estimation unit 30 includes a relationship setting unit (not shown) in which the relationship between the acting force and the correction value of the output signal of the strain sensor 22 obtained by the temperature correction unit 31 is set by an arithmetic expression or a table. An action force value is output from the input correction value using the relationship setting means. The setting contents of the relationship setting means are obtained by a test or simulation in advance.

車輪のタイヤと路面間に荷重が作用すると、車輪用軸受の固定側部材である外方部材1にも荷重が印加されて変形が生じる。センサユニット20における歪み発生部材21の2つの接触固定部21aが外方部材1に接触固定されているので、外方部材1の歪みが歪み発生部材21に拡大して伝達され、その歪みが歪みセンサ22で感度良く検出され、その出力信号に生じるヒステリシスも小さくなり、荷重を精度良く推定できる。
とくに、センサユニット20の歪み発生部材21に歪みセンサ22の設置部の温度を検出するセンサ部温度センサ28を取付け、外方部材1におけるセンサユニット20の近傍の周方向位置に、転走面3の近傍の温度を検出する転走面温度センサ29を設け、推定手段30では、温度補正手段31により、歪みセンサ22の出力信号をセンサ部温度センサ28および転走面温度センサ29の出力で補正し、その補正した信号から車輪用軸受もしくはタイヤに加わる荷重を推定するようにしているので、外気温の変化や、荷重変化による軸受内部発熱の変動の影響を低減することが可能となり、車輪用軸受やタイヤ接地面に作用する荷重を高い精度で安定良く検出でき、走行中の降雨や外気温の変化があっても荷重検出に影響を受けにくくなる。
When a load acts between the tire of the wheel and the road surface, the load is also applied to the outer member 1 that is a stationary member of the wheel bearing, causing deformation. Since the two contact fixing portions 21a of the strain generating member 21 in the sensor unit 20 are fixed to the outer member 1, the strain of the outer member 1 is transmitted to the strain generating member 21 in an enlarged manner, and the strain is distorted. The sensor 22 is detected with high sensitivity, the hysteresis generated in the output signal is also reduced, and the load can be estimated with high accuracy.
In particular, a sensor part temperature sensor 28 for detecting the temperature of the installation part of the strain sensor 22 is attached to the strain generating member 21 of the sensor unit 20, and the rolling surface 3 is positioned at a circumferential position in the vicinity of the sensor unit 20 in the outer member 1. A rolling surface temperature sensor 29 for detecting the temperature in the vicinity of the sensor is provided. In the estimation unit 30, the temperature correction unit 31 corrects the output signal of the strain sensor 22 with the outputs of the sensor temperature sensor 28 and the rolling surface temperature sensor 29. Since the load applied to the wheel bearing or tire is estimated from the corrected signal, it becomes possible to reduce the influence of changes in the outside air temperature and fluctuations in the internal heat generation of the bearing due to the load change. Loads acting on bearings and tire contact surfaces can be detected with high accuracy and stability, making it less susceptible to load detection even when there is rainfall or changes in the outside air temperature.

上記説明では車輪のタイヤと路面間の作用力を検出する場合を示したが、車輪のタイヤと路面間の作用力だけでなく、車輪用軸受に作用する力(例えば予圧量)を検出するものとしても良い。
このセンサ付車輪用軸受から得られた検出荷重を車両制御に使用することにより、高い荷重がかかる条件で走行する場合でも検出精度が悪化することがなく、正確な車両制御により安全性を高めることができる。
In the above description, the case where the acting force between the wheel tire and the road surface is detected is shown. However, not only the acting force between the wheel tire and the road surface but also the force acting on the wheel bearing (for example, the preload amount) is detected. It is also good.
By using the detection load obtained from this sensor-equipped wheel bearing for vehicle control, the detection accuracy will not deteriorate even when traveling under conditions with high load, and safety will be improved by accurate vehicle control. Can do.

また、この実施形態では、センサユニット20を4つ設け、これらのセンサユニット20を、タイヤ接地面に対して上下位置および左右位置となる外方部材1の外径面の上面部、下面部、右面部および左面部に、周方向に互いに90度の位相差をなすように配置しているので、どのような荷重条件においても、荷重を精度良く推定することができる。すなわち,ある方向への荷重が大きくなると、転動体5と転走面3,4が接触している部分と接触していない部分が180度位相差で現れるため、その方向に合わせてセンサユニット20を180度位相差で設置すれば、どちらかのセンサユニット20には必ず転動体5を介して外方部材1に印加される荷重が伝達され、その荷重を歪みセンサ22により検出可能となる。   Further, in this embodiment, four sensor units 20 are provided, and these sensor units 20 are arranged on the upper surface portion, the lower surface portion, and the outer diameter surface of the outer member 1 that are in the vertical position and the horizontal position with respect to the tire ground contact surface. Since the right surface portion and the left surface portion are arranged so as to have a phase difference of 90 degrees in the circumferential direction, the load can be accurately estimated under any load condition. That is, when a load in a certain direction increases, a portion where the rolling element 5 and the rolling surfaces 3 and 4 are in contact with each other and a portion which is not in contact appear with a phase difference of 180 degrees. Is installed with a phase difference of 180 degrees, a load applied to the outer member 1 is always transmitted to one of the sensor units 20 via the rolling elements 5, and the load can be detected by the strain sensor 22.

また、この実施形態では、前記転走面温度センサ29の個数を、センサユニット20の個数と同数の4つとし、かつ外方部材1における各センサユニット20の周方向位置と位相を合わせて各転走面温度センサ29を設けているので、各センサユニット20に対応した転走面近傍の温度を検出することができ、前記推定手段30の温度補正手段31による補正をより精度良く行うことができ、最終的に得られる荷重推定値の精度をそれだけ向上させることができる。   In this embodiment, the number of the rolling surface temperature sensors 29 is four, which is the same as the number of the sensor units 20, and the circumferential position and phase of each sensor unit 20 in the outer member 1 are matched to each other. Since the rolling surface temperature sensor 29 is provided, the temperature in the vicinity of the rolling surface corresponding to each sensor unit 20 can be detected, and correction by the temperature correction unit 31 of the estimation unit 30 can be performed with higher accuracy. And the accuracy of the finally obtained load estimated value can be improved accordingly.

また、この実施形態では、前記推定手段30の温度補正手段31により、前記センサ部温度センサ28の出力と前記転走面温度センサ29の出力との差によりセンサユニット20の歪みセンサ22の出力信号を補正するものとし、その補正量は予め作成した前記両温度センサ28,29の出力差と補正量との一次近似関係式(図6)から決定するものとしているので、歪みセンサ22の出力信号に重畳しているオフセット量、つまり外方部材1の内部から表面にかけての温度勾配による熱歪みを十分に低減でき、荷重推定値の精度を向上させることができる。   In this embodiment, the temperature correction means 31 of the estimation means 30 causes the output signal of the strain sensor 22 of the sensor unit 20 based on the difference between the output of the sensor unit temperature sensor 28 and the output of the rolling surface temperature sensor 29. The correction amount is determined from the first-order approximate relational expression (FIG. 6) between the output difference between the temperature sensors 28 and 29 and the correction amount prepared in advance. The amount of offset superimposed on the outer member 1, that is, the thermal distortion due to the temperature gradient from the inside to the surface of the outer member 1, can be sufficiently reduced, and the accuracy of the estimated load value can be improved.

図7および図8は、前記実施形態における転走面温度センサ29の他の設置例を示す。この設置例では、固定側部材である外方部材1の複列の転走面3の中間位置において、径方向に貫通する1つの貫通孔33を設け、この貫通孔33に転走面温度センサ29に接続される信号線38を挿通させることにより、転走面温度センサ29を外方部材1の転走面3の近傍に配置している。転走面温度センサ29の信号線38がセンサユニット20を経て、歪みセンサ22の信号線36やセンサ部温度センサ28の信号線37と共に、保護カバー35の一箇所から外部に引き出される。   7 and 8 show another installation example of the rolling contact surface temperature sensor 29 in the embodiment. In this installation example, one through hole 33 penetrating in the radial direction is provided at an intermediate position of the double row rolling surface 3 of the outer member 1 which is a fixed member, and the rolling surface temperature sensor is provided in the through hole 33. The rolling contact surface temperature sensor 29 is disposed in the vicinity of the rolling contact surface 3 of the outer member 1 by inserting the signal line 38 connected to the reference numeral 29. The signal line 38 of the rolling contact surface temperature sensor 29 passes through the sensor unit 20 and is drawn out from one place of the protective cover 35 together with the signal line 36 of the strain sensor 22 and the signal line 37 of the sensor unit temperature sensor 28.

外方部材1の内径面における前記転走面温度センサ29で温度検出される転走面3の近傍には、図8(A)に示すリング状の温度センサ支持部材39が圧入嵌合され、この温度センサ支持部材39に転走面温度センサ29が埋設される。温度センサ支持部材39は、図8(B)に部分断面図で示すように、その内径面の一部に凹陥部39aが設けられ、この凹陥部39aに転走面温度センサ29の配線を形成したフレキシブル基板40が設けられ、このフレキシブル基板40に転走面温度センサ29が実装される。図8(A)では、温度センサ支持部材39の一箇所の凹陥部39aに転走面温度センサ29を設けた例を示しているが、各センサユニット20の設置部に対応する周方向の各位置に分けて4つの転走面温度センサ29を設けても良い。各位置での転走面温度を測定する事で、より精度良く温度補正が可能となる。
各転走面温度センサ29の信号線38は1つの貫通孔33を挿通して外方部材1の外周側に引き出され、貫通孔33はシール部材41により密封される。
A ring-shaped temperature sensor support member 39 shown in FIG. 8A is press-fitted and fitted in the vicinity of the rolling surface 3 whose temperature is detected by the rolling surface temperature sensor 29 on the inner diameter surface of the outer member 1. A rolling surface temperature sensor 29 is embedded in the temperature sensor support member 39. As shown in the partial cross-sectional view of FIG. 8B, the temperature sensor support member 39 is provided with a recessed portion 39a in a part of its inner diameter surface, and the wiring of the rolling contact surface temperature sensor 29 is formed in the recessed portion 39a. The flexible substrate 40 is provided, and the rolling surface temperature sensor 29 is mounted on the flexible substrate 40. FIG. 8A shows an example in which the rolling surface temperature sensor 29 is provided in one recessed portion 39a of the temperature sensor support member 39, but each circumferential direction corresponding to the installation portion of each sensor unit 20 is shown. You may provide the four rolling surface temperature sensors 29 divided into a position. By measuring the rolling surface temperature at each position, temperature correction can be performed with higher accuracy.
The signal line 38 of each rolling contact surface temperature sensor 29 passes through one through hole 33 and is drawn to the outer peripheral side of the outer member 1, and the through hole 33 is sealed by a seal member 41.

この転走面温度センサ29の設置例では、外方部材1の複列の転走面3の中間位置において径方向に貫通する貫通孔33を設け、この貫通孔33に挿通される信号線38に接続された転走面温度センサ29を転走面3近傍に設けたため、外方部材1の内径面の転走面3の近傍に転走面温度センサ29を容易に設置できる。   In this installation example of the rolling contact surface temperature sensor 29, a through hole 33 that penetrates in the radial direction is provided at an intermediate position of the double row rolling contact surface 3 of the outer member 1, and the signal line 38 inserted through the through hole 33. Since the rolling surface temperature sensor 29 connected to is provided in the vicinity of the rolling surface 3, the rolling surface temperature sensor 29 can be easily installed in the vicinity of the rolling surface 3 on the inner diameter surface of the outer member 1.

また、外方部材1の転走面3が形成される内径面にリング状の温度センサ支持部材39を嵌合させ、この温度センサ支持部材39に転走面温度センサ29を埋設しているので、転走面温度センサ29の固定や位置合わせ作業を簡単に行うことができる。   Further, a ring-shaped temperature sensor support member 39 is fitted to the inner diameter surface of the outer member 1 where the rolling surface 3 is formed, and the rolling surface temperature sensor 29 is embedded in the temperature sensor support member 39. The rolling surface temperature sensor 29 can be fixed and aligned easily.

また、温度センサ支持部材39の内部に、転走面温度センサ29の実装および配線のためのフレキシブル基板40を設けているので、フレキシブル基板40を利用して温度センサ支持部材39内部での転走面温度センサ29の配線処理を行なうことができ、配線処理が容易で、構成がコンパクトになり、断線などの発生も解消できる。また、複数の転走面温度センサ29を配置する場合でも、配線・固定作業を簡単に行うことができる。   Moreover, since the flexible substrate 40 for mounting and wiring of the rolling surface temperature sensor 29 is provided inside the temperature sensor support member 39, the flexible substrate 40 is used to roll inside the temperature sensor support member 39. Wiring processing of the surface temperature sensor 29 can be performed, wiring processing is easy, the configuration is compact, and occurrence of disconnection or the like can be eliminated. Even when a plurality of rolling contact surface temperature sensors 29 are arranged, wiring and fixing work can be easily performed.

また、転走面温度センサ29を複数個設け、これらの温度センサ29に接続される信号線38を1つの貫通孔33に挿通して、この貫通孔33をシール部材41で密封しているので、配線処理が容易となり、貫通孔33を介して外方部材1の内部に水分が浸入するのを防止できる。   Further, a plurality of rolling contact surface temperature sensors 29 are provided, and signal lines 38 connected to these temperature sensors 29 are inserted into one through hole 33, and this through hole 33 is sealed with a seal member 41. Wiring processing is facilitated, and moisture can be prevented from entering the outer member 1 through the through hole 33.

この発明の一実施形態にかかるセンサ付車輪用軸受の断面図とその検出系の概念構成のブロック図とを組み合わせて示す図である。It is a figure showing combining the sectional view of the wheel bearing with a sensor concerning one embodiment of this invention, and the block diagram of the conceptual composition of the detection system. 同センサ付車輪用軸受の外方部材をアウトボード側から見た正面図である。It is the front view which looked at the outer member of the wheel bearing with a sensor from the outboard side. 同センサ付車輪用軸受におけるセンサユニットの拡大平面図である。It is an enlarged plan view of a sensor unit in the wheel bearing with sensor. 図3におけるIV−IV矢視断面図である。FIG. 4 is a cross-sectional view taken along arrow IV-IV in FIG. 3. 同センサ付車輪用軸受における転走面温度センサの設置部の拡大断面図である。It is an expanded sectional view of the installation part of the rolling surface temperature sensor in the wheel bearing with the same sensor. 外方部材の内外温度差と歪みセンサ出力との関係を示すグラフである。It is a graph which shows the relationship between the internal / external temperature difference of an outer member, and a distortion sensor output. 同センサ付車輪用軸受における転走面温度センサの他の設置例を示す拡大断面図である。It is an expanded sectional view which shows the other example of installation of the rolling surface temperature sensor in the wheel bearing with a sensor. (A)は同転走面温度センサの設置例に用いられる温度センサ支持部材の斜視図、(B)はその部分断面図である。(A) is a perspective view of the temperature sensor support member used for the installation example of the rolling surface temperature sensor, (B) is the fragmentary sectional view.

符号の説明Explanation of symbols

1…外方部材
2…内方部材
3,4…転走面
5…転動体
20…センサユニット
21…歪み発生部材
21a…接触固定部
22…歪みセンサ
28…センサ部温度センサ
29…転走面温度センサ
30…推定手段
31…温度補正手段
32…温度センサ埋込用孔
33…貫通孔
39…温度センサ支持部材
40…フレキシブル基板
41…シール部材
DESCRIPTION OF SYMBOLS 1 ... Outer member 2 ... Inner member 3, 4 ... Rolling surface 5 ... Rolling body 20 ... Sensor unit 21 ... Strain generating member 21a ... Contact fixing | fixed part 22 ... Strain sensor 28 ... Sensor part temperature sensor 29 ... Rolling surface Temperature sensor 30 ... Estimating means 31 ... Temperature correcting means 32 ... Temperature sensor embedding hole 33 ... Through hole 39 ... Temperature sensor support member 40 ... Flexible substrate 41 ... Sealing member

Claims (11)

複列の転走面が内周に形成された外方部材と、前記転走面と対向する転走面が外周に形成された内方部材と、両部材の対向する転走面間に介在した複列の転動体とを備え、車体に対して車輪を回転自在に支持する車輪用軸受において、
上記外方部材および内方部材のうちの固定側部材に接触して固定される2つ以上の接触固定部を有する歪み発生部材、この歪み発生部材に取付けられてこの歪み発生部材の歪みを検出するセンサ、および前記歪み発生部材に取付けられて前記センサ設置部の温度を検出するセンサ部温度センサからなる1つ以上のセンサユニットを設け、さらに前記固定側部材における前記センサユニットの近傍の周方向位置に、転走面近傍の温度を検出する転走面温度センサを設け、前記センサユニットのセンサの出力信号を前記センサ部温度センサおよび転走面温度センサの出力で補正し、その補正した信号から車輪用軸受もしくはタイヤに加わる荷重を推定する推定手段を設けたことを特徴とするセンサ付車輪用軸受。
An outer member having a double row rolling surface formed on the inner periphery, an inner member having a rolling surface facing the rolling surface formed on the outer periphery, and interposed between the opposing rolling surfaces of both members A double row rolling element, and a wheel bearing for rotatably supporting the wheel with respect to the vehicle body,
A strain generating member having two or more contact fixing parts fixed in contact with the fixed side member of the outer member and the inner member, and detecting the strain of the strain generating member attached to the strain generating member And at least one sensor unit comprising a sensor part temperature sensor that is attached to the strain generating member and detects the temperature of the sensor installation part, and in the circumferential direction of the fixed member in the vicinity of the sensor unit A rolling surface temperature sensor for detecting the temperature in the vicinity of the rolling surface is provided at the position, and the output signal of the sensor of the sensor unit is corrected with the output of the sensor unit temperature sensor and the rolling surface temperature sensor, and the corrected signal A wheel bearing with a sensor, characterized in that an estimation means for estimating a load applied to a wheel bearing or a tire is provided.
請求項1において、前記固定側部材が前記外方部材であるセンサ付車輪用軸受。   The sensor-equipped wheel bearing according to claim 1, wherein the fixed-side member is the outer member. 請求項1または請求項2において、前記センサユニットを3つ以上設け、これらのセンサユニットのセンサの出力信号から、前記推定手段は車輪用軸受もしくはタイヤに加わる径方向荷重および軸方向荷重を推定するものとしたセンサ付車輪用軸受。   3. The sensor unit according to claim 1, wherein three or more sensor units are provided, and the estimation means estimates a radial load and an axial load applied to a wheel bearing or a tire from output signals of sensors of these sensor units. A wheel bearing with sensor. 請求項1ないし請求項3のいずれか1項において、前記センサユニットを4つ設け、これらのセンサユニットを、タイヤ接地面に対して上下位置および左右位置となる前記固定側部材の外径面の上面部、下面部、右面部、および左面部に、周方向に互いに90度の位相差をなすように配置したセンサ付車輪用軸受。   4. The sensor unit according to claim 1, wherein four sensor units are provided, and the sensor units are arranged on an outer diameter surface of the fixed side member that is in a vertical position and a horizontal position with respect to a tire ground contact surface. A sensor-equipped wheel bearing disposed on the upper surface, the lower surface, the right surface, and the left surface so as to have a phase difference of 90 degrees in the circumferential direction. 請求項1ないし請求項4のいずれか1項において、前記転走面温度センサの個数を、センサユニットの個数と同数とし、かつ前記固定側部材における各センサユニットの周方向位置と位相を合わせて各転走面温度センサを設けたセンサ付車輪用軸受。   5. The method according to claim 1, wherein the number of the rolling surface temperature sensors is the same as the number of sensor units, and the circumferential position and phase of each sensor unit in the stationary member are matched. Sensor wheel bearing with each rolling contact surface temperature sensor. 請求項1ないし請求項5のいずれか1項において、前記推定手段は、前記センサ部温度センサの出力と前記転走面温度センサの出力との差により前記センサユニットのセンサの出力信号を補正するものとし、その補正量は予め作成した前記両温度センサの出力差と補正量との一次近似関係式から決定するものとしたセンサ付車輪用軸受。   6. The sensor according to claim 1, wherein the estimating unit corrects an output signal of the sensor of the sensor unit based on a difference between an output of the sensor unit temperature sensor and an output of the rolling contact surface temperature sensor. It is assumed that the correction amount is determined from a first-order approximate relational expression between the output difference between the two temperature sensors and the correction amount prepared in advance. 請求項1ないし請求項6のいずれか1項において、前記固定側部材に転走面付近に達する孔を設け、この孔の内部に前記転走面温度センサを埋設したセンサ付車輪用軸受。   7. The sensor-equipped wheel bearing according to claim 1, wherein a hole reaching the vicinity of a rolling contact surface is provided in the fixed side member, and the rolling contact surface temperature sensor is embedded in the hole. 請求項1ないし請求項7のいずれか1項において、前記固定側部材の複列の転走面の中間位置において径方向に貫通する貫通孔を設け、この貫通孔に挿通される信号線に接続された前記転走面温度センサを転走面近傍に設けたセンサ付車輪用軸受。   The through-hole penetrating in the radial direction is provided at an intermediate position of the double-row rolling surface of the fixed side member according to any one of claims 1 to 7, and connected to a signal line inserted through the through-hole. The wheel bearing with a sensor which provided the said rolling contact surface temperature sensor near the rolling contact surface. 請求項8において、前記固定側部材の転走面が形成される周面にリング状の温度センサ支持部材を嵌合させ、この温度センサ支持部材に前記転走面温度センサを埋設したセンサ付車輪用軸受。   9. The sensor-equipped wheel according to claim 8, wherein a ring-shaped temperature sensor support member is fitted to a peripheral surface on which the rolling surface of the fixed side member is formed, and the rolling surface temperature sensor is embedded in the temperature sensor support member. Bearings. 請求項9において、前記温度センサ支持部材の内部に、前記転走面温度センサの実装および配線のためのフレキシブル基板を設けたセンサ付車輪用軸受。   The sensor-equipped wheel bearing according to claim 9, wherein a flexible substrate for mounting and wiring of the rolling surface temperature sensor is provided inside the temperature sensor support member. 請求項8ないし請求項10のいずか1項において、前記転走面温度センサを複数個設け、これらの温度センサに接続される信号線を1つの貫通孔に挿通してこの貫通孔を密封したセンサ付車輪用軸受。   11. The rolling surface temperature sensor according to claim 8, wherein a plurality of the rolling surface temperature sensors are provided, signal lines connected to the temperature sensors are inserted into one through hole, and the through hole is sealed. Bearing for sensor wheel.
JP2008314165A 2008-10-15 2008-12-10 Sensor-equipped bearing for wheel Pending JP2010138959A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2008314165A JP2010138959A (en) 2008-12-10 2008-12-10 Sensor-equipped bearing for wheel
CN2009801409126A CN102187189B (en) 2008-10-15 2009-10-08 Sensor-equipped bearing for wheel
PCT/JP2009/005251 WO2010044228A1 (en) 2008-10-15 2009-10-08 Sensor-equipped bearing for wheel
KR1020117008618A KR101574304B1 (en) 2008-10-15 2009-10-08 Sensor-equipped bearing for wheel
EP09820406.8A EP2341327B1 (en) 2008-10-15 2009-10-08 Sensor-equipped bearing for wheel
US13/064,738 US8567260B2 (en) 2008-10-15 2011-04-12 Sensor-equipped bearing for wheel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008314165A JP2010138959A (en) 2008-12-10 2008-12-10 Sensor-equipped bearing for wheel

Publications (1)

Publication Number Publication Date
JP2010138959A true JP2010138959A (en) 2010-06-24

Family

ID=42349261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008314165A Pending JP2010138959A (en) 2008-10-15 2008-12-10 Sensor-equipped bearing for wheel

Country Status (1)

Country Link
JP (1) JP2010138959A (en)

Similar Documents

Publication Publication Date Title
JP5274343B2 (en) Wheel bearing with sensor
WO2010055636A1 (en) Sensor-equipped bearing for wheel
JP5171589B2 (en) Wheel bearing with sensor
JP5100567B2 (en) Wheel bearing with sensor
JP5143039B2 (en) Wheel bearing with sensor
JP2010096565A (en) Bearing for wheel with sensor
JP5424565B2 (en) Wheel bearing with sensor
JP5063270B2 (en) Wheel bearing with sensor
JP5268756B2 (en) Wheel bearing with sensor
WO2009101793A1 (en) Sensor-integrated bearing for wheel
WO2009098843A1 (en) Bearing for wheel with sensor
JP5268755B2 (en) Wheel bearing with sensor
JP2010127376A (en) Sensor equipped bearing for wheel
JP2010230406A (en) Wheel bearing with sensor
JP2010090982A (en) Wheel bearing with sensor
JP5355118B2 (en) Wheel bearing with sensor
JP2010242921A (en) Wheel bearing with sensor
JP5085290B2 (en) Wheel bearing with sensor
JP2010138959A (en) Sensor-equipped bearing for wheel
JP5072608B2 (en) Wheel bearing with sensor
JP2010101720A (en) Wheel bearing with sensor
JP2010144888A (en) Wheel bearing with sensor
JP5264206B2 (en) Wheel bearing with sensor
JP2009036556A (en) Wheel bearing with sensor
JP2009128335A (en) Wheel bearing with sensor