JP2010135638A - 電子線露光方法 - Google Patents

電子線露光方法 Download PDF

Info

Publication number
JP2010135638A
JP2010135638A JP2008311352A JP2008311352A JP2010135638A JP 2010135638 A JP2010135638 A JP 2010135638A JP 2008311352 A JP2008311352 A JP 2008311352A JP 2008311352 A JP2008311352 A JP 2008311352A JP 2010135638 A JP2010135638 A JP 2010135638A
Authority
JP
Japan
Prior art keywords
pattern
mask
electron beam
circuit
beam exposure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008311352A
Other languages
English (en)
Inventor
Yoshihiro Kato
順大 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Electronics Corp
Original Assignee
Renesas Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Electronics Corp filed Critical Renesas Electronics Corp
Priority to JP2008311352A priority Critical patent/JP2010135638A/ja
Publication of JP2010135638A publication Critical patent/JP2010135638A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Electron Beam Exposure (AREA)

Abstract

【課題】最適なCPパターンを適用して、TATを短縮すること。
【解決手段】設計ライブラリ構築段階において、マクロ・セルの回路動作上で特性に影響する重要箇所を、設計インテント情報として抽出し、対応するレイアウト部分をCPパターン(33)として抽出する。CPパターン(33)に対し寸法を変更したCPパターン群(32〜34)を作成する。製品設計段階において、セル設計ライブラリ(4)のマクロ・セルのレイアウトを参照してCPパターン(33)を適用した製品のチップレイアウトデータを作成する。チップレイアウトデータのリソグラフィシミュレーションにより出力される出来上がり予想レイアウトに対し、電気特性の予測シミュレーションを行う。予測シミュレーション結果が期待値を満足しない場合は、CPパターン(33)の代わりに、CPパターン群(32〜34)から最適CPパターンを選択し、電子線露光を行う。
【選択図】図2

Description

本発明は、試料に電子線を露光する電子線露光方法に関する。
LSI(Large−Scale Integrated circuit)を製造する場合、まず要求仕様に基づいた論理回路が設計される。次に論理回路を基にそれを半導体上で実現させるための具体的なレイアウトデータが生成される。半導体製造工程では、このレイアウトデータを使って半導体基板上にパターンを形成する。システムLSIは基本的な論理ブロックは予め設計されており、基本単位としてこれを組み合わせて配線することでチップ全体がレイアウトされる。
半導体上にパターンを形成する手法としては、種々の方法があるが、一般的にはKrF・ArFを代表とする光リソグラフィが適用される。光リソグラフィでは、レチクル(マスク)と呼ばれるガラス基板上にレイアウトパターンを、電子線(EB)露光装置を使って形成し、これを縮小投影して半導体基板に転写させる。また、レチクルを使用せず、EB露光装置を使って直接半導体基板にパターンを形成するEB直描という手法も半導体上のパターン形成手法として利用される。
電子線(EB)露光方法の一つとして、生産性向上のため、予め所望パターンが形成されたEB用マスクを使用するCP(Character Projection)露光法がある。CP露光で使用するEB用マスクには、通常、可変成形用の開口とレイアウトデータから抽出された繰り返しパターンを搭載した開口(CPマスク)が複数個搭載されている。通常、これらのCPマスクには、特開平5−13313号公報等に示されるように、設計データ(CADデータ)から繰り返し回数の多いストラクチャー(レイアウトパターン)がマスクデータとして抽出される。
レイアウトデータの電子回路に対しては、リソグラフィシュミレーションなどを通して最終的な出来上がりパターンにおける電気特性の予測解析が実施される。
解析の結果により得られた特性が、製品特性を満足する場合、光学近接効果補正(OPC:Optical Proximity Correction)処理などを含むMDP(Mask Data Preparation)処理を行い、引き続き、CPマスクを用いて電子線露光を行う。
一方、解析の結果により得られた値が期待値を満足しない場合には、リソグラフィシミュレーション結果を考慮して、CPパターンを含むマスクレイアウトデータの修正や、電子回路の再設計を行う。その後、再度リソグラフィシミュレーションを再度実行し、得られた最終的な出来上がりパターンを用いて電気特性の予測解析を再度実行する。
ここで、CP露光が適用された技術を紹介する。特開2006−310392号公報には、電子ビーム描画方法が記載されている。電子ビーム描画方法は、可変成形ビーム(VSB)とキャラクタビーム(CP)を用いて試料上のレジストにパターンを描画する。この電子ビーム描画方法では、描画を行う際の成形ビームの単位であるVSBショット及び繰り返しパターンの基本となるCPショットの集合で表される描画パターンデータと、VSBショット用の開口及びCPショット用の開口を有する成形アパーチャ(CPアパーチャ)に関する各開口の識別番号(ID)及び開口位置を記述したCPアパーチャデータと、により構成される電子ビーム描画データを用意する。次に、電子ビーム描画データを電子ビーム描画装置に入力する。次いで、電子ビーム描画装置により、電子ビーム描画データを該データに定義された各ショットのデータに展開し、展開した各ショットの照射時間を決定すると共にショット位置を補正し、ショットデータに対応した制御信号の出力を行うことにより、所望のパターンのショットを繰り返してレジストへのパターンの描画を行う。
特開平5−13313号公報 特開2006−310392号公報
上述のように、従来では、電子回路から作成したレイアウトデータのリソグラフィシミュレーション及びその結果を用いた電気特性の予測解析により、所望の電気特性を満足しないことが分かった場合、電子回路を設計する工程や、レイアウトデータを生成する工程にフィードバックする必要がある。このように、リソグラフィシュミレーション結果を考慮してCPパターンを変更することは、再回路設計や再リソグラフィシュミレーションが必要となり、TAT(Turn Around Time)が長くなってしまう。
以下に、発明を実施するための最良の形態・実施例で使用される符号を括弧付きで用いて、課題を解決するための手段を記載する。この符号は、特許請求の範囲の記載と発明を実施するための最良の形態・実施例の記載との対応を明らかにするために付加されたものであり、特許請求の範囲に記載されている発明の技術的範囲の解釈に用いてはならない。
課題を解決するために、本発明の電子線露光方法では、電子回路のマスクレイアウトデータを参照して、回路動作上で重要な回路構成要素に対応するマスクレイアウト形状を基準キャラクタプロジェクション(CP)パターン(33)として抽出するステップ(S1〜S5)と、基準CPパターン(33)に対し、寸法を変更したCPパターン群(32〜34)を生成するステップ(S6)と、前記CPパターン群(32〜34)からCPマスク(30)を生成するステップ(S8)と、基準CPパターン(33)を適用したマスクレイアウトデータ(6)に対してリソグラフィシミュレーションを行い、その結果として、出来上がりレイアウトを生成するステップ(S14)と、出来上がりレイアウトに対して電気特性シミュレーションを行うステップ(S15)と、電気特性シミュレーションの結果に基づいて、CPパターン群から最適寸法を表す最適CPパターンを選択するステップ(S16〜S19)と、最適CPパターンに対応するCPマスク(30)を用いてマスクレイアウトデータ(6)に基づいて電子線露光するステップ(S20〜S21)と、を具備している。
本発明の電子線露光方法によれば、電子回路の動作上で重要な回路構成要素に対応するマスクレイアウト形状をCPパターンとして抽出し、CPパターンに対して、寸法を変更したCPパターン群を予め作成している。このため、リソグラフィシミュレーション後の電子特性シミュレーションで、所望の電気特性が得られなかった場合でも、CPパターン群から最適寸法のCPパターンを選択すればよく、改めて、電子回路設計等の前工程に戻る必要がなくTAT(Turn Around Time)を短縮することができる。
以下に添付図面を参照して、本発明の実施形態による電子線露光方法について詳細に説明する。
図1は、本発明の実施形態による電子線露光方法が適用されるシステムを示している。このシステムは、電子線露光制御装置1と、電子線露光機100と、を具備している。電子線露光機100は公知の露光機であり、その説明については省略する。図2は、電子線露光制御装置1のコンピュータプログラム10の構成を示すブロック図である。図1と図2を参照して本発明の実施例を説明する。
電子線露光制御装置1は、CP(Character Projection)露光を行う。CP露光とは、電子線露光時間を短縮するために開発された方法であり、電子線露光機100内の所定の場所に設置されたCPマスクを用いて電子線露光を行う方法である。電子線は、電子線露光機100に設置された試料101(レチクルまたはウエハ)に照射され、電子線露光が行われる。
電子線露光制御装置1は、コンピュータであり、CPU(Central Processing Unit)2と、メモリ3と、を具備している。メモリ3には、CPU2が実行するためのコンピュータプログラム10と、セル設計ライブラリ4と、製品マスクライブラリ14が格納されている。セル設計ライブラリ4には、製品回路設計に必要な基本構成であるマクロやセルの回路及びマスクレイアウトデータが格納されている。
コンピュータプログラム10は、マクロ・セル回路設計部11、選択部12、CPマスク抽出部13、製品設計部41、電気特性解析部15、電子線データ生成部16、露光機制御部17で構成される。
次に、図2〜図11を用いて、電子線露光制御装置1の動作について説明する。
図7は、電子線露光制御装置1の動作として、設計ライブラリ構築段階を示すフローチャートである。
ステップS1において、マクロ・セル回路設計部11では、設計者の指示により、製品回路設計で用いられる基本機能を有するマクロ・セルの電子回路5を設計する。マクロ・セルの電子回路5の例を図3に示す。図3には機能マクロの一例である論理回路が示されている。この機能マクロでは、入力端子A、B、Cと出力端子X、Yと、インバータ回路5−1、5−2と、NAND回路5−3、5−4、5−5、NOR回路5−6で構成される。なお、マクロ・セル回路設計部11には、回路シミュレーションする機能も有しており、設計中の回路に対し、電気特性をシミュレーションすることもできる。この機能により、設計者は、電気特性を確認しながら、マクロ・セルの電子回路設計をすることができる。
ステップS2では、選択部12は、電子回路5によりマクロ・セルの回路動作上で特性に影響する重要な部位(回路構成要素)を設計インテント情報として抽出する。回路動作上で特性に影響する重要な部位は、設計者により予め決められた機能マクロの設計仕様及び、マクロ・セル回路設計部11内にある回路シミュレータにより、決定される。例えば、図3に示す機能マクロの設計仕様で、入力端子Cにクロック配線5−16が接続され、出力端子XとYへの出力タイミングが重要である場合、クロック配線5−16の配線容量や配線抵抗が重要となる。また、マクロ・セル回路設計部11内にある回路シミュレータにより、機能マクロの入出力特性に対する、配線幅や配線容量、論理回路のゲート幅等のパラメータの感度解析が行われ、特性に影響する重要な部位が検出される。例えば、その結果、インバータ回路5−1とインバータ回路5−2と、NAND回路5−3と、NAND回路5−4を構成する各トランジスタのゲート長が、回路特性に影響する重要な部位として検出される。
選択部12は、格納部である設計インテント部21を備えていて、これらの部位に関する情報を、設計インテント情報として、設計インテント部21に記憶する。具体的には、各部位の識別情報が設計インテント部21に記憶される。図3の機能マクロの場合、インバータ回路5−1、5−2とNAND回路5−3、5−4を構成する各トランジスタのゲートと、クロック配線5−16に対する、識別情報が、設計インテント部に記憶される。
ステップS3では、選択部12は、作成されたマクロ・セルの電子回路5に対応するマスクレイアウトを表すマスクレイアウトデータ6を生成し、セル設計ライブラリ4に格納する。図3では、クロック配線5−16に対応するマスクレイアウトデータの一部がクロック配線20として図示されている。クロック配線20は他の信号線からの影響等を防ぐために、シールド配線で囲まれたレイアウトになっている。
ステップS4では、選択部12は、生成されたマスクレイアウトデータ6に設計インテント情報を付加する。具体的には、設計インテント部21に記憶された識別情報を用いて、電子回路5上の、回路特性に影響する重要な部位に対応する、マスクレイアウトデータ6上のレイアウト部位を検出する。検出したレイアウト部位のレイアウト属性には、設計インテント情報で抽出さていることを示す情報を付加する。例えば、レイアウト属性のデータタイプをtype2に変更する。これにより、マスクレイアウトデータ6において、レイアウト属性のデータタイプがtype2のものを選択すれば容易に、設計インテント情報で抽出されたレイアウト部位を選択することができる。
ステップS5では、CPマスク抽出部13は、マスクレイアウトデータ6を参照して、設計インテント情報に基づいて、マクロ・セルの回路動作上で特性に影響する重要な部位(回路構成要素)を、CPパターン33(基準CPパターン33とも称する)として抽出する。図3に示すレイアウト図では、クロック配線20が設計インテント情報により、CPパターン33として抽出される。ここで、CPマスク抽出部13のCP対応情報22に、CPパターン33の識別情報と、マスクレイアウト上の座標位置やレイアウト属性とを対応付ける情報が記憶される。
次にステップS6において、CPマスク抽出部13は、CPパターン33の寸法を変更したCPパターン群32〜34を作成する。CPパターン群32〜34は、CPパターン33の寸法を一定の割合で拡大、及び縮小したものである。図4は、CPマスクの一例が記載されている。図4では、CPパターン32と34は、CPパターン33に対し、相似形を保ちながらそれぞれx%(xは0<x<100を満たす正数)拡大及び縮小したものを示している。図4では、CPパターン群として、縮小水準、中心水準、拡大水準の3水準を示しているが、3水準より水準数を増やしてもかまわない。
ステップS7では、CPマスク抽出部13は、マスクレイアウトデータ6から、レイアウト形状として、繰り返し使用されている形状を、繰り返しCPパターン31として抽出する。図3のレイアウトでは、シールド配線の形状は、他の配線形状でも使用されている頻度が高いため、CPパターン31として、シールド配線のレイアウト形状を抽出する。CPパターン31についても、CPパターン33と同様に、CP対応情報22に、CPパターン31の識別情報と、マスクレイアウト上の座標位置やレイアウト属性とを対応付ける情報が記憶される。
ステップS8では、CPマスク抽出部13は、繰り返しCPパターン31とCPパターン群32〜34に対応するCPマスク30のためのマスク用図面7を作成し、CPマスク30を作製する。図4にCPマスク30の一部の例を示す。CPマスク30には、繰り返しCPパターン31と、CPパターン群32〜34が複数配置される。図3のレイアウトを用いたCPパターン33では、クロック配線20を例として用いたが、設計インテント情報で抽出している、NAND回路5−3等を構成する各トランジスタのゲートについても同じく処理される。すなわち、CPパターン33は一種類ではなく、設計インテント情報で抽出したすべての箇所に対して適用される。したがって、設計インテント情報により抽出された箇所の数だけ、CPパターン群32〜34が存在する。
図8は、電子線露光制御装置1の動作として、設計ライブラリ構築段階の後に実行される、製品設計段階を示すフローチャートである。
まず、ステップS11において、製品設計部41は、セル設計ライブラリ4を参照して、設計者の指示により、LSI(Large−Scale Integrated circuit)の製品用電子回路が設計される。例えば図3に示す電子回路5をセルとして、LSIの製品用電子回路に組み込まれる。
次に、ステップS12において、製品設計部41は、LSIの製品用電子回路に対応するチップレイアウトデータ8を生成し、製品マスクライブラリ14に格納する。ここで、製品用電子回路において、セル設計ライブラリ4のマクロ・セル回路を参照している箇所は、CPパターン群の中心寸法のCPパターン33を用いて、チップレイアウトデータ8を作成する。
ステップS11及びS12の工程を具体的に例示したものを図5に示す。セル設計ライブラリ4には、例えば図3に示す回路のマスクレイアウトパターン(クロック配線20を含む)が保存されている。このセル設計ライブラリ4を参照して製品用電子回路が作成され、チップレイアウトデータ8が作成される。チップレイアウトデータ8には、セル設計ライブラリ4のセルレイアウトが組み込まれる。組み込まれたセルレイアウトには、設計インテント情報が付与されている。例えば、図3に示すセルレイアウトの場合、クロック配線20には、レイアウトデータのデータタイプ属性としてType02等の識別情報を付与する。つまり、チップレイアウトデータ8の中で、データタイプ属性がType02であれば、設計インテント部として抽出された箇所であることを判別することができる。
次に、電気特性解析部15は、ステップS14からステップS19を実行する。ステップS14において、製品マスクライブラリ14を参照して、チップレイアウトデータ8に対し、リソグラフィシミュレーションを実行し、その結果として、フォトレジスト露光後の出来上がり予想レイアウトを生成する。ステップS14では、OPC(Optical Proximity Correction:光学近接効果補正)等が考慮された出来上がり予想レイアウトが出力される。
引き続き、ステップS15において、電気特性解析部15は、出来上がり予想レイアウトに対し、電気特性の予測解析を行う。ステップS15における電気特性の解析としては、製品用電子回路の動作やそのタイミングなどを解析するためのシミュレーションが例示される。ここでは、例えば配線幅が光学近接効果等により、設計ライブラリ構築段階で意図しない幅となった場合でも、製品スペックを満たすかどうか検証される。ステップS16において、製品スペックを満足しなくなる場合としては、例えば、図5においてクロック配線20の幅が、出来上がり予想レイアウトにおいて狭くなり、配線抵抗が増加した結果、タイミングずれが発生する、等が考えられる。
予測解析により得られた電気特性が製品スペックを満足している場合(ステップS16−YES)、電子線データ生成部16は、セル設計ライブラリ4を参照している箇所のCPマスク寸法で問題ないとして、CPパターン33を選択する(ステップS19)。
一方、予測解析により得られた電気特性が製品スペックを満足していない場合(ステップS16−NO)、電子線データ生成部16は、CPパターン33の寸法をパラメータとして、製品スペックを満足するための最適寸法を決定する。例えば、寸法を変えて電気特性シミュレーションを行い、製品スペックを満たす最適寸法幅が決められる(ステップS17)。図5の場合は、クロック配線20の配線幅を大きくすることになる。引き続き、CPパターン群32〜34の中から、ステップS17において得られた最適寸法幅に最も近いCPパターンを選択する(ステップS18)。更に、出来上がりレイアウト幅が、最適寸法幅に近づくように、電子線露光のドーズ量を調整する。
引き続くステップS34において、ステップS18で得られた最適CPパターン32〜34の情報が、マクロ・セル回路設計部11と、製品設計部41にフィードバックされ、該当するCPパターン群32〜34の箇所に最適CPパターンが設定される。
ステップS18で得られた最適CPパターン32〜34の情報が製品設計部41にフィードバックされることにより、次回、製品仕様等の変更に伴い、製品用電子回路の一部を変更した場合に、新しく追加されたCPパターン群32〜34のみについてステップS14〜ステップS18、S34を実行すれば良くなるため、これらの処理にかかる時間を削減することができる。
ステップ19又はステップS34の後に、ステップS20が実行される。MDP(Mask Data Preparation)を例示したものを図6に示す。チップレイアウトデータ8にセル設計ライブラリ4から参照されているセルレイアウトに対し、具体的にCPマスク群32〜34のいずれかを指定したCPマスク対応の電子線露光(EB)データ9を作成する。このときに、OPC(Optical Proximity Correction:光学近接効果補正)とマスクレイアウトデータ6から後述のCP対応電子線データ9に変換するための変換情報を生成するフラクチャリングと、ホットスポット検証も行う。ホットスポット検証は、LRC(Lithographt rule check)により実施される。
引き続いて、ステップS21が実行される。電子線露光機100には、試料101とCPマスク30とが設置される。露光機制御部17は、ステップS19又はS20により生成されたCP対応電子線データ9に基づいてCPマスク30を介して試料101に電子線が露光されるように、電子線露光機100を制御する。
図11は、一度、製品設計段階の処理を行った後に、一部回路を変更し、再度、製品設計段階を実行する場合のフローを示す。この場合、図8のステップS11、S12に代えて、ステップS31、S32が実行される。ステップS31では、マクロ・セル回路設計部11は、一度設計した製品用電子回路の一部を修正・変更した回路を設計する。引き続くステップS32では、CPマスク抽出部13は、複数あるCPパターン群32〜34のうち、前回ステップS18で最適CPパターンが決定されたCPパターン群32〜34に対しては、最適CPパターンを選択し、今回追加されたCPパターン群32〜34については、中心寸法のCPパターン33を選択し、製品設計部41は、製品用電子回路のチップレイアウトデータ8を生成する。その他の動作は上述と同じである。
ステップS2における設計インテント情報により抽出される箇所を特定する方法として、ゲートを例にして説明する。
ゲートの場合は、マスク・セル回路設計部11において、回路シミュレーションを行い特性に影響を及ぼす箇所として、ゲートを抽出する方法以外に、マスクレイアウトデータ6からゲートの箇所を検出することができる。例えば、ポリシリコン層20−2と、拡散層20−1が図9のように形成されている場合、ゲートは両者が重なるところに形成される。すなわち図10の斜線で示された箇所がゲートとして抽出される。
本発明の実施形態による電子線露光方法の効果について説明する。
本発明の実施形態による電子線露光方法では、設計ライブラリ構築段階において、電子回路5のマスクレイアウトデータ6を参照して、回路動作上で重要な回路構成要素に対応するマスクレイアウト形状を基準CPパターン33として抽出する。この基準CPパターン33の抽出としては、まず、電子回路5を設計し、その電子回路5により回路動作上で重要な回路構成要素を設計インテント情報として抽出する。また、電子回路5に対応するマスクレイアウトを表すマスクレイアウトデータ6を生成し、マスクレイアウトデータ6に設計インテント情報を付加する。そのマスクレイアウトデータ6を参照して、設計インテント情報に基づいて、回路動作上で重要な回路構成要素を基準CPパターン33として抽出する。
また、本発明の実施形態による電子線露光方法では、設計ライブラリ構築段階において、基準CPパターン33に対し、寸法を変更したCPパターン群32〜34を生成し、そのCPパターン群32〜34からCPマスク30を生成する。CPパターン群32〜34は、基準の寸法を表す基準CPパターン33と、基準CPパターン33に対し、相似形を保ちながら拡大したCPパターン32と、基準CPパターン33に対し、相似形を保ちながら縮小したCPパターン34と、を含んでいる。
本発明の実施形態による電子線露光方法では、製品設計段階において、基準CPパターン33を適用したマスクレイアウトデータ6に対してリソグラフィシミュレーションを行い、その結果として、出来上がりレイアウトを生成する。この出来上がりレイアウトに対して電気特性シミュレーションを行う。その電気特性シミュレーションの結果に基づいて、CPパターン群32〜34から最適寸法を表す最適CPパターンを選択する。最適CPパターンに対応するCPマスク30を用いてマスクレイアウトデータ6に基づいて電子線露光する。そこで、設計ライブラリ構築段階において、電子回路5のマスクレイアウトデータ6を参照して、繰り返し使用されるマスクレイアウト形状を、繰り返しCPパターン31として抽出し、この繰り返しCPパターン31からCPマスクを生成することが好ましい。これにより、製品設計段階において、最適CPパターンに対応するCPマスク30に加えて、繰り返しCPパターン31に対応するCPマスクを用いて、マスクレイアウトデータ6に基づいて電子線露光することができる。
このように、本発明の実施形態による電子線露光方法によれば、電子回路5の動作上で重要な回路構成要素に対応するマスクレイアウト形状をCPパターン33として抽出し、CPパターン33に対して、寸法を変更したCPパターン群32〜34を予め作成している。このため、リソグラフィシミュレーション後の電子特性シミュレーションで、所望の電気特性が得られなかった場合でも、CPパターン群32〜34から最適寸法のCPパターンを選択すればよく、改めて、電子回路設計等の前工程に戻る必要がなくTAT(Turn Around Time)を短縮することができる。
また、本発明の実施形態による電子線露光方法によれば、CPマスク30ではステンシル開口を使って露光する。この場合、特性に影響する重要な部位のレイアウトをCPマスク30で電子線露光するため、重要な部位のレイアウト寸法精度を高くすることができ、特性のばらつきが押さえられる。
また、本発明の実施形態による電子線露光方法によれば、予め、特性に影響する重要な箇所はCPパターン群を作成し、予め寸法を変えたCPマスクを用意している。このため、製品設計段階で、リソグラフィシミュレーションと電気特性の予測解析により、特性に影響する重要な部位の寸法を変更しなければならなくなった場合でも、CPパターン群32〜34のCPマスク30を選択することで対応でき、レイアウトデータ作成から電子線露光までのTAT短縮が可能である。
図1は、本発明の実施形態による電子線露光方法が適用されるシステムを示している。 図2は、電子線露光制御装置1の動作を示すブロック図である。 図3は、設計ライブラリ構築段階を説明するための図である。 図4は、CPマスク抽出部13を説明するための図である。 図5は、製品設計段階における製品設計部41を説明するための図である。 図6は、製品設計段階におけるMDP処理を説明するための図である。 図7は、設計ライブラリ構築段階におけるフローチャートである。 図8は、製品設計段階におけるフローチャートである。 図9は、選択構成要素20としてゲートを例にして、準備段階のステップS2を説明するための図である。 図10は、選択構成要素20としてゲートを例にして、準備段階のステップS2を説明するための図である。 図11は、製品回路を一部変更した場合の製品設計段階におけるフローチャートである。
符号の説明
1 電子線露光制御装置、
2 CPU、
3 メモリ、
4 セル設計ライブラリ、
5 電子回路、
6 マスクレイアウトデータ、
7 CPマスク用図面、
8 チップレイアウトデータ、
9 CP対応電子線データ、
10 コンピュータプログラム、
11 マクロ・セル回路設計部、
12 選択部、
13 CPマスク抽出部、
14 製品マスクライブラリ、
15 電気特性解析部、
16 電子線データ生成部、
17 露光機制御部、
21 設計インテント部、
22 CP対応情報、
30 CPマスク、
31 CPパターン、
32〜34 CPパターン群、
41 製品設計部、
100 電子線露光機、
101 試料(レチクル/ウェハ)、

Claims (8)

  1. 電子回路のマスクレイアウトデータを参照して、回路動作上で重要な回路構成要素に対応するマスクレイアウト形状を基準キャラクタプロジェクション(CP)パターンとして抽出するステップと、
    前記基準CPパターンに対し、寸法を変更したCPパターン群を生成するステップと、
    前記CPパターン群からCPマスクを生成するステップと、
    前記基準CPパターンを適用した前記マスクレイアウトデータに対してリソグラフィシミュレーションを行い、その結果として、出来上がりレイアウトを生成するステップと、
    前記出来上がりレイアウトに対して電気特性シミュレーションを行うステップと、
    前記電気特性シミュレーションの結果に基づいて、前記CPパターン群から最適寸法を表す最適CPパターンを選択するステップと、
    前記最適CPパターンに対応するCPマスクを用いて前記マスクレイアウトデータに基づいて電子線露光するステップと、
    を具備する電子線露光方法。
  2. 前記電子回路のマスクレイアウトデータを参照して、繰り返し使用されるマスクレイアウト形状を、繰り返しCPパターンとして抽出するステップと、
    前記繰り返しCPパターンからCPマスクを生成するステップと、
    を更に具備し、
    前記電子線露光するステップは、前記最適CPパターンに対応するCPマスクに加えて、前記繰り返しCPパターンに対応するCPマスクを用いて、前記マスクレイアウトデータに基づいて電子線露光する、
    請求項1に記載の電子線露光方法。
  3. 前記基準CPパターンを抽出するステップは、
    前記電子回路を設計するステップと、
    前記電子回路により前記回路動作上で重要な回路構成要素を設計インテント情報として抽出するステップと、
    前記電子回路に対応するマスクレイアウトを表す前記マスクレイアウトデータを生成するステップと、
    前記マスクレイアウトデータに前記設計インテント情報を付加するステップと、
    前記マスクレイアウトデータを参照して、前記設計インテント情報に基づいて、前記回路動作上で重要な回路構成要素を前記基準CPパターンとして抽出するステップと、
    を含む請求項1又は2に記載の電子線露光方法。
  4. 前記CPパターン群は、
    基準の寸法を表す前記基準CPパターンと、
    前記基準CPパターンに対し、相似形を保ちながら拡大したCPパターンと、
    前記基準CPパターンに対し、相似形を保ちながら縮小したCPパターンと、
    を含む請求項1〜3のいずれかに記載の電子線露光方法。
  5. 電子回路のマスクレイアウトデータを参照して、回路動作上で重要な回路構成要素に対応するマスクレイアウト形状を基準キャラクタプロジェクション(CP)パターンとして抽出し、前記基準CPパターンに対し、寸法を変更したCPパターン群を生成し、前記CPパターン群からCPマスクを生成するCPマスク抽出部と、
    前記基準CPパターンを適用した前記マスクレイアウトデータに対してリソグラフィシミュレーションを行い、その結果として、出来上がりレイアウトを生成し、前記出来上がりレイアウトに対して電気特性シミュレーションを行う電気特性解析部と、
    前記電気特性シミュレーションの結果に基づいて、前記CPパターン群から最適寸法を表す最適CPパターンを選択する電子線データ生成部と、
    前記最適CPパターンに対応するCPマスクを用いて前記マスクレイアウトデータに基づいて電子線露光する露光機制御部と、
    を具備する電子線露光制御装置。
  6. 前記CPマスク抽出部は、
    前記電子回路のマスクレイアウトデータを参照して、繰り返し使用されるマスクレイアウト形状を、繰り返しCPパターンとして抽出し、
    前記繰り返しCPパターンからCPマスクを生成し、
    前記露光機制御部は、前記最適CPパターンに対応するCPマスクに加えて、前記繰り返しCPパターンに対応するCPマスクを用いて、前記マスクレイアウトデータに基づいて電子線露光する、
    請求項5に記載の電子線露光制御装置。
  7. 前記電子回路を設計する回路設計部と、
    前記電子回路により前記回路動作上で重要な回路構成要素を設計インテント情報として抽出し、前記電子回路に対応するマスクレイアウトを表す前記マスクレイアウトデータを生成し、前記マスクレイアウトデータに前記設計インテント情報を付加する選択部と、
    を更に具備し、
    前記CPマスク抽出部は、
    前記マスクレイアウトデータを参照して、前記設計インテント情報に基づいて、前記回路動作上で重要な回路構成要素を前記基準CPパターンとして抽出する、
    請求項5又は6に記載の電子線露光制御装置。
  8. 前記CPパターン群は、
    基準の寸法を表す前記基準CPパターンと、
    前記基準CPパターンに対し、相似形を保ちながら拡大したCPパターンと、
    前記基準CPパターンに対し、相似形を保ちながら縮小したCPパターンと、
    を含む請求項5〜7のいずれかに記載の電子線露光制御装置。
JP2008311352A 2008-12-05 2008-12-05 電子線露光方法 Withdrawn JP2010135638A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008311352A JP2010135638A (ja) 2008-12-05 2008-12-05 電子線露光方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008311352A JP2010135638A (ja) 2008-12-05 2008-12-05 電子線露光方法

Publications (1)

Publication Number Publication Date
JP2010135638A true JP2010135638A (ja) 2010-06-17

Family

ID=42346615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008311352A Withdrawn JP2010135638A (ja) 2008-12-05 2008-12-05 電子線露光方法

Country Status (1)

Country Link
JP (1) JP2010135638A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013145856A (ja) * 2012-01-16 2013-07-25 Fujitsu Semiconductor Ltd 関連付け方法、関連付けプログラム、および関連付け装置
CN109839798A (zh) * 2017-11-28 2019-06-04 三星电子株式会社 极紫外掩模制造法、提供监控宏的方法及光学邻近校正法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013145856A (ja) * 2012-01-16 2013-07-25 Fujitsu Semiconductor Ltd 関連付け方法、関連付けプログラム、および関連付け装置
CN109839798A (zh) * 2017-11-28 2019-06-04 三星电子株式会社 极紫外掩模制造法、提供监控宏的方法及光学邻近校正法
CN109839798B (zh) * 2017-11-28 2023-12-19 三星电子株式会社 极紫外掩模制造法、提供监控宏的方法及光学邻近校正法

Similar Documents

Publication Publication Date Title
US7934177B2 (en) Method and system for a pattern layout split
US7526748B2 (en) Design pattern data preparing method, mask pattern data preparing method, mask manufacturing method, semiconductor device manufacturing method, and program recording medium
KR100437980B1 (ko) 디자인 룰 작성 방법, 디자인 룰 작성 시스템 및 기록 매체
US7194725B1 (en) System and method for design rule creation and selection
JP2007080965A (ja) 半導体装置の製造方法、これに用いられるライブラリ、記録媒体および半導体製造装置
CN111128997A (zh) 产生集成电路布局图的方法
JP2008176303A (ja) マスク生成方法、マスク形成方法、パターン形成方法および半導体装置
US8997027B2 (en) Methods for modifying an integrated circuit layout design
JP2009031460A (ja) マスクパターンの作成方法、作成装置及び露光用マスク
CN102117010B (zh) 一种光学邻近修正方法
JP2004320004A (ja) 集積回路の重ね合せ不良を予測するためのモンテカルロ・シミュレーションを行う方法
US8352891B2 (en) Layout decomposition based on partial intensity distribution
US20070077504A1 (en) Method for OPC model generation
JP2011049464A (ja) 半導体装置の設計方法
JP2004038046A (ja) 補正マスクパターン検証装置および補正マスクパターン検証方法
JP2010135638A (ja) 電子線露光方法
JP2008020734A (ja) 半導体装置の設計パターン作成方法、プログラム、及び半導体装置の製造方法
JP2000260879A (ja) レイアウト設計支援装置、コンピュータ読み取り可能な記録媒体
CN112668271A (zh) 集成电路器件设计方法和系统
TW202331580A (zh) 積體電路的佈局圖的修改方法及修改系統及電腦編程產品
US7275225B2 (en) Correcting design data for manufacture
JP2009026045A (ja) 半導体集積回路のレイアウト作成装置および半導体集積回路の製造方法
US9165095B2 (en) Target point generation for optical proximity correction
JP2007199256A (ja) 集積回路の設計方法、設計装置及びプログラム
TW202129396A (zh) 利用光罩製作模型於微影光罩之修正

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20120207