JP2010133661A - Air conditioning-power generating device - Google Patents

Air conditioning-power generating device Download PDF

Info

Publication number
JP2010133661A
JP2010133661A JP2008311253A JP2008311253A JP2010133661A JP 2010133661 A JP2010133661 A JP 2010133661A JP 2008311253 A JP2008311253 A JP 2008311253A JP 2008311253 A JP2008311253 A JP 2008311253A JP 2010133661 A JP2010133661 A JP 2010133661A
Authority
JP
Japan
Prior art keywords
power
storage battery
engine
air conditioning
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008311253A
Other languages
Japanese (ja)
Inventor
Tomio Mogi
富雄 茂木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2008311253A priority Critical patent/JP2010133661A/en
Publication of JP2010133661A publication Critical patent/JP2010133661A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an air conditioning-power generating device improved in energy efficiency as the whole system by utilizing energy of cooling water of a water-cooled engine for charging a battery and heating and retaining in use, and utilizing inexpensive midnight power. <P>SOLUTION: In this air conditioning-power generating device 10 including the engine 23, a compressor 21 for air conditioning and a power generating device 24 driven by the engine 23, and the battery 41, the engine 23 includes a cooling circuit 1 (15) performing the cooling by circulating the cooling water, and the battery 41 includes a cooling circuit 2 (16) performing the heating by circulating the cooling water of the cooling circuit 1(15) absorbing heat in cooling the engine 23. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、空調・発電装置に関するものであり、さらに詳しくは、エンジンで空調用圧縮機及び発電装置を駆動して空調と発電とを同時に行う空調・発電装置に関するものである。   The present invention relates to an air conditioning / power generation device, and more particularly to an air conditioning / power generation device that drives an air conditioning compressor and a power generation device with an engine to simultaneously perform air conditioning and power generation.

従来、エンジン駆動式空気調和装置には、空調用冷媒回路に設けられた空調用圧縮機をガスエンジンで駆動して空調運転を行うと共に、ガスエンジンで発電装置を駆動して発電電力を商用系統に供給するものが知られている(例えば、特許文献1参照)。
この種の空調・発電装置は、空調負荷に基づいてガスエンジンを制御して運転能力を可変制御する制御装置を備え、この制御装置が、被調和室の室温が目標温度に達すると、ガスエンジンの運転を停止させている。
また、ガスエンジンと、このガスエンジンで駆動される空調用圧縮機および発電装置と、蓄電池と、エンジンを制御して運転能力を可変制御する制御装置とを備える空調・発電装置(例えば、特許文献2参照)が提案されており、前記制御装置は、前記エンジンに供給するガスの消費量を制限することにより、運転能力の制限制御を容易に行うことができるように構成されている。
特開2004−309087号公報 特開2008−1070007号公報
Conventionally, in an engine-driven air conditioner, an air-conditioning compressor provided in an air-conditioning refrigerant circuit is driven by a gas engine to perform an air-conditioning operation, and a power generator is driven by the gas engine to generate generated power. Is known (see, for example, Patent Document 1).
This type of air conditioning and power generation device includes a control device that variably controls the operation capacity by controlling the gas engine based on the air conditioning load. When the control device reaches the target temperature, the gas engine The operation of is stopped.
In addition, an air conditioning / power generation device including a gas engine, an air conditioning compressor and a power generation device driven by the gas engine, a storage battery, and a control device that variably controls the operation capacity by controlling the engine (for example, Patent Documents) 2), and the control device is configured to be able to easily perform the restriction control of the driving capacity by limiting the consumption of the gas supplied to the engine.
JP 2004-309087 A JP 2008-1070007 A

しかし、従来の空調・発電装置の構成は、ガスエンジンには水冷式エンジンが使用され、一方、蓄電池は発電装置の発電電力により充電しておき、停電の際や電圧変動あるはピ−ク電力の際に蓄電池からの電力を利用するバックアップ電源として利用する構成となっているが、前記蓄電池が、特に高温作動型溶融塩型2次蓄電池である固体電解質型あるいは溶融塩型蓄電池など作動温度が250〜400℃の高温度である場合、空調・発電装置システム全体としてのエネルギー効率の観点からいまだ改良の余地があった。   However, the conventional air-conditioning / power generation system uses a water-cooled engine as the gas engine, while the storage battery is charged with the power generated by the power generation system. In this case, the storage battery is used as a backup power source that uses electric power from the storage battery. However, the storage battery has an operating temperature such as a solid electrolyte type or a molten salt type storage battery that is a high temperature operation type molten salt type secondary storage battery. In the case of a high temperature of 250 to 400 ° C., there is still room for improvement from the viewpoint of energy efficiency of the entire air conditioning and power generation system.

即ち、図3に示すように従来の蓄電ユニット40Aは、断熱容器上蓋45を装着した断熱容器46中に収容された蓄電池41(例えば、高温作動型溶融塩型2次蓄電池)と、蓄電池41を作動温度まで加熱・維持するための側面用電気ヒ−タ47と底面用電気ヒ−タ48と、蓄電池41を充電するための図示しない充電器、蓄電コントローラ、電極49、各蓄電池41間に充填した図示しない保温材とを備えており、蓄電池41の作動時には側面用電気ヒ−タ47と底面用電気ヒ−タ48によって250〜400℃の高温度まで加熱・維持していたので、このために用いる使用電力量が大きくなり空調・発電装置システム全体としてのエネルギー効率の観点からいまだ改良の余地があった。   That is, as shown in FIG. 3, a conventional power storage unit 40A includes a storage battery 41 (for example, a high temperature operation type molten salt secondary storage battery) housed in a heat insulating container 46 fitted with a heat insulating container upper lid 45, and a storage battery 41. The electric heater 47 for the side surface for heating and maintaining up to the operating temperature, the electric heater 48 for the bottom surface, a charger (not shown) for charging the storage battery 41, a storage controller, the electrode 49, and the storage battery 41 are filled. In this case, the storage battery 41 is heated and maintained up to a high temperature of 250 to 400 ° C. by the side heater 47 and the bottom heater 48 when the storage battery 41 is operated. However, there is still room for improvement from the viewpoint of the energy efficiency of the air conditioning and power generation system as a whole.

本発明の目的は、従来の問題を解決し、水冷式エンジンの冷却水の有するエネルギーを電池の充電や使用時の加熱・維持に利用するとともに、安価な深夜電力の利用も図れるように構成して空調・発電装置システム全体としてのエネルギー効率を向上させた空調・発電装置を提供することである。   An object of the present invention is to solve the conventional problems and to use the energy of cooling water of a water-cooled engine for charging and heating / maintaining the battery at the time of use, and also to use inexpensive midnight power. Therefore, it is to provide an air conditioner / power generation device with improved energy efficiency as a whole air conditioner / power generation system.

上述した課題を解決するため、本発明の請求項1記載の空調・発電装置は、エンジンと、このエンジンで駆動される空調用圧縮機および発電装置と、固体電解質型あるいは溶融塩型蓄電池とを備える空調・発電装置において、
前記エンジンは冷却水を循環させて冷却する冷却する冷却回路1を備えるとともに、前記蓄電池は前記エンジンを冷却して吸熱した前記冷却回路1の冷却水を循環させて加熱するための冷却回路2を備えたことを特徴とする。
In order to solve the above-described problem, an air conditioning / power generation device according to claim 1 of the present invention includes an engine, an air conditioning compressor and a power generation device driven by the engine, and a solid electrolyte type or molten salt type storage battery. In the air conditioning and power generation equipment provided,
The engine has a cooling circuit 1 for cooling by circulating cooling water, and the storage battery has a cooling circuit 2 for circulating and heating the cooling water of the cooling circuit 1 that has cooled and absorbed the engine. It is characterized by having.

本発明の請求項2記載の空調・発電装置は、請求項1記載の空調・発電装置において、前記蓄電池が高温作動型2次蓄電池である固体電解質型あるいは溶融塩型蓄電池であることを特徴とする。   The air conditioning / power generation device according to claim 2 of the present invention is the air conditioning / power generation device according to claim 1, characterized in that the storage battery is a solid electrolyte storage battery or a molten salt storage battery which is a high temperature operation type secondary storage battery. To do.

本発明の請求項3記載の空調・発電装置は、請求項1あるいは請求項2記載の空調・発電装置において、前記冷却回路2に蓄熱槽を設けるとともに、前記蓄電池を加熱するための放熱器を備えたことを特徴とする。   The air conditioning / power generation device according to claim 3 of the present invention is the air conditioning / power generation device according to claim 1 or 2, wherein a heat storage tank is provided in the cooling circuit 2, and a radiator for heating the storage battery is provided. It is characterized by having.

本発明の請求項1記載の空調・発電装置は、エンジンと、このエンジンで駆動される空調用圧縮機および発電装置と、固体電解質型あるいは溶融塩型蓄電池とを備える空調・発電装置において、
前記エンジンは冷却水を循環させて冷却する冷却する冷却回路1を備えるとともに、前記蓄電池は前記エンジンを冷却して吸熱した前記冷却回路1の冷却水を循環させて加熱するための冷却回路2を備えたことを特徴とするものであり、
水冷式エンジンの冷却水の有するエネルギーを蓄電池の充電や使用時の加熱に利用するとともに、安価な深夜電力の利用も図れるように構成したので空調・発電装置システム全体としてのエネルギー効率を向上できるという顕著な効果を奏する。
The air conditioning / power generation device according to claim 1 of the present invention is an air conditioning / power generation device including an engine, an air conditioning compressor and a power generation device driven by the engine, and a solid electrolyte type or molten salt type storage battery.
The engine has a cooling circuit 1 for cooling by circulating cooling water, and the storage battery has a cooling circuit 2 for circulating and heating the cooling water of the cooling circuit 1 that has cooled and absorbed the engine. It is characterized by having,
The energy of the cooling water of the water-cooled engine can be used for charging the storage battery and heating during use, and it can be used for inexpensive late-night power, so the energy efficiency of the entire air conditioning and power generation system can be improved. Has a remarkable effect.

本発明の請求項2記載の空調・発電装置は、請求項1記載の空調・発電装置において、前記蓄電池が高温作動型2次蓄電池である固体電解質型あるいは溶融塩型蓄電池であることを特徴とするものであり、固体電解質型あるいは溶融塩型蓄電池は作動温度が250〜400℃の高温度であるので、水冷式エンジンの冷却水の有するエネルギーを蓄電池の充電や使用時の加熱に利用すると一層エネルギー効率を向上できるというさらなる顕著な効果を奏する。   The air conditioning / power generation device according to claim 2 of the present invention is the air conditioning / power generation device according to claim 1, characterized in that the storage battery is a solid electrolyte storage battery or a molten salt storage battery which is a high temperature operation type secondary storage battery. Since the operating temperature of the solid electrolyte type or molten salt type storage battery is a high temperature of 250 to 400 ° C., if the energy of the cooling water of the water-cooled engine is used for charging the storage battery or heating at the time of use, it is further There is a further remarkable effect that energy efficiency can be improved.

本発明の請求項3記載の空調・発電装置は、請求項1あるいは請求項2記載の空調・発電装置において、前記冷却回路2に蓄熱槽を設けるとともに、前記蓄電池を加熱するための放熱器を備えたことを特徴とするものであり、
冷却回路2に蓄熱槽を設けるとともに、前記蓄電池を加熱するための放熱器を備えたので、エンジンの冷却と蓄電池の加熱・維持をより効率的にできるというさらなる顕著な効果を奏する。
The air conditioning / power generation device according to claim 3 of the present invention is the air conditioning / power generation device according to claim 1 or 2, wherein a heat storage tank is provided in the cooling circuit 2, and a radiator for heating the storage battery is provided. It is characterized by having,
Since the heat storage tank is provided in the cooling circuit 2 and the radiator for heating the storage battery is provided, the engine can be cooled and the storage battery can be more efficiently heated and maintained.

以下、図面を参照して本発明の実施形態を詳述する。
図1は、本発明の空調・発電装置の一実施形態に係るエンジン駆動式空気調和装置10を示すブロック図である。
図2は、本発明の空調・発電装置の蓄電ユニットの一実施形態を説明する説明図である。
なお、図中、細実線は制御動力線を示し、太実線は冷却水回路を示し、波線が制御信号線を示している。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a block diagram showing an engine-driven air conditioner 10 according to an embodiment of the air conditioning and power generation apparatus of the present invention.
FIG. 2 is an explanatory diagram for explaining an embodiment of the power storage unit of the air conditioning / power generation apparatus according to the present invention.
In the figure, a thin solid line indicates a control power line, a thick solid line indicates a cooling water circuit, and a wavy line indicates a control signal line.

このエンジン駆動式空気調和装置10は、蓄電ユニット40を含む室外ユニット20と複数台の室内ユニット30とを備えている。
これらユニット20、30は、互いにユニット配管(不図示)で接続されることにより冷媒回路(不図示)を構成する熱交換器や各種弁体が接続された冷媒配管が配設されており、この冷媒回路内の冷媒は、室外ニット20内の圧縮機(空調用圧縮機)21により圧縮されて冷媒回路内を循環することにより、室内ユニット30が配設された被調和室を冷房する冷房運転や被調和室を暖房する暖房運転などが行われる。
The engine-driven air conditioner 10 includes an outdoor unit 20 including a power storage unit 40 and a plurality of indoor units 30.
These units 20 and 30 are provided with refrigerant pipes connected to heat exchangers and various valve bodies constituting refrigerant circuits (not shown) by being connected to each other by unit pipes (not shown). The refrigerant in the refrigerant circuit is compressed by a compressor (air conditioning compressor) 21 in the outdoor unit 20 and circulates in the refrigerant circuit, thereby cooling the conditioned room in which the indoor unit 30 is disposed. And heating operation to heat the conditioned room.

室外ユニット20は、圧縮機21や図示しない室外熱交換器などの冷媒回路を構成する各種部品に加え、室外熱交換器に外気を送風する電動式の図示しない送風ファンと、ガス燃料を燃焼させて駆動力を発生するガスエンジン23と、発電機24と、整流器26、DC/DCコンバ−タA(27)、GHPコントロ−ラ28を備えており、またガスエンジン23を冷却するための熱交換器1(11)、熱交換器2(13)、送風ファン12、温度センサT1、電動弁A〜B、逆止弁C1〜C2、冷却水ポンプ14を備えた水回路P1〜P5からなる冷却回路1(15)を備えている。   The outdoor unit 20 combusts gas fuel, an electric blower (not shown) that blows outside air to the outdoor heat exchanger, in addition to various components constituting the refrigerant circuit such as the compressor 21 and an outdoor heat exchanger (not shown). A gas engine 23 for generating a driving force, a generator 24, a rectifier 26, a DC / DC converter A (27), a GHP controller 28, and heat for cooling the gas engine 23 It consists of water circuits P1 to P5 having an exchanger 1 (11), a heat exchanger 2 (13), a blower fan 12, a temperature sensor T1, motorized valves A to B, check valves C1 to C2, and a cooling water pump 14. A cooling circuit 1 (15) is provided.

一方、図1および図2に示す蓄電ユニット40は、断熱容器上蓋45を装着した断熱容器46中に収容された蓄電池41と、蓄電池41を作動温度まで加熱・維持するための底面用電気ヒ−タ48と、各蓄電池41間に充填した図示しない保温材、蓄電池41を充電する充電器42、蓄電システムコントローラ43、蓄電コントローラ44、電極49、DC/DCコンバ−タB(29)とを備えており、また、エンジン23を冷却して吸熱した冷却回路1(15)の冷却水を循環使用して、蓄電池41の加熱・維持に利用するための、温度センサT2を有する蓄蓄熱槽70、放熱器71および逆止弁C4〜C5を備えた水回路P6〜P7からなる冷却回路2(15)を備えている。   On the other hand, the power storage unit 40 shown in FIGS. 1 and 2 includes a storage battery 41 housed in a heat insulating container 46 fitted with a heat insulating container upper lid 45, and an electric heater for the bottom surface for heating and maintaining the storage battery 41 to the operating temperature. 48, a heat insulating material (not shown) filled between the storage batteries 41, a charger 42 for charging the storage battery 41, a storage system controller 43, a storage controller 44, an electrode 49, and a DC / DC converter B (29). In addition, the regenerative heat storage tank 70 having the temperature sensor T2 for circulating and using the cooling water of the cooling circuit 1 (15) that has absorbed the heat by cooling the engine 23, and used for heating and maintaining the rechargeable battery 41, A cooling circuit 2 (15) including water circuits P6 to P7 including a radiator 71 and check valves C4 to C5 is provided.

本発明で用いる前記蓄電池41は、充放電可能な2次蓄電池であればよく、特に限定されないが、前記蓄電池41が、特に高温作動型2次蓄電池である固体電解質型あるいは溶融塩型蓄電池であるとは作動温度が250〜400℃の高温度であるので、作動温度まで昇温したり、作動温度に維持したりするために電気ヒ−タ48を用いたエネルギ−量がおおきくなるので、水冷式エンジンの冷却水の有するエネルギーを固体電解質型あるいは溶融塩型蓄電池の充電や使用時の加熱に利用すると一層エネルギー効率を向上でき、好ましい。   The storage battery 41 used in the present invention is not particularly limited as long as it is a chargeable / dischargeable secondary storage battery. However, the storage battery 41 is a solid electrolyte storage battery or a molten salt storage battery that is a high temperature operation type secondary storage battery. Since the operating temperature is a high temperature of 250 to 400 ° C., the amount of energy using the electric heater 48 is increased in order to raise the temperature to the operating temperature or maintain the operating temperature. It is preferable to use the energy of the cooling water of the type engine for charging the solid electrolyte type or molten salt type storage battery and for heating at the time of use because the energy efficiency can be further improved.

本発明で用いる固体電解質型蓄電池は、例えばナトリウムー硫黄電池(NaS電池)を挙げることができる。
本発明で用いる溶融塩型蓄電池は、例えばZEBRA電池(Zero Emission Battery Research Activityの略称とされている)などを挙げることができる。
Examples of the solid electrolyte storage battery used in the present invention include a sodium-sulfur battery (NaS battery).
Examples of the molten salt storage battery used in the present invention include a ZEBRA battery (abbreviated as Zero Emission Battery Research Activity).

NaS電池は、負極にNa、正極にSを用い、セパレータを兼ねた固体電解質にはナトリウムイオン伝導性のあるベータアルミナ・セラミックを使用し、ベータアルミナ・セラミックのイオン伝導性を高めるために作動温度は280〜360℃である。充放電時には下記の化学反応が起こり化学エネルギーが電気エネルギーに変換される。   The NaS battery uses Na for the negative electrode and S for the positive electrode, and the solid electrolyte that also serves as the separator uses beta-alumina ceramic with sodium ion conductivity, and the operating temperature to increase the ionic conductivity of the beta-alumina ceramic. Is 280-360 ° C. At the time of charging / discharging, the following chemical reaction occurs and chemical energy is converted into electric energy.

(放電)2Na+xS→Na2x (発熱反応)
(充電)2Na+xS←Na2x (吸熱反応)
(Discharge) 2Na + xS → Na 2 S x (exothermic reaction)
(Charge) 2Na + xS ← Na 2 S x (endothermic reaction)

一方、ZEBRA電池(ナトリウム・ニッケル塩化物電池)は、負極にNa、正極にNiを用い、電解質にはNaAlCl4 (融点は約160℃で、これ以上の温度で電解質として機能する)を使用し、作動温度は約300℃で、負極のNa、電解質のNaAlCl4 は両方とも溶融している。Naはベータアルミナを透過して溶融NaAlCl4 とつながる。充放電時には下記の化学反応が起こり化学エネルギーが電気エネルギーに変換される。 On the other hand, the ZEBRA battery (sodium / nickel chloride battery) uses Na for the negative electrode, Ni for the positive electrode, and NaAlCl 4 (melting point is about 160 ° C., which functions as an electrolyte at higher temperatures). The operating temperature is about 300 ° C., and the negative electrode Na and the electrolyte NaAlCl 4 are both melted. Na permeates the beta alumina and leads to molten NaAlCl 4 . At the time of charging / discharging, the following chemical reaction occurs and chemical energy is converted into electric energy.

(放電)2Na+NiCl2 →2NaCl+Ni(発熱反応)
(充電)2Na+NiCl2 ←2NaCl+Ni(吸熱反応)
以下、前記蓄電池41としてZEBRA電池を用いた例で本発明のエンジン駆動式空気調和装置10について説明する。
(Discharge) 2Na + NiCl 2 → 2NaCl + Ni (exothermic reaction)
(Charging) 2Na + NiCl 2 ← 2NaCl + Ni (endothermic reaction)
Hereinafter, the engine-driven air conditioner 10 of the present invention will be described using an example in which a ZEBRA battery is used as the storage battery 41.

上記ガスエンジン23には、伝達機構23Aを介して圧縮機21と、図示しない伝達機構を介して発電機24とが接続されており、このガスエンジン23が駆動されると圧縮機21と発電装置24とが駆動される。従って、このガスエンジン23の回転数によって圧縮機21と発電機24の回転数が決定され、つまり、当該エンジン駆動式空気調和装置10の運転能力が決定される。このガスエンジン23は、GHPコントローラ28および系統連係パワコン60によって運転が制御される。   The gas engine 23 is connected to a compressor 21 via a transmission mechanism 23A and a generator 24 via a transmission mechanism (not shown). When the gas engine 23 is driven, the compressor 21 and the power generation device are connected. 24 are driven. Accordingly, the rotational speeds of the compressor 21 and the generator 24 are determined by the rotational speed of the gas engine 23, that is, the operating capability of the engine-driven air conditioner 10 is determined. The operation of the gas engine 23 is controlled by a GHP controller 28 and a system linkage power conditioner 60.

なお、本実施形態では、圧縮機21が一台の場合を例示しているが、これに限らず、複数台の圧縮機21を電磁クラッチなどのクラッチ機構を介してガスエンジン23に並列接続可能に設け、上記ガスエンジン23で駆動させる圧縮機21の組み合わせや台数を可変可能に構成してもよい。   In the present embodiment, the case where the number of the compressors 21 is one is illustrated. However, the present invention is not limited to this, and a plurality of compressors 21 can be connected in parallel to the gas engine 23 via a clutch mechanism such as an electromagnetic clutch. The combination and the number of compressors 21 driven by the gas engine 23 may be variable.

また、上記ガスエンジン23には、水冷式エンジンが適用され、すなわち、上記ガスエンジン23を冷却するための熱交換器1(11)が備えられており、水回路P1に設置した温度センサT1で測定した冷却水温度が60℃未満の場合は、電動弁Aを閉めて、冷却水ポンプ14を駆動して、冷却水を水回路P1、電動弁A、水回路P2、逆止弁C1、水回路P3、冷却水ポンプ14を経て循環してガスエンジン23を冷却する。   Further, a water-cooled engine is applied to the gas engine 23, that is, a heat exchanger 1 (11) for cooling the gas engine 23 is provided, and a temperature sensor T1 installed in the water circuit P1 is used. When the measured cooling water temperature is less than 60 ° C., the motor-operated valve A is closed and the cooling water pump 14 is driven to supply the cooling water to the water circuit P1, the motor-operated valve A, the water circuit P2, the check valve C1, and the water. The gas engine 23 is cooled by circulating through the circuit P3 and the cooling water pump 14.

水回路P1の冷却水温度が上昇して、例えば、温度センサT1で測定した60℃を超えたら電動弁Bを開け、そして蓄熱槽70に設置した温度センサT2で測定した70℃を超えたら電動弁Bを閉めて、冷却水を水回路P4経て、電動弁B、水回路P5、熱交換器2(13)、逆止弁C2、水回路P3、冷却水ポンプ14を経て循環してガスエンジン23を冷却する構成になっている。   When the temperature of the cooling water in the water circuit P1 rises and exceeds 60 ° C. measured by the temperature sensor T1, for example, the motor-operated valve B is opened, and when the temperature exceeds 70 ° C. measured by the temperature sensor T2 installed in the heat storage tank 70 The valve B is closed, and the cooling water is circulated through the water circuit P4, the motorized valve B, the water circuit P5, the heat exchanger 2 (13), the check valve C2, the water circuit P3, and the cooling water pump 14 to circulate the gas engine. 23 is cooled.

この冷却回路1(15)内の冷却水は、GHPコントローラ28の制御により電動弁Aおよび電動弁Bの開閉、熱交換器2(13)へ送風する送風ファン12の駆動、電動式の冷却水ポンプ14の駆動が制御され、冷却水ポンプ14の駆動で冷却回路1(15)内に循環されることにより、ガスエンジン23の廃熱を吸熱させて熱交換器2(13)で放熱させる。   The cooling water in the cooling circuit 1 (15) is controlled by the GHP controller 28 to open and close the motorized valves A and B, drive the blower fan 12 that blows air to the heat exchanger 2 (13), and motorized cooling water. The drive of the pump 14 is controlled and is circulated in the cooling circuit 1 (15) by the drive of the cooling water pump 14, so that the waste heat of the gas engine 23 is absorbed and radiated by the heat exchanger 2 (13).

発電機24は、ガスエンジン23により駆動されて三相交流電力を発電し、発電電力を整流器26、DC/DCコンバ−タA(27)を経て系統連系パワコン60に出力する。
系統連系パワコン60は、発電機23の発電出力量を可変制御するための発電制御用コントローラを内蔵しており、このコントローラにより可変制御された発電電力を商用系統50に出力する。具体的には、系統連系パワコン60は、発電機23からの三相交流電力を、整流器26、DC/DCコンバ−タ27を経て直流電力に変換した後、100/200Vの交流の様々な電力に変換して商用系統50に出力する。
The generator 24 is driven by the gas engine 23 to generate three-phase AC power, and outputs the generated power to the grid interconnection power converter 60 via the rectifier 26 and the DC / DC converter A (27).
The grid interconnection power conditioner 60 incorporates a power generation control controller for variably controlling the power generation output amount of the generator 23, and outputs the generated power variably controlled by this controller to the commercial system 50. Specifically, the grid-connected power conditioner 60 converts the three-phase AC power from the generator 23 into DC power via the rectifier 26 and the DC / DC converter 27, and then converts various AC / DC power of 100 / 200V. It converts into electric power and outputs it to the commercial system 50.

この商用系統50は、商用AC電源51と需要家負荷(電力負荷)52とを含み、需要家負荷52は、商用系統50の電力線に接続された照明負荷52A、OA(office automation)負荷52Bの他に、空気調和装置10の室外ユニット20や室内ユニット30による電力負荷を含んでいる。
また、この系統連系パワコン60には、通信線を介して商用系統50に設置された電流計(電力検出器)53が接続される。この電流計53は、商用系統50の電力線に流れる電流値をリアルタイムに取得し、この取得したデータを系統連系パワコン60に出力し、系統連系パワコン60からGHPコントローラ28に通知される。
The commercial system 50 includes a commercial AC power source 51 and a consumer load (electric power load) 52. The consumer load 52 includes an illumination load 52A and an OA (office automation) load 52B connected to the power line of the commercial system 50. In addition, the electric load by the outdoor unit 20 and the indoor unit 30 of the air conditioning apparatus 10 is included.
In addition, an ammeter (power detector) 53 installed in the commercial system 50 is connected to the grid interconnection power conditioner 60 via a communication line. The ammeter 53 acquires the current value flowing through the power line of the commercial grid 50 in real time, outputs the acquired data to the grid interconnection power conditioner 60, and is notified from the grid interconnection power conditioner 60 to the GHP controller 28.

一方、蓄電ユニット40は、断熱容器上蓋45を装着した断熱容器46中に収容された蓄電池41と、各蓄電池41間に充填した図示しない保温材と、蓄電池41を作動温度まで加熱・維持するための底面用電気ヒ−タ48と、蓄電池41を充電する充電器42、蓄電システムコントローラ43、蓄電コントローラ44、電極49、DC/DCコンバ−タB(29)とを備えている。   On the other hand, the power storage unit 40 heats and maintains the storage battery 41 accommodated in the heat insulation container 46 fitted with the heat insulation container upper lid 45, the heat insulating material (not shown) filled between the storage batteries 41, and the storage battery 41 to the operating temperature. A bottom electric heater 48, a charger 42 for charging the storage battery 41, a power storage system controller 43, a power storage controller 44, an electrode 49, and a DC / DC converter B (29).

蓄電システムコントローラ43および蓄電コントローラ44の制御の下、充電器42により商用系統50の蓄電池41を、例えば、図4に示したように午後22:00時から午前8:00時の深夜の電力により充電させる。これによって、この蓄電池41に発電電力を蓄えることができる。   Under the control of the power storage system controller 43 and the power storage controller 44, the charger 42 causes the storage battery 41 of the commercial system 50 to be driven by, for example, midnight power from 22:00 pm to 8:00 am as shown in FIG. Let it charge. Thereby, the generated power can be stored in the storage battery 41.

そして、停電の際や電圧変動あるはピーク電力の際などには蓄電システムコントローラ43、蓄電コントローラ44の制御の下、蓄電池41からの電力をバックアップ電源として、DC/DCコンバ−タB(29)を経て系統連系パワコン60で交流電力に変換されて、照明負荷52A、OA負荷52B、室外ユニット20や室内ユニット30に供給される。   In the event of a power failure, voltage fluctuation, or peak power, the DC / DC converter B (29) uses the power from the storage battery 41 as a backup power source under the control of the power storage system controller 43 and the power storage controller 44. Then, the power is converted to AC power by the grid interconnection power conditioner 60 and supplied to the lighting load 52A, the OA load 52B, the outdoor unit 20 and the indoor unit 30.

なお、商用系統50の停電や電圧変動あるはピーク電力などを検出するには、系統連系パワコン60内のコントローラを電流計(電力検出器)53の検出結果から停電などを検出する検出部として機能させてもよいし、あるいは蓄電ユニット40の蓄電システムコントローラ43などにこれらを検出する機能を持たせるようにしてもよい。
さらに、系統連系パワコン60、蓄電システムコントローラ43および蓄電コントローラ44に、予め指定された時間に蓄電池41に蓄電された電力を商用系統50に出力されるスケジュール機能を持たせることもできる。
これにより、例えば、図5に示すように午後12時から15時の間などの電力ピーク時間帯に蓄電池41に蓄電された電力を商用系統50に出力させることにより、電力ピークカットが可能になる。
In order to detect a power failure, voltage fluctuation, or peak power of the commercial system 50, the controller in the grid connection power conditioner 60 is used as a detection unit that detects a power failure from the detection result of the ammeter (power detector) 53. You may make it function, or may make the electrical storage system controller 43 of the electrical storage unit 40, etc. have the function to detect these.
Furthermore, the grid interconnection power conditioner 60, the power storage system controller 43, and the power storage controller 44 may be provided with a schedule function for outputting the power stored in the storage battery 41 to the commercial system 50 at a predetermined time.
Thereby, for example, as shown in FIG. 5, the power peak cut can be performed by causing the commercial grid 50 to output the power stored in the storage battery 41 during the power peak time period such as from 12:00 to 15:00.

系統連系パワコン60は、このエンジン駆動式空気調和装置10全体を制御する制御装置として機能し、大別すると、室内ユニット30に接続されたリモートコントローラ(不図示)からのユーザ指示に応じて空調運転の開始/停止などを行う空調制御と、ガスエンジン23が駆動される間、発電機23の発電出力量を可変制御する発電制御などを行う。
図6は、GHP運転ON(上側)とGHP停止OFF(下側)を行った際に、それに対応させて発電機24による発電をON、OFFさせた状態を説明する説明図である。
The grid-connected power conditioner 60 functions as a control device that controls the entire engine-driven air conditioner 10, and is roughly classified according to a user instruction from a remote controller (not shown) connected to the indoor unit 30. Air conditioning control for starting / stopping the operation and power generation control for variably controlling the power generation output amount of the generator 23 while the gas engine 23 is driven are performed.
FIG. 6 is an explanatory diagram for explaining a state in which power generation by the generator 24 is turned on and off in response to GHP operation ON (upper side) and GHP stop OFF (lower side).

次に蓄電ユニット40について図1および図2により説明する。
冷却回路1(15)の冷却水温度が、例えば蓄熱槽70に設置した温度センサT2で測定した冷却水温度70℃未満である場合は、電動弁Bを開け、この冷却水を冷却回路2(16)の水回路P6へ供給する。
冷却水を冷却回路2(16)の水回路P6を経て、一旦蓄熱槽70に蓄え、蓄熱槽70に蓄えた冷却水を水回路P6を経て図2に示す断熱容器上蓋45を装着した断熱容器46中に収容された蓄電池41の周囲を取り囲むように構成して配設した放熱器71へ供給する。
放熱器71は熱交換器として構成されており、放熱器71により蓄電器41が加熱される。放熱器71をでた冷却水は逆止弁C4、C5を経て冷却回路2(16)の水回路P7を流れ、そしてこの冷却水はさらに冷却回路1(15)の水回路P3、冷却水ポンプ14を経てガスエンジン23を冷却し、この冷却水は循環して使用する構成になっている。
Next, the power storage unit 40 will be described with reference to FIGS. 1 and 2.
When the cooling water temperature of the cooling circuit 1 (15) is lower than the cooling water temperature of 70 ° C. measured by, for example, the temperature sensor T2 installed in the heat storage tank 70, the motor-operated valve B is opened and the cooling water is supplied to the cooling circuit 2 ( 16) to the water circuit P6.
The cooling water is stored in the heat storage tank 70 once through the water circuit P6 of the cooling circuit 2 (16), and the cooling water stored in the heat storage tank 70 is passed through the water circuit P6 and is provided with the heat insulating container upper lid 45 shown in FIG. 46 is supplied to a radiator 71 configured and arranged so as to surround the periphery of the storage battery 41 accommodated in 46.
The radiator 71 is configured as a heat exchanger, and the condenser 41 is heated by the radiator 71. The cooling water from the radiator 71 flows through the check circuit C4, C5 and the water circuit P7 of the cooling circuit 2 (16), and this cooling water is further supplied to the water circuit P3 of the cooling circuit 1 (15), the cooling water pump. 14, the gas engine 23 is cooled, and this cooling water is circulated for use.

蓄電池41は、固体電解質型あるいは溶融塩型蓄電池などは作動温度が250〜400℃の高温度であるので、特に充電時や常温から昇温する場合には断熱材などによる保温および放熱器71による加熱だけでは不十分であり、底面用電気ヒ−タ48を作動させて作動温度に加熱しそして維持する。   Since the storage battery 41 is a solid electrolyte type or molten salt type storage battery having a high operating temperature of 250 to 400 ° C., especially when charging or when the temperature is raised from room temperature, the heat storage by a heat insulating material or the like and the radiator 71 Heating alone is not sufficient and the bottom heater 48 is activated to heat and maintain the operating temperature.

図7は放熱器71による加熱および底面用電気ヒ−タ48による加熱により蓄電池41を作動温度まで加熱・維持する状況の例を説明する説明図である。
この例では、充電する前は蓄電池41が常温の状態にあり、まず放熱器71による加熱を行うと蓄電池41の温度が上昇し60℃前後になる。蓄電池41の温度が60℃前後になったら、底面用電気ヒ−タ48による加熱により蓄電池41を300℃前後の作動温度まで加熱・維持することを示している。
底面用電気ヒ−タ48による加熱の間も放熱器71による補助的加熱を行って蓄電池41を作動温度に加熱・維持することをサポートする。
FIG. 7 is an explanatory diagram for explaining an example of a situation in which the storage battery 41 is heated and maintained up to the operating temperature by heating by the radiator 71 and heating by the electric heater 48 for the bottom surface.
In this example, the storage battery 41 is in a normal temperature state before charging, and when the radiator 71 is first heated, the temperature of the storage battery 41 rises to about 60 ° C. When the temperature of the storage battery 41 reaches around 60 ° C., the storage battery 41 is heated and maintained to an operating temperature of around 300 ° C. by heating with the electric heater 48 for the bottom surface.
During heating by the bottom electric heater 48, auxiliary heating by the radiator 71 is performed to support heating and maintaining the storage battery 41 at the operating temperature.

蓄電ユニット40の前記運転は、主として蓄電システムコントローラ43および蓄電コントローラ44の制御の下に行われる。前記のように、例えば、図4に示したように午後22:00時から午前8:00時の深夜の電力により充電器42により蓄電池41を充電することができる。   The operation of the power storage unit 40 is mainly performed under the control of the power storage system controller 43 and the power storage controller 44. As described above, for example, as illustrated in FIG. 4, the storage battery 41 can be charged by the charger 42 with the power of midnight from 22:00 pm to 8:00 am.

蓄熱槽70は保温性がよく多量(例えば300リットル)の冷却水を蓄えることができるものであれば、材質や構造などは特に限定されるものではなく、市販のものを使用することができる。
蓄熱槽70の他の例として内部に図示しない加熱手段を備えたものを挙げることができる。この場合は加熱手段により冷却水を加熱して温度センサT2により温度を検出して所定の温度に制御して蓄熱槽70から水回路P6を経て放熱器71へ供給する。
冷却水を水回路P6に設けた蓄熱槽70に一旦蓄えることにより、蓄熱槽70はクッションの役を果たし、冷却水の量的変化や温度変化を抑え、所定の冷却水量を確保したり一定温度にできるのでガスエンジン23の冷却と蓄電器41の加熱をともにより良好に行うことができる。
The heat storage tank 70 is not particularly limited in material and structure as long as it has good heat retention and can store a large amount (for example, 300 liters) of cooling water, and a commercially available one can be used.
Another example of the heat storage tank 70 may include a heating unit (not shown) provided inside. In this case, the cooling water is heated by the heating means, the temperature is detected by the temperature sensor T2, is controlled to a predetermined temperature, and is supplied from the heat storage tank 70 to the radiator 71 through the water circuit P6.
By temporarily storing the cooling water in the heat storage tank 70 provided in the water circuit P6, the heat storage tank 70 serves as a cushion, suppresses a change in the quantity and temperature of the cooling water, and secures a predetermined amount of cooling water or a constant temperature. Therefore, the cooling of the gas engine 23 and the heating of the battery 41 can be performed more satisfactorily.

放熱器71は熱交換性および耐腐食性が高く、耐久性の優れたものであれば、材質や構造などは特に限定されるものではなく、市販のものを使用することができる。   As long as the heat radiator 71 has high heat exchange and corrosion resistance and is excellent in durability, the material and structure are not particularly limited, and commercially available ones can be used.

次に、この空気調和装置10を昼ON/OFF運転したり、夜ON/OFF運転する際の、ガスエンジン23、圧縮機21、発電機24、冷却水ポンプ14、電動弁A、電動弁B、充電器42、蓄電器41、DC/DCコンバ−タA(27)、DC/DCコンバ−タB(29)、系統連係パワコン60および電気ヒータ48の作動状態を表1に示す。
また、表1には、充電器42および底面用電気ヒ−タ48を用いて蓄電器41を充電する際の、これらの作動状態および蓄電器41の放電時の時間帯を併せて示す。
Next, the gas engine 23, the compressor 21, the generator 24, the cooling water pump 14, the motor operated valve A, and the motor operated valve B when the air conditioner 10 is operated during the day ON / OFF operation or the night ON / OFF operation. Table 1 shows operating states of the battery charger 42, the battery 41, the DC / DC converter A (27), the DC / DC converter B (29), the system linkage power converter 60, and the electric heater 48.
Table 1 also shows the operating state and the time zone when the battery 41 is discharged when the battery 41 is charged using the battery charger 42 and the electric heater 48 for the bottom surface.

表1に示すように、空気調和装置10の昼間(8:00〜22:00)の運転時には、ガスエンジン23、圧縮機21、発電機24、冷却水ポンプ14を作動させ、前記のように電動弁Aは温度センサT1で検出した温度がT1>60℃であれば開とし、T1<60℃であれば閉とし、電動弁Bは温度センサT2で検出した温度がT2>70℃であれば閉とし、T2<70℃であれば開とし、充電器42は使用せず、蓄電器41は必要に応じて放電し、DC/DCコンバ−タA(27)およびDC/DCコンバ−タB(29)および系統連係パワコン60は作動させ、電気ヒータ48は作動させない。   As shown in Table 1, when the air conditioner 10 is operated during the daytime (8:00 to 22:00), the gas engine 23, the compressor 21, the generator 24, and the cooling water pump 14 are operated, as described above. The motor-operated valve A is opened if the temperature detected by the temperature sensor T1 is T1> 60 ° C., and is closed if the temperature T1 <60 ° C. The motor-operated valve B is closed if the temperature detected by the temperature sensor T2 is T2> 70 ° C. If T2 <70 ° C., the battery is closed, the charger 42 is not used, the battery 41 is discharged as necessary, and the DC / DC converter A (27) and the DC / DC converter B are discharged. (29) and the system linkage power conditioner 60 are operated, and the electric heater 48 is not operated.

表1に示すように、空気調和装置10の夜間(22:00〜8:00)の運転時には、ガスエンジン23、圧縮機21、発電機24、冷却水ポンプ14を作動させ、電動弁Aは温度センサT1で検出した温度がT1>60℃であれば開とし、T1<60℃であれば閉とし、電動弁Bは温度センサT2で検出した温度がT2>70℃であれば閉とし、T2<70℃であれば開とし、充電器42は使用せず、蓄電器41は必要に応じて放電し、DC/DCコンバ−タA(27)および系統連係パワコン60は作動させるが、電気ヒータ48は作動させない。   As shown in Table 1, when the air conditioner 10 is operated at night (22:00 to 8:00), the gas engine 23, the compressor 21, the generator 24, and the cooling water pump 14 are operated. If the temperature detected by the temperature sensor T1 is T1> 60 ° C., the valve is opened, and if T1 <60 ° C., the valve is closed. If the temperature detected by the temperature sensor T2 is T2> 70 ° C., the valve is closed. If T2 <70 ° C., the battery is opened, the battery charger 42 is not used, the battery 41 is discharged as necessary, and the DC / DC converter A (27) and the system linkage power converter 60 are operated. 48 is not activated.

表1に示すように、電気ヒータ48を作動させて充電器42を使用して蓄電器41の充電を行うのは深夜(22:00〜8:00)であり、蓄電器41の放電は(8:00〜22:00)に適宜行われる。   As shown in Table 1, it is midnight (22:00 to 8:00) that the electric heater 48 is operated to charge the battery 41 using the charger 42, and the battery 41 is discharged at (8: 0 to 22:00).

Figure 2010133661
Figure 2010133661

以上、本発明を実施するための最良の形態について述べたが、本発明は既述の実施形態に限定されるものではなく、本発明の技術思想に基づいて各種の変形及び変更が可能である。
例えば、上記実施形態では、本発明を蓄電ユニット40を備えるエンジン駆動式空気調和装置10に適用する場合について説明したが、これに限らず、ガスエンジン以外のエンジンを使用するエンジン駆動式空気調和装置に適用してもよく、要は、エンジンで空調用圧縮機及び発電装置を駆動して空調と発電とを同時に行う空調・発電装置に広く適用が可能である。
The best mode for carrying out the present invention has been described above. However, the present invention is not limited to the above-described embodiment, and various modifications and changes can be made based on the technical idea of the present invention. .
For example, although the case where the present invention is applied to the engine-driven air conditioner 10 including the power storage unit 40 has been described in the above embodiment, the present invention is not limited thereto, and the engine-driven air conditioner that uses an engine other than a gas engine In short, the present invention can be widely applied to air-conditioning / power generation devices that drive an air-conditioning compressor and a power generation device with an engine to perform air-conditioning and power generation simultaneously.

本発明の空調・発電装置は、水冷式エンジンの冷却水の有するエネルギーを蓄電池の充電や使用時の加熱に利用するとともに、安価な深夜電力の利用も図れるように構成したので空調・発電装置システム全体としてのエネルギー効率を向上できるという顕著な効果を奏するので、産業上の利用価値は甚だ大きい。   The air-conditioning / power generation device of the present invention is configured to use the energy of the cooling water of the water-cooled engine for charging the storage battery and heating it during use, and also to use inexpensive late-night power. Since it has the remarkable effect of improving the overall energy efficiency, the industrial utility value is very large.

本発明の空調・発電装置の一実施形態に係るエンジン駆動式空気調和装置を示すブロック図である。It is a block diagram showing an engine drive type air harmony device concerning one embodiment of an air-conditioning and power generator of the present invention. 本発明の空調・発電装置の蓄電ユニットの一実施形態を説明する説明図である。It is explanatory drawing explaining one Embodiment of the electrical storage unit of the air conditioning and electric power generating apparatus of this invention. 従来の空調・発電装置の蓄電ユニットを説明する説明図である。It is explanatory drawing explaining the electrical storage unit of the conventional air conditioning and electric power generating apparatus. 深夜電力を利用して蓄電池の充電を行い電力を蓄えることを説明する説明図である。It is explanatory drawing explaining charging a storage battery using late-night electric power and storing electric power. 電力ピーク時間帯に蓄電池に蓄電された電力を商用系統に出力させることにより、電力ピークカットが可能になることを説明する説明図である。It is explanatory drawing explaining that an electric power peak cut becomes possible by outputting the electric power stored in the storage battery to the commercial system in the electric power peak time zone. GHP運転ON(上側)とGHP停止OFF(下側)を行った際に、それに対応させて発電機24による発電をON、OFFさせた状態を説明する説明図である。When GHP driving | operation ON (upper side) and GHP stop OFF (lower side) are performed, it is explanatory drawing explaining the state which made the electric power generation by the generator 24 correspond to it, and was turned on and off. 放熱器による加熱および底面用電気ヒ−タによる加熱により蓄電池を作動温度まで加熱・維持する状況の例を説明する説明図である。It is explanatory drawing explaining the example of the condition which heats and maintains a storage battery to operating temperature by the heating by a radiator and the heating by the electric heater for bottom faces.

符号の説明Explanation of symbols

10 エンジン駆動式空気調和装置(空調・発電装置)
11 熱交換器1
12 送風ファン
13 熱交換器2
14 冷却水ポンプ
15 冷却回路1
16 冷却回路2
20 室外ユニット
21 圧縮機(空調用圧縮機)
23 ガスエンジン
24 発電機
26 整流器
27 DC/DCコンバ−タA
28 GHPコントロ−ラ
29 DC/DCコンバ−タB
30 室内ユニット
40、40A 蓄電ニット
41 蓄電池
42 充電器
43 蓄電システムコントローラ
44 蓄電コントローラ
45 断熱容器上蓋
46 断熱容器
47 側面用電気ヒ−タ
48 底面用電気ヒ−タ
49 電極
50 商用系統
51 商用AC電源
52 需要家負荷(電力負荷)
53 電流計
60 系統連系パワコン
70 蓄熱槽
71 放熱器
10 Engine-driven air conditioner (air conditioner / power generator)
11 Heat exchanger 1
12 Blower 13 Heat exchanger 2
14 Cooling water pump 15 Cooling circuit 1
16 Cooling circuit 2
20 Outdoor unit 21 Compressor (Compressor for air conditioning)
23 Gas Engine 24 Generator 26 Rectifier 27 DC / DC Converter A
28 GHP controller 29 DC / DC converter B
30 indoor units 40, 40A power storage unit 41 storage battery 42 charger 43 power storage system controller 44 power storage controller 45 heat insulating container top cover 46 heat insulating container 47 electric heater for side surface 48 electric heater for bottom surface 49 electrode 50 commercial system 51 commercial AC power source 52 Consumer load (electric power load)
53 Ammeter 60 Grid-connected power conditioner 70 Heat storage tank 71 Radiator

Claims (3)

エンジンと、このエンジンで駆動される空調用圧縮機および発電装置と、蓄電池とを備える空調・発電装置において、
前記エンジンは冷却水を循環させて冷却する冷却する冷却回路1を備えるとともに、前記蓄電池は前記エンジンを冷却して吸熱した前記冷却回路1の冷却水を循環させて加熱するための冷却回路2を備えたことを特徴とする空調・発電装置。
In an air conditioner / power generator comprising an engine, a compressor for air conditioning and a power generator driven by the engine, and a storage battery,
The engine has a cooling circuit 1 for cooling by circulating cooling water, and the storage battery has a cooling circuit 2 for circulating and heating the cooling water of the cooling circuit 1 that has cooled and absorbed the engine. An air conditioning / power generation device characterized by comprising.
前記蓄電池が高温作動型2次蓄電池である固体電解質型あるいは溶融塩型であることを特徴とする請求項1記載の空調・発電装置。   2. The air conditioning / power generation device according to claim 1, wherein the storage battery is a solid electrolyte type or a molten salt type which is a high temperature operation type secondary storage battery. 前記冷却回路2に蓄熱槽を設けるとともに、前記蓄電池を加熱するための放熱器を備えたことを特徴とする請求項1あるいは請求項2記載の空調・発電装置。   The air conditioning / power generation device according to claim 1 or 2, further comprising a heat storage tank in the cooling circuit (2) and a radiator for heating the storage battery.
JP2008311253A 2008-12-05 2008-12-05 Air conditioning-power generating device Pending JP2010133661A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008311253A JP2010133661A (en) 2008-12-05 2008-12-05 Air conditioning-power generating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008311253A JP2010133661A (en) 2008-12-05 2008-12-05 Air conditioning-power generating device

Publications (1)

Publication Number Publication Date
JP2010133661A true JP2010133661A (en) 2010-06-17

Family

ID=42345113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008311253A Pending JP2010133661A (en) 2008-12-05 2008-12-05 Air conditioning-power generating device

Country Status (1)

Country Link
JP (1) JP2010133661A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102756729A (en) * 2012-07-27 2012-10-31 潍柴动力股份有限公司 System and method for controlling temperature of power battery of gasoline-electricity hybrid vehicle
JP2014197956A (en) * 2013-03-29 2014-10-16 パナソニック株式会社 Air conditioning system
JP2020133588A (en) * 2019-02-25 2020-08-31 本田技研工業株式会社 Battery temperature raising device
CN113639465A (en) * 2021-06-29 2021-11-12 安徽国电能源设备工程有限公司 High-temperature phase-change heat storage energy-saving device
WO2023197276A1 (en) * 2022-04-15 2023-10-19 宁德时代新能源科技股份有限公司 Gas processing system as well as control method thereof, and electric apparatus

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0365426A (en) * 1989-08-03 1991-03-20 Nippondenso Co Ltd Hot water type heating device for vehicle
JPH09130917A (en) * 1995-10-31 1997-05-16 Suzuki Motor Corp Temperature control device of hybrid automobile
JPH09200908A (en) * 1996-01-18 1997-07-31 Hitachi Ltd Drive system for hybrid automobile using high-temperature sodium secondary battery
JPH1071838A (en) * 1996-08-30 1998-03-17 Denso Corp Cooling system equipment of internal combustion engine for vehicle
JP2004011623A (en) * 2002-06-11 2004-01-15 Toyota Motor Corp Cooling device for internal combustion engine
JP2004309087A (en) * 2003-04-10 2004-11-04 Osaka Gas Co Ltd Engine-driven air conditioner
JP2006151091A (en) * 2004-11-26 2006-06-15 Nissan Motor Co Ltd Vehicular power source and vehicle mounted with the same
JP2007284011A (en) * 2006-04-20 2007-11-01 Toyota Motor Corp Warming device for vehicle
JP2008107000A (en) * 2006-10-25 2008-05-08 Sanyo Electric Co Ltd Generator for air-conditioning and its control method
JP2008290636A (en) * 2007-05-26 2008-12-04 Sanyo Electric Co Ltd Hybrid car
JP2009298190A (en) * 2008-06-10 2009-12-24 Toyota Motor Corp Warming-up device for electricity accumulation means

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0365426A (en) * 1989-08-03 1991-03-20 Nippondenso Co Ltd Hot water type heating device for vehicle
JPH09130917A (en) * 1995-10-31 1997-05-16 Suzuki Motor Corp Temperature control device of hybrid automobile
JPH09200908A (en) * 1996-01-18 1997-07-31 Hitachi Ltd Drive system for hybrid automobile using high-temperature sodium secondary battery
JPH1071838A (en) * 1996-08-30 1998-03-17 Denso Corp Cooling system equipment of internal combustion engine for vehicle
JP2004011623A (en) * 2002-06-11 2004-01-15 Toyota Motor Corp Cooling device for internal combustion engine
JP2004309087A (en) * 2003-04-10 2004-11-04 Osaka Gas Co Ltd Engine-driven air conditioner
JP2006151091A (en) * 2004-11-26 2006-06-15 Nissan Motor Co Ltd Vehicular power source and vehicle mounted with the same
JP2007284011A (en) * 2006-04-20 2007-11-01 Toyota Motor Corp Warming device for vehicle
JP2008107000A (en) * 2006-10-25 2008-05-08 Sanyo Electric Co Ltd Generator for air-conditioning and its control method
JP2008290636A (en) * 2007-05-26 2008-12-04 Sanyo Electric Co Ltd Hybrid car
JP2009298190A (en) * 2008-06-10 2009-12-24 Toyota Motor Corp Warming-up device for electricity accumulation means

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102756729A (en) * 2012-07-27 2012-10-31 潍柴动力股份有限公司 System and method for controlling temperature of power battery of gasoline-electricity hybrid vehicle
JP2014197956A (en) * 2013-03-29 2014-10-16 パナソニック株式会社 Air conditioning system
JP2020133588A (en) * 2019-02-25 2020-08-31 本田技研工業株式会社 Battery temperature raising device
JP7094907B2 (en) 2019-02-25 2022-07-04 本田技研工業株式会社 Battery temperature riser
CN113639465A (en) * 2021-06-29 2021-11-12 安徽国电能源设备工程有限公司 High-temperature phase-change heat storage energy-saving device
WO2023197276A1 (en) * 2022-04-15 2023-10-19 宁德时代新能源科技股份有限公司 Gas processing system as well as control method thereof, and electric apparatus

Similar Documents

Publication Publication Date Title
JP5016894B2 (en) Air conditioning / power generation apparatus and control method thereof
KR101526389B1 (en) Thermal management system of battery for electric vehicle
KR20130013008A (en) System for managing waste heat of electric car and method therefor
NO148051B (en) ELECTROLYTE COOLING DEVICE FOR BATTERY BATTERIES
KR20110062232A (en) Air-conditioning system of electric vehicle and method for controlling the same
US8228034B2 (en) Method and system for load shifting
JP2012016197A (en) External power feeding device and electric vehicle
JP2010133661A (en) Air conditioning-power generating device
CN102292865A (en) Temperature-controlled battery system
JP5441391B2 (en) Charging device, building equipped with charging device, and hot water generating device
JP2011217590A (en) Air conditioning system
JP2009045959A (en) Vehicle and heat exchange system
KR20110131885A (en) Seat air conditioner for vehicle
JP2013226012A (en) Storage battery system
JP6828159B2 (en) Electric radiator type heating system including voltage converter
JP2007188731A (en) Electrolytic solution circulation type battery system
CN107925138B (en) Energy storage device with reduced temperature variability between cells
JP2012237480A (en) Heat exchange system and electric vehicle
JP2011159409A (en) Power supply system
JPH0364701B2 (en)
JP2014064457A (en) External feeder device and electric vehicle
JP2014073044A (en) Power conditioner and power storage system having the same
Hawxhurst et al. Renewable-powered HVAC with thermal storage
CN102109210A (en) Air conditioning system
EP1302998A1 (en) Combined system comprising electric batteries and solid oxide fuel cell apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130129

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130611