JP2009298190A - Warming-up device for electricity accumulation means - Google Patents

Warming-up device for electricity accumulation means Download PDF

Info

Publication number
JP2009298190A
JP2009298190A JP2008151958A JP2008151958A JP2009298190A JP 2009298190 A JP2009298190 A JP 2009298190A JP 2008151958 A JP2008151958 A JP 2008151958A JP 2008151958 A JP2008151958 A JP 2008151958A JP 2009298190 A JP2009298190 A JP 2009298190A
Authority
JP
Japan
Prior art keywords
battery
cooling water
heat
power storage
storage means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008151958A
Other languages
Japanese (ja)
Inventor
Tamotsu Kameshima
保 亀嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2008151958A priority Critical patent/JP2009298190A/en
Publication of JP2009298190A publication Critical patent/JP2009298190A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/27Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/425Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/441Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/443Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/445Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/48Drive Train control parameters related to transmissions
    • B60L2240/486Operating parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To quickly and accurately control the temperature of an electricity accumulation means provided on a vehicle. <P>SOLUTION: In the hybrid vehicle 10 provided with a battery 500, an ECU 100 executes battery warming-up control. At this time, when an engine cooling water temperature Tw is higher than a battery temperature Tbatt and the battery temperature Tbatt is lower than a determination reference value Tbattth set based on an action appropriate temperature range of the battery 500, a valve element position of a three-way valve 770 of the battery warming-up device 700 is controlled by a first valve element position and the feed of cooling water to a heat-accumulation vessel 730 is started. The heat-accumulation vessel 730 has a structure inflated according to internal pressure, is inflated by increasing an amount of cooling water and imparts heat in a state that the vessel contacts with an opposed battery cell 520. When the battery warming-up is not necessary, the feed of cooling water to the heat-accumulation vessel 730 is stopped, the heat-accumulation vessel 730 is left from the battery cell 520, and the impartment of unnecessary heat is prevented. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、バッテリ等の蓄電手段を暖機可能な蓄電手段の暖機装置の技術分野に関する。   The present invention relates to a technical field of a warming-up device for power storage means capable of warming up power storage means such as a battery.

この種の装置として、冷媒により二次電池を加熱するものが提案されている(例えば、特許文献1参照)。特許文献1に記載された車両用動力源(以下、「従来の技術」と称する)によれば、エンジン近傍及び二次電池近傍に冷媒を循環する循環通路を有することにより、二次電池の暖機時間を短縮することが可能であるとされている。また、二次電池をバイパスするバイパス通路を設け、冷媒を、二次電池の温度に応じて適宜このバイパス通路に導くことにより、エンジンが異常に昇温した場合等に冷媒により過度に二次電池が加熱されることを防止することも可能であるとされている。   As this type of device, a device that heats a secondary battery with a refrigerant has been proposed (for example, see Patent Document 1). According to a vehicle power source described in Patent Document 1 (hereinafter referred to as “conventional technology”), a circulation passage for circulating a refrigerant in the vicinity of an engine and in the vicinity of a secondary battery is provided. It is said that the machine time can be shortened. Also, a bypass passage that bypasses the secondary battery is provided, and the refrigerant is guided to this bypass passage as appropriate according to the temperature of the secondary battery. It is also possible to prevent the heat from being heated.

特開2006−151091号公報JP 2006-151091 A

従来の技術では、二次電池の非冷却時に冷媒がバイパス通路に導かれるが、このようにして冷媒の供給が停止されたとしても、冷媒の循環通路と二次電池との位置関係は変化することがない。このため、例えば当該循環通路と二次電池とが物理的に接触している場合には、冷媒の供給が停止されても循環通路に残留する熱により暫時二時電池の加熱は継続されてしまい、二次電池の迅速且つ精細な温度制御が難しくなる。一方、予めこれらが物理的に接触していない場合、元来の目的である二次電池の暖機が効率的に行われ難い。即ち、従来の技術には、ここで言う二次電池等を含む概念としての蓄電手段の温度を迅速且つ精細に制御することが困難であるという技術的な問題点がある。   In the conventional technology, the refrigerant is guided to the bypass passage when the secondary battery is not cooled, but even if the supply of the refrigerant is stopped in this way, the positional relationship between the refrigerant circulation passage and the secondary battery changes. There is nothing. For this reason, for example, when the circulation passage and the secondary battery are in physical contact, even if the supply of the refrigerant is stopped, the heating of the battery for a while is continued for a while due to the heat remaining in the circulation passage. This makes it difficult to quickly and precisely control the temperature of the secondary battery. On the other hand, when they are not in physical contact with each other in advance, it is difficult to efficiently warm up the secondary battery, which is the original purpose. That is, the conventional technique has a technical problem that it is difficult to quickly and precisely control the temperature of the power storage means as a concept including the secondary battery or the like.

本発明は、上述した問題点に鑑みてなされたものであり、車両に備わる蓄電手段の温度を迅速且つ精細に制御し得る蓄電手段の暖機装置を提供することを課題とする。   The present invention has been made in view of the above-described problems, and an object of the present invention is to provide a warming-up device for power storage means that can quickly and finely control the temperature of the power storage means provided in the vehicle.

上述した課題を解決するため、本発明に係る蓄電手段の暖機装置は、内燃機関及び蓄電手段を有する車両に備わり、前記蓄電手段に対向して配置される熱源と、該熱源と前記蓄電手段との接触状態を、該熱源と前記蓄電手段とが接触してなる第1の接触状態と、該熱源と前記蓄電手段とが離間してなる第2の接触状態との間で切り替え可能な切り替え手段とを具備することを特徴とする。   In order to solve the above-described problems, a warming-up device for power storage means according to the present invention is provided in a vehicle having an internal combustion engine and power storage means, and a heat source disposed opposite to the power storage means, the heat source, and the power storage means Switchable between a first contact state where the heat source and the power storage means are in contact with each other and a second contact state where the heat source and the power storage means are separated from each other Means.

本発明における「蓄電手段」とは、然るべき発電手段により生成される電力又は外部電源から供給される電力を所定の充電経路を介して蓄積する(即ち、蓄電する)ことが可能に構成され、車両における各種の用途(例えばエアコン、照明装置、パワーステアリング等の電装補機類の駆動、例えばABS(Antilock Braking System)、VSC(Vehicle Stability Control)又はPCS(Pre Crush Safety system)等の各種挙動制御装置の駆動、例えばセルモータの駆動、或いは例えば動力源としてのモータの駆動等)に応じた電力の供給源として機能する手段であり、例えばニッケル水素バッテリやリチウムイオンバッテリ等の各種バッテリ等を指す(尚、電池セル単体であっても、それらが要求出力に応じて複数個連結されてなるバッテリパック等であってもよい)。例えば、蓄電手段は、主として車両の補機類を駆動する所謂車載用バッテリ(例えば、12V)であってもよいし、車両がハイブリッド車両であれば、大出力モータを駆動する例えば出力数百Vの所謂ハイブリッドバッテリであってもよく、その適用範囲は何ら限定されない趣旨である。   The “power storage means” in the present invention is configured to be capable of accumulating (that is, storing) electric power generated by an appropriate electric power generation means or electric power supplied from an external power source through a predetermined charging path. For various applications (for example, driving of electrical accessories such as air conditioners, lighting devices, power steering, etc., for example, various behavior control devices such as ABS (Antilock Braking System), VSC (Vehicle Stability Control) or PCS (Pre Crush Safety system) For example, driving of a cell motor, or driving of a motor as a power source, etc., and refers to various batteries such as a nickel metal hydride battery and a lithium ion battery. A battery cell alone or a battery pack in which a plurality of battery cells are connected according to the required output may be used. ). For example, the power storage means may be a so-called in-vehicle battery (for example, 12V) that mainly drives the auxiliary equipment of the vehicle, or if the vehicle is a hybrid vehicle, for example, an output of several hundred volts The so-called hybrid battery may be used, and its application range is not limited at all.

このような蓄電手段は、その温度によって大なり小なり出力特性(例えば、電圧や電流の立ち上がり特性や最大値、或いは放電特性等)が変化することが知られており、少なくとも実践上不足無い電力供給が可能となる温度範囲として定められる動作適温範囲が、例えば蓄電手段の物理的構成、機械的構成、電気的構成又は化学的構成等に応じて適宜に定まり得る。従って、蓄電手段から少なくとも実践上不足ない電力供給を受けるためには、望ましくは蓄電手段の温度が係る動作適温範囲内にある必要があり(但し、好適には、この種の動作適温範囲外にある場合であっても幾らかなりの電力供給は可能である)、蓄電手段の温度が動作適温範囲以下であれば迅速に動作適温範囲まで昇温させ、また蓄電手段の温度が動作適温範囲にあれば、その状態を維持することが求められる。或いは蓄電手段の温度が動作適温範囲以上であれば、迅速に動作適温範囲に相当する温度まで冷却する必要が生じ得る。   Such power storage means are known to change output characteristics (for example, voltage and current rising characteristics, maximum values, discharge characteristics, etc.) to a greater or lesser extent depending on the temperature. An appropriate operating temperature range determined as a temperature range in which supply is possible can be appropriately determined according to, for example, the physical configuration, mechanical configuration, electrical configuration, or chemical configuration of the power storage means. Therefore, in order to receive at least a practically insufficient power supply from the power storage means, it is desirable that the temperature of the power storage means should be within the appropriate operating temperature range (however, preferably outside this kind of operating optimal temperature range). In some cases, a considerable amount of power can be supplied.) If the temperature of the power storage means is lower than the proper operating temperature range, the temperature is quickly raised to the proper operating temperature range, and the temperature of the power storage means should be within the proper operating temperature range. In that case, it is required to maintain that state. Alternatively, if the temperature of the power storage means is equal to or higher than the operating temperature range, it may be necessary to quickly cool to a temperature corresponding to the operating temperature range.

本発明に係る蓄電手段の暖機装置には、蓄電手段に対向配置された熱源が備わる。ここで、「熱源」とは、蓄電手段に対し供与すべき熱の供給源であり、その物理的、機械的、電気的又は化学的構成は特段に限定されない趣旨であるが、好適な一形態として、例えば少なくとも幾らかなりの熱伝導性を有する(言い換えれば、少なくとも断熱性を有しない)ケース(筐体又は外郭材料)内部に、例えば流体又は液体等の各種熱媒体が封入された、又は当該ケース内部を、然るべき経路を介して供給される熱媒体が通過する構成等を採ってもよい。或いは、熱源は物理的、電気的又は化学的に発熱可能な固体熱源であってもよい。   The warming-up device for the power storage means according to the present invention includes a heat source disposed so as to face the power storage means. Here, the “heat source” is a supply source of heat to be supplied to the power storage means, and its physical, mechanical, electrical, or chemical configuration is not particularly limited, but is a preferred form. For example, various heat media such as a fluid or a liquid are enclosed in a case (housing or outer material) having at least some considerable thermal conductivity (in other words, at least having no heat insulation), or A configuration in which a heat medium supplied through an appropriate path passes through the case may be adopted. Alternatively, the heat source may be a solid heat source that can generate heat physically, electrically, or chemically.

また、本発明に係る蓄電手段の暖機装置には、相互に対向配置された熱源と蓄電手段との接触状態を、第1の接触状態と第2の接触状態との間で切り替え可能な物理的、機械的、電気的、磁気的又は化学的手段を包括する概念としての切り替え手段が備わる。ここで、「第1の接触状態」とは、蓄電手段と熱源との接触状態の一であり、蓄電手段と熱源とが接触した状態、好適な一形態としては、各々相対する面部分の少なくとも一部において接触した状態を指す。一方、「第2の接触状態」とは、蓄電手段と熱源とが離間した状態、好適な一形態としては、熱源が有する熱により蓄電手段が少なくとも昇温しない程度の間隙を隔てて双方が対向した状態を指す。尚、第1及び第2の接触状態とは、夫々一義的な状態でなくてもよく、例えば第1の接触状態が、接触の度合いが異なる複数の状態を採ってもよいし、第2の接触状態が、間隙の厚さを異にする複数の状態を採ってもよい。   Further, in the warm-up device for the power storage means according to the present invention, the physical state capable of switching the contact state between the heat source and the power storage means arranged to face each other between the first contact state and the second contact state. Switching means as a concept encompassing mechanical, mechanical, electrical, magnetic or chemical means is provided. Here, the “first contact state” is one of the contact states between the power storage means and the heat source. The state in which the power storage means and the heat source are in contact with each other is preferable. Refers to the state of contact in part. On the other hand, the “second contact state” is a state in which the power storage means and the heat source are separated from each other, and in a preferred form, the two are opposed to each other with a gap that does not raise the temperature of the power storage means at least due to the heat of the heat source. Refers to the state. The first and second contact states do not have to be unique, and for example, the first contact state may take a plurality of states with different degrees of contact, The contact state may take a plurality of states with different gap thicknesses.

ここで、熱源の有する熱が有限である点に鑑みれば、蓄電手段は、熱源よりも温度が低い限りにおいて、熱源と第1の接触状態にある場合に最も効率良く暖機され、その昇温が促進される。一方、蓄電手段には、先に述べたように動作適温範囲が存在するから、例えば、蓄電手段が、この昇温の過程において動作適温範囲を超えた温度領域に突入した場合には、或いは例えば蓄電手段の温度を動作適温範囲内に維持しようとした場合には、蓄電手段を冷却する必要が生じ得る。特にこの種の高温領域では、同種の概念により規定される低温領域と較べて、電力供給に係る性能低下に加えて熱負荷による蓄電手段の劣化が進行し易いから、冷却は迅速に行われる必要がある。   Here, in view of the fact that the heat source has a finite heat, the power storage means is most efficiently warmed up in the first contact state with the heat source as long as the temperature is lower than that of the heat source. Is promoted. On the other hand, since the power storage means has an appropriate operating temperature range as described above, for example, when the power storage means has entered a temperature region exceeding the optimal operating temperature range in this temperature rising process, or, for example, When it is attempted to maintain the temperature of the power storage means within the proper operating temperature range, it may be necessary to cool the power storage means. In particular, in this type of high-temperature region, compared to the low-temperature region defined by the same concept, in addition to the performance degradation related to power supply, the storage means is more likely to deteriorate due to the thermal load, so cooling must be performed quickly. There is.

他方、このような冷却要求に対し、積極的な冷却(即ち、熱源から蓄電手段へ供与される熱量を幾らかなり減少側へ変化させることによってもたらされる相対的な冷却と異なる意味での冷却)を行うためには、例えばクーラ、チラー又は冷却ファン等、然るべき冷却手段が必要となり、システム構成の複雑化或いはコストの増加等を招き、搭載性、信頼性、メンテナンス性或いは経済性を低下させ易い。従って、現実的な制約の下でこの種の冷却を実現しようとする場合、熱源から蓄電手段へ供与される熱量を低減する、上述した相対的な冷却が必要となる。   On the other hand, aggressive cooling (that is, cooling in a sense different from the relative cooling brought about by changing the amount of heat supplied from the heat source to the power storage means to a somewhat lower side) is performed in response to such a cooling request. In order to perform this, an appropriate cooling means such as a cooler, a chiller, or a cooling fan is required, which leads to a complicated system configuration or an increase in cost, and easily deteriorates the mountability, reliability, maintainability, or economy. Therefore, when it is intended to realize this kind of cooling under realistic restrictions, the above-described relative cooling that reduces the amount of heat provided from the heat source to the power storage means is necessary.

ここで特に、熱源から蓄電手段へ供与される熱量を低減するに際しては、例えば先に述べたような熱媒体の供給を停止、禁止又は制限すること等により熱源自体が有する熱量を低減させてもよいが、蓄電手段と熱源との位置関係が不変であると、熱源は、自然に進行する温度低下により蓄電手段を暖機し得ない状態となるまでの相応の期間について、蓄電手段に対する熱供与を継続し得る。従って、例え迅速に冷却が開始される必要性があるとしたところで、それに反して蓄電手段の冷却は緩慢にしか進行しない。これでは、暖機は好適に行い得ても、蓄電手段の温度を動作適温範囲に制御することに実践上の困難が伴う。   In particular, when reducing the amount of heat supplied from the heat source to the power storage means, the amount of heat possessed by the heat source itself may be reduced, for example, by stopping, prohibiting or restricting the supply of the heat medium as described above. However, if the positional relationship between the power storage means and the heat source is unchanged, the heat source will provide heat to the power storage means for a corresponding period until the power storage means cannot be warmed up due to a naturally proceeding temperature drop. Can continue. Therefore, if it is necessary to start cooling quickly, the cooling of the power storage means proceeds only slowly. In this case, even if the warm-up can be suitably performed, there are practical difficulties in controlling the temperature of the power storage means within the temperature range suitable for operation.

その点、本発明に係る蓄電手段の暖機装置によれば、熱源と蓄電手段との接触状態が、第1の接触状態と第2の接触状態との間で二値的に、段階的に又は連続的に切り替えられる。このように物理的な位置関係が変化すれば、少なくとも熱源と蓄電手段との間に例えば空気等が介在することとなり、熱源自体が有する熱量が変化するにせよしないにせよ、蓄電手段に供与される熱量は、少なくとも係る位置関係が不変である場合と較べて迅速に低減される。特に、第2の接触状態において、熱源の有する熱が蓄電手段の温度に影響を与えない程度の間隙を隔てて双方が離間するならば、その効果はより顕著となる。また、この際、先に述べたように熱源自体の熱量が低減されれば、更に大きな効果を得ることができる。   In that respect, according to the warming-up device for the power storage means according to the present invention, the contact state between the heat source and the power storage means is binary and stepwise between the first contact state and the second contact state. Or it is switched continuously. If the physical positional relationship changes in this way, at least air or the like is interposed between the heat source and the power storage unit, and the heat source itself is supplied to the power storage unit whether or not the amount of heat changes. The amount of heat is reduced more quickly than at least when the positional relationship is unchanged. In particular, in the second contact state, if both of them are separated with a gap such that the heat of the heat source does not affect the temperature of the power storage means, the effect becomes more remarkable. At this time, if the heat quantity of the heat source itself is reduced as described above, a greater effect can be obtained.

このように、本発明に係る蓄電手段の暖機装置によれば、熱源と蓄電手段との接触状態が切り替え可能であるため、第1の接触状態において熱源からの直接的な熱伝達により蓄電手段を効率的に暖機可能であると共に、第2の接触状態において蓄電手段の冷却を促進することが可能となる。従って、蓄電手段の温度制御を迅速且つ精細に実行することが可能となるのである。   Thus, according to the warming-up device for the power storage means according to the present invention, the contact state between the heat source and the power storage means can be switched, so that the power storage means is directly transferred from the heat source in the first contact state. Can be efficiently warmed up, and cooling of the power storage means can be promoted in the second contact state. Therefore, the temperature control of the power storage means can be executed quickly and finely.

本発明に係る蓄電手段の暖機装置の一の態様では、前記熱源は、熱媒体として前記内燃機関の冷却水を収容可能な収容手段を備える。   In one aspect of the warming-up device for the power storage means according to the present invention, the heat source includes storage means that can store the cooling water of the internal combustion engine as a heat medium.

この態様によれば、熱源が、熱媒体として内燃機関の冷却水を収容可能な、例えば金属、樹脂、或いはセラミック等により構成される収容手段を有するため、収容手段を介した冷却水と蓄電手段との間の熱交換により蓄電手段を効率的に暖機することが可能となる。   According to this aspect, since the heat source has the storing means that can store the cooling water of the internal combustion engine as a heat medium, for example, composed of metal, resin, ceramic, etc., the cooling water and the power storage means via the storing means The power storage means can be efficiently warmed up by the heat exchange between them.

ここで、「冷却水を収容」とは、冷却水を貯留すること及び冷却水が流通することを含む概念である。後者の場合、例えば内燃機関の冷却系統(例えば、ウォータポンプ、冷却水配管及びラジエータ等を含む冷却水の循環供給システム)における冷却水の供給経路上に収容手段を配置すること等により、蓄電手段の暖機が簡便にして可能となる。   Here, “accommodating cooling water” is a concept including storing cooling water and circulating the cooling water. In the latter case, for example, the storage unit is disposed on the cooling water supply path in the cooling system of the internal combustion engine (for example, a cooling water circulation supply system including a water pump, a cooling water pipe, and a radiator). It is possible to warm up easily.

尚、この態様では、前記収容手段は、内圧に応じて容積が変化する容積可変構造を有しており、前記切り替え手段は、前記内圧を変化させることにより前記接触状態を切り替えてもよい。   In this aspect, the housing means may have a variable volume structure in which the volume changes according to the internal pressure, and the switching means may switch the contact state by changing the internal pressure.

この場合、収容手段の容積可変構造により、収容手段の内圧に応じて収容手段の容積が変化し、この容積の変化に伴って、第1の接触状態と第2の接触状態との間の接触状態の切り替えが実現される。この内圧の変化は、結局は収容手段が収容する冷却水の量と一義的であり、切り替え手段は、収容手段に対する冷却水の供給量を可変とする物理的、機械的、電気的又は磁気的構成を有すればよい。従って、この場合、切り替え手段を比較的簡素に構成することが可能となる。   In this case, due to the variable volume structure of the storage means, the volume of the storage means changes according to the internal pressure of the storage means, and the contact between the first contact state and the second contact state with this change in volume. State switching is realized. This change in internal pressure is unambiguous with the amount of cooling water accommodated by the accommodating means in the end, and the switching means is a physical, mechanical, electrical or magnetic that makes the amount of cooling water supplied to the accommodating means variable. What is necessary is just to have a structure. Therefore, in this case, the switching means can be configured relatively simply.

例えば、切り替え手段は、収容手段に冷却水を供給するための供給路と、当該供給路における冷却水の供給量(流量)を二値的、段階的又は連続的に変化させることが可能な、例えば電磁弁、バタフライ弁又は三方弁等の各種弁装置等の形態を採り得る流量可変手段を備えていてもよい。或いは、切り替え手段は更に、内燃機関に冷却水を循環供給する冷却装置に備わる電気駆動式又は機械駆動式のポンプを含んでもよい。   For example, the switching means can change the supply path for supplying cooling water to the housing means and the supply amount (flow rate) of the cooling water in the supply path in a binary, stepwise or continuous manner. For example, flow rate variable means that can take the form of various valve devices such as a solenoid valve, a butterfly valve, or a three-way valve may be provided. Alternatively, the switching means may further include an electrically driven or mechanically driven pump provided in a cooling device that circulates and supplies cooling water to the internal combustion engine.

尚、「容積可変構造」とは、内圧に応じて当該容積が可変となる構造である限りにおいて、如何なる構造であってもよいが、好適な一形態として、内圧に応じて伸縮可能、好適な一形態としては、蓄電手段の方向により志向的に伸縮可能な構造又は構成を有していてもよい。   The “variable volume structure” may be any structure as long as the volume is variable according to the internal pressure. However, as a preferred form, the volume can be expanded and contracted according to the internal pressure. As one form, you may have the structure or structure which can expand-contract intentionally by the direction of an electrical storage means.

本発明に係る蓄電手段の暖機装置の他の態様では、前記蓄電手段の温度を特定する特定手段と、該特定された温度に応じて前記接触状態が変化するように前記切り替え手段を制御する制御手段とを更に具備する。   In another aspect of the warming-up device for the power storage means according to the present invention, the specifying means for specifying the temperature of the power storage means, and the switching means are controlled so that the contact state changes according to the specified temperature. And a control means.

この態様によれば、例えばECU(Electronic Control Unit:電子制御ユニット)等の各種処理ユニット、各種コントローラ或いはマイコン装置等各種コンピュータシステム等の形態を採り得特定手段により、蓄電手段の温度が特定される。ここで、本発明に係る「特定」とは、特定対象(ここでは、温度)又は特定対象と相関する物理量、制御量又は指標値等を所定の検出手段を介して直接的に又は間接的に検出すること、当該検出手段を介して直接的に又は間接的に検出された特定対象と相関する物理量、制御量又は指標値に基づいて予め然るべき記憶手段等に記憶されたマップ等から該当値を選択すること、この種の特定対象と相関する物理量、制御量若しくは指標値又は該当値等から、予め設定されたアルゴリズムや計算式に従って導出又は推定すること、或いはこのように検出、選択、導出又は推定された各種の値を、例えば電気信号等の形で単に取得すること等を包括する広い概念である。   According to this aspect, for example, various processing units such as an ECU (Electronic Control Unit), various controllers or various computer systems such as a microcomputer device can take the form, and the temperature of the power storage means is specified by the specifying means. . Here, “specific” according to the present invention refers to a specific target (here, temperature) or a physical quantity, control amount, index value, or the like correlated with the specific target, directly or indirectly via a predetermined detection means. Detecting the corresponding value from a map or the like stored in advance in a suitable storage means based on a physical quantity, control amount or index value correlated with a specific target detected directly or indirectly through the detection means Selection, derivation or estimation from a physical quantity, control quantity or index value or corresponding value, etc., correlated with a specific target of this type, according to a preset algorithm or calculation formula, or detection, selection, derivation or This is a broad concept including simply acquiring various estimated values in the form of, for example, an electric signal.

また、この態様によれば、例えばECU等の各種処理ユニット、各種コントローラ或いはマイコン装置等各種コンピュータシステム等の形態を採り得る制御手段が、この特定された温度に応じて、例えば二値的に、段階的に又は連続的に冷却水の供給量が変化するように(収容手段を備える場合)切り替え手段を制御すること等により、蓄電手段と熱源との接触状態を変化させる。   Further, according to this aspect, the control means that can take the form of various processing units such as an ECU, various controllers or various computer systems such as a microcomputer device, for example, in a binary manner, according to the specified temperature, The contact state between the power storage means and the heat source is changed by controlling the switching means so that the supply amount of the cooling water changes stepwise or continuously (when the storage means is provided).

このため、例えば、蓄電手段の温度が動作適温範囲未満である場合には第1の接触状態が得られるように、また動作適温範囲よりも高い場合には第2の接触状態が得られるように、或いは動作適温範囲内であれば一定周期又は不定期に接触状態を切り替えて可及的にその状態が維持されるように、夫々切り替え手段を制御する等の措置を講じることが可能となり、蓄電手段の暖機及び温度状態の維持管理が極めて好適に行われ得る。   For this reason, for example, the first contact state is obtained when the temperature of the power storage means is lower than the appropriate operating temperature range, and the second contact state is obtained when the temperature is higher than the appropriate operating temperature range. Or, if it is within the proper operating temperature range, it is possible to take measures such as controlling the switching means so as to maintain the state as much as possible by switching the contact state at regular or irregular intervals. The warming-up of the means and the maintenance of the temperature state can be carried out very suitably.

本発明に係る蓄電手段の暖機装置の他の態様では、前記車両は、動力源として、前記内燃機関に加え、前記蓄電手段を電源とする電動機を備えたハイブリッド車両である。   In another aspect of the warming-up device of the power storage means according to the present invention, the vehicle is a hybrid vehicle including a motor that uses the power storage means as a power source in addition to the internal combustion engine as a power source.

この態様によれば、車両が、内燃機関に加え、例えばモータ又はモータジェネレータ等の形態を採り得る少なくとも一の電動機を備えたハイブリッド車両として構成される。この電動機は、本発明に係る蓄電手段を電源としており、電源には通常の車載用バッテリと較べて大出力のハイブリッドバッテリが採用される。このような大出力のバッテリは、複数の電池セルからなるのが一般的であり、単一の電池セルと較べれば、暖機に要する熱負荷も高く、また暖機後の温度制御がより繊細になり易い。また、この場合、蓄電手段の出力特性(放電特性)は、車両の走行性能に影響を与えることとなり、蓄電手段の温度を動作適温範囲に維持する必要性がより高くなり易い。従って、本発明に係る蓄電手段の暖機装置により、より高い実践上の利益が享受される。   According to this aspect, the vehicle is configured as a hybrid vehicle that includes at least one electric motor that can take the form of, for example, a motor or a motor generator in addition to the internal combustion engine. This electric motor uses power storage means according to the present invention as a power source, and a high-power hybrid battery is adopted as the power source as compared with a normal vehicle-mounted battery. Such a high-power battery is generally composed of a plurality of battery cells. Compared to a single battery cell, the heat load required for warm-up is higher, and temperature control after warm-up is more delicate. It is easy to become. Further, in this case, the output characteristics (discharge characteristics) of the power storage means will affect the running performance of the vehicle, and the need to maintain the temperature of the power storage means within the appropriate operating temperature range is likely to increase. Therefore, higher practical benefits are enjoyed by the warming-up device of the power storage means according to the present invention.

本発明のこのような作用及び他の利得は次に説明する実施形態から明らかにされる。   Such an operation and other advantages of the present invention will become apparent from the embodiments described below.

<発明の実施形態>
以下、図面を参照して、本発明の好適な各種実施形態について説明する。
<Embodiment of the Invention>
Various preferred embodiments of the present invention will be described below with reference to the drawings.

始めに、図1を参照して、本発明の一実施形態に係るハイブリッド車両10の構成について説明する。ここに、図1は、ハイブリッド車両10の構成を概念的に表してなる概略構成図である。   First, with reference to FIG. 1, the structure of the hybrid vehicle 10 which concerns on one Embodiment of this invention is demonstrated. FIG. 1 is a schematic configuration diagram conceptually showing the configuration of the hybrid vehicle 10.

図1において、ハイブリッド車両10は、減速機構11及び車輪12、並びにECU100、エンジン200、モータジェネレータMG1(以下、適宜「MG1」と略称する)、モータジェネレータMG2(以下、適宜「MG2」と略称する)、動力分割機構300、PCU400、バッテリ500、冷却装置600及びバッテリ暖機装置700を備えた、本発明に係る「ハイブリッド車両」の一例である。   In FIG. 1, the hybrid vehicle 10 includes a speed reduction mechanism 11 and wheels 12, an ECU 100, an engine 200, a motor generator MG <b> 1 (hereinafter abbreviated as “MG1” as appropriate), and a motor generator MG2 (hereinafter abbreviated as “MG2” as appropriate). ), An example of a “hybrid vehicle” according to the present invention that includes the power split mechanism 300, the PCU 400, the battery 500, the cooling device 600, and the battery warm-up device 700.

減速機構11は、エンジン200及びモータジェネレータMG2から出力された動力に応じて回転可能に構成された、デファレンシャルギア(不図示)等を含んでなるギア機構であり、これら動力源の回転速度を所定の減速比に従って減速可能に構成されている。減速機構11の出力軸は、ハイブリッド車両10の車軸(符号省略)に連結されており、これら動力源の動力は、回転速度が減速された状態で当該車軸及び当該車軸に連結された、駆動輪としての車輪12に伝達されるように構成されている。   The speed reduction mechanism 11 is a gear mechanism that includes a differential gear (not shown) that is configured to rotate according to the power output from the engine 200 and the motor generator MG2, and the rotational speed of these power sources is set to a predetermined value. It can be decelerated according to the reduction ratio. The output shaft of the speed reduction mechanism 11 is connected to the axle (not shown) of the hybrid vehicle 10, and the power of these power sources is the driving wheel connected to the axle and the axle with the rotational speed reduced. It is comprised so that it may be transmitted to the wheel 12 as.

尚、減速機構11の構成は、エンジン200及びモータジェネレータMG2から供給される動力を、その動力に基づいた軸体の回転速度を減速しつつ車軸に伝達可能である限りにおいて何ら限定されず、単にデファレンシャルギア等を含んでなる構成を有していてもよいし、複数のクラッチ及びブレーキ並びに遊星歯車機構により構成される所謂リダクション機構として複数の変速比を得ることが可能に構成されていてもよい。   The configuration of the speed reduction mechanism 11 is not limited in any way as long as the power supplied from the engine 200 and the motor generator MG2 can be transmitted to the axle while reducing the rotational speed of the shaft body based on the power. It may have a configuration including a differential gear or the like, or may be configured to be able to obtain a plurality of gear ratios as a so-called reduction mechanism including a plurality of clutches and brakes and a planetary gear mechanism. .

ECU100は、CPU(Central Processing Unit)、ROM(Read Only Memory)及びRAM(Random Access Memory)等を備え、ハイブリッド車両10の動作全体を制御することが可能に構成された電子制御ユニットであり、本発明に係る「特定手段」及び「制御手段」の一例である。ECU100は、ROMに格納された制御プログラムに従って、後述するバッテリ暖機制御を実行することが可能に構成されている。   The ECU 100 is an electronic control unit that includes a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and the like and is configured to be able to control the entire operation of the hybrid vehicle 10. It is an example of "identification means" and "control means" according to the invention. The ECU 100 is configured to be able to execute battery warm-up control described later according to a control program stored in the ROM.

尚、ECU100は、本発明に係る「特定手段」及び「制御手段」の夫々一例として機能するように構成された一体の電子制御ユニットであり、これら各手段に係る動作は、全てECU100によって実行されるように構成されている。但し、本発明に係るこれら各手段の物理的、機械的及び電気的な構成はこれに限定されるものではなく、例えばこれら各手段は、複数のECU、各種処理ユニット、各種コントローラ或いはマイコン装置等各種コンピュータシステム等として構成されていてもよい。   The ECU 100 is an integrated electronic control unit configured to function as an example of each of the “specifying unit” and the “control unit” according to the present invention, and all the operations related to these units are executed by the ECU 100. It is comprised so that. However, the physical, mechanical, and electrical configurations of each of the units according to the present invention are not limited to this. For example, each of these units includes a plurality of ECUs, various processing units, various controllers, a microcomputer device, and the like. It may be configured as various computer systems.

エンジン200は、ハイブリッド車両10の主たる動力源として機能するように構成された、本発明に係る「内燃機関」の一例たる直列4気筒ガソリンエンジンである。尚、エンジン200は、公知の各種態様を有していてよく、ここではその詳細な構成については省略することとする。補足すると、本発明に係る「内燃機関」とは、一又は複数の気筒を有し、当該気筒の各々における燃焼室において、例えばガソリン、軽油或いは各種アルコール等の燃料と吸入空気との混合体である混合気が燃焼した際に発生する爆発力たる動力を、例えばピストン及びコネクティングロッド等の機械的な伝達経路を経て、例えばクランク軸等の出力軸を介して動力として出力可能な機関を包括する概念であり、係る概念の範囲内において、その構成や構造は多種多様である。   The engine 200 is an in-line four-cylinder gasoline engine that is configured to function as a main power source of the hybrid vehicle 10 and that is an example of the “internal combustion engine” according to the present invention. The engine 200 may have various known aspects, and a detailed configuration thereof is omitted here. Supplementally, the “internal combustion engine” according to the present invention has one or a plurality of cylinders, and is a mixture of fuel such as gasoline, light oil or various alcohols and intake air in the combustion chamber of each cylinder. Includes an engine that can output power as an explosive force generated when a certain air-fuel mixture burns through a mechanical transmission path such as a piston and a connecting rod as power via an output shaft such as a crankshaft. It is a concept, and its configuration and structure are diverse within the scope of the concept.

モータジェネレータMG1は、本発明に係る「電動機」の一例たる電動発電機であり、バッテリ600を充電するための或いはモータジェネレータMG2に電力を供給するための発電機として、更にはエンジン200の動力をアシストする電動機として機能するように構成されている。   The motor generator MG1 is a motor generator that is an example of the “motor” according to the present invention, and is used as a generator for charging the battery 600 or supplying electric power to the motor generator MG2. It is configured to function as an assisting motor.

モータジェネレータMG2は、本発明に係る「電動機」の一例たる電動発電機であり、エンジン200の動力をアシストする電動機として、或いはバッテリ500を充電するための発電機として機能するように構成されている。   The motor generator MG2 is a motor generator that is an example of the “motor” according to the present invention, and is configured to function as a motor that assists the power of the engine 200 or as a generator that charges the battery 500. .

尚、これらモータジェネレータMG1及びモータジェネレータMG2は、例えば同期電動発電機として構成され、外周面に複数個の永久磁石を有するロータと、回転磁界を形成する三相コイルが巻回されたステータとを備える。但し、他の形式のモータジェネレータであっても構わない。   The motor generator MG1 and the motor generator MG2 are configured as, for example, a synchronous motor generator, and include a rotor having a plurality of permanent magnets on the outer peripheral surface, and a stator wound with a three-phase coil that forms a rotating magnetic field. Prepare. However, other types of motor generators may be used.

動力分割機構300は、エンジン200の動力をMG1及び車軸へ分配することが可能に構成された遊星歯車機構である。尚、動力分割機構300の構成は公知の各種態様を採り得るため、ここではその詳細な説明を省略するが、簡略的に説明すると、動力分割機構300は、中心部に設けられたサンギアと、サンギアの外周に同心円状に設けられたリングギアと、サンギアとリングギアとの間に配置されてサンギアの外周を自転しつつ公転する複数のピニオンギアと、クランクシャフト205の端部に結合され、各ピニオンギアの回転軸を軸支するプラネタリキャリアとを備える。   The power split mechanism 300 is a planetary gear mechanism configured to be able to distribute the power of the engine 200 to the MG 1 and the axle. In addition, since the structure of the power split mechanism 300 can take various well-known aspects, a detailed description thereof is omitted here, but in brief, the power split mechanism 300 includes a sun gear provided at the center, A ring gear concentrically provided on the outer periphery of the sun gear, a plurality of pinion gears disposed between the sun gear and the ring gear and revolving while rotating on the outer periphery of the sun gear, and coupled to an end of the crankshaft 205, And a planetary carrier that supports the rotation shaft of each pinion gear.

このサンギアは、サンギア軸を介してMG1のロータ(符合は省略)に結合され、リングギアは、リングギア軸を介してMG2の不図示のロータに結合されている。リングギア軸は、車軸と連結されており、MG2が発する動力は、リングギア軸を介して車軸へと伝達され、同様に車軸を介して伝達される車輪12からの駆動力は、リングギア軸を介してMG2に入力される。係る構成の下、動力分割機構300により、エンジン200が発する動力は、プラネタリキャリアとピニオンギアとによってサンギア及びリングギアに伝達され、エンジン200の動力が2系統に分割される。   This sun gear is coupled to a rotor (not shown) of MG1 via a sun gear shaft, and the ring gear is coupled to a rotor (not shown) of MG2 via a ring gear shaft. The ring gear shaft is connected to the axle, and the power generated by the MG 2 is transmitted to the axle via the ring gear shaft, and the driving force from the wheel 12 similarly transmitted via the axle is the ring gear shaft. Is input to MG2. Under such a configuration, the power generated by the engine 200 is transmitted to the sun gear and the ring gear by the planetary carrier and the pinion gear, and the power of the engine 200 is divided into two systems.

PCU400は、バッテリ500から取り出した直流電力を交流電力に変換して、モータジェネレータMG1及びモータジェネレータMG2に供給すると共に、モータジェネレータMG1及びモータジェネレータMG2によって発電された交流電力を直流電力に変換してバッテリ500に供給することが可能に構成された不図示のインバータ等を含み、バッテリ500と各モータジェネレータとの間の電力の入出力を、或いは各モータジェネレータ相互間の電力の入出力(即ち、この場合、バッテリ500を介さずに各モータジェネレータ相互間で電力の授受が行われる)を制御することが可能に構成された電力制御ユニットである。PCU400は、ECU100と電気的に接続されており、ECU100によってその動作が制御される構成となっている。   PCU 400 converts the DC power extracted from battery 500 into AC power and supplies it to motor generator MG1 and motor generator MG2, and also converts AC power generated by motor generator MG1 and motor generator MG2 into DC power. An inverter (not shown) configured to be able to supply the battery 500 is included, and power input / output between the battery 500 and each motor generator, or power input / output between each motor generator (that is, In this case, the power control unit is configured to be capable of controlling the power transmission / reception between the motor generators without using the battery 500. The PCU 400 is electrically connected to the ECU 100, and its operation is controlled by the ECU 100.

バッテリ500は、モータジェネレータMG1及びモータジェネレータMG2を力行するための電力に係る電力供給源として機能することが可能に構成された充電可能な蓄電池であり、本発明に係る「蓄電手段」の一例である。尚、バッテリ500の詳細な構成については後述する。   The battery 500 is a rechargeable storage battery configured to be able to function as a power supply source related to the power for powering the motor generator MG1 and the motor generator MG2, and is an example of the “storage means” according to the present invention. is there. The detailed configuration of the battery 500 will be described later.

冷却装置600は、冷却水(LLC)を循環供給することによりエンジン200の冷却対象部位(例えば、シリンダヘッドやシリンダブロック等)を冷却可能に構成されている。尚、冷却装置600の詳細な構成については後述する。   The cooling device 600 is configured to be able to cool a portion to be cooled (for example, a cylinder head or a cylinder block) of the engine 200 by circulatingly supplying cooling water (LLC). The detailed configuration of the cooling device 600 will be described later.

バッテリ暖機装置700は、上述の冷却水を使用してバッテリ500を暖機することが可能に構成された、ECU100と共に本発明に係る「蓄電手段の暖機装置」の一例をなす装置である。尚、バッテリ暖機装置700の詳細な構成については後述する。   The battery warming-up device 700 is an apparatus that constitutes an example of the “warming-up device for power storage means” according to the present invention, together with the ECU 100, configured to be able to warm up the battery 500 using the above-described cooling water. . The detailed configuration of the battery warm-up device 700 will be described later.

ここで、図2を参照し、バッテリ500、冷却装置600及びバッテリ暖機装置700の詳細な構成について説明する。ここに、図2は、バッテリ500、冷却装置600及びバッテリ暖機装置700の構成及びこれら相互間の位置関係を概念的に表してなる概略構成図である。尚、同図において、図1と重複する箇所には同一の符合を付してその説明を適宜省略することとする。   Here, with reference to FIG. 2, the detailed structure of the battery 500, the cooling device 600, and the battery warming-up apparatus 700 is demonstrated. FIG. 2 is a schematic configuration diagram conceptually showing the configuration of the battery 500, the cooling device 600, and the battery warming-up device 700 and the positional relationship between them. In the figure, the same reference numerals are given to the same portions as those in FIG. 1, and the description thereof will be omitted as appropriate.

図2において、冷却装置600は、電動ウォータポンプ(以下、適宜「電動W/P」と称する)610、冷却水循環路620、サーモスタット630、ラジエータ640及び水温センサ650を備える。   In FIG. 2, the cooling device 600 includes an electric water pump (hereinafter referred to as “electric W / P” as appropriate) 610, a cooling water circulation path 620, a thermostat 630, a radiator 640, and a water temperature sensor 650.

電動W/P610は、電動W/P610は、不図示モータの回転力によって冷却水を吸引し、モータの回転数に応じた量の冷却水を吐出することが可能に構成された渦巻き式の電動ポンプである。尚、冷却装置600は、電動W/P610に替えて、例えばエンジン200のクランクシャフトと連結され、クランクシャフトの回転駆動力の一部を利用して回転可能であると共に、当該回転に係る回転数を、例えば物理的な係合手段における係合力を二値的に、段階的に又は連続的に可変に制御することにより夫々二値的に、段階的に又は連続的に制御することが可能に構成された機械式のポンプを備えていてもよい。   The electric W / P 610 is a spiral electric type that is configured such that the electric W / P 610 is capable of sucking cooling water by the rotational force of a motor (not shown) and discharging an amount of cooling water according to the rotational speed of the motor. It is a pump. The cooling device 600 is connected to, for example, the crankshaft of the engine 200 instead of the electric W / P 610 and can be rotated using a part of the rotational driving force of the crankshaft, and the rotation speed related to the rotation Can be controlled in a binary, stepwise or continuous manner, for example, by variably controlling the engagement force in the physical engagement means in a binary, stepwise or continuously manner. A structured mechanical pump may be provided.

電動W/P610において、モータは、PCU400を介してバッテリ500からの電力供給を受け(バッテリ500から直接供給されてもよい)、不図示のモータ駆動系を介して供給される制御電圧(又は電流)のデューティ比に応じて、その回転数が増減制御される構成となっている。また、このモータ駆動系は、ECU100と電気的に接続された状態にあり、ECU100によって上述したデューティ比を含む動作状態が制御される構成となっている。即ち、電動W/P610は、ECU100によってその動作状態が制御される構成となっている。   In the electric W / P 610, the motor receives power supply from the battery 500 via the PCU 400 (may be directly supplied from the battery 500), and a control voltage (or current) supplied via a motor drive system (not shown). ) Is controlled to increase or decrease in accordance with the duty ratio. Further, the motor drive system is in a state of being electrically connected to the ECU 100, and the operation state including the above-described duty ratio is controlled by the ECU 100. That is, the operation state of the electric W / P 610 is controlled by the ECU 100.

冷却水循環路620は、エンジン200のシリンダブロック周囲に張り巡らされたウォータジャケット等を含み、電動W/P610によって吐出される冷却水の供給経路を規定する、例えば金属製或いは樹脂製の管状部材である。また、冷却装置600において、冷却水循環路620は、サーモスタット630においてラジエータ640へと分岐する放熱用管路621と、係る放熱用管路621からラジエータ640を経由してサーモスタット630へ戻り管路622を含んで構成される。   The cooling water circulation path 620 includes a water jacket or the like stretched around the cylinder block of the engine 200, and is a tubular member made of, for example, metal or resin that defines a supply path of cooling water discharged by the electric W / P 610. is there. Further, in the cooling device 600, the cooling water circulation path 620 includes a heat radiation pipe 621 that branches to the radiator 640 in the thermostat 630, and a return pipe 622 from the heat radiation pipe 621 to the thermostat 630 via the radiator 640. Consists of including.

サーモスタット630は、冷却水の温度たる冷却水温Twを安定せしめるために設けられた、温度調節手段である。サーモスタット630の内部には、ラジエータ640に連通する前述した放熱用管路621及び戻り管路622と冷却水循環路620の本管との間の連通状態を制御するための制御弁が設けられており、サーモスタット630は、係る制御弁の開閉状態の制御により、ラジエータ640に流入する冷却水の流量を調節することが可能に構成される。尚、サーモスタット630は、ECU100と電気的に接続され、その動作がECU100により上位に制御される構成となっている。この際、係る制御弁は、冷却水温Twが所定値(概ね、80〜90℃)未満である場合に全閉状態となるように(即ち、冷却水がラジエータ640を経由しないように)、また冷却水温が当該所定値以上である場合には全開状態となるように(即ち、冷却水が全てラジエータ640を経由するように)制御される構成となっている。このため、冷却水温Twは、基本的には係る所定値を大きく逸脱することはなく、概ね係る所定値近傍の値を上限として維持される。   The thermostat 630 is temperature adjusting means provided to stabilize the cooling water temperature Tw that is the temperature of the cooling water. Inside the thermostat 630, there are provided control valves for controlling the communication state between the above-described heat radiation pipe 621 and return pipe 622 communicating with the radiator 640 and the main pipe of the cooling water circulation path 620. The thermostat 630 is configured to be able to adjust the flow rate of the cooling water flowing into the radiator 640 by controlling the open / close state of the control valve. The thermostat 630 is electrically connected to the ECU 100 and its operation is controlled by the ECU 100 to the upper level. At this time, the control valve is set to a fully closed state when the cooling water temperature Tw is lower than a predetermined value (generally 80 to 90 ° C.) (that is, the cooling water does not pass through the radiator 640). When the cooling water temperature is equal to or higher than the predetermined value, the cooling water temperature is controlled so as to be fully opened (that is, all the cooling water passes through the radiator 640). For this reason, the coolant temperature Tw basically does not deviate greatly from the predetermined value, and is generally maintained with the value near the predetermined value as the upper limit.

ラジエータ640は、放熱用管路621及び戻り管路622と連通してなる複数のウォータパイプが配列してなると共に、当該ウォータパイプの外周に多数の波板状のフィンを備え、当該ウォータパイプ内を冷却水が流れる際に、当該フィンを介した大気との熱交換により、即ち冷却水の有する熱を外界に放熱することにより、冷却水を冷却することが可能に構成されている。   The radiator 640 includes a plurality of water pipes that communicate with the heat radiation pipe line 621 and the return pipe line 622, and includes a plurality of corrugated fins on the outer periphery of the water pipe. When the cooling water flows, the cooling water can be cooled by heat exchange with the atmosphere via the fins, that is, by radiating the heat of the cooling water to the outside.

水温センサ650は、冷却水循環路620内部に検出端子の一部が露出してなる、冷却水温Twを検出可能なセンサである。水温センサ650は、ECU100と電気的に接続されており、検出された冷却水温Twは、ECU100により一定又は不定の周期で参照される構成となっている。   The water temperature sensor 650 is a sensor that can detect the cooling water temperature Tw, in which a part of the detection terminal is exposed inside the cooling water circulation path 620. The water temperature sensor 650 is electrically connected to the ECU 100, and the detected cooling water temperature Tw is referred to by the ECU 100 at a constant or indefinite period.

一方、図2において、バッテリ500は、バッテリケース510、電池セル520及び温度センサ530を備える。   On the other hand, in FIG. 2, the battery 500 includes a battery case 510, a battery cell 520, and a temperature sensor 530.

バッテリケース510は、電池セル520及び後述する蓄熱容器730を収容する金属製の筐体である。   The battery case 510 is a metal housing that houses the battery cell 520 and a heat storage container 730 described later.

電池セル520は、正極に水酸化ニッケル、負極に水素吸蔵合金を配し、これらが不織布のセパレータにより絶縁されつつアルカリ性電解液に浸潤されてなるニッケル水素型の化学電池である。単一の電池セル520の出力は約1.2V程度であり、モータジェネレータMG1及びMG2の電源として不足の生じない出力(例えば、200〜300V)を得るために、電池セル520は、数百個電気的に直列に接続された状態でバッテリケース510内部に収容されている。尚、図示されるのはそのうちの一電池セルである。   The battery cell 520 is a nickel metal hydride type chemical battery in which nickel hydroxide is disposed on the positive electrode and a hydrogen storage alloy is disposed on the negative electrode, and these are infiltrated with an alkaline electrolyte while being insulated by a nonwoven fabric separator. The output of a single battery cell 520 is about 1.2V, and in order to obtain an output (for example, 200 to 300V) that does not cause a shortage as a power source for the motor generators MG1 and MG2, there are several hundred battery cells 520. The battery case 510 is housed in an electrically connected state. Note that only one battery cell is shown.

電池セル520は、バッテリケース510内部に形成された枠状の支持部により、その底面の一部が支持される形で収容されている。一方、係る底面のうち当該支持部により支持されない面部分は、当該支持部下方に開口した空間内に露出し、後述する蓄熱容器730と対向している。   The battery cell 520 is accommodated in a form in which a part of the bottom surface is supported by a frame-shaped support portion formed inside the battery case 510. On the other hand, a surface portion of the bottom surface that is not supported by the support portion is exposed in a space opened below the support portion and faces a heat storage container 730 described later.

温度センサ530は、バッテリ500の温度たるバッテリ温度Tbattを検出可能なセンサである。温度センサ530は、ECU100と電気的に接続されており、検出されたバッテリ温度Tbattは、ECU100により一定又は不定の周期で参照される構成となっている。尚、バッテリ温度Tbattは、バッテリ500に備わる複数の電池セル520のうち少なくとも一部(全部であってもよいし、予め選択された複数であってもよい)の温度の平均値であってもよいし、代表値であってもよい。或いは、予め温度検出対象として設定された単一の電池セルの温度であってもよい。   Temperature sensor 530 is a sensor that can detect battery temperature Tbatt, which is the temperature of battery 500. The temperature sensor 530 is electrically connected to the ECU 100, and the detected battery temperature Tbatt is referred to by the ECU 100 at a constant or indefinite period. Note that the battery temperature Tbatt may be an average value of the temperatures of at least some of the plurality of battery cells 520 included in the battery 500 (may be all or a plurality selected in advance). It may be a representative value. Alternatively, the temperature of a single battery cell set in advance as a temperature detection target may be used.

他方、図2において、バッテリ暖機装置700は、メインパイプ710、インレットパイプ720、蓄熱容器730、アウトレットパイプ740、逆流防止弁750、バイパスパイプ760及び三方弁770を備える。   On the other hand, in FIG. 2, the battery warm-up device 700 includes a main pipe 710, an inlet pipe 720, a heat storage container 730, an outlet pipe 740, a backflow prevention valve 750, a bypass pipe 760 and a three-way valve 770.

メインパイプ710は、冷却装置600の冷却水循環路620における、サーモスタット630上流側から分岐する冷却水導入用の配管である。   The main pipe 710 is a cooling water introduction pipe branched from the upstream side of the thermostat 630 in the cooling water circulation path 620 of the cooling device 600.

インレットパイプ720は、両端部が夫々メインパイプ710及び蓄熱容器730の冷却水導入口に連通する配管である。   The inlet pipe 720 is a pipe whose both ends communicate with the main pipe 710 and the cooling water inlet of the heat storage container 730, respectively.

蓄熱容器730は、内部に冷却水を貯留可能且つ蓄熱可能な容器であり、本発明に係る「熱源」及び「収容手段」の一例である。蓄熱容器730は、内圧の大小に応じてその容積が可変となる容積可変構造を有している。より具体的には、蓄熱容器730は、良好な熱伝導特性を有し、且つ伸縮可能な樹脂性材料(例えば、耐熱性の強化ゴム等)で構成されており、内圧の上昇(一義的に、冷却水の供給量の増加)に応じて膨張する構成となっている。この際、蓄熱容器730の図示下方はバッテリケース510と接触しており、また図示側方にも十分な膨張シロは存在しないため、蓄熱容器730は主として図示上方に膨張する構成となっている。尚、蓄熱容器730は、蓄熱機能を有しており、冷却水が供給された場合には、冷却水が有する熱を蓄積することが可能に構成される。   The heat storage container 730 is a container capable of storing cooling water and storing heat therein, and is an example of the “heat source” and “accommodating means” according to the present invention. The heat storage container 730 has a variable volume structure in which the volume is variable according to the internal pressure. More specifically, the heat storage container 730 is composed of a resinous material (for example, heat-resistant reinforced rubber, etc.) that has good heat conduction characteristics and can be expanded and contracted. , The structure expands in response to an increase in the amount of cooling water supplied). At this time, since the lower part of the heat storage container 730 is in contact with the battery case 510 and there is no sufficient expansion wall on the side of the figure, the heat storage container 730 mainly expands upward in the figure. In addition, the heat storage container 730 has a heat storage function, and is configured to be able to store the heat of the cooling water when the cooling water is supplied.

アウトレットパイプ740は、蓄熱容器730の冷却水排出口に連通する配管である。   The outlet pipe 740 is a pipe that communicates with the cooling water discharge port of the heat storage container 730.

逆流防止弁750は、アウトレットパイプ740に設置された弁装置である。逆流防止弁750は、蓄熱容器730からアウトレットパイプ740を経由して逆流防止弁750に流れる冷却水については、実質的に無抵抗に通過させ、逆方向からの冷却水の流入については遮断する構成を有している。   The backflow prevention valve 750 is a valve device installed in the outlet pipe 740. The backflow prevention valve 750 allows the cooling water flowing from the heat storage container 730 to the backflow prevention valve 750 via the outlet pipe 740 to pass substantially non-resistance, and blocks the inflow of cooling water from the reverse direction. have.

バイパスパイプ760は、一端部がメインパイプ710とインレットパイプ720とに連通し、また他端部がアウトレットパイプ740の逆流防止弁750下流側と連通する配管である。   The bypass pipe 760 is a pipe having one end communicating with the main pipe 710 and the inlet pipe 720 and the other end communicating with the downstream side of the check valve 750 of the outlet pipe 740.

三方弁770は、三個の弁口を有し、各弁口が夫々メインパイプ710、インレットパイプ720及びバイパスパイプ760に接続されると共に、内部に回転可能な弁体を有する、本発明に係る「切り替え手段」の一例たる弁装置である。三方弁770の弁体は、ECU100と電気的に接続された図示せぬ駆動装置により駆動され、その回転位置として、メインパイプ710とインレットパイプ720とを連通させ、且つこれらとバイパスパイプ760との連通を遮断する第1の弁体位置と、メインパイプ710とバイパスパイプ760とを連通させ、且つこれらとインレットパイプ720との連通を遮断する第2の弁体位置とを採ることが可能に構成されている。   The three-way valve 770 has three valve ports, and each valve port is connected to the main pipe 710, the inlet pipe 720, and the bypass pipe 760, and has a rotatable valve body inside, according to the present invention. This is a valve device as an example of “switching means”. The valve body of the three-way valve 770 is driven by a drive device (not shown) that is electrically connected to the ECU 100, and the main pipe 710 and the inlet pipe 720 are communicated with each other as a rotational position thereof. The first valve body position for blocking communication and the second valve body position for allowing communication between the main pipe 710 and the bypass pipe 760 and blocking communication between the main pipe 710 and the bypass pipe 720 are configured. Has been.

従って、三方弁770の弁体位置が第1の弁体位置に制御された場合、冷却水の一部は、冷却水循環路620からメインパイプ710へ導かれ、更にインレットパイプ720、蓄熱容器730及びアウトレットパイプ740を経由して、メインパイプ710への分岐位置下流側且つサーモスタット630上流側の合流位置において冷却水循環路620に合流する。また、三方弁770の弁体位置が第2の弁体位置に制御された場合、冷却水の一部は、冷却水循環路620からメインパイプ710を介してバイパスパイプ760に導かれ、逆流防止弁750下流側のアウトレットパイプ740を経由して、上記合流位置において冷却水循環路620に合流する。即ち、端的には、第2の弁体位置が選択された場合、冷却水は蓄熱容器730に導かれることなく、単にバイパスパイプ760を経由して冷却水循環路620に戻る構成となっている。
<実施形態の動作>
ハイブリッド車両10において、バッテリ500は、モータジェネレータMG1及びMG2の電力源となると共に、各種の補機類(エアコンやパワーステアリング等)或いは挙動制御装置(ABS用のアクチュエータ等)に対する電力源としても機能する。この際、バッテリ500のSOC(State Of Charge:充電状態)は、図1において不図示のSOCセンサの出力値等に基づいて、所定の上下限値により規定される範囲に可及的に維持される。このため、ハイブリッド車両10において電力不足の状況が頻発するといった事態は生じ難いが、総体的にみてバッテリ500に出力上の余裕はないから、バッテリ500からの効率的な電力供給を必要とする。従って、バッテリ500の温度は、絶えずその出力特性が良好となる動作適温範囲(概ね、80〜90℃前後)に維持されるのが望ましい。このようなバッテリ500の温度状態は、ECU100により実行されるバッテリ暖機制御によって管理される。
Therefore, when the valve body position of the three-way valve 770 is controlled to the first valve body position, a part of the cooling water is guided from the cooling water circulation path 620 to the main pipe 710, and further, the inlet pipe 720, the heat storage container 730, and Via the outlet pipe 740, the cooling water circulation path 620 joins at the joining position downstream of the branch position to the main pipe 710 and upstream of the thermostat 630. Further, when the valve body position of the three-way valve 770 is controlled to the second valve body position, a part of the cooling water is led from the cooling water circulation path 620 to the bypass pipe 760 via the main pipe 710, and the backflow prevention valve Through the outlet pipe 740 on the downstream side 750, the coolant joins the cooling water circulation path 620 at the joining position. In short, when the second valve element position is selected, the cooling water is not guided to the heat storage container 730 but simply returned to the cooling water circulation path 620 via the bypass pipe 760.
<Operation of Embodiment>
In hybrid vehicle 10, battery 500 serves as a power source for motor generators MG1 and MG2, and also functions as a power source for various auxiliary devices (such as an air conditioner and power steering) or behavior control device (such as an actuator for ABS). To do. At this time, the SOC (state of charge) of the battery 500 is maintained as much as possible within a range defined by a predetermined upper and lower limit value based on an output value of an SOC sensor not shown in FIG. The For this reason, it is unlikely that a situation where power shortage occurs frequently in the hybrid vehicle 10, but overall, the battery 500 has no margin on output, and thus efficient power supply from the battery 500 is required. Therefore, it is desirable that the temperature of the battery 500 is maintained within an appropriate operating temperature range (generally around 80 to 90 ° C.) in which the output characteristics are constantly good. Such a temperature state of the battery 500 is managed by battery warm-up control executed by the ECU 100.

ここで、図3を参照し、本実施形態の動作として、ECU100により実行されるバッテリ暖機制御の詳細について説明する。ここに、図3は、バッテリ暖機制御のフローチャートである。   Here, with reference to FIG. 3, the details of the battery warm-up control executed by the ECU 100 will be described as the operation of the present embodiment. FIG. 3 is a flowchart of battery warm-up control.

図3において、ECU100は、エンジン200の冷却水温Twがバッテリ温度Tbattよりも高いか否かを判別する(ステップS101)。冷却水温Twがバッテリ温度Tbatt以下である場合(ステップS101:NO)、バッテリ温度Tbattに関係なく、冷却水から電池セル520への熱供与によるバッテリ500の暖機は不可能であるため、ECU100は、三方弁770の駆動装置を制御して、三方弁770の弁体位置を上述した第2の弁体位置に制御する(ステップS105)。弁体位置が第2の弁体位置に制御されると、既に述べたように冷却水は蓄熱容器730に導かれることなくバイパスパイプ760に導かれる。尚、冷却水がバイパスパイプ760に導かれた際のバッテリ暖機装置700の動作状態については後述する。   In FIG. 3, ECU 100 determines whether or not cooling water temperature Tw of engine 200 is higher than battery temperature Tbatt (step S101). When the coolant temperature Tw is equal to or lower than the battery temperature Tbatt (step S101: NO), the ECU 100 cannot warm up the battery 500 by supplying heat from the coolant to the battery cells 520 regardless of the battery temperature Tbatt. Then, the driving device of the three-way valve 770 is controlled to control the valve body position of the three-way valve 770 to the above-described second valve body position (step S105). When the valve body position is controlled to the second valve body position, the cooling water is guided to the bypass pipe 760 without being guided to the heat storage container 730 as described above. In addition, the operation state of the battery warm-up device 700 when the cooling water is led to the bypass pipe 760 will be described later.

一方、冷却水温Twがバッテリ温度Tbattよりも高い場合(ステップS101:YES)、ECU100は更に、バッテリ温度Tbattが所定の判断基準値Tbattth未満であるか否かを判別する(ステップS102)。ここで、判断基準値Tbattthとは、先に述べた動作適温範囲の上限値であり、概ね90℃前後の値である。バッテリ温度Tbattが判断基準値Tbattth以上である場合(ステップS102:NO)、処理はステップS105に移行される。   On the other hand, when the coolant temperature Tw is higher than the battery temperature Tbatt (step S101: YES), the ECU 100 further determines whether or not the battery temperature Tbatt is less than a predetermined determination reference value Tbatth (step S102). Here, the determination reference value Tbattth is the upper limit value of the above-described operation appropriate temperature range, and is approximately a value of about 90 ° C. When the battery temperature Tbatt is equal to or higher than the determination reference value Tbattth (step S102: NO), the process proceeds to step S105.

バッテリ温度Tbattが判断基準値Tbattth未満である場合(ステップS102:YES)、即ち言い換えれば、冷却水との熱交換によりバッテリ500(より具体的には電池セル520)を暖機可能であり且つバッテリ500が暖機を必要とする場合、ECU100は、三方弁770の駆動装置を制御して、三方弁770の弁体位置を第1の弁体位置に制御する(ステップS103)。弁体位置が第1の弁体位置に制御されると、既に述べたように冷却水はバイパスパイプ760に導かれること無く蓄熱容器730に導かれる。   When battery temperature Tbatt is lower than determination reference value Tbatth (step S102: YES), that is, in other words, battery 500 (more specifically, battery cell 520) can be warmed up by heat exchange with cooling water, and battery When 500 requires warm-up, ECU 100 controls the driving device for three-way valve 770 to control the valve body position of three-way valve 770 to the first valve body position (step S103). When the valve body position is controlled to the first valve body position, the cooling water is guided to the heat storage container 730 without being guided to the bypass pipe 760 as described above.

また、弁体位置が第1の弁体位置に制御されると、ECU100は、電動W/P610の駆動制御により、蓄熱容器730に供給される冷却水の量を増量させる(ステップS104)。尚、冷却水が蓄熱容器730に導かれた際のバッテリ暖機装置700の動作状態については後述する。ステップS104又はステップS105が実行されると、処理はステップS101に戻され、一連の処理が繰り返し実行される。   Further, when the valve body position is controlled to the first valve body position, ECU 100 increases the amount of cooling water supplied to heat storage container 730 by the drive control of electric W / P 610 (step S104). In addition, the operation state of the battery warm-up device 700 when the cooling water is led to the heat storage container 730 will be described later. When step S104 or step S105 is executed, the process returns to step S101, and a series of processes is repeatedly executed.

ここで、図4を参照し、バッテリ暖機制御の実行過程におけるバッテリ暖機装置700の動作状態について説明する。ここに、図4は、三方弁770の弁体位置に応じた蓄熱容器730の状態を例示する模式図である。尚、同図において、図2と重複する箇所には、同一の符合を付してその説明を適宜省略することとする。   Here, with reference to FIG. 4, the operation state of the battery warm-up device 700 in the execution process of the battery warm-up control will be described. FIG. 4 is a schematic view illustrating the state of the heat storage container 730 according to the valve body position of the three-way valve 770. In the figure, the same reference numerals are given to the same portions as those in FIG. 2, and the description thereof will be omitted as appropriate.

図4において、図4(a)には、三方弁770の弁体位置として第1の弁体位置が選択された状態が示されている。ここで、第1の弁体位置が選択される場合、冷却水の流れは図示破線の如くとなり、蓄熱容器730内部には冷却水が供給される。一方、アウトレットパイプ740のパイプ径は不変であり管路抵抗は不変であるため、電動W/P610の駆動制御により冷却水量の増量が図られると、蓄熱容器730の入り口側と出口側との間の冷却水の収支が変化し、蓄熱容器730内の冷却水量が増加する。蓄熱容器730内の冷却水量が増加すると、蓄熱容器730の内圧が上昇する。   In FIG. 4, FIG. 4A shows a state where the first valve body position is selected as the valve body position of the three-way valve 770. Here, when the first valve body position is selected, the flow of the cooling water is as indicated by the broken line in the figure, and the cooling water is supplied into the heat storage container 730. On the other hand, since the pipe diameter of the outlet pipe 740 is not changed and the pipe line resistance is not changed, if the amount of cooling water is increased by the drive control of the electric W / P 610, the outlet pipe 740 has a gap between the inlet side and the outlet side. The balance of the cooling water changes, and the amount of cooling water in the heat storage container 730 increases. When the amount of cooling water in the heat storage container 730 increases, the internal pressure of the heat storage container 730 increases.

ここで、先に述べたように、蓄熱容器730は、その内圧に応じて主として上方に膨張するが、上方には電池セル520の底面部分の一部が露出しており、蓄熱容器730は、この露出した底面部分と接触する(図4(a)には、この底面部分と接触した状態が示されている)。この、蓄熱容器730の上面部分と電池セル520の底面部分とが接触した状態は、本発明に係る「第1の接触状態」の一例である(これ以降、適宜「第1の接触状態」なる言葉を使用することとする)。この際、電動W/P610による冷却水の吐出圧(冷却水流量)は、ECU100によって、蓄熱容器730の内圧よりも無論高く(そうでないと、冷却水が逆流する)、また、蓄熱容器730と電池セル520とが接触した第1の接触状態が維持され得る値に制御される。即ち、本実施形態において、電動W/P610は、三方弁770等と共に、本発明に係る「切り替え手段」の一例として機能する。   Here, as described above, the heat storage container 730 mainly expands upward according to its internal pressure, but a part of the bottom surface portion of the battery cell 520 is exposed above, and the heat storage container 730 is The exposed bottom surface portion is contacted (FIG. 4A shows a state in contact with the bottom surface portion). The state in which the upper surface portion of the heat storage container 730 and the bottom surface portion of the battery cell 520 are in contact is an example of the “first contact state” according to the present invention (hereinafter referred to as “first contact state” as appropriate). Use words). At this time, the discharge pressure (cooling water flow rate) of the cooling water by the electric W / P 610 is naturally higher than the internal pressure of the heat storage container 730 by the ECU 100 (otherwise, the cooling water flows backward). The first contact state in which the battery cell 520 is in contact is controlled to a value that can be maintained. That is, in this embodiment, the electric W / P 610 functions as an example of the “switching unit” according to the present invention, together with the three-way valve 770 and the like.

この第1の接触状態においては、蓄熱容器730に貯留された冷却水から蓄熱容器730を介して電池セル520へ熱が供与され、電池セル520の昇温が促進される。この際、蓄熱容器730と電池セル520との間には間隙が介在しないため、蓄熱容器730から電池セル520へ最大効率で熱供与が行われる。即ち、高効率なバッテリ暖機が促進される。   In the first contact state, heat is supplied from the cooling water stored in the heat storage container 730 to the battery cell 520 via the heat storage container 730, and the temperature rise of the battery cell 520 is promoted. At this time, since there is no gap between the heat storage container 730 and the battery cell 520, heat is supplied from the heat storage container 730 to the battery cell 520 with maximum efficiency. That is, highly efficient battery warm-up is promoted.

一方、図4(b)には、三方弁770の弁体位置として第2の弁体位置が選択された状態が示されている。ここで、第2の弁体位置が選択される場合、冷却水の流れは図示破線の如くとなり、蓄熱容器730内部には冷却水が供給されないため、蓄熱容器730の内圧が上昇することはなく、蓄熱容器730は膨張しない。或いは、先に述べたように第1の接触状態にある場合には、上流側からの冷却水の流入が停止するため、蓄熱容器730内の冷却水は下流方向に流れ、蓄熱容器730は迅速に収縮する。このため、蓄熱容器730の上面部分と電池セル520の底面部分とは相応の間隙を隔てて対向する、デフォルトの状態(即ち、本発明に係る「第2の接触状態」の一例である)に維持される。ここで、この間隙の厚さは、予め蓄熱容器730から電池セル520へ輻射熱による熱供与が生じない程度に設定されている。このため、エンジン200の運転条件等に影響されて冷却水温Twが一時的にせよ過剰に高温となった場合であっても、バッテリ温度Tbattは動作適温範囲に好適に維持される。   On the other hand, FIG. 4B shows a state where the second valve element position is selected as the valve element position of the three-way valve 770. Here, when the second valve body position is selected, the flow of the cooling water is as shown by the broken line in the figure, and the cooling water is not supplied into the heat storage container 730, so the internal pressure of the heat storage container 730 does not increase. The heat storage container 730 does not expand. Alternatively, as described above, in the first contact state, since the inflow of the cooling water from the upstream side stops, the cooling water in the heat storage container 730 flows in the downstream direction, and the heat storage container 730 is quickly Shrink to. For this reason, the upper surface portion of the heat storage container 730 and the bottom surface portion of the battery cell 520 face each other with a corresponding gap in a default state (that is, an example of the “second contact state” according to the present invention). Maintained. Here, the thickness of this gap is set in advance to such an extent that heat supply from the heat storage container 730 to the battery cell 520 by radiant heat does not occur. For this reason, even if the cooling water temperature Tw becomes excessively high due to the influence of the operating conditions of the engine 200, the battery temperature Tbatt is suitably maintained in the appropriate operating temperature range.

以上説明したように、本実施形態に係るバッテリ暖機装置700によれば、三方弁770の弁体位置の制御により、バッテリ500の暖機が必要とされる場合には蓄熱容器730の内圧が上昇せしめられ、蓄熱容器730を膨張させることによって電池セル520の底面部分と蓄熱容器730の上面部分とを直接接触させることができる。このため、バッテリ温度Tbattよりも温度の高い冷却水との熱交換が高効率に行われ、バッテリ暖機が促進される。一方で、バッテリ500の暖機が不要な場合には、冷却水がバイパスパイプ760に導かれ蓄熱容器730への冷却水の供給が遮断されるために、蓄熱容器730が熱源として機能することはなく、冷却水温が過剰に高い場合等にバッテリ温度500が不要に上昇することがない。即ち、バッテリ500の温度を迅速且つ精細に制御することが可能となるのである。   As described above, according to the battery warming-up device 700 according to the present embodiment, when the battery 500 needs to be warmed up by controlling the valve element position of the three-way valve 770, the internal pressure of the heat storage container 730 is increased. When the heat storage container 730 is expanded, the bottom surface portion of the battery cell 520 and the top surface portion of the heat storage container 730 can be brought into direct contact with each other. For this reason, heat exchange with cooling water having a temperature higher than the battery temperature Tbatt is performed with high efficiency, and battery warm-up is promoted. On the other hand, when the battery 500 does not need to be warmed up, the cooling water is guided to the bypass pipe 760 and the supply of the cooling water to the heat storage container 730 is shut off, so that the heat storage container 730 functions as a heat source. The battery temperature 500 does not increase unnecessarily when the cooling water temperature is excessively high. That is, the temperature of the battery 500 can be controlled quickly and finely.

尚、アウトレットパイプ740には、上流側の圧力が設定圧以上となった場合に開弁する圧力調整弁等が備わっていてもよい。この場合、バッテリ暖機が要求された場合に、この設定圧を上昇させ、一時的に圧力調整弁上下流の連通を遮断して、蓄熱容器730からの冷却水の流出を停止させてもよい。この場合、迅速に蓄熱容器730を膨張させることが可能となり、好適である。   The outlet pipe 740 may be provided with a pressure adjusting valve that opens when the upstream pressure becomes equal to or higher than the set pressure. In this case, when the battery warm-up is requested, the set pressure may be increased, the communication between the upstream and downstream of the pressure regulating valve may be temporarily interrupted, and the outflow of the cooling water from the heat storage container 730 may be stopped. . In this case, the heat storage container 730 can be quickly expanded, which is preferable.

尚、本実施形態では、バッテリ500の暖機が不要である旨の判別がなされた場合(即ち、バッテリ温度Tbattが判断基準値Tbattth以上である場合)に、三方弁770の弁体位置の制御により蓄熱容器730における冷却水流量がゼロとされ、電動W/P510における不要な電力消費が回避されるが、冷却水流量は必ずしもゼロでなくてよく、また必ずしもこのような二値的な制御がなされる必要もない。即ち、このような場合に、蓄熱容器730における容積の膨張が生じない程度に蓄熱容器730に冷却水が供給されてもよいし、バッテリ温度Tbattに応じて段階的又は連続的に冷却水流量が可変とされてもよい。この際、三方弁770が、インレットパイプ720の冷却水量とバイパスパイプ760の冷却水量との相互比率を段階的又は連続的に変化させることが可能に構成されていてもよいし、三方弁770に替えて、この種の段階的又は連続的な制御が可能な弁装置が設けられていてもよい。また、本実施形態に係る三方弁770の機能は、インレットパイプ720及びバイパスパイプ760各々に設けられた単一の開閉弁により代替されてもよい。   In this embodiment, when it is determined that it is not necessary to warm up the battery 500 (that is, when the battery temperature Tbatt is equal to or higher than the determination reference value Tbatth), the valve body position of the three-way valve 770 is controlled. As a result, the cooling water flow rate in the heat storage container 730 is set to zero, and unnecessary power consumption in the electric W / P 510 is avoided. However, the cooling water flow rate is not necessarily zero, and such binary control is not necessarily performed. There is no need to be made. That is, in such a case, the cooling water may be supplied to the heat storage container 730 to such an extent that the volume of the heat storage container 730 does not expand, and the cooling water flow rate is changed stepwise or continuously according to the battery temperature Tbatt. It may be variable. At this time, the three-way valve 770 may be configured such that the mutual ratio between the cooling water amount of the inlet pipe 720 and the cooling water amount of the bypass pipe 760 can be changed stepwise or continuously. Alternatively, a valve device capable of this kind of stepwise or continuous control may be provided. Further, the function of the three-way valve 770 according to the present embodiment may be replaced by a single on-off valve provided in each of the inlet pipe 720 and the bypass pipe 760.

尚、本実施形態では、本発明に係る「切り替え手段」の一例として三方弁770が備わる構成としたが、蓄熱容器730に対する冷却水の供給量を変化させることにより、バッテリ500の迅速且つ精細な温度制御が可能となる点に鑑みれば、バイパスパイプ760は必ずしも設置されている必要はなく、従って、切り替え手段も必ずしも三方弁である必要はない。即ちこの場合、メインパイプ710における冷却水量を蓄熱容器730の膨張を招かぬ程度に抑制し得る(電動W/Pの負荷を考えた場合には、当該流量は好適な一形態としてゼロであってもよい)流量調整弁が備わっていてもよい。或いは、バイパスパイプ760が設けられない場合、メインパイプ710と冷却水循環路620との分岐位置に三方弁が配置されていてもよい。   In this embodiment, the three-way valve 770 is provided as an example of the “switching unit” according to the present invention. However, by changing the amount of cooling water supplied to the heat storage container 730, the battery 500 can be quickly and finely configured. In view of the fact that temperature control is possible, the bypass pipe 760 does not necessarily have to be installed, and therefore the switching means does not necessarily have to be a three-way valve. That is, in this case, the amount of cooling water in the main pipe 710 can be suppressed to such an extent that does not cause expansion of the heat storage container 730 (when considering the load of the electric W / P, the flow rate is zero as a preferred form. It may also be provided with a flow control valve. Alternatively, when the bypass pipe 760 is not provided, a three-way valve may be disposed at a branch position between the main pipe 710 and the cooling water circulation path 620.

尚、本実施形態では、バッテリ500の暖機の要否が、単一の判断基準値Tbattthにより判断されているが、この場合、バッテリ温度Tbattは判断基準値Tbattth付近に維持され、且つバッテリ温度Tbattが判断基準値Tbattthを跨いで増減変化を続ける場合には、三方弁770の弁体位置が頻繁に切り替わることとなる。従って、そのような制御上のハンチングを回避するために、バッテリ温度Tbattが一旦判断基準値Tbattthを超えた場合には、バッテリ温度Tbattが当該判断基準値Tbattth未満の第2の判断基準値以下(或いは未満)となるまで蓄熱容器730による電池セル520の暖機を待機させてもよい。この場合、バッテリ温度Tbattは、係る第2の判断基準値以上且つ判断基準値Tbattth未満の温度範囲(即ち、係る温度範囲を先に述べた動作適温範囲とすることもできる)に維持される。元よりバッテリ500の動作適温範囲には幅があるから、バッテリ500の温度制御に、このようなヒステリシス特性を設けたところで出力特性に影響はなく、先に述べた制御上のハンチングが防止される点においてより実践的である。   In the present embodiment, whether or not the battery 500 needs to be warmed up is determined by a single determination reference value Tbatth. In this case, the battery temperature Tbatt is maintained near the determination reference value Tbattth, and the battery temperature When Tbatt continues to increase or decrease across the determination reference value Tbatthth, the valve body position of the three-way valve 770 is frequently switched. Therefore, in order to avoid such control hunting, when the battery temperature Tbatt once exceeds the determination reference value Tbatttth, the battery temperature Tbatt is equal to or less than a second determination reference value less than the determination reference value Tbattt ( Alternatively, the battery cell 520 may be warmed up by the heat storage container 730 until it becomes less. In this case, the battery temperature Tbatt is maintained in a temperature range that is equal to or higher than the second determination reference value and lower than the determination reference value Tbattth (that is, the temperature range can be set to the appropriate operating temperature range described above). Since the operation temperature range of the battery 500 has a range from the beginning, the output characteristics are not affected when such hysteresis characteristics are provided in the temperature control of the battery 500, and the above-described control hunting is prevented. More practical in terms.

尚、本実施形態においては、本発明に係る「車両」の一例としてハイブリッド車両10が示されるが、本発明に係る「車両」とは、必ずしもハイブリッド車両である必要はなく、従って、本発明に係る「蓄電手段」とは、本実施形態で示したような比較的高出力のバッテリと異なる、例えば車載用の12Vバッテリ等であってもよい。   In the present embodiment, the hybrid vehicle 10 is shown as an example of the “vehicle” according to the present invention. However, the “vehicle” according to the present invention does not necessarily need to be a hybrid vehicle. The “power storage means” may be a vehicle-mounted 12V battery, for example, which is different from the battery having a relatively high output as shown in the present embodiment.

本発明は、上述した実施形態に限られるものではなく、請求の範囲及び明細書全体から読み取れる発明の要旨或いは思想に反しない範囲で適宜変更可能であり、そのような変更を伴う蓄電手段の暖機装置もまた本発明の技術的範囲に含まれるものである。   The present invention is not limited to the above-described embodiment, and can be appropriately changed without departing from the spirit or concept of the invention that can be read from the claims and the entire specification. The apparatus is also included in the technical scope of the present invention.

本発明の一実施形態に係るハイブリッド車両の構成を概念的に表してなる概略構成図である。1 is a schematic configuration diagram conceptually illustrating a configuration of a hybrid vehicle according to an embodiment of the present invention. 図1のハイブリッド車両における、バッテリ、冷却装置及びバッテリ暖機装置の構成及びこれら相互間の位置関係を概念的に表してなる概略構成図である。FIG. 2 is a schematic configuration diagram conceptually showing a configuration of a battery, a cooling device, and a battery warm-up device and a positional relationship between them in the hybrid vehicle of FIG. 1. 図1のハイブリッド車両においてECUにより実行されるバッテリ暖機制御のフローチャートである。2 is a flowchart of battery warm-up control executed by an ECU in the hybrid vehicle of FIG. 三方弁の弁体位置に応じた蓄熱容器の状態を例示する模式図である。It is a schematic diagram which illustrates the state of the thermal storage container according to the valve body position of a three-way valve.

符号の説明Explanation of symbols

10…ハイブリッド車両、100…ECU、200…エンジン、300…動力分割機構、500…バッテリ、600…冷却装置、610…電動ウォータポンプ、620…冷却水循環路、700…バッテリ暖機装置、710…メインパイプ、720…インレットパイプ、730…蓄熱容器、740…アウトレットパイプ、750…逆流防止弁、760…バイパスパイプ、770…三方弁。   DESCRIPTION OF SYMBOLS 10 ... Hybrid vehicle, 100 ... ECU, 200 ... Engine, 300 ... Power split mechanism, 500 ... Battery, 600 ... Cooling device, 610 ... Electric water pump, 620 ... Cooling water circulation path, 700 ... Battery warm-up device, 710 ... Main Pipe, 720 ... Inlet pipe, 730 ... Thermal storage container, 740 ... Outlet pipe, 750 ... Backflow prevention valve, 760 ... Bypass pipe, 770 ... Three-way valve.

Claims (5)

内燃機関及び蓄電手段を有する車両に備わり、
前記蓄電手段に対向して配置される熱源と、
該熱源と前記蓄電手段との接触状態を、該熱源と前記蓄電手段とが接触してなる第1の接触状態と、該熱源と前記蓄電手段とが離間してなる第2の接触状態との間で切り替え可能な切り替え手段と
を具備することを特徴とする蓄電手段の暖機装置。
Provided in a vehicle having an internal combustion engine and power storage means,
A heat source disposed opposite the power storage means;
The contact state between the heat source and the power storage means includes a first contact state in which the heat source and the power storage means are in contact with a second contact state in which the heat source and the power storage means are separated from each other. And a switching means that can be switched between.
前記熱源は、熱媒体として前記内燃機関の冷却水を収容可能な収容手段を備える
ことを特徴とする請求項1に記載の蓄電手段の暖機装置。
The warming-up device for a power storage unit according to claim 1, wherein the heat source includes a storage unit capable of storing the cooling water of the internal combustion engine as a heat medium.
前記収容手段は、内圧に応じて容積が変化する容積可変構造を有しており、
前記切り替え手段は、前記内圧を変化させることにより前記接触状態を切り替える
ことを特徴とする請求項2に記載の蓄電手段の暖機装置。
The accommodating means has a variable volume structure in which the volume changes according to the internal pressure,
The warming-up device for a power storage unit according to claim 2, wherein the switching unit switches the contact state by changing the internal pressure.
前記蓄電手段の温度を特定する特定手段と、
該特定された温度に応じて前記接触状態が切り替わるように前記切り替え手段を制御する制御手段と
を更に具備する
ことを特徴とする請求項1から3のいずれか一項に記載の蓄電手段の暖機装置。
Specifying means for specifying the temperature of the power storage means;
4. The power storage device according to claim 1, further comprising: a control unit that controls the switching unit so that the contact state is switched according to the specified temperature. 5. Machine equipment.
前記車両は、動力源として、前記内燃機関に加え、前記蓄電手段を電源とする電動機を備えたハイブリッド車両である
ことを特徴とする請求項1から4のいずれか一項に記載の蓄電手段の暖機装置。
The power storage means according to any one of claims 1 to 4, wherein the vehicle is a hybrid vehicle provided with an electric motor that uses the power storage means as a power source in addition to the internal combustion engine as a power source. Warm-up device.
JP2008151958A 2008-06-10 2008-06-10 Warming-up device for electricity accumulation means Pending JP2009298190A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008151958A JP2009298190A (en) 2008-06-10 2008-06-10 Warming-up device for electricity accumulation means

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008151958A JP2009298190A (en) 2008-06-10 2008-06-10 Warming-up device for electricity accumulation means

Publications (1)

Publication Number Publication Date
JP2009298190A true JP2009298190A (en) 2009-12-24

Family

ID=41545556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008151958A Pending JP2009298190A (en) 2008-06-10 2008-06-10 Warming-up device for electricity accumulation means

Country Status (1)

Country Link
JP (1) JP2009298190A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010133661A (en) * 2008-12-05 2010-06-17 Sanyo Electric Co Ltd Air conditioning-power generating device
WO2011099060A1 (en) * 2010-02-10 2011-08-18 パナソニック株式会社 Heat storage device, and air-conditioner provided with same
JP2013027084A (en) * 2011-07-19 2013-02-04 Toyota Central R&D Labs Inc Power supply system
JP2013256288A (en) * 2013-08-08 2013-12-26 Mitsubishi Motors Corp Control device of vehicle air-conditioner system
KR101417324B1 (en) * 2012-08-24 2014-07-09 현대자동차주식회사 High voltage battery pack for vehicle
WO2016017083A1 (en) * 2014-07-29 2016-02-04 株式会社デンソー Energy management system
CN109466314A (en) * 2018-11-23 2019-03-15 汽解放汽车有限公司 A kind of pure electric vehicle commercial vehicle cooling system and control method
JP2020080611A (en) * 2018-11-13 2020-05-28 株式会社ケーヒン Temperature regulating system
JP2020133588A (en) * 2019-02-25 2020-08-31 本田技研工業株式会社 Battery temperature raising device
US10818944B2 (en) 2016-12-15 2020-10-27 Hyundai Motor Company Heat exchange device for cooling water of fuel cell and fuel cell system comprising the same
CN113165552A (en) * 2018-10-25 2021-07-23 意大利乔治亚罗设计公司 Electric or hybrid motor vehicle with a cooling system for cooling a detachable battery module
CN114097170A (en) * 2019-07-09 2022-02-25 株式会社电装 Power supply system
US11476474B2 (en) 2016-12-14 2022-10-18 Hyundai Motor Company Heat exchange apparatus for cooling water of fuel cell and fuel cell system including the same

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010133661A (en) * 2008-12-05 2010-06-17 Sanyo Electric Co Ltd Air conditioning-power generating device
WO2011099060A1 (en) * 2010-02-10 2011-08-18 パナソニック株式会社 Heat storage device, and air-conditioner provided with same
CN102753912A (en) * 2010-02-10 2012-10-24 松下电器产业株式会社 Heat storage device,and air-conditioner provided with same
CN102753912B (en) * 2010-02-10 2015-01-28 松下电器产业株式会社 Heat storage device, and air-conditioner provided with same
JP2013027084A (en) * 2011-07-19 2013-02-04 Toyota Central R&D Labs Inc Power supply system
KR101417324B1 (en) * 2012-08-24 2014-07-09 현대자동차주식회사 High voltage battery pack for vehicle
JP2013256288A (en) * 2013-08-08 2013-12-26 Mitsubishi Motors Corp Control device of vehicle air-conditioner system
WO2016017083A1 (en) * 2014-07-29 2016-02-04 株式会社デンソー Energy management system
JP2016032348A (en) * 2014-07-29 2016-03-07 株式会社デンソー Energy management system
US11476474B2 (en) 2016-12-14 2022-10-18 Hyundai Motor Company Heat exchange apparatus for cooling water of fuel cell and fuel cell system including the same
US11777112B2 (en) 2016-12-14 2023-10-03 Hyundai Motor Company Heat exchange apparatus for cooling water of fuel cell and fuel cell system including the same
US10818944B2 (en) 2016-12-15 2020-10-27 Hyundai Motor Company Heat exchange device for cooling water of fuel cell and fuel cell system comprising the same
CN113165552B (en) * 2018-10-25 2024-03-29 意大利乔治亚罗设计公司 Electric or hybrid motor vehicle with a cooling system for cooling a removable battery module
JP7432594B2 (en) 2018-10-25 2024-02-16 イタルデザイン-ジュジアーロ・ソシエタ・ペル・アチオニ Electric or hybrid vehicles equipped with a cooling system for cooling the removable battery module
CN113165552A (en) * 2018-10-25 2021-07-23 意大利乔治亚罗设计公司 Electric or hybrid motor vehicle with a cooling system for cooling a detachable battery module
JP2022505576A (en) * 2018-10-25 2022-01-14 イタルデザイン-ジュジアーロ・ソシエタ・ペル・アチオニ Electric or hybrid vehicle with a cooling system to cool the removable battery module
JP2020080611A (en) * 2018-11-13 2020-05-28 株式会社ケーヒン Temperature regulating system
JP7378204B2 (en) 2018-11-13 2023-11-13 日立Astemo株式会社 temperature regulation system
CN109466314A (en) * 2018-11-23 2019-03-15 汽解放汽车有限公司 A kind of pure electric vehicle commercial vehicle cooling system and control method
CN109466314B (en) * 2018-11-23 2023-10-24 一汽解放汽车有限公司 Cooling system and control method for pure electric commercial vehicle
JP7094907B2 (en) 2019-02-25 2022-07-04 本田技研工業株式会社 Battery temperature riser
CN111613853B (en) * 2019-02-25 2023-11-14 本田技研工业株式会社 Battery temperature rising device
CN111613853A (en) * 2019-02-25 2020-09-01 本田技研工业株式会社 Battery temperature rising device
JP2020133588A (en) * 2019-02-25 2020-08-31 本田技研工業株式会社 Battery temperature raising device
CN114097170A (en) * 2019-07-09 2022-02-25 株式会社电装 Power supply system
CN114097170B (en) * 2019-07-09 2024-01-12 株式会社电装 Power supply system

Similar Documents

Publication Publication Date Title
JP2009298190A (en) Warming-up device for electricity accumulation means
JP7094908B2 (en) Battery heating device for hybrid vehicles
US10829005B2 (en) Vehicular heat exchange device
JP6687895B2 (en) Vehicle fuel cell warm-up device
CN108376808B (en) Automobile battery temperature adjusting method
JP7094907B2 (en) Battery temperature riser
CN109244505A (en) A kind of vehicle fuel battery heat management system and its control method
CN109980246A (en) Fuel cell car heat management system
JP2013095409A (en) Battery warm-up apparatus and battery warm-up method
WO2013139104A1 (en) Thermal management system for fuel cell, and fuel cell system and vehicle having same
US20070272174A1 (en) Thermal energy recovery and management system
WO2011013018A1 (en) Cooling system
JPH11204151A (en) Battery cooling device of electric vehicle
JP2010200604A (en) Battery pack temperature optimization control system
JP2004311218A (en) Warming-up device of fuel cell system
WO2017017867A1 (en) Cooling device
CN109962268A (en) Fuel cell car thermal management algorithm
CN104081031A (en) Thermoelectric generator
CN110539667A (en) Hybrid electric vehicle thermal management system and hybrid electric vehicle
JP2010284045A (en) Heat supply device
CN111312954B (en) Electric vehicle battery thermal management device and thermal management method
GB2509308A (en) Heat transfer arrangement for heating battery
CN208515373U (en) A kind of hybrid vehicle heat management system
US10875381B2 (en) Thermal management system in a vehicle and method for operation of the system
KR20110131885A (en) Seat air conditioner for vehicle