JPH0364701B2 - - Google Patents

Info

Publication number
JPH0364701B2
JPH0364701B2 JP59225899A JP22589984A JPH0364701B2 JP H0364701 B2 JPH0364701 B2 JP H0364701B2 JP 59225899 A JP59225899 A JP 59225899A JP 22589984 A JP22589984 A JP 22589984A JP H0364701 B2 JPH0364701 B2 JP H0364701B2
Authority
JP
Japan
Prior art keywords
heat
engine
generator
hot water
driven
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59225899A
Other languages
Japanese (ja)
Other versions
JPS61106954A (en
Inventor
Hideaki Sekiguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP59225899A priority Critical patent/JPS61106954A/en
Publication of JPS61106954A publication Critical patent/JPS61106954A/en
Publication of JPH0364701B2 publication Critical patent/JPH0364701B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B27/00Machines, plants or systems, using particular sources of energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G5/00Profiting from waste heat of combustion engines, not otherwise provided for
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、ガスエンジン、ガスタービンなどの
駆動機関とヒートポンプとの組合せによる熱併給
発電装置の運転方法に関するものである。 〔従来技術〕 従来の熱併給発電システムは、駆動機関として
例えばガスエンジン発電機で電力を供給し、エン
ジン排熱を利用して温水を供給するものとして、
第1図のような構成を備えている。即ち、ガスエ
ンジン1は発電機3に直結され、常時電力を供給
する。エンジン冷却水の排熱及び排気ガスの排熱
はそれぞれ冷却水熱交換器7及び排気熱交換器5
において回収される。 このシステムにおいては、一般に排熱の80%近
くを熱として利用できるため、発電とあわせた総
合エネルギ効率は80%前後が期待でき、熱併給発
電しないシステムに比して約40%の経費節減が図
れるといわれている。 〔発明が解決しようとする問題点〕 しかしながら、従来の熱併給システムはエネル
ギの蓄積ができないため昼間のピーク時に対する
対応が不十分であり、また総合エネルギ効率をそ
れ以上改善することができないという欠点があ
る。 そこで、蓄電池を用いてエネルギを蓄積するこ
とが考えられるが、従来の鉛蓄電池は作動が常温
型であり、熱に弱く、放電し易く、また水の補給
が不可決であり、メンテナンス上手間がかかる。
その上、充放電により発生した熱を外部に放出す
る必要があるため、空調の必要があり、従つて、
発電設備は大型で複雑なものとなる。また、熱を
蓄積するため熱水をアキユムレータに貯蔵するこ
とが考えられるが、アキユムレータは第一種圧力
容器であるため、その取扱いには問題がある。 本発明は、上記の問題点を解決し、経済的で総
合エネルギ効率が高く、設備はそれほど大型でな
く、また取扱いも容易であり、夜間に必要量のエ
ネルギを蓄積することができ、製作にあまり経費
がかからない熱併給発電装置の運転方法を提供す
ることを目的とするものである。 〔問題点を解決するための手段〕 本発明は、ガスエンジンと、該ガスエンジンと
カツプリングによつて選択的に接続駆動されるヒ
ートポンプ及び発電機と、該発電機に接続された
レドツクスフロー型蓄電池と、前記エンジン排熱
を高分子系蓄熱材に蓄積する潜熱蓄熱装置及び貯
湯槽とを熱交換器を介して備え、昼間は前記エン
ジン駆動のヒートポンプによる冷暖房を行い、夜
間は前記エンジン駆動の発電を行い、この発電機
の発生した電力を前記レドツクスフロー型蓄電池
に蓄電すると共に、エンジン排熱を熱交換器に通
して前記潜熱蓄熱装置及び前記貯湯槽の両者に蓄
熱して、昼間のピークカツト用の電力を供給し、
併せて給湯等の熱供給を行うことを特徴とする熱
併給発電装置の運転方法である。 〔実施例〕 本発明の実施例を第2図a,bに基づいて説明
する。 駆動機関としてのガスエンジン1は、カツプリ
ング9,10を介してそれぞれヒートポンプ2、
発電機3に接離可能に連結され、さらに、発電機
3はレドツクスフロー型蓄電池4に接続されてい
る。ガスエンジンの排気は熱交換器5,7を通つ
て排出され、排熱は潜熱蓄熱装置6及び貯湯槽8
に蓄積される。 本実施例の熱併給発電システムは、ビル等の大
建築物に設置されるが、ビル等においては、昼間
は大勢の人が居るため冷暖房の需要も多いが、夜
間はほとんど無人となるため冷暖房はほとんど要
らなくなる。そこで、ガスエンジンの動力が余る
ので、それを利用して蓄電及び蓄熱することが可
能になる。 即ち、昼間はカツプリング9を接続しガスエン
ジン1によつてヒートポンプ2を運転し、ビルの
冷暖房を行う。空調時間Aは第2図bの如く午前
8時から午後6時の就業時間を目安とする。夜間
はカツプリング10を接続しガスエンジン1によ
つて発電機を運転し、発生した電気はレドツクス
フロー型蓄電池4に蓄電する。夜間蓄電時間Bは
午後10時から午前8時の間を目安とする。レドツ
クスフロー型蓄電池4をその間充電し、CO、の
如く昼間放電すれば、Eの如き現行の電力負荷が
軽減されFの如くピークカツトができる。 次に実際の数値例を第1表に示すが、この例は
床面積1000m2、冷房負荷100,200,300Kcal/
m2・hの建物を想定して、電力カツト率、潜熱蓄
熱装置6の蓄熱量を求めたものである。
[Industrial Field of Application] The present invention relates to a method of operating a cogeneration power generation device using a combination of a drive engine such as a gas engine or a gas turbine and a heat pump. [Prior Art] A conventional combined heat and power generation system supplies electric power using, for example, a gas engine generator as a driving engine, and supplies hot water using exhaust heat from the engine.
It has a configuration as shown in FIG. That is, the gas engine 1 is directly connected to the generator 3 and constantly supplies electric power. The exhaust heat of the engine cooling water and the exhaust heat of the exhaust gas are transferred to a cooling water heat exchanger 7 and an exhaust heat exchanger 5, respectively.
It will be collected at In this system, nearly 80% of the waste heat can generally be used as heat, so the total energy efficiency including power generation can be expected to be around 80%, resulting in approximately 40% cost savings compared to systems that do not combine heat and power generation. It is said that it is possible to [Problems to be Solved by the Invention] However, conventional cogeneration systems cannot store energy, so they are insufficiently able to cope with daytime peak hours, and they also have the drawback of not being able to further improve overall energy efficiency. There is. Therefore, it is possible to store energy using storage batteries, but conventional lead-acid batteries operate at room temperature, are sensitive to heat, are easily discharged, and require water replenishment, making maintenance difficult. It takes.
Furthermore, since the heat generated by charging and discharging needs to be released to the outside, air conditioning is necessary.
Power generation equipment will be large and complex. Furthermore, it is conceivable to store hot water in an accumulator to accumulate heat, but since the accumulator is a first class pressure vessel, there are problems in its handling. The present invention solves the above problems, is economical, has high overall energy efficiency, does not require large equipment, is easy to handle, can store the required amount of energy at night, and is easy to manufacture. The object of the present invention is to provide a method of operating a cogeneration power generation device that does not require much expense. [Means for Solving the Problems] The present invention provides a gas engine, a heat pump and a generator that are selectively connected and driven by the gas engine through a coupling, and a redox flow type heat pump that is connected to the generator. A storage battery, a latent heat storage device that stores the engine exhaust heat in a polymeric heat storage material, and a hot water storage tank are provided via a heat exchanger, and during the daytime, the engine-driven heat pump performs cooling and heating, and at night, the engine-driven heat pump performs heating and cooling. Electricity is generated, and the electric power generated by the generator is stored in the redox flow type storage battery, and the engine exhaust heat is passed through the heat exchanger and stored in both the latent heat storage device and the hot water tank. Supply power for peak cut,
This is a method of operating a combined heat and power generation device characterized in that it also supplies heat such as hot water supply. [Example] An example of the present invention will be described based on FIGS. 2a and 2b. A gas engine 1 as a driving engine is connected to a heat pump 2 and a heat pump 2 through couplings 9 and 10, respectively.
It is connected to a generator 3 so as to be detachable, and the generator 3 is further connected to a redox flow type storage battery 4. The exhaust gas of the gas engine is discharged through heat exchangers 5 and 7, and the exhaust heat is transferred to a latent heat storage device 6 and a hot water storage tank 8.
is accumulated in The combined heat and power generation system of this embodiment is installed in large buildings such as buildings. In buildings, there are many people during the day, so there is a high demand for air conditioning, but at night there are almost no people, so there is a high demand for air conditioning. is almost no longer needed. Therefore, since the power of the gas engine is left over, it becomes possible to use it to store electricity and heat. That is, during the day, the coupling ring 9 is connected and the heat pump 2 is operated by the gas engine 1 to cool and heat the building. The air conditioning time A is based on the working hours from 8 a.m. to 6 p.m., as shown in Figure 2b. At night, the coupling 10 is connected and the generator is operated by the gas engine 1, and the generated electricity is stored in the redox flow type storage battery 4. The nighttime energy storage time B is estimated to be between 10:00 pm and 8:00 am. If the redox flow storage battery 4 is charged during that time and discharged during the day like CO, the current power load like E can be reduced and the peak cut like F can be achieved. Next, actual numerical examples are shown in Table 1, but this example has a floor area of 1000 m 2 and a cooling load of 100, 200, 300 Kcal/
The electric power cut rate and the amount of heat storage in the latent heat storage device 6 were calculated assuming a building of m 2 ·h.

【表】【table】

〔発明の効果〕〔Effect of the invention〕

上記のように構成されているので、本発明は下
記のような著しい効果を奏する。 1 蓄電と蓄熱システムを組合せているので、必
要時に同時に或いは別々に必要量を取り出すこ
とができ、蓄電に鉛電池、蓄熱にアキユムレー
タを使う場合に比べてメンテナンス、スペース
ともに簡単かつコンパクトにすることができ
る。エンジン排熱を潜熱蓄熱方式で蓄熱してい
るので装置のコンパクトが大幅に可能である。 2 蓄電にレドツクスフロー型蓄電池を使うの
で、充放電が自由にでき、蓄電量も溶液タンク
の容量を変えるだけでよく、将来の電力需要の
変化にも簡単に追従することができる。また、
電池停止時の自己放電がないので、非常用電源
としても使用できる。しかも蓄電量をタンク容
量によつて容易変更することができ、需要に応
じた施設規摸運転として経済的に対応すること
が可能である。 3 昼間ガスエンジンヒートポンプで冷暖房する
ので、夜間蓄電した電力はビルの照明用等に利
用することができ、昼間の電力ピークカツトが
できる。
With the above configuration, the present invention provides the following remarkable effects. 1 Since it combines electricity storage and heat storage systems, the required amount can be taken out at the same time or separately when needed, and compared to using lead batteries for electricity storage and accumulators for heat storage, maintenance and space are easier and more compact. can. Since engine exhaust heat is stored using the latent heat storage method, the device can be made much more compact. 2. Since a redox flow type storage battery is used to store electricity, it can be charged and discharged freely, and the amount of stored electricity can be changed by simply changing the capacity of the solution tank, making it possible to easily follow future changes in electricity demand. Also,
Since there is no self-discharge when the battery is stopped, it can also be used as an emergency power source. Furthermore, the amount of stored electricity can be easily changed by changing the tank capacity, making it possible to economically respond to facility regular operation according to demand. 3. Since heating and cooling is performed using a gas engine heat pump during the day, the electricity stored during the night can be used for building lighting, etc., making it possible to cut peak electricity consumption during the day.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、従来の熱併給発電システムの構成
図、第2図aは、本発明の実施例の熱併給発電装
置の構成図、同図bはその運転例における負荷負
担状態を示す線図である。 1……ガスエンジン、2……ヒートポンプ、3
……発電機、4……レドツクスフロー型蓄電池、
5,7……熱交換器、6……潜熱蓄熱装置、8…
…貯湯槽、9,10……カツプリング。
Figure 1 is a configuration diagram of a conventional cogeneration system, Figure 2a is a configuration diagram of a cogeneration system according to an embodiment of the present invention, and Figure 2b is a diagram showing the load burden state in an example of its operation. It is. 1...Gas engine, 2...Heat pump, 3
... Generator, 4... Redox flow type storage battery,
5, 7... Heat exchanger, 6... Latent heat storage device, 8...
...Hot water tank, 9,10...Katsupring.

Claims (1)

【特許請求の範囲】[Claims] 1 ガスエンジンと、該ガスエンジンとカツプリ
ングによつて選択的に接続駆動されるヒートポン
プ及び発電機と、該発電機に接続されたレドツク
スフロー型蓄電池と、前記エンジン排熱を高分子
系蓄熱材に蓄積する潜熱蓄熱装置及び貯湯槽とを
熱交換器を介して備え、昼間は前記エンジン駆動
のヒートポンプによる冷暖房を行い、夜間は前記
エンジン駆動の発電を行い、この発電機の発生し
た電力を前記レドツクスフロー型蓄電池に蓄電す
ると共に、エンジン排熱を熱交換器に通して前記
潜熱蓄熱装置及び前記貯湯槽の両者に蓄熱して、
昼間のピークカツト用の電力を供給し、併せて給
湯等の熱供給を行うことを特徴とする熱併給発電
装置の運転方法。
1. A gas engine, a heat pump and a generator that are selectively connected and driven by the gas engine and a coupling, a redox flow storage battery connected to the generator, and a polymer-based heat storage material that uses the exhaust heat of the engine. A latent heat storage device and a hot water storage tank are installed via a heat exchanger.During the day, the engine-driven heat pump performs air conditioning and heating, and at night, the engine-driven power generation is performed, and the electric power generated by this generator is transferred to the Storing electricity in a redox flow type storage battery, and passing engine exhaust heat through a heat exchanger to store heat in both the latent heat storage device and the hot water storage tank,
A method of operating a combined heat and power generation device characterized by supplying power for daytime peak cuts and also supplying heat such as hot water supply.
JP59225899A 1984-10-29 1984-10-29 Operating method of generating device concurrently supplying heat Granted JPS61106954A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59225899A JPS61106954A (en) 1984-10-29 1984-10-29 Operating method of generating device concurrently supplying heat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59225899A JPS61106954A (en) 1984-10-29 1984-10-29 Operating method of generating device concurrently supplying heat

Publications (2)

Publication Number Publication Date
JPS61106954A JPS61106954A (en) 1986-05-24
JPH0364701B2 true JPH0364701B2 (en) 1991-10-08

Family

ID=16836626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59225899A Granted JPS61106954A (en) 1984-10-29 1984-10-29 Operating method of generating device concurrently supplying heat

Country Status (1)

Country Link
JP (1) JPS61106954A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63205422A (en) * 1987-02-21 1988-08-24 Kamata Kk Cogeneration type power generating unit
JPS63205423A (en) * 1987-02-21 1988-08-24 Kamata Kk Cogeneration type power generating unit
JP3821574B2 (en) * 1998-03-27 2006-09-13 大阪瓦斯株式会社 Self-contained combined heat and power system
JP3821572B2 (en) * 1998-03-27 2006-09-13 大阪瓦斯株式会社 Self-contained cogeneration system
KR100579577B1 (en) * 2004-08-17 2006-05-15 엘지전자 주식회사 Electric generation air condition system having speed heater
KR100624735B1 (en) 2005-05-14 2006-09-15 엘지전자 주식회사 Cogeneration system
KR100799528B1 (en) 2007-09-27 2008-02-01 고성호 A electric generating system using waste heat of from power generator
JP5110335B1 (en) * 2011-08-15 2012-12-26 昌治 澤田 A machine-rotary power machine device with a generator device that has hot water storage and storage functions, using water as a fuel source, and hydrogen gas and oxygen gas as circulating and regenerated fuel and using a fully coupled energy

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54118913A (en) * 1978-02-18 1979-09-14 Daimler Benz Ag Thermodynamic apparatus and method of operating same
JPS5726225A (en) * 1980-07-25 1982-02-12 Kubota Ltd Air conditioner with emergency power generator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54118913A (en) * 1978-02-18 1979-09-14 Daimler Benz Ag Thermodynamic apparatus and method of operating same
JPS5726225A (en) * 1980-07-25 1982-02-12 Kubota Ltd Air conditioner with emergency power generator

Also Published As

Publication number Publication date
JPS61106954A (en) 1986-05-24

Similar Documents

Publication Publication Date Title
US20130047616A1 (en) Electrical power cogeneration system
CN102003223A (en) Wind power generation device of air conditioner and power supply method thereof
JPH0364701B2 (en)
JP2011217590A (en) Air conditioning system
JP3674790B2 (en) Cogeneration system
CN114094936A (en) Solar energy storage system
JP2014089846A (en) Heat and electricity cogeneration type adjustment power supply, and heat and electricity cogeneration system
WO2018225602A1 (en) Heat-storage system and heat-storage system operation method
JP2011200097A (en) Air conditioning system
CN101169272A (en) Energy-storage air conditioner system
JP2010133661A (en) Air conditioning-power generating device
CN217545366U (en) Multi-stage cooling structure for battery room of energy storage power station
CN211880099U (en) Air Brayton cycle intelligent micro-grid system utilizing nuclear energy
JP2004012025A (en) Hybrid energy system
CN211006885U (en) Electric self-sufficient water temperature adjustable intelligent water supply terminal
CN207388800U (en) The electric car of charged pool temperature treatment increases journey system
CN102400589A (en) Solar air-conditioning tent
JP2569824B2 (en) Cooling method of battery group for electrolyte circulation type zinc monobromide laminated secondary battery
RU126532U1 (en) Autonomous energy system "PSTPOWER"
CN214045045U (en) Hybrid energy storage system of wind power or photovoltaic station
CN215733502U (en) Green intelligent industrial park
JP3289151B2 (en) Pumped storage combined heat storage facility
CN215372754U (en) Movable energy storage cooling and heating system with efficient waste heat recovery
CN218033315U (en) Fused salt heat storage heating device
CN217334225U (en) Energy storage box and energy storage system