JP2004011623A - Cooling device for internal combustion engine - Google Patents

Cooling device for internal combustion engine Download PDF

Info

Publication number
JP2004011623A
JP2004011623A JP2002170587A JP2002170587A JP2004011623A JP 2004011623 A JP2004011623 A JP 2004011623A JP 2002170587 A JP2002170587 A JP 2002170587A JP 2002170587 A JP2002170587 A JP 2002170587A JP 2004011623 A JP2004011623 A JP 2004011623A
Authority
JP
Japan
Prior art keywords
cooling water
internal combustion
temperature
combustion engine
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002170587A
Other languages
Japanese (ja)
Other versions
JP3906745B2 (en
Inventor
Mamoru Tomatsuri
戸祭 衛
Osamu Harada
原田 修
Yukio Kobayashi
小林 幸男
Katsuhiko Yamaguchi
山口 勝彦
Kiyoshiro Kamioka
上岡 清城
Takahiro Nishigaki
西垣 隆弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2002170587A priority Critical patent/JP3906745B2/en
Publication of JP2004011623A publication Critical patent/JP2004011623A/en
Application granted granted Critical
Publication of JP3906745B2 publication Critical patent/JP3906745B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cooling device for an internal combustion engine which prevents a sudden temperature fall of cooling water circulating in the internal combustion engine. <P>SOLUTION: A warming-up control means 50 controls a pump 38 for a heat accumulation tank and a three-way selector valve 30 and warms up the engine by supplying the hot cooling water pooled in the heat accumulation tank 36 to the engine 10. When temperature of the cooling water returned from a heater core 44 to the engine 10 is below that of the cooling water discharged from the heat accumulation tank 36, the warming-up control means 50 controls the three-way selector valve 30 and adjusts a flow rate of the cooling water circulating through the heater core 44 and the engine 10 below a predetermined flow rate. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
本発明は、内燃機関の冷却装置に関し、特に水冷式の冷却装置において早期暖機が可能な内燃機関の冷却装置に関する。
【0002】
【従来の技術】
車両用の内燃機関において、機関始動時における早期暖機は燃費性能や排気エミッションの向上を図る上で非常に重要である。水冷式内燃機関の早期暖機に関しては、例えば特開2001−140644号公報に記載されているように、蓄熱タンクを利用した暖機手法が提案されている。この公報に開示されている内燃機関は、機関運転中に冷却水回路を流れる高温の冷却水を蓄熱タンクに貯留することにより蓄熱しておき、この蓄熱タンクに貯留されている高温の冷却水を次回の機関始動時に冷却水回路を介して内燃機関に供給することにより、内燃機関の早期暖機を図っている。
【0003】
また、上記公報記載の内燃機関は、冷却水を利用した車室内の暖房も行っている。つまり、冷却水回路に設けられたヒータコアが、内燃機関より流出される高温の冷却水から熱を集め、この熱を利用して車室内に暖気を送風している。
【0004】
【発明が解決しようとする課題】
しかしながら、従来の内燃機関の冷却装置は、暖機終了後の内燃機関の運転開始直後に、車室内の暖房、つまりヒータコアに冷却水を循環させてしまうと、ヒータコア内の比較的低温度の冷却水が内燃機関に戻され、暖機により温められた冷却水の温度を急激に低下させてしまう。
【0005】
冷却水の急激な温度低下は、例えば、冷却水の温度に基づいて内燃機関の暖機温度を推定し、空燃比が所定値になるように燃料噴射量を制御する場合、冷却水温の急激な低下のため燃料噴射量制御に悪影響を及ぼし、結果として空燃比が乱れる等の問題が発生する。
【0006】
本発明はこのような問題点に鑑みてなされたものであり、本発明は、内燃機関内を流通する冷却水の急激な温度低下を防止した内燃機関の冷却装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
上記目的を達成するために、本発明に係る内燃機関の冷却装置は、水冷式の内燃機関と、前記内燃機関により加熱された高温の冷却水を貯留する蓄熱タンクと、冷却水から熱を収集する集熱手段と、冷却水を、前記内燃機関と前記蓄熱タンクの間を循環する暖機用冷却水、および、前記内燃機関と前記集熱手段の間を循環する集熱用冷却水に分流するとともに、前記暖機用冷却水および前記集熱用冷却水の流量を調整する流量調整弁と、前記流量調整弁を制御し、前記蓄熱タンクに貯留されている高温の冷却水を前記内燃機関に供給して暖機する暖機制御手段と、を有し、前記暖機制御手段は、前記集熱手段内の冷却水が所定温度以下の場合、前記流量調整弁を制御し、前記集熱用冷却水の流量を所定微少流量に調整するものとする。
【0008】
上記構成によれば、集熱手段内の低温の冷却水が内燃機関に大量に流入し、内燃機関内を流通する冷却水の温度を急激に低下させることを防止するとともに、集熱手段内の低温の冷却水を徐々に温めることができる。これにより、例えば、内燃機関内に流通する冷却水の水温に基づいて燃料噴射制御等を行う装置において、水温の急激な低下による噴射量制御等の乱れを抑制できる。
【0009】
望ましくは、前記所定温度は、前記暖機用冷却水の水温とする。
【0010】
望ましくは、前記所定微少流量は、前記集熱用冷却水と前記暖機用冷却水の合流後の冷却水の水温を、合流前の前記暖機用冷却水の水温から実質的に低下させない流量とする。
【0011】
望ましくは、前記集熱手段内の冷却水の水温を検知する水温センサをさらに有し、前記暖機制御手段は、前記水温センサの検知結果に基づき前記集熱手段内の冷却水の水温を計測するものとする。
【0012】
望ましくは、前記暖機制御手段は、前記集熱手段内の冷却水の水温を、前記集熱用冷却水の流量および循環時間に応じて予め得られる実験結果に基づいて決定するものとする。
【0013】
【発明の実施の形態】
以下、本発明の好適な実施の形態を図面に基づいて説明する。
【0014】
図1は、車両に搭載される水冷式エンジンの冷却装置の全体構成を示す構成図である。内燃機関であるエンジン10はその内部に冷却水通路12を有し、この冷却水通路12に冷却水が流れることによって、エンジン10が冷却される。冷却水通路12の上流側には、このエンジン10のクランクシャフト(図示せず)によって駆動されるエンジン用ポンプ14が接続されており、冷却水はこのエンジン用ポンプ14によって冷却水通路12に圧送される。
【0015】
エンジン10の冷却水通路12の下流側には冷却水通路16が接続されており、サーモスタットバルブ18、冷却水通路20を介して、エンジン用ポンプ14の吸込側に冷却水が流れるように構成されている。また、サーモスタットバルブ18は冷却水通路22を介してラジエータ24の水入口に接続されており、ラジエータ24の水出口は冷却水通路26を介してエンジン用ポンプ14の吸込側に接続されている。なお、冷却水通路20と冷却水通路26は合流後にエンジン用ポンプ14の吸込側に接続されている。
【0016】
サーモスタットバルブ18は、冷却水の温度に応じて冷却水の流路を切り替えるバルブであり、このサーモスタットバルブ18を流れる冷却水の温度が所定温度Tsよりも高い場合、冷却水通路20側を閉塞して冷却水通路16と冷却水通路22を接続し、冷却水温度が前記所定温度Ts以下の場合、冷却水通路22側を閉塞して冷却水通路16と冷却水通路20を接続する。
【0017】
したがって、エンジン10の運転中、冷却水温度が所定温度Tsよりも高い場合、冷却水は、エンジン用ポンプ14→エンジンの冷却水通路12→冷却水通路16→サーモスタットバルブ18→冷却水通路22→ラジエータ24→冷却水通路26→エンジン用ポンプ14の閉回路を循環し、エンジン10において加熱された冷却水はラジエータ24を通過する際に冷却される。
【0018】
一方、エンジン10の運転中、冷却水温度が所定温度Ts以下の場合、冷却水は、エンジン用ポンプ14→エンジンの冷却水通路12→冷却水通路16→サーモスタットバルブ18→冷却水通路20→エンジン用ポンプ14の閉回路を循環する。
【0019】
また、エンジン10の冷却水通路12は、前述した回路とは別の回路にも接続されている。即ち、冷却水通路12の下流側は、冷却水通路28、流量調整弁である三方切替弁30、冷却水通路32、水温センサ34、蓄熱タンク36、蓄熱タンク用ポンプ38、冷却水通路40、冷却水通路26を介して、エンジン用ポンプ14に接続されている。これにより、エンジン用ポンプ14→エンジンの冷却水通路12→冷却水通路28→三方切替弁30→冷却水通路32→蓄熱タンク36→蓄熱タンク用ポンプ38→冷却水通路40→冷却水通路26→エンジン用ポンプ14と循環する暖機用冷却水が流れる閉回路が形成される。
【0020】
この閉回路は、エンジン10で加熱された高温の冷却水を蓄熱タンク36に導入し貯留する場合、あるいは、エンジン10の始動時に蓄熱タンク36に貯留された高温の冷却水でエンジン10を暖機するときに使用される回路である。蓄熱タンク用ポンプ38は電動モータ(図示せず)によって駆動されるポンプであり、したがって、エンジン10のクランキング前であっても運転可能である。これに対して、エンジン用ポンプ14は前述したようにエンジン10のクランクシャフトにより駆動されるポンプであるので、クランキング前は運転不能である。また、三方切替弁30は冷却水通路42にも接続されており、この冷却水通路42には車室内暖房用のヒータコア44が、ヒータ用ポンプ46を介して接続されている。つまり、ヒータコア44はエンジン10で加熱された冷却水から熱を集める集熱手段として機能している。
【0021】
これにより、エンジン用ポンプ14→エンジンの冷却水通路12→冷却水通路28→三方切替弁30→冷却水通路42→ヒータコア44→冷却水通路40→冷却水通路26→エンジン用ポンプ14と循環する集熱用冷却水が流れる閉回路が形成される。また、ヒータコア44には水温センサ52が設けられている。
【0022】
三方切替弁30は、冷却水通路28を冷却水通路32と冷却水通路42のいずれか一方に選択的に接続するバルブであり、ECU48内の暖機制御手段50が三方切替弁30の動作を制御し、冷却水の流路を切り替える。
【0023】
図示しない空調装置のモード選択スイッチが「暖房モード」にされると、暖機制御手段50は、冷却水通路28と冷却水通路42とを接続するように三方切替弁30を制御し、さらにヒータ用ポンプ46を駆動する。これにより、前述した冷却水のフローに加えて、エンジンの冷却水通路12から流れ出た冷却水の一部が、冷却水通路28→三方切替弁30→冷却水通路42→ヒータ用ポンプ46→ヒータコア44→冷却水通路40と流れて冷却水通路26に合流するようになり、ヒータコア44がエンジンで加熱された高温の冷却水から熱を奪い、この熱を車室内の暖気に利用する。
【0024】
次に、蓄熱タンク36に高温の冷却水を貯留し蓄熱する場合と、エンジン10の始動時に蓄熱タンク36に貯留されている高温の冷却水でエンジン10を暖機する動作について説明する。
【0025】
蓄熱は、この実施の形態においては、エンジン10の停止直後に行われる。即ち、エンジンの停止信号(例えば、イグニッションスイッチのOFF信号)により、暖機制御手段50は、冷却水通路28と冷却水通路32とを接続するように三方切替弁30を制御するとともに、蓄熱用ポンプ38を運転する。これにより、冷却水は、エンジンの冷却水通路12→冷却水通路28→三方切替弁30→冷却水通路32→水温センサ34→蓄熱タンク36→蓄熱タンク用ポンプ38→冷却水通路40→冷却水通路26→エンジン用ポンプ14を経て冷却水通路12に戻る閉回路を流れることになる。ただし、この場合、エンジン10の停止後であるので、エンジン用ポンプ14は運転されていない。つまり、エンジンの冷却水通路12に流れる冷却水は、蓄熱用ポンプ38により流動される。
【0026】
次に、始動時における暖機について説明する。エンジン10の始動時には、エンジンの運転始動前すなわちクランキング前に、暖機制御手段50は、冷却水通路28と冷却水通路32とを接続するように三方切替弁30を制御するとともに、蓄熱用ポンプ38を駆動する。これにより、冷却水は、蓄熱タンク36→冷却水通路40→冷却水通路26→エンジン用ポンプ14→エンジンの冷却水通路12→冷却水通路28→三方切替弁30→冷却水通路32→水温センサ34を経て蓄熱タンク36に戻る閉回路を流れることになる。また、エンジン10はクランキング前であるので、エンジン用ポンプ14は運転されていない。したがって、エンジンの冷却水通路12に流れる冷却水は、蓄熱タンク用ポンプ38により流動される。この暖機の際には、冷却水がヒータコア44に循環しないことが望ましい。つまり、ヒータコア44の集熱による冷却水温の低下を避けることで暖機が効率よく行われる。
【0027】
前述したように暖機はエンジン10の始動前に行い、暖機によりエンジン10が所望の温度に達してからエンジン10を始動することが望ましい。しかしながら、暖機が十分に行われたとしても、ヒータコア44の内部に存在する冷却水は低温のままである。つまり、エンジン10が所望の温度に達し、エンジン10と蓄熱タンク36の間を循環する暖機用冷却水の水温が高温であるにも拘らず、ヒータコア44内部の冷却水の水温は低温のままである。この状態でヒータコア44内の冷却水を暖機用冷却水に注入してしまうと、注入後の冷却水、つまり、エンジン10へ流入する冷却水の温度が急激に低下してしまい、エンジン冷却水の温度に基づくエンジンの諸制御に悪影響を及ぼす可能性がある。
【0028】
これを回避するため、暖機制御手段50は三方切替弁30を制御して、ヒータコア44内部の冷却水の温度を徐々に上昇させてから、ヒータコア44への冷却水の循環を全開させればよい。
【0029】
図2は、暖機制御手段50による三方切替弁30の制御を示すフローチャートである。なお、以下の図2の説明において、図1に記載した要素と同じ要素には図1における符号を付してある。
【0030】
エンジン10の始動指示、例えば運転手によりエンジンスタートキーが入力されると、ステップ1において、エンジン10の暖機が実行される。ステップ1で暖機が十分に実行された後、ステップ2においてエンジン10を始動する。
【0031】
エンジン10の始動後、ステップ3において、エンジン10とヒータコア44の間を循環する集熱用冷却水の流量が所定流量より小さくなるように、三方切替弁30を制御する。所定流量としては、ヒータコア44内部の低温の冷却水が、エンジン10と蓄熱タンク36の間を循環する高温の暖機用冷却水に合流した際、合流後エンジン10に戻る冷却水の温度低下が、エンジン10の制御に悪影響を及ぼさない程度になるような理論的計算値として、あるいは、実験で求められた値等として設定する。
【0032】
次にステップ4において、ヒータコア44内の冷却水の水温と暖機用冷却水の水温とを比較する。両者が実質的に等しい場合、ヒータコア44内の冷却水の温度が所定温度まで上昇したと判断し、集熱用冷却水の流量制限を解除し、車室内暖気の必要に応じて集熱用冷却水を全開とする。両者が実質的に等しくない場合、ヒータコア44内の冷却水の温度が所定温度まで上昇していないと判断し、ステップ3に戻り、集熱用冷却水の流量を所定流量より小さく設定したままとする。
【0033】
なお、ヒータコア44内の冷却水の温度は、ヒータコア用の水温センサ52から得られる計測値、あるいは、集熱用冷却水の流量や循環時間に基づいて理論的に算出してもよく、あるいは、集熱用冷却水の流量や循環時間に応じた実験を行い実験結果からの推測値を用いてもよい。
【0034】
【発明の効果】
以上説明したように、本発明により、内燃機関内を流通する冷却水の急激な温度低下を防止した内燃機関の冷却装置を提供することが可能となる。
【図面の簡単な説明】
【図1】本発明に係る内燃機関の冷却装置の全体構成図である。
【図2】暖気制御手段の制御手順を示すフローチャートである。
【符号の説明】
10 エンジン、30 三方切替弁、34 水温センサ、36 蓄熱タンク、38 蓄熱タンク用ポンプ、50 暖機制御手段、52 水温センサ。
[0001]
The present invention relates to a cooling device for an internal combustion engine, and more particularly to a cooling device for an internal combustion engine that can be quickly warmed up in a water-cooled cooling device.
[0002]
[Prior art]
In an internal combustion engine for a vehicle, early warm-up at the time of engine start is very important for improving fuel efficiency and exhaust emission. Regarding the early warm-up of a water-cooled internal combustion engine, a warm-up method using a heat storage tank has been proposed, for example, as described in JP-A-2001-140644. The internal combustion engine disclosed in this publication stores heat by storing high-temperature cooling water flowing through a cooling water circuit in a heat storage tank during engine operation, and stores the high-temperature cooling water stored in the heat storage tank. When the engine is started next time, the internal combustion engine is supplied to the internal combustion engine via the cooling water circuit, so that the internal combustion engine is quickly warmed up.
[0003]
Further, the internal combustion engine described in the above-mentioned publication also heats a vehicle interior using cooling water. That is, the heater core provided in the cooling water circuit collects heat from the high-temperature cooling water discharged from the internal combustion engine, and uses the heat to blow warm air into the vehicle interior.
[0004]
[Problems to be solved by the invention]
However, the conventional cooling device for an internal combustion engine heats the vehicle interior, that is, circulates cooling water to the heater core immediately after the internal combustion engine starts operating after the warming-up. The water is returned to the internal combustion engine, and the temperature of the cooling water heated by the warm-up is rapidly reduced.
[0005]
The sudden decrease in the temperature of the cooling water is, for example, when the warm-up temperature of the internal combustion engine is estimated based on the temperature of the cooling water and the fuel injection amount is controlled so that the air-fuel ratio becomes a predetermined value. Due to the decrease, the fuel injection amount control is adversely affected, and as a result, problems such as a disturbance in the air-fuel ratio occur.
[0006]
The present invention has been made in view of such a problem, and an object of the present invention is to provide a cooling device for an internal combustion engine that prevents a rapid decrease in temperature of cooling water flowing through the internal combustion engine. .
[0007]
[Means for Solving the Problems]
In order to achieve the above object, a cooling device for an internal combustion engine according to the present invention includes a water-cooled internal combustion engine, a heat storage tank for storing high-temperature cooling water heated by the internal combustion engine, and collecting heat from the cooling water. Heat collecting means, cooling water circulating between the internal combustion engine and the heat storage tank, and cooling water circulating between the internal combustion engine and the heat collecting means. And a flow control valve for controlling the flow rates of the warm-up cooling water and the heat collection cooling water, and controlling the flow control valve so that the high-temperature cooling water stored in the heat storage tank is supplied to the internal combustion engine. Warm-up control means for supplying heat to the heat-collecting means, wherein the warm-up control means controls the flow rate regulating valve when the cooling water in the heat collecting means is equal to or lower than a predetermined temperature, and It is assumed that the flow rate of the cooling water is adjusted to a predetermined minute flow rate.
[0008]
According to the above configuration, a large amount of low-temperature cooling water in the heat collecting means flows into the internal combustion engine to prevent the temperature of the cooling water flowing in the internal combustion engine from rapidly dropping, The low-temperature cooling water can be gradually warmed. Thus, for example, in a device that performs fuel injection control or the like based on the temperature of the cooling water flowing through the internal combustion engine, it is possible to suppress disturbance in injection amount control or the like due to a rapid decrease in the water temperature.
[0009]
Preferably, the predetermined temperature is a temperature of the warm-up cooling water.
[0010]
Preferably, the predetermined minute flow rate is a flow rate that does not substantially lower the temperature of the cooling water after the cooling water for heat collection and the cooling water for warming up from the temperature of the cooling water for warming up before the merging. And
[0011]
Preferably, the apparatus further comprises a water temperature sensor for detecting a temperature of the cooling water in the heat collecting means, wherein the warm-up control means measures a temperature of the cooling water in the heat collecting means based on a detection result of the water temperature sensor. It shall be.
[0012]
Desirably, the warm-up control means determines the temperature of the cooling water in the heat collecting means based on experimental results obtained in advance according to the flow rate and circulation time of the cooling water for heat collection.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
[0014]
FIG. 1 is a configuration diagram showing an overall configuration of a cooling device for a water-cooled engine mounted on a vehicle. The engine 10, which is an internal combustion engine, has a cooling water passage 12 therein, and the cooling water flows through the cooling water passage 12, whereby the engine 10 is cooled. An engine pump 14 driven by a crankshaft (not shown) of the engine 10 is connected to an upstream side of the cooling water passage 12, and cooling water is pumped to the cooling water passage 12 by the engine pump 14. Is done.
[0015]
A cooling water passage 16 is connected to a downstream side of the cooling water passage 12 of the engine 10, and is configured such that cooling water flows to a suction side of the engine pump 14 via a thermostat valve 18 and a cooling water passage 20. ing. The thermostat valve 18 is connected to a water inlet of a radiator 24 via a cooling water passage 22, and a water outlet of the radiator 24 is connected to a suction side of the engine pump 14 via a cooling water passage 26. The cooling water passage 20 and the cooling water passage 26 are connected to the suction side of the engine pump 14 after merging.
[0016]
The thermostat valve 18 is a valve that switches the flow path of the cooling water according to the temperature of the cooling water. When the temperature of the cooling water flowing through the thermostat valve 18 is higher than a predetermined temperature Ts, the thermostat valve 18 closes the cooling water passage 20. When the cooling water temperature is equal to or lower than the predetermined temperature Ts, the cooling water passage 16 is closed and the cooling water passage 16 is connected to the cooling water passage 20.
[0017]
Therefore, when the temperature of the cooling water is higher than the predetermined temperature Ts during the operation of the engine 10, the cooling water is supplied to the engine pump 14 → the cooling water passage 12 → the cooling water passage 16 → the thermostat valve 18 → the cooling water passage 22 → The coolant circulates through a closed circuit of the radiator 24 → the cooling water passage 26 → the engine pump 14, and the cooling water heated in the engine 10 is cooled when passing through the radiator 24.
[0018]
On the other hand, during the operation of the engine 10, when the cooling water temperature is equal to or lower than the predetermined temperature Ts, the cooling water is supplied from the engine pump 14 → the cooling water passage 12 → the cooling water passage 16 → the thermostat valve 18 → the cooling water passage 20 → the engine. Circulates through the closed circuit of the pump 14.
[0019]
The cooling water passage 12 of the engine 10 is also connected to a circuit different from the above-described circuit. That is, on the downstream side of the cooling water passage 12, a cooling water passage 28, a three-way switching valve 30 as a flow control valve, a cooling water passage 32, a water temperature sensor 34, a heat storage tank 36, a heat storage tank pump 38, a cooling water passage 40, The cooling water passage 26 is connected to the engine pump 14. Thereby, the pump 14 for the engine → the cooling water passage 12 of the engine → the cooling water passage 28 → the three-way switching valve 30 → the cooling water passage 32 → the heat storage tank 36 → the heat storage tank pump 38 → the cooling water passage 40 → the cooling water passage 26 → A closed circuit in which the warm-up cooling water circulating with the engine pump 14 flows is formed.
[0020]
This closed circuit is used when the high-temperature cooling water heated by the engine 10 is introduced into the heat storage tank 36 and stored therein, or when the engine 10 is started, the engine 10 is warmed up by the high-temperature cooling water stored in the heat storage tank 36. This is the circuit used when The heat storage tank pump 38 is a pump driven by an electric motor (not shown), and therefore can be operated even before the engine 10 is cranked. On the other hand, since the engine pump 14 is a pump driven by the crankshaft of the engine 10 as described above, it cannot be operated before cranking. The three-way switching valve 30 is also connected to a cooling water passage 42, and a heater core 44 for heating the vehicle interior is connected to the cooling water passage 42 via a heater pump 46. That is, the heater core 44 functions as heat collecting means for collecting heat from the cooling water heated by the engine 10.
[0021]
Thereby, the engine pump 14 → the engine cooling water passage 12 → the cooling water passage 28 → the three-way switching valve 30 → the cooling water passage 42 → the heater core 44 → the cooling water passage 40 → the cooling water passage 26 → the engine pump 14 circulates. A closed circuit through which the cooling water for heat collection flows is formed. The heater core 44 is provided with a water temperature sensor 52.
[0022]
The three-way switching valve 30 is a valve that selectively connects the cooling water passage 28 to one of the cooling water passage 32 and the cooling water passage 42, and the warm-up control means 50 in the ECU 48 controls the operation of the three-way switching valve 30. Control and switch the flow path of cooling water.
[0023]
When the mode selection switch of the air conditioner (not shown) is set to the “heating mode”, the warm-up control means 50 controls the three-way switching valve 30 to connect the cooling water passage 28 and the cooling water passage 42, Drive pump 46 is driven. As a result, in addition to the flow of the cooling water described above, a part of the cooling water flowing out of the cooling water passage 12 of the engine is cooled by the cooling water passage 28 → the three-way switching valve 30 → the cooling water passage 42 → the heater pump 46 → the heater core. The flow then flows from the cooling water passage 44 to the cooling water passage 40 and merges with the cooling water passage 26. The heater core 44 takes heat from the high-temperature cooling water heated by the engine, and uses the heat for warming up the vehicle interior.
[0024]
Next, the operation of storing high-temperature cooling water in the heat storage tank 36 to store heat and the operation of warming up the engine 10 with the high-temperature cooling water stored in the heat storage tank 36 when the engine 10 is started will be described.
[0025]
In this embodiment, the heat storage is performed immediately after the engine 10 is stopped. That is, in response to an engine stop signal (for example, an ignition switch OFF signal), the warm-up control unit 50 controls the three-way switching valve 30 so as to connect the cooling water passage 28 and the cooling water passage 32, and also stores the heat for the heat storage. The pump 38 is operated. Thereby, the cooling water is supplied to the cooling water passage 12 of the engine → the cooling water passage 28 → the three-way switching valve 30 → the cooling water passage 32 → the water temperature sensor 34 → the heat storage tank 36 → the heat storage tank pump 38 → the cooling water passage 40 → the cooling water The passage 26 flows through a closed circuit that returns to the cooling water passage 12 via the engine pump 14. However, in this case, since the engine 10 has been stopped, the engine pump 14 is not operating. That is, the cooling water flowing through the cooling water passage 12 of the engine is flowed by the heat storage pump 38.
[0026]
Next, warming up at the time of starting will be described. When the engine 10 is started, the warm-up control means 50 controls the three-way switching valve 30 so as to connect the cooling water passage 28 and the cooling water passage 32 before starting the operation of the engine, that is, before cranking. The pump 38 is driven. Thereby, the cooling water is stored in the heat storage tank 36 → the cooling water passage 40 → the cooling water passage 26 → the engine pump 14 → the cooling water passage 12 → the cooling water passage 28 → the three-way switching valve 30 → the cooling water passage 32 → the water temperature sensor. It flows through a closed circuit that returns to the heat storage tank 36 via 34. Further, since the engine 10 is not yet cranked, the engine pump 14 is not operated. Therefore, the cooling water flowing through the cooling water passage 12 of the engine is flown by the heat storage tank pump 38. During this warm-up, it is desirable that the cooling water does not circulate through the heater core 44. That is, the warming-up is efficiently performed by avoiding a decrease in the cooling water temperature due to the heat collection of the heater core 44.
[0027]
As described above, it is desirable that the warm-up be performed before the engine 10 is started, and that the engine 10 be started after the engine 10 reaches a desired temperature by the warm-up. However, even if the warm-up is sufficiently performed, the cooling water present inside the heater core 44 remains at a low temperature. That is, although the temperature of the engine 10 reaches a desired temperature and the temperature of the cooling water for warm-up circulating between the engine 10 and the heat storage tank 36 is high, the temperature of the cooling water inside the heater core 44 remains low. It is. If the cooling water in the heater core 44 is injected into the cooling water for warming up in this state, the temperature of the injected cooling water, that is, the temperature of the cooling water flowing into the engine 10 rapidly decreases, and the engine cooling water is cooled. May adversely affect various engine controls based on the temperature of the engine.
[0028]
In order to avoid this, the warm-up control means 50 controls the three-way switching valve 30 to gradually increase the temperature of the cooling water inside the heater core 44 and then fully open the circulation of the cooling water to the heater core 44. Good.
[0029]
FIG. 2 is a flowchart showing the control of the three-way switching valve 30 by the warm-up control means 50. In the following description of FIG. 2, the same elements as those shown in FIG. 1 are denoted by the same reference numerals in FIG.
[0030]
When an instruction to start the engine 10 is input, for example, when an engine start key is input by a driver, the engine 10 is warmed up in step 1. After the warm-up is sufficiently performed in step 1, the engine 10 is started in step 2.
[0031]
After the start of the engine 10, in step 3, the three-way switching valve 30 is controlled such that the flow rate of the cooling water for heat collection circulating between the engine 10 and the heater core 44 becomes smaller than a predetermined flow rate. As the predetermined flow rate, when the low-temperature cooling water inside the heater core 44 joins with the high-temperature warm-up cooling water circulating between the engine 10 and the heat storage tank 36, the temperature of the cooling water returning to the engine 10 after the joining decreases. The value is set as a theoretically calculated value that does not adversely affect the control of the engine 10, or as a value obtained by an experiment.
[0032]
Next, in step 4, the temperature of the cooling water in the heater core 44 is compared with the temperature of the cooling water for warm-up. If the two are substantially equal, it is determined that the temperature of the cooling water in the heater core 44 has risen to a predetermined temperature, the flow rate restriction of the cooling water for cooling is released, and the cooling for heat collecting is performed as necessary for warming up the passenger compartment. Fully open the water. If the two are not substantially equal, it is determined that the temperature of the cooling water in the heater core 44 has not risen to the predetermined temperature, and the process returns to step 3, where the flow rate of the cooling water for heat collection is set to be smaller than the predetermined flow rate. I do.
[0033]
The temperature of the cooling water in the heater core 44 may be theoretically calculated based on a measured value obtained from the heater core water temperature sensor 52, or the flow rate and circulation time of the cooling water for heat collection, or An experiment may be performed according to the flow rate and circulation time of the cooling water for heat collection, and an estimated value from the experiment result may be used.
[0034]
【The invention's effect】
As described above, according to the present invention, it is possible to provide a cooling device for an internal combustion engine in which a rapid decrease in temperature of cooling water flowing in the internal combustion engine is prevented.
[Brief description of the drawings]
FIG. 1 is an overall configuration diagram of a cooling device for an internal combustion engine according to the present invention.
FIG. 2 is a flowchart showing a control procedure of a warm-up control unit.
[Explanation of symbols]
Reference Signs List 10 engine, 30 three-way switching valve, 34 water temperature sensor, 36 heat storage tank, 38 heat storage tank pump, 50 warm-up control means, 52 water temperature sensor.

Claims (5)

水冷式の内燃機関と、
前記内燃機関により加熱された高温の冷却水を貯留する蓄熱タンクと、
冷却水から熱を収集する集熱手段と、
冷却水を、前記内燃機関と前記蓄熱タンクの間を循環する暖機用冷却水、および、前記内燃機関と前記集熱手段の間を循環する集熱用冷却水に分流するとともに、前記暖機用冷却水および前記集熱用冷却水の流量を調整する流量調整弁と、
前記流量調整弁を制御し、前記蓄熱タンクに貯留されている高温の冷却水を前記内燃機関に供給して暖機する暖機制御手段と、
を有し、
前記暖機制御手段は、前記集熱手段内の冷却水が所定温度以下の場合、前記流量調整弁を制御し、前記集熱用冷却水の流量を所定微少流量に調整する、内燃機関の冷却装置。
A water-cooled internal combustion engine,
A heat storage tank that stores high-temperature cooling water heated by the internal combustion engine,
Heat collecting means for collecting heat from the cooling water;
Cooling water circulating between the internal combustion engine and the heat storage tank, and cooling water circulating between the internal combustion engine and the heat collecting means; Flow rate adjusting valve for adjusting the flow rate of cooling water for cooling and the cooling water for heat collection,
Warm-up control means for controlling the flow rate regulating valve, supplying high-temperature cooling water stored in the heat storage tank to the internal combustion engine to warm it up,
Has,
When the cooling water in the heat collecting means is equal to or lower than a predetermined temperature, the warm-up control means controls the flow rate control valve to adjust the flow rate of the cooling water for heat collection to a predetermined minute flow rate. apparatus.
請求項1記載の内燃機関の冷却装置であって、
前記所定温度は、前記暖機用冷却水の水温である、内燃機関の冷却装置。
The cooling device for an internal combustion engine according to claim 1,
The cooling device for an internal combustion engine, wherein the predetermined temperature is a temperature of the warm-up cooling water.
請求項1または2記載の内燃機関の冷却装置であって、
前記所定微少流量は、前記集熱用冷却水と前記暖機用冷却水の合流後の冷却水の水温を、合流前の前記暖機用冷却水の水温から実質的に低下させない流量である、内燃機関の冷却装置。
The cooling device for an internal combustion engine according to claim 1 or 2,
The predetermined minute flow rate is a flow rate that does not substantially lower the temperature of the cooling water after the cooling water for heat collection and the cooling water for warming up from the temperature of the cooling water for warming up before merging. Cooling device for internal combustion engine.
請求項1から3いずれか1項記載の内燃機関の冷却装置であって、
前記集熱手段内の冷却水の水温を検知する水温センサをさらに有し、
前記暖機制御手段は、前記水温センサの検知結果に基づき前記集熱手段内の冷却水の水温を計測する、内燃機関の冷却装置。
The cooling device for an internal combustion engine according to any one of claims 1 to 3,
Further comprising a water temperature sensor for detecting the temperature of the cooling water in the heat collecting means,
The cooling device for an internal combustion engine, wherein the warm-up control unit measures a temperature of cooling water in the heat collecting unit based on a detection result of the water temperature sensor.
請求項1から3いずれか1項記載の内燃機関の冷却装置であって、
前記暖機制御手段は、前記集熱手段内の冷却水の水温を、前記集熱用冷却水の流量および循環時間に応じて予め得られる実験結果に基づいて決定する、内燃機関の冷却装置。
The cooling device for an internal combustion engine according to any one of claims 1 to 3,
The cooling device for an internal combustion engine, wherein the warm-up control means determines a temperature of the cooling water in the heat collecting means based on an experimental result obtained in advance according to a flow rate and a circulation time of the cooling water for heat collection.
JP2002170587A 2002-06-11 2002-06-11 Cooling device for internal combustion engine Expired - Fee Related JP3906745B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002170587A JP3906745B2 (en) 2002-06-11 2002-06-11 Cooling device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002170587A JP3906745B2 (en) 2002-06-11 2002-06-11 Cooling device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2004011623A true JP2004011623A (en) 2004-01-15
JP3906745B2 JP3906745B2 (en) 2007-04-18

Family

ID=30436799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002170587A Expired - Fee Related JP3906745B2 (en) 2002-06-11 2002-06-11 Cooling device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP3906745B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010133661A (en) * 2008-12-05 2010-06-17 Sanyo Electric Co Ltd Air conditioning-power generating device
CN106401726A (en) * 2016-11-28 2017-02-15 新奥泛能网络科技股份有限公司 Jacket water cooling system of internal combustion engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010133661A (en) * 2008-12-05 2010-06-17 Sanyo Electric Co Ltd Air conditioning-power generating device
CN106401726A (en) * 2016-11-28 2017-02-15 新奥泛能网络科技股份有限公司 Jacket water cooling system of internal combustion engine

Also Published As

Publication number Publication date
JP3906745B2 (en) 2007-04-18

Similar Documents

Publication Publication Date Title
US20090229543A1 (en) Cooling device for engine
JP4860746B2 (en) Engine cooling system
JP4103663B2 (en) Engine cooling system
JP5368944B2 (en) Thermal storage system and control method thereof
JP4193309B2 (en) Cooling device for internal combustion engine
JP2014114739A (en) Cooling device of engine
US8978599B2 (en) Cooling apparatus of internal combustion engine for vehicle
JP2004316472A (en) Cooling system for internal combustion engine
JP3906745B2 (en) Cooling device for internal combustion engine
JP3906748B2 (en) Cooling device for internal combustion engine
JP7043143B2 (en) Internal combustion engine cooling water control device
JP2008121434A (en) Vehicle cooling system
JP2001206049A (en) Cooling device for internal combustion engine
JP4543591B2 (en) Engine coolant control device
JP2001098941A (en) Cooling system for internal combustion engine
JP2008106625A (en) Temperature raising device for throttle body
JP2006170065A (en) Vehicle control device
JP4259281B2 (en) Engine cooling system
JP2002004855A (en) Internal combustion engine having thermal storage device
JP6245318B1 (en) Engine control device
JP2006207448A (en) Control device for vehicle
KR101836583B1 (en) System and method for heating humidifier of fuelcell vehicle
JP2004092491A (en) Internal combustion engine equipped with heat accumulating device
JP2004301062A (en) Cooling device of engine
JP2004285886A (en) Engine cooling device

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050107

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20060627

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20060704

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20061226

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070108

LAPS Cancellation because of no payment of annual fees