JP2008290636A - Hybrid car - Google Patents

Hybrid car Download PDF

Info

Publication number
JP2008290636A
JP2008290636A JP2007139800A JP2007139800A JP2008290636A JP 2008290636 A JP2008290636 A JP 2008290636A JP 2007139800 A JP2007139800 A JP 2007139800A JP 2007139800 A JP2007139800 A JP 2007139800A JP 2008290636 A JP2008290636 A JP 2008290636A
Authority
JP
Japan
Prior art keywords
refrigerant liquid
engine
heat exchanger
temperature
assembled battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007139800A
Other languages
Japanese (ja)
Other versions
JP4958637B2 (en
Inventor
Naoki Kurokuzuno
直樹 黒▲葛▼野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2007139800A priority Critical patent/JP4958637B2/en
Publication of JP2008290636A publication Critical patent/JP2008290636A/en
Application granted granted Critical
Publication of JP4958637B2 publication Critical patent/JP4958637B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/14Structural association with mechanical loads, e.g. with hand-held machine tools or fans
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/425Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/441Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/443Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/445Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/60Navigation input
    • B60L2240/66Ambient conditions
    • B60L2240/662Temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Abstract

<P>PROBLEM TO BE SOLVED: To quickly carry out the warming-up (heating) of a large capacity of battery by eliminating fuel consumption for heating the battery without consuming any useless power in an extremely cold region. <P>SOLUTION: This hybrid car is provided with a water-cooled engine 2 and a motor 3 for making a vehicle travel; a battery pack 1 for supplying a power to the motor 3; an engine radiator 4 connected to a water-cooled channel 2a of the water-cooled engine 2 for making coolant liquid circulate with the water-cooled engine 2; and a heat exchanger 6 connected through a bypass valve 5 to the water-cooled channel 2a of the water-cooled engine 2 for warming-up the battery pack 1 with coolant liquid to be made to circulate in the water-cooled engine 2. The hybrid car heats the battery pack 1 by the heat exchanger 6 by making the coolant liquid circulating in the water-cooled channel 2a of the water-cooled engine 2 circulate in the heat exchanger 6 in such a state that the bypass valve 5 is opened. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、寒冷地でスタートするときに電池を加温できるハイブリッドカーに関する。   The present invention relates to a hybrid car capable of heating a battery when starting in a cold region.

ハイブリッドカーは、エンジンとモータの両方で走行する。モータを駆動するために大容量の電池を搭載している。電池は、低温環境にあっては電気特性が低下して、実質的に充放電できる容量が小さくなる。とくに、寒冷地でハイブリッドカーをスタートさせるとき、電池の温度は最も低く、実質容量が相当に小さくなる。本出願人は、低温環境における電池特性の向上を目的として、電池をヒーターで加温する電源装置を開発した。(特許文献1参照)
特開2003−223938号公報
A hybrid car runs on both an engine and a motor. A large-capacity battery is installed to drive the motor. In a low-temperature environment, the battery has low electrical characteristics, and the capacity that can be substantially charged and discharged becomes small. In particular, when starting a hybrid car in a cold region, the battery temperature is the lowest and the real capacity is considerably reduced. The present applicant has developed a power supply device for heating a battery with a heater for the purpose of improving battery characteristics in a low temperature environment. (See Patent Document 1)
Japanese Patent Laid-Open No. 2003-223938

この電源装置は、複数の素電池を接続している走行用の組電池と、組電池を加温するヒーターを実装する加温プレートとを備える。加温プレートは、組電池を効率よく加温できるように、組電池に接近して配置される。この電源装置は、加温プレートのヒーターに通電してジュール熱でヒーターを加温する。加温されたヒーターは、接近して配置している組電池を加温する。   This power supply device includes an assembled battery for traveling to which a plurality of unit cells are connected, and a heating plate on which a heater for heating the assembled battery is mounted. The heating plate is disposed close to the assembled battery so that the assembled battery can be efficiently heated. This power supply device energizes the heater of the heating plate to heat the heater with Joule heat. The heated heater heats the assembled battery that is placed close to the heater.

ヒーターで走行用の組電池を暖気(加温)するハイブリッドカーは、エンジンで発電機を駆動し、発電機の発電電力をヒーターに供給して、電池を加温する。この構造のハイブリッドカーは、たとえば、外気温度が−20℃以下に低下する極寒の地域で車をスタートさせるとき、電池の暖気(加温)に相当な時間がかかる。また、電池を加温するために相当に燃料を消費する。とくに、エンジンで発電機を駆動し、発電機でヒーターに電力を出力するので、ヒーターに供給される電力効率は、エンジンと発電機の効率の積となる。かりに、エンジンの効率を25%、発電機の効率を80%と仮定すると、全体の効率は20%となり、燃料のわずか1/5しか電池の加温に使用されない。いいかえると、電池を加熱するために5倍の燃料を消費する。さらに、寒冷地でエンジンをスタートした直後は、エンジンが暖気されず、その効率はさらに低くなる。   A hybrid car that warms (heats) an assembled battery for traveling with a heater drives a generator with an engine, supplies power generated by the generator to the heater, and warms the battery. In the hybrid car having this structure, for example, when the car is started in an extremely cold region where the outside air temperature drops to −20 ° C. or lower, it takes a considerable amount of time to warm the battery (warming). In addition, a considerable amount of fuel is consumed to heat the battery. In particular, since the generator is driven by the engine and electric power is output to the heater by the generator, the power efficiency supplied to the heater is the product of the efficiency of the engine and the generator. Assuming that the engine efficiency is 25% and the generator efficiency is 80%, the overall efficiency is 20%, and only 1/5 of the fuel is used for heating the battery. In other words, it consumes 5 times more fuel to heat the battery. Furthermore, immediately after starting the engine in a cold region, the engine is not warmed up, and its efficiency is further reduced.

ハイブリッドカーに搭載される電源装置の組電池は、大きな出力が要求されることから多数の素電池を直列に接続している。この組電池は熱容量が大きく、全体の暖気(加温)に多量の熱エネルギーを必要とする。このため、電池を加熱するために時間がかかると共に、多量の燃料を走行に利用しないで無駄に消費する。   Since the assembled battery of the power supply device mounted on the hybrid car requires a large output, a large number of unit cells are connected in series. This assembled battery has a large heat capacity, and requires a large amount of heat energy for overall warming (heating). For this reason, it takes time to heat the battery, and a large amount of fuel is consumed unnecessarily without traveling.

本発明は、従来のこのような欠点を解決することを目的に開発されたものである。本発明の重要な目的は、極寒地域においても、無駄な電力を消費することなく、また電池を加熱するための燃料消費を皆無にして、大容量の電池を速やかに暖気(加温)できるハイブリッドカーを提供することにある。   The present invention has been developed for the purpose of solving the conventional drawbacks. An important object of the present invention is a hybrid capable of quickly warming (heating) a large-capacity battery without consuming wasteful electric power and consuming no fuel for heating the battery even in extremely cold regions. To provide a car.

本発明のハイブリッドカーは、前述の目的を達成するために以下の構成を備える。
ハイブリッドカーは、車両を走行させる水冷エンジン2及びモータ3と、このモータ3に電力を供給する組電池1と、水冷エンジン2の冷却水路2aに連結されて水冷エンジン2との間で冷媒液を循環させるエンジンラジエータ4と、水冷エンジン2の冷却水路2aにバイパス弁5を介して連結されて、水冷エンジン2に循環される冷媒液で組電池1を暖気する熱交換器6とを備える。ハイブリッドカーは、バイパス弁5を開弁する状態で、水冷エンジン2の冷却水路2aに循環される冷媒液を熱交換器6に循環させて、熱交換器6でもって組電池1を加温する。
The hybrid car of the present invention has the following configuration in order to achieve the aforementioned object.
The hybrid car is connected to a water-cooled engine 2 and a motor 3 for driving the vehicle, an assembled battery 1 for supplying electric power to the motor 3, and a cooling water passage 2 a of the water-cooled engine 2. An engine radiator 4 to be circulated, and a heat exchanger 6 that is connected to the cooling water passage 2 a of the water-cooled engine 2 via a bypass valve 5 and warms the assembled battery 1 with the refrigerant liquid circulated to the water-cooled engine 2. In the state where the bypass valve 5 is opened, the hybrid car circulates the refrigerant liquid circulated through the cooling water passage 2 a of the water-cooled engine 2 to the heat exchanger 6 and heats the assembled battery 1 with the heat exchanger 6. .

本発明の請求項2のハイブリッドカーは、熱交換器6に、熱交換器6に循環される冷媒液を冷却するバッテリラジエータ14を連結しており、このバッテリラジエータ14でもって、熱交換器6に循環される冷媒液を冷却して組電池1を冷却する。   In the hybrid car according to claim 2 of the present invention, a battery radiator 14 for cooling the refrigerant liquid circulated to the heat exchanger 6 is connected to the heat exchanger 6. With this battery radiator 14, the heat exchanger 6 The battery pack 1 is cooled by cooling the refrigerant liquid circulated in the tank.

本発明の請求項3のハイブリッドカーは、熱交換器6に冷媒液を循環させる循環ポンプ13を連結している。   In the hybrid car according to claim 3 of the present invention, the circulation pump 13 for circulating the refrigerant liquid is connected to the heat exchanger 6.

本発明の請求項4のハイブリッドカーは、水冷エンジン2の冷却水路2aとエンジンラジエータ4との間に開閉弁9を接続しており、この開閉弁9とエンジンラジエータ4を直列に接続している冷却水路7と、熱交換器6とバイパス弁5とを直列に接続している暖気水路8とを並列に連結しており、開閉弁9を閉弁して冷却水路7の冷媒液を暖気水路8の熱交換器6に循環する。   In the hybrid car according to claim 4 of the present invention, an on-off valve 9 is connected between the cooling water passage 2a of the water-cooled engine 2 and the engine radiator 4, and the on-off valve 9 and the engine radiator 4 are connected in series. The cooling water passage 7 and the warm air water passage 8 connecting the heat exchanger 6 and the bypass valve 5 in series are connected in parallel, and the on-off valve 9 is closed to allow the refrigerant liquid in the cooling water passage 7 to flow into the warm air water passage. 8 is circulated to the heat exchanger 6.

本発明の請求項5のハイブリッドカーは、開閉弁9を、冷媒液の温度が設定温度になると開弁するサーモスタットとしている。   In the hybrid car according to claim 5 of the present invention, the on-off valve 9 is a thermostat that opens when the temperature of the refrigerant liquid reaches a set temperature.

本発明の請求項6のハイブリッドカーは、水冷エンジン2が、冷媒液の温度が設定温度になると開弁するサーモスタットを有し、このサーモスタットの排出側に、互いに並列に連結している冷却水路7と暖気水路8を連結している。   In the hybrid car according to claim 6 of the present invention, the water-cooled engine 2 has a thermostat that opens when the temperature of the refrigerant liquid reaches the set temperature, and the cooling water passage 7 connected in parallel to each other on the discharge side of the thermostat. And the warm air channel 8 are connected.

本発明の請求項7のハイブリッドカーは、組電池1の温度を検出する温度センサ17と、この温度センサ17が検出する組電池1の温度でバイパス弁5を制御する制御回路16とを備え、組電池1の温度が設定温度なると、制御回路16がバイパス弁5を閉弁する。   The hybrid car according to claim 7 of the present invention includes a temperature sensor 17 that detects the temperature of the assembled battery 1, and a control circuit 16 that controls the bypass valve 5 based on the temperature of the assembled battery 1 detected by the temperature sensor 17, When the temperature of the assembled battery 1 reaches the set temperature, the control circuit 16 closes the bypass valve 5.

本発明のハイブリッドカーは、極寒地域においても、無駄な電力を消費することなく、また電池を加熱するための燃料消費を皆無にして、大容量の電池を速やかに暖気(加温)できる特徴がある。それは、本発明のハイブリッドカーが水冷エンジンの冷却水路に循環される冷媒液を熱交換器に循環し、この熱交換器で組電池を暖気するからである。エンジンは、運転状態において、燃料の発熱エネルギーの半分以上を放熱する必要がある。水冷エンジンは、冷却水路に冷媒液を循環し、この冷媒液でもってエンジンの発熱を外部に放熱している。本発明は無駄に放熱しているエンジンの廃熱を有効に利用して、組電池を加温する。このため、従来のように組電池を加温するためのヒーターを必要とせず、またこのヒーターに通電するための電力も消費しない。エンジンが外部に放熱する熱エネルギーは、エンジン出力よりも大きい。エンジンの効率が50%よりも低いからである。したがって、エンジンを運転するときに発生する廃熱エネルギーは、エンジンの出力よりも大きい。本発明のハイブリッドカーは、従来は無駄に放熱していた廃熱エネルギーを有効に利用して組電池を加温する。エンジンの廃熱エンジンは極めて大きく、大容量の組電池を速やかに加温できる。   The hybrid car of the present invention is characterized in that a large-capacity battery can be quickly warmed up (heated) without consuming wasteful electric power even in an extremely cold region, and without consuming fuel for heating the battery. is there. This is because the hybrid car of the present invention circulates the refrigerant liquid circulated in the cooling water passage of the water-cooled engine to the heat exchanger, and warms the assembled battery with this heat exchanger. The engine needs to dissipate more than half of the heat generation energy of the fuel in the operating state. A water-cooled engine circulates a refrigerant liquid through a cooling water channel, and radiates heat generated by the engine to the outside with the refrigerant liquid. The present invention warms an assembled battery by effectively using waste heat of an engine that dissipates wastefully. For this reason, the heater for heating an assembled battery is not required like the past, and the electric power for energizing this heater is not consumed. The thermal energy that the engine dissipates to the outside is larger than the engine output. This is because the engine efficiency is lower than 50%. Therefore, the waste heat energy generated when the engine is operated is larger than the output of the engine. The hybrid car of the present invention warms an assembled battery by effectively utilizing waste heat energy that has conventionally been dissipated wastefully. The waste heat engine of the engine is extremely large and can quickly heat a large capacity assembled battery.

また、本発明の請求項2のハイブリッドカーは、請求項1の構成に加えて、熱交換器に循環される冷媒液を冷却するバッテリラジエータを、熱交換器に連結している。このバッテリラジエータは、熱交換器に循環される冷媒液を冷却して組電池を冷却する。このハイブリッドカーは、熱交換器でもって組電池を暖気し、また充放電されて温度が上昇した状態では組電池を冷却する。したがって、熱交換器を組電池の暖気と冷却の両方に併用して、組電池を最適な温度に保持できる。   According to a second aspect of the present invention, in addition to the configuration of the first aspect, a battery radiator for cooling the refrigerant liquid circulated through the heat exchanger is connected to the heat exchanger. This battery radiator cools the assembled battery by cooling the refrigerant liquid circulated to the heat exchanger. This hybrid car warms the assembled battery with a heat exchanger, and cools the assembled battery when it is charged and discharged and the temperature rises. Therefore, the assembled battery can be maintained at an optimum temperature by using the heat exchanger for both warming and cooling of the assembled battery.

さらに、本発明の請求項3のハイブリッドカーは、請求項1の構成に加えて、熱交換器に冷媒液を循環させる循環ポンプを連結している。この構造は、熱交換器に水冷エンジンに循環される冷媒液を効率よく循環できる。このため、エンジンの廃熱を効率よく熱交換器に伝えて、組電池を速やかに暖気できる。   Furthermore, the hybrid car according to claim 3 of the present invention is connected to the circulation pump for circulating the refrigerant liquid in the heat exchanger in addition to the structure of claim 1. This structure can efficiently circulate the refrigerant liquid circulated to the water-cooled engine in the heat exchanger. For this reason, the waste heat of the engine can be efficiently transmitted to the heat exchanger, and the assembled battery can be quickly warmed up.

さらにまた、本発明の請求項4のハイブリッドカーは、請求項1の構成に加えて、水冷エンジンの冷却水路とエンジンラジエータとの間に開閉弁を接続しており、この開閉弁とエンジンラジエータを直列に接続している冷却水路と、熱交換器とバイパス弁とを直列に接続している暖気水路とを並列に連結している。このハイブリッドカーは、開閉弁を閉弁して、水冷エンジンの冷却水路の冷媒液を、エンジンラジエータに循環することなく、暖気水路の熱交換器にのみ循環する。したがって、このハイブリッドカーは、エンジンの廃熱をエンジンラジエータで放熱することなく、熱交換器にのみ供給できるので、組電池の速やかに暖気できる。また、本発明の請求項5のハイブリッドカーは、開閉弁をサーモスタットとする。この構造は、エンジンを始動して冷媒液の温度が上昇しない状態において、冷媒液を熱交換器にのみ循環して、組電池を速やかに暖気する。   Furthermore, in the hybrid car according to claim 4 of the present invention, in addition to the configuration of claim 1, an on-off valve is connected between the cooling water passage of the water-cooled engine and the engine radiator, and the on-off valve and the engine radiator are connected. The cooling water channel connected in series and the warm air channel connecting the heat exchanger and the bypass valve in series are connected in parallel. In this hybrid car, the on-off valve is closed, and the coolant liquid in the cooling water passage of the water-cooled engine is circulated only to the heat exchanger in the warm air passage without being circulated to the engine radiator. Therefore, this hybrid car can supply only the heat exchanger without dissipating the waste heat of the engine with the engine radiator, so that the assembled battery can be warmed up quickly. In the hybrid car according to claim 5 of the present invention, the on-off valve is a thermostat. In this structure, in a state where the temperature of the refrigerant liquid does not rise when the engine is started, the refrigerant liquid is circulated only to the heat exchanger to quickly warm the assembled battery.

また、本発明の請求項6のハイブリッドカーは、請求項4の構成に加えて、水冷エンジンの冷却水路にサーモスタットを設けて、このサーモスタットの排出側に、開閉弁とエンジンラジエータを直列に連結している冷却水路と、バイパス弁と熱交換器を直列に連結している暖気水路を連結している。この構造によると、サーモスタットが開弁する状態で、開閉弁を閉弁して、冷却水路の冷媒液を熱交換器にのみ循環できる。したがって、この構造は、水冷エンジンの冷媒液を速やかに加温しながら、加温された冷媒液で組電池を速やかに加温して暖気できる。   According to a sixth aspect of the present invention, in addition to the configuration of the fourth aspect, a thermostat is provided in the cooling water passage of the water-cooled engine, and an on-off valve and an engine radiator are connected in series to the discharge side of the thermostat. And a warm air channel that connects the bypass valve and the heat exchanger in series. According to this structure, in a state where the thermostat is opened, the on-off valve is closed, and the refrigerant liquid in the cooling water channel can be circulated only to the heat exchanger. Therefore, this structure can warm the assembled battery quickly with the warmed refrigerant liquid while warming the refrigerant liquid of the water-cooled engine quickly.

また、本発明の請求項7のハイブリッドカーは、請求項1の構成に加えて、組電池の温度を検出する温度センサと、この温度センサが検出する組電池の温度でバイパス弁を制御する制御回路とを備え、組電池の温度が設定温度なると、制御回路がバイパス弁を閉弁するようにしている。この構造のハイブリッドカーは、組電池が暖気されると、熱交換器に水冷エンジンの冷媒液を循環させない。このため、水冷エンジンの冷媒液で組電池が加熱されることがなく、組電池を快適な温度まで暖気できる。   According to a seventh aspect of the present invention, in addition to the configuration of the first aspect, the hybrid car includes a temperature sensor that detects the temperature of the assembled battery, and a control that controls the bypass valve based on the temperature of the assembled battery detected by the temperature sensor. A circuit, and when the temperature of the assembled battery reaches a set temperature, the control circuit closes the bypass valve. In the hybrid car having this structure, when the assembled battery is warmed, the coolant liquid of the water-cooled engine is not circulated in the heat exchanger. For this reason, the assembled battery is not heated by the refrigerant liquid of the water-cooled engine, and the assembled battery can be warmed to a comfortable temperature.

以下、本発明の実施例を図面に基づいて説明する。ただし、以下に示す実施例は、本発明の技術思想を具体化するためのハイブリッドカーを例示するものであって、本発明はハイブリッドカーを以下のものに特定しない。   Embodiments of the present invention will be described below with reference to the drawings. However, the embodiment described below exemplifies a hybrid car for embodying the technical idea of the present invention, and the present invention does not specify the hybrid car as follows.

さらに、この明細書は、特許請求の範囲を理解しやすいように、実施例に示される部材に対応する番号を、「特許請求の範囲」および「課題を解決するための手段の欄」に示される部材に付記している。ただ、特許請求の範囲に示される部材を、実施例の部材に特定するものでは決してない。   Further, in this specification, in order to facilitate understanding of the scope of claims, numbers corresponding to the members shown in the examples are indicated in the “claims” and “means for solving problems” sections. It is added to the members. However, the members shown in the claims are not limited to the members in the embodiments.

図1ないし図4に示すハイブリッドカーは、車両を走行させる水冷エンジン2及びモータ3と、このモータ3に電力を供給する組電池1と、水冷エンジン2を冷却するエンジンラジエータ4と、水冷エンジン2の冷却水路2aにバイパス弁5を介して連結されて水冷エンジン2に循環される冷媒液で組電池1を暖気する熱交換器6とを備える。   The hybrid car shown in FIGS. 1 to 4 includes a water-cooled engine 2 and a motor 3 that run the vehicle, a battery pack 1 that supplies electric power to the motor 3, an engine radiator 4 that cools the water-cooled engine 2, and a water-cooled engine 2. And a heat exchanger 6 that is connected to the cooling water passage 2a via a bypass valve 5 and warms the assembled battery 1 with a refrigerant liquid circulated to the water-cooled engine 2.

水冷エンジン2は、冷却のためのエンジンラジエータ4を備えている。エンジンラジエータ4は、水冷エンジン2の冷却水路2aにホース10を介して連結される。エンジンラジエータ4と水冷エンジン2の冷却水路2aには、冷媒液が循環され、この冷媒液を介してエンジンラジエータ4でエンジンを冷却する。水冷エンジン2は、冷媒液を強制的に循環するためのウォーターポンプ11を備える。このウォーターポンプ11は、エンジンのクランク軸にベルト駆動され、あるいはモータで駆動される。   The water-cooled engine 2 includes an engine radiator 4 for cooling. The engine radiator 4 is connected to the cooling water passage 2 a of the water-cooled engine 2 via a hose 10. Refrigerant liquid is circulated through the engine radiator 4 and the cooling water passage 2a of the water-cooled engine 2, and the engine radiator 4 cools the engine through this refrigerant liquid. The water-cooled engine 2 includes a water pump 11 for forcibly circulating the refrigerant liquid. The water pump 11 is driven by a belt on the crankshaft of the engine or is driven by a motor.

さらに、水冷エンジン2は、冷却水路2aの排出側に、冷媒液をエンジンラジエータ4に循環するのを制御するサーモスタットからなる開閉弁9を連結している。図3のハイブリッドカーは、サーモスタットからなる開閉弁9と直列にさらに第2の開閉弁19を連結している。このサーモスタットである開閉弁9は、水冷エンジン2の冷却水路2aの排出側にあって、冷媒液の温度が低いときに閉弁して、水冷エンジン2からエンジンラジエータ4に冷媒液が循環されるのを停止する。サーモスタットの開閉弁9は、冷媒液の温度が設定値よりも高くなると開弁する。この状態で、冷媒液は、水冷エンジン2の冷却水路2aとエンジンラジエータ4とに循環されて、エンジンの熱をエンジンラジエータ4から放熱して、水冷エンジン2を所定の温度に保持する。したがって、水冷エンジン2が運転される状態で、冷媒液は所定の温度、たとえば80℃ないし90℃に保持される。   Further, the water-cooled engine 2 is connected to the discharge side of the cooling water passage 2a with an on-off valve 9 comprising a thermostat for controlling the circulation of the refrigerant liquid to the engine radiator 4. In the hybrid car of FIG. 3, a second on-off valve 19 is further connected in series with an on-off valve 9 made of a thermostat. The on-off valve 9 as a thermostat is on the discharge side of the cooling water passage 2 a of the water-cooled engine 2 and is closed when the temperature of the refrigerant liquid is low, so that the refrigerant liquid is circulated from the water-cooled engine 2 to the engine radiator 4. To stop. The thermostat on-off valve 9 opens when the temperature of the refrigerant liquid becomes higher than a set value. In this state, the refrigerant liquid is circulated through the cooling water passage 2a of the water-cooled engine 2 and the engine radiator 4, and the heat of the engine is radiated from the engine radiator 4 to keep the water-cooled engine 2 at a predetermined temperature. Therefore, the refrigerant liquid is maintained at a predetermined temperature, for example, 80 ° C. to 90 ° C. in a state where the water-cooled engine 2 is operated.

エンジンラジエータ4は、エンジンのクランク軸でベルト駆動され、あるいはモータで駆動される冷却ファン12で強制的に冷却される。冷却ファン12は、冷媒液の温度で回転状態がコントロールされて、冷媒液の温度を所定の温度範囲に保持する。水冷エンジンでベルト駆動される冷却ファンは、温度で連結状態がコントロールされる油圧クラッチ(図示せず)を介してクランク軸に連結される。この油圧クラッチは、温度が高くなると強く連結され、水冷エンジンのクランク軸とのスリップが少なくなって冷却ファンを高速で回転させる。温度が低くなると、連結が弱くなってスリップを多くして、冷却ファンの回転速度を低下させる。また、モータで駆動される冷却ファンは、冷媒液の温度を検出し、検出温度で冷却ファンの運転が制御される。この冷却ファンは、冷媒液の温度が高くなると運転され、あるいは回転速度が速くなり、冷媒液の温度が低くなると運転が停止され、あるいは回転速度が遅くなって、冷媒液を所定の温度に冷却する。   The engine radiator 4 is forcibly cooled by a cooling fan 12 driven by a belt by an engine crankshaft or driven by a motor. The rotation state of the cooling fan 12 is controlled by the temperature of the refrigerant liquid, and the temperature of the refrigerant liquid is maintained within a predetermined temperature range. A cooling fan driven by a belt in a water-cooled engine is connected to a crankshaft via a hydraulic clutch (not shown) whose connection state is controlled by temperature. This hydraulic clutch is strongly connected when the temperature rises, and the slip with the crankshaft of the water-cooled engine is reduced to rotate the cooling fan at a high speed. When the temperature is lowered, the connection is weakened, the slip is increased, and the rotation speed of the cooling fan is lowered. Further, the cooling fan driven by the motor detects the temperature of the refrigerant liquid, and the operation of the cooling fan is controlled by the detected temperature. The cooling fan is operated when the temperature of the refrigerant liquid increases, or the rotation speed is increased, and the operation is stopped when the temperature of the refrigerant liquid decreases, or the rotation speed is decreased, and the refrigerant liquid is cooled to a predetermined temperature. To do.

以上のように、水冷エンジン2は、冷却水路2aの冷媒液をエンジンラジエータ4に循環して冷却し、さらにエンジンラジエータ4を強制送風して、さらに冷却する必要がある。それは、内燃機関であるエンジンの熱効率が50%を超えることはなく、半分以上の熱エネルギーの放熱が運転に必須であるからである。熱エネルギーの放熱が十分でないと、オーバーヒートして好ましい状態で運転できなくなる。水冷エンジン2を運転して発生する大きな熱エネルギーは、冷媒液を介して外部に放熱される。水冷エンジン2が発生する大きな熱エネルギーを効率よく外部に放熱するために、相当量の冷媒液が使用される。この冷媒液は、水冷エンジン2をスタートして所定の温度、たとえば80℃〜90℃に保持される。このため、水冷エンジン2は、多量の冷媒液が80℃〜90℃と高い温度に保持される。したがって、水冷エンジン2を停止した後、冷媒液には極めて大きい熱エネルギーが蓄えられる。冷媒液に蓄えられる大きな熱エネルギーは、組電池1の加温に利用して、組電池1の速やかな暖気に利用できる。   As described above, the water-cooled engine 2 needs to be further cooled by circulating the coolant in the cooling water passage 2a to the engine radiator 4 to cool it, and forcibly blowing the engine radiator 4. This is because the thermal efficiency of an internal combustion engine does not exceed 50%, and heat dissipation of more than half of the heat energy is essential for operation. If the heat energy is not sufficiently dissipated, it will overheat and be unable to operate in a favorable state. Large heat energy generated by operating the water-cooled engine 2 is radiated to the outside through the refrigerant liquid. In order to efficiently dissipate large heat energy generated by the water-cooled engine 2 to the outside, a considerable amount of refrigerant liquid is used. The refrigerant liquid is maintained at a predetermined temperature, for example, 80 ° C. to 90 ° C. by starting the water-cooled engine 2. For this reason, in the water-cooled engine 2, a large amount of refrigerant liquid is maintained at a high temperature of 80 ° C to 90 ° C. Therefore, after the water-cooled engine 2 is stopped, extremely large heat energy is stored in the refrigerant liquid. The large heat energy stored in the refrigerant liquid can be used for warming up the assembled battery 1 by heating the assembled battery 1.

また、水冷エンジン2が始動された直後には、サーモスタットの開閉弁9が閉弁され、また冷却ファン12の運転が停止ないしは低速回転される。この状態で冷媒液はエンジンラジエータ4に循環されず、また冷却ファン12で強制冷却されることもない。したがってエンジンの発熱は、水冷エンジン2内にある冷媒液の加温に使用されて、冷媒液を速やかに設定温度に温度上昇させる。水冷エンジン2の発生熱量が大きく、加温される冷媒液量が少なく、しかも、冷却ファン12で強制冷却されないことから、冷媒液の温度は速やかに上昇する。本発明は、エンジンを始動して速やかに温度上昇する冷媒液で組電池1を加温して、組電池1を速やかに暖気する。   Immediately after the water cooling engine 2 is started, the thermostat on / off valve 9 is closed, and the operation of the cooling fan 12 is stopped or rotated at a low speed. In this state, the refrigerant liquid is not circulated to the engine radiator 4 and is not forcibly cooled by the cooling fan 12. Therefore, the heat generated by the engine is used for heating the refrigerant liquid in the water-cooled engine 2 to quickly raise the temperature of the refrigerant liquid to the set temperature. The amount of heat generated by the water-cooled engine 2 is large, the amount of refrigerant liquid to be heated is small, and since the cooling fan 12 does not forcibly cool, the temperature of the refrigerant liquid rises quickly. The present invention warms the assembled battery 1 quickly by starting the engine and warming the assembled battery 1 with the refrigerant liquid that quickly rises in temperature.

冷媒液で組電池1を加温するための熱交換器6を備えている。熱交換器6は、水冷エンジン2の冷却水路2aにバイパス弁5を介して連結される。熱交換器6は、バイパス弁5を介してエンジンラジエータ4と並列に接続される。熱交換器6は、組電池1に熱結合されて、組電池1を加温する。   A heat exchanger 6 for heating the assembled battery 1 with the refrigerant liquid is provided. The heat exchanger 6 is connected to the cooling water passage 2 a of the water-cooled engine 2 via the bypass valve 5. The heat exchanger 6 is connected in parallel with the engine radiator 4 via the bypass valve 5. The heat exchanger 6 is thermally coupled to the assembled battery 1 to heat the assembled battery 1.

図5は、組電池1に熱結合される熱交換器26の一例を示す。この熱交換器26は、組電池1を収納している防水ケース21と、この防水ケース21内にあって、組電池1と冷媒液とを防水構造に区画する防水シート22を備える。防水シート22は、冷媒液を透過させないが、熱伝導できるシート、たとえばプラスチックシートである。図の熱交換器26は、防水シート22を組電池1の表面に沿う凹凸形状として、その防水シート22内に冷媒液を充填している。冷媒液は、防水シート22介して組電池1に熱伝導して、組電池1を加温、すなわち暖気する。この構造の熱交換器26は、防水シート22で組電池1を冷媒液から隔離して絶縁するので、冷媒液に導電性のある液体を使用できる。   FIG. 5 shows an example of the heat exchanger 26 that is thermally coupled to the assembled battery 1. The heat exchanger 26 includes a waterproof case 21 that houses the assembled battery 1 and a waterproof sheet 22 that is in the waterproof case 21 and partitions the assembled battery 1 and the refrigerant liquid into a waterproof structure. The waterproof sheet 22 is a sheet that does not allow the refrigerant liquid to pass therethrough but can conduct heat, for example, a plastic sheet. In the illustrated heat exchanger 26, the waterproof sheet 22 is formed in an uneven shape along the surface of the assembled battery 1, and the waterproof sheet 22 is filled with a refrigerant liquid. The refrigerant liquid conducts heat to the assembled battery 1 through the waterproof sheet 22 and heats the assembled battery 1, that is, warms it up. Since the heat exchanger 26 having this structure isolates and insulates the assembled battery 1 from the refrigerant liquid with the waterproof sheet 22, a conductive liquid can be used for the refrigerant liquid.

図6と図7は、組電池31、41のケース32、42内に、空気を介して組電池31、41を加温する熱交換器36、46を配設している。これ等の図の熱交換器36、46は、空気を強制送風する循環ファン33、43を備えている。熱交換器36、46は冷媒液を循環させる熱交換パイプ34、44に多数の放熱フィン35、45を固定している。循環ファン33、43は、放熱フィン35、45に強制送風して空気を加温し、加温された空気を組電池1に循環して組電池1を加温する。   6 and 7, heat exchangers 36 and 46 that heat the assembled batteries 31 and 41 via air are disposed in the cases 32 and 42 of the assembled batteries 31 and 41. The heat exchangers 36 and 46 in these drawings include circulation fans 33 and 43 for forcibly blowing air. The heat exchangers 36 and 46 have a large number of heat radiation fins 35 and 45 fixed to heat exchange pipes 34 and 44 that circulate the refrigerant liquid. Circulation fans 33 and 43 forcibly blow air to radiating fins 35 and 45 to heat the air and circulate the heated air to battery assembly 1 to heat battery assembly 1.

図6は、熱交換器36で組電池31を加温し、外気で組電池1を冷却する構造を示している。したがって、この組電池31のケース32は、循環ファン33の吸入側と排出側に連結している空気ダクト37に切換弁38を設けている。切換弁38は、熱交換器36で組電池31を加温する状態にあっては、図の実線で示すように、ケース32内に空気を循環させる位置に切り換えられる。この状態で循環ファン33が運転されると、ケース32内に空気が循環されて、熱交換器36で組電池31を加温できる。また、組電池31を外気で冷却する状態にあっては、図の鎖線で示すように、切換弁38の位置を切り換え、循環ファン33の吸入側と排出側の空気ダクト37をケース32の外部に連結する。この状態で循環ファン33が運転されると、循環ファン33は外気を吸入して組電池1を冷却し、組電池1を冷却して温度が上昇した空気をケース32の外部に排気する。   FIG. 6 shows a structure in which the assembled battery 31 is heated by the heat exchanger 36 and the assembled battery 1 is cooled by the outside air. Therefore, the case 32 of the assembled battery 31 is provided with a switching valve 38 in the air duct 37 connected to the suction side and the discharge side of the circulation fan 33. When the assembled battery 31 is heated by the heat exchanger 36, the switching valve 38 is switched to a position where air is circulated in the case 32 as shown by the solid line in the figure. When the circulation fan 33 is operated in this state, air is circulated in the case 32, and the assembled battery 31 can be heated by the heat exchanger 36. When the battery pack 31 is cooled by outside air, the position of the switching valve 38 is switched as shown by the chain line in the figure, and the air duct 37 on the suction side and the discharge side of the circulation fan 33 is connected to the outside of the case 32. Connect to When the circulation fan 33 is operated in this state, the circulation fan 33 sucks outside air to cool the assembled battery 1, cools the assembled battery 1, and exhausts air whose temperature has risen to the outside of the case 32.

図7は、熱交換器46に加温された冷媒液を循環させて組電池41を加温、すなわち暖気し、熱交換器46に循環する冷媒液をバッテリラジエータで冷却して組電池1を冷却する。したがって、この構造は、ケース42内で循環される空気の通路に熱交換器46が配設される。   FIG. 7 shows the assembled battery 1 by circulating the refrigerant liquid heated in the heat exchanger 46 to warm the assembled battery 41, that is, warming the air, and cooling the refrigerant liquid circulating in the heat exchanger 46 with a battery radiator. Cooling. Therefore, in this structure, the heat exchanger 46 is disposed in the air passage circulated in the case 42.

ただし、本発明は、熱交換器を、図5ないし図7の構造には特定しない。組電池を加温する熱交換器は、冷媒液と組電池を熱結合状態として、冷媒液で組電池を加温できる全ての構造にできる。   However, the present invention does not specify the heat exchanger in the structure shown in FIGS. The heat exchanger that heats the assembled battery can have any structure that can heat the assembled battery with the refrigerant liquid by bringing the refrigerant liquid and the assembled battery into a thermally coupled state.

熱交換器6は、バイパス弁5を開弁して冷媒液を循環させる。熱交換器6は、水冷エンジン2の冷却水路2aに循環される冷媒液を循環させて、水冷エンジン2の発熱で加温される。また、エンジンラジエータ4に蓄えられる冷媒液を循環させて、エンジンラジエータ4に蓄熱される熱エネルギーで加温される。図1ないし図4に示すハイブリッドカーは、熱交換器6に冷媒液を循環させる循環ポンプ13を連結している。循環ポンプ13は熱交換器6と直列に接続されて、エンジンラジエータ4の冷媒液を熱交換器6に循環させる。   The heat exchanger 6 opens the bypass valve 5 to circulate the refrigerant liquid. The heat exchanger 6 circulates the refrigerant liquid circulated through the cooling water passage 2 a of the water-cooled engine 2 and is heated by the heat generated by the water-cooled engine 2. Further, the refrigerant liquid stored in the engine radiator 4 is circulated and heated by the thermal energy stored in the engine radiator 4. The hybrid car shown in FIGS. 1 to 4 is connected to a circulation pump 13 that circulates a refrigerant liquid in the heat exchanger 6. The circulation pump 13 is connected in series with the heat exchanger 6 to circulate the refrigerant liquid of the engine radiator 4 to the heat exchanger 6.

さらに、ハイブリッドカーは、熱交換器6に循環ポンプ13を介してバッテリラジエータ14を連結している。すなわち、熱交換器6と循環ポンプ13とバッテリラジエータ14とで循環ループができるように連結している。バッテリラジエータ14は、これに強制送風して冷却するための送風ファン15を備える。送風ファン15は、制御回路16で運転が制御される。制御回路16は、組電池1の温度と冷媒液の温度を検出して送風ファン15の運転を制御する。制御回路16は、組電池1の温度が冷却温度まで上昇し、かつ冷媒液の温度が組電池1を冷却できない温度に上昇すると、送風ファン15を運転する。   Further, in the hybrid car, a battery radiator 14 is connected to the heat exchanger 6 via a circulation pump 13. That is, the heat exchanger 6, the circulation pump 13, and the battery radiator 14 are connected so as to form a circulation loop. The battery radiator 14 includes a blower fan 15 for forcibly blowing and cooling the battery radiator 14. The operation of the blower fan 15 is controlled by the control circuit 16. The control circuit 16 controls the operation of the blower fan 15 by detecting the temperature of the assembled battery 1 and the temperature of the refrigerant liquid. When the temperature of the assembled battery 1 rises to the cooling temperature and the temperature of the refrigerant liquid rises to a temperature at which the assembled battery 1 cannot be cooled, the control circuit 16 operates the blower fan 15.

このハイブリッドカーは、循環ポンプ13で熱交換器6の冷媒液をバッテリラジエータ14に循環して、バッテリラジエータ14で組電池1を強制的に冷却できる。すなわち、組電池1を加温して暖気するための熱交換器6を、組電池1の冷却にも併用できる。このハイブリッドカーは、エンジンを始動した直後は、熱交換器6で組電池1を速やかに快適加温して暖気し、組電池1が発熱して快適温度よりも高くなると、熱交換器6で組電池1を冷却して、快適温度に保持できる。組電池1を加温する熱交換器6は、水冷エンジン2の冷却水路2aやエンジンラジエータ4に冷媒液を循環し、組電池1を冷却する熱交換器6は、バッテリラジエータ14に冷媒液を循環させる。   In this hybrid car, the refrigerant liquid in the heat exchanger 6 is circulated to the battery radiator 14 by the circulation pump 13, and the assembled battery 1 can be forcibly cooled by the battery radiator 14. That is, the heat exchanger 6 for heating and warming the assembled battery 1 can also be used for cooling the assembled battery 1. In this hybrid car, immediately after starting the engine, the assembled battery 1 is quickly warmed comfortably by the heat exchanger 6 and warms up. When the assembled battery 1 generates heat and becomes higher than the comfortable temperature, the heat exchanger 6 The assembled battery 1 can be cooled and kept at a comfortable temperature. The heat exchanger 6 for heating the assembled battery 1 circulates the refrigerant liquid in the cooling water passage 2 a of the water-cooled engine 2 and the engine radiator 4, and the heat exchanger 6 for cooling the assembled battery 1 supplies the refrigerant liquid to the battery radiator 14. Circulate.

水冷エンジン2は、冷却水路2aに冷媒液を循環させるウォーターポンプ11を備えている。したがって、水冷エンジン2の冷却水路2aの冷媒液は、循環ポンプ13を使用することなく、熱交換器6に循環できる。ウォーターポンプ11でもって、冷却水路2aの冷媒液を熱交換器6に循環できるからである。したがって、水冷エンジン2の冷却水路2aの冷媒液のみを熱交換器6に循環するハイブリッドカーにあっては、必ずしも循環ポンプを必要としない。ただ、循環ポンプ13を設けて、ウォーターポンプ11と循環ポンプ13の両方で、エンジンラジエータ4よりも多量の冷媒液を効率よく熱交換器6に循環して、組電池1を速やかに加温することもできる。   The water-cooled engine 2 includes a water pump 11 that circulates the refrigerant liquid in the cooling water passage 2a. Therefore, the refrigerant liquid in the cooling water passage 2 a of the water-cooled engine 2 can be circulated to the heat exchanger 6 without using the circulation pump 13. This is because the coolant liquid in the cooling water passage 2 a can be circulated to the heat exchanger 6 with the water pump 11. Therefore, in a hybrid car that circulates only the refrigerant liquid in the cooling water passage 2a of the water-cooled engine 2 to the heat exchanger 6, a circulation pump is not necessarily required. However, a circulation pump 13 is provided, and both the water pump 11 and the circulation pump 13 efficiently circulate a larger amount of refrigerant liquid than the engine radiator 4 to the heat exchanger 6 to quickly heat the assembled battery 1. You can also.

ハイブリッドカーは、水冷エンジン2を冷却する冷却水路7、27と、組電池1を暖気する暖気水路8とを並列に連結している。図1と図2のハイブリッドカーは、水冷エンジン2の冷却水路2aとエンジンラジエータ4との間にサーモスタットの開閉弁9を接続して、この開閉弁9とエンジンラジエータ4を直列に連結して冷却水路7としている。また、熱交換器6とバイパス弁5とを直列に連結して暖気水路8としている。このハイブリッドカーは、エンジンを始動して組電池1を速やかに加温できる。エンジン始動時に、サーモスタットの開閉弁9が閉弁して、冷却水路2aの冷媒液をエンジンラジエータ4に循環することなく、熱交換器6にのみ循環して組電池1を加温するからである。   In the hybrid car, cooling water channels 7 and 27 for cooling the water-cooled engine 2 and a warm air channel 8 for warming the assembled battery 1 are connected in parallel. The hybrid car shown in FIGS. 1 and 2 has a thermostat on / off valve 9 connected between the cooling water passage 2a of the water-cooled engine 2 and the engine radiator 4, and the on-off valve 9 and the engine radiator 4 are connected in series for cooling. The waterway is 7. Further, the heat exchanger 6 and the bypass valve 5 are connected in series to form a warm air channel 8. This hybrid car can quickly warm the assembled battery 1 by starting the engine. This is because, when the engine is started, the opening / closing valve 9 of the thermostat is closed, and the assembled liquid 1 is heated only by circulating to the heat exchanger 6 without circulating the refrigerant liquid in the cooling water passage 2a to the engine radiator 4. .

さらに、図1と図2のハイブリッドカーは、サーモスタットである開閉弁9の流入側に暖気水路8を連結しているので、サーモスタットが閉弁される状態で、バイパス弁5で冷却水路2aの冷媒液を熱交換器6に循環させる状態をコントロールできる。バイパス弁5を開弁して、エンジンを始動した直後から、エンジンの廃熱で熱交換器6を加温して、組電池1を速やかに快適温度まで暖気できる。さらに、このハイブリッドカーは、バイパス弁5の開閉を冷媒液の温度でコントロールして、エンジンを速やかに暖気しながら、組電池1をエンジンの廃熱で加温して暖気することもできる。たとえば、エンジンを始動して冷媒液の温度が非常に低い状態では、バイパス弁5を閉弁して冷却水路2aの冷媒液を熱交換器6に循環しない状態として、エンジンを速やかに暖気する。その後、エンジンの温度が、サーモスタットの開閉弁9を開弁する温度までは上昇しないが、排気ガスを設定値よりも清澄な状態にできるタイミングになると、バイパス弁5を開いて冷却水路2aの冷媒液を熱交換器6に循環させる。この状態は、冷媒液がエンジンラジエータ4には循環されないが、熱交換器6には循環されて組電池1を加温して暖気する。冷媒液がさらに温度上昇すると、開閉弁9が開弁されて、冷却水路2aの冷媒液を熱交換器6とエンジンラジエータ4の両方に循環させる。組電池1が設定温度まで加温されると、バイパス弁5を閉弁して組電池1の暖気を終了する。   Further, in the hybrid car of FIGS. 1 and 2, the warm air water passage 8 is connected to the inflow side of the on-off valve 9 which is a thermostat, so that the refrigerant in the cooling water passage 2a is bypassed by the bypass valve 5 in a state where the thermostat is closed. The state in which the liquid is circulated through the heat exchanger 6 can be controlled. Immediately after the bypass valve 5 is opened and the engine is started, the heat exchanger 6 is heated with the waste heat of the engine, and the assembled battery 1 can be quickly warmed to a comfortable temperature. Furthermore, this hybrid car can also control the opening and closing of the bypass valve 5 with the temperature of the refrigerant liquid to warm up the assembled battery 1 with the waste heat of the engine while warming up the engine quickly. For example, when the engine is started and the temperature of the refrigerant liquid is very low, the bypass valve 5 is closed and the refrigerant liquid in the cooling water passage 2a is not circulated to the heat exchanger 6 so that the engine is quickly warmed up. Thereafter, the temperature of the engine does not rise to the temperature at which the thermostat on / off valve 9 is opened, but when the timing at which the exhaust gas becomes clearer than the set value is reached, the bypass valve 5 is opened and the refrigerant in the cooling water passage 2a is opened. The liquid is circulated through the heat exchanger 6. In this state, the refrigerant liquid is not circulated through the engine radiator 4 but is circulated through the heat exchanger 6 to heat the assembled battery 1 and warm it up. When the temperature of the refrigerant liquid further rises, the on-off valve 9 is opened, and the refrigerant liquid in the cooling water passage 2 a is circulated through both the heat exchanger 6 and the engine radiator 4. When the assembled battery 1 is heated to the set temperature, the bypass valve 5 is closed and the warming of the assembled battery 1 is terminated.

図3と図4のハイブリッドカーは、水冷エンジン2の排出側に、サーモスタットからなる開閉弁9を介して第2の開閉弁19を連結している。このハイブリッドカーは、サーモスタットの開閉弁9と第2の開閉弁19を直列に連結している。この構造は、第2の開閉弁19とエンジンラジエータ4とを直列に連結して冷却水路27としている。この冷却水路27には、暖気水路8が並列に連結される。この構造は、エンジンを始動して、冷却水路2aに循環される冷媒液の温度を速やかに加温できる。すなわち、エンジンを速やかに暖気できる。冷却水路2aの冷媒液の温度が低い状態で、サーモスタットである開閉弁9が閉弁して、冷却水路2aの冷媒液をエンジンラジエータ4と熱交換器6の両方に循環させないからである。   The hybrid car of FIGS. 3 and 4 has a second on-off valve 19 connected to the discharge side of the water-cooled engine 2 via an on-off valve 9 made of a thermostat. In this hybrid car, a thermostat on-off valve 9 and a second on-off valve 19 are connected in series. In this structure, the second on-off valve 19 and the engine radiator 4 are connected in series to form a cooling water passage 27. A warm air channel 8 is connected to the cooling channel 27 in parallel. With this structure, the engine can be started and the temperature of the refrigerant liquid circulated through the cooling water passage 2a can be quickly heated. That is, the engine can be quickly warmed up. This is because the on / off valve 9 serving as a thermostat is closed while the temperature of the refrigerant liquid in the cooling water passage 2 a is low, and the refrigerant liquid in the cooling water passage 2 a is not circulated through both the engine radiator 4 and the heat exchanger 6.

図3と図4のハイブリッドカーは、バイパス弁5と第2の開閉弁19を開弁し、循環ポンプ13を運転して、エンジンラジエータ4の冷媒液に蓄熱される冷媒液の熱エネルギーで熱交換器6を加温できる。エンジンラジエータ4に蓄えられる冷媒液は、大きな熱エネルギーを蓄熱している。したがって、エンジンを停止した後は、ゆっくりと温度が低下する。エンジンを停止して、次に始動するときに、エンジンラジエータ4の冷媒液の温度が設定温度よりも高く、相当な熱エネルギーが蓄熱されていると、エンジンラジエータ4の冷媒液を熱交換器6に循環して組電池1を加温できる。   The hybrid car shown in FIGS. 3 and 4 opens the bypass valve 5 and the second on-off valve 19, operates the circulation pump 13, and is heated by the heat energy of the refrigerant liquid stored in the refrigerant liquid of the engine radiator 4. The exchanger 6 can be heated. The refrigerant liquid stored in the engine radiator 4 stores large heat energy. Therefore, after the engine is stopped, the temperature slowly decreases. When the engine is stopped and then started, if the temperature of the refrigerant liquid of the engine radiator 4 is higher than the set temperature and a considerable amount of heat energy is stored, the refrigerant liquid of the engine radiator 4 is transferred to the heat exchanger 6. The assembled battery 1 can be heated by circulation.

さらに、図3と図4のハイブリッドカーは、第2の開閉弁19を閉弁して、冷却水路2aの冷媒液をエンジンラジエータ4に循環することなく熱交換器6にのみ循環できる。とくに、このハイブリッドカーは、サーモスタットの開閉弁9が開弁される状態において、第2の開閉弁19で、冷却水路2aの冷媒液を熱交換器6に循環させる状態をコントロールできる。すなわち、サーモスタットの開閉弁9が開弁する状態で、第2の開閉弁19を閉弁すると、冷却水路2aの冷媒液を熱交換器6にのみ循環できる。したがって、寒冷地においては、サーモスタットの開閉弁9が開弁した後も、第2の開閉弁19を閉弁して、水冷エンジン2の廃熱を熱交換器6にのみ供給して、組電池1を効率よく加温して速やかに暖気できる。   Furthermore, the hybrid car of FIGS. 3 and 4 can circulate only to the heat exchanger 6 without closing the second on-off valve 19 and circulating the coolant liquid in the cooling water passage 2 a to the engine radiator 4. In particular, this hybrid car can control the state in which the refrigerant liquid in the cooling water passage 2 a is circulated to the heat exchanger 6 by the second on-off valve 19 in a state where the on-off valve 9 of the thermostat is opened. That is, when the second on-off valve 19 is closed while the thermostat on-off valve 9 is open, the refrigerant liquid in the cooling water passage 2 a can be circulated only to the heat exchanger 6. Therefore, in a cold region, even after the thermostat on-off valve 9 is opened, the second on-off valve 19 is closed to supply the waste heat of the water-cooled engine 2 only to the heat exchanger 6, and the assembled battery 1 can be warmed efficiently to quickly warm up.

図2と図4のハイブリッドカーは、バイパス弁5と第2の開閉弁9をコントロールする制御回路16を備える。制御回路16は、冷媒液の温度を検出する冷媒液温度センサ18と、組電池1の温度を検出する組電池温度センサ17とを備える。制御回路16は、冷媒液の温度と組電池1の温度を検出して、バイパス弁5をコントロールする。さらに、図の制御回路16は、送風ファン15と循環ポンプ13のモータを制御している。   The hybrid car shown in FIGS. 2 and 4 includes a control circuit 16 that controls the bypass valve 5 and the second on-off valve 9. The control circuit 16 includes a refrigerant liquid temperature sensor 18 that detects the temperature of the refrigerant liquid, and an assembled battery temperature sensor 17 that detects the temperature of the assembled battery 1. The control circuit 16 detects the temperature of the refrigerant liquid and the temperature of the assembled battery 1 and controls the bypass valve 5. Furthermore, the control circuit 16 in the figure controls the blower fan 15 and the motor of the circulation pump 13.

図1と図2のハイブリッドカーは、図8ないし図12に示すように以下の動作をして、寒冷地においてエンジンを始動した後に、組電池1を暖気する。   The hybrid car of FIGS. 1 and 2 performs the following operation as shown in FIGS. 8 to 12, and warms up the assembled battery 1 after starting the engine in a cold region.

[始動した水冷エンジン2の冷却水路2aにおける冷媒液の温度が極低温の状態]
この状態で水冷エンジン2が始動されると、サーモスタットの開閉弁9は閉弁している。サーモスタットの開閉弁9は、冷却水路2aの冷媒液の温度を検出して閉弁される。閉弁する開閉弁9は、冷却水路2aの冷媒液をエンジンラジエータ4に循環させない。図8に示すように、水冷エンジン2の冷却水路2aは、サーモスタットの開閉弁9を閉弁する状態で、冷媒液の一部をバイパスさせる構造としている。したがって、冷媒液はウォーターポンプ11でもって、水冷エンジン2の冷却水路2aの内部で循環される。閉弁するサーモスタットの開閉弁9は、エンジンラジエータ4と熱交換器6の両方に冷媒液を循環せず、冷却水路2aの内部でのみ循環させる。制御回路16は、冷媒液の温度が低い状態を検出して、バイパス弁5を閉弁する。
その後、エンジンの廃熱で冷媒液の温度が上昇して、冷媒液が組電池1を加温できる温度まで上昇し、あるいはエンジンが暖気されて排気ガスが清澄な状態になると、制御回路16がこのことを検出して、図9に示すように、バイパス弁5を開弁して、冷媒液を暖気水路8の熱交換器6に循環させる。この状態で熱交換器6を介して組電池1が加温される。
[State of refrigerant liquid in cooling water passage 2a of started water-cooled engine 2 at extremely low temperature]
When the water-cooled engine 2 is started in this state, the thermostat on-off valve 9 is closed. The open / close valve 9 of the thermostat is closed by detecting the temperature of the refrigerant liquid in the cooling water passage 2a. The on-off valve 9 that closes does not circulate the refrigerant liquid in the cooling water passage 2 a to the engine radiator 4. As shown in FIG. 8, the cooling water passage 2 a of the water-cooled engine 2 has a structure in which a part of the refrigerant liquid is bypassed while the on-off valve 9 of the thermostat is closed. Therefore, the refrigerant liquid is circulated in the cooling water passage 2 a of the water-cooled engine 2 by the water pump 11. The open / close valve 9 of the thermostat that closes does not circulate the refrigerant liquid to both the engine radiator 4 and the heat exchanger 6 but circulates only inside the cooling water passage 2a. The control circuit 16 detects a state where the temperature of the refrigerant liquid is low and closes the bypass valve 5.
Thereafter, when the temperature of the refrigerant liquid rises due to the waste heat of the engine and the refrigerant liquid rises to a temperature at which the assembled battery 1 can be heated, or when the engine is warmed and the exhaust gas is in a clear state, the control circuit 16 This is detected, and as shown in FIG. 9, the bypass valve 5 is opened to circulate the refrigerant liquid to the heat exchanger 6 in the warm air channel 8. In this state, the assembled battery 1 is heated via the heat exchanger 6.

[冷媒液が加温されてサーモスタットの開閉弁9が開弁する状態]
さらに冷媒液の温度が上昇すると、サーモスタットの開閉弁9が開弁される。制御回路16は、冷媒液の温度を検出してバイパス弁5を開弁しているので、冷媒液は、図10に示すように、冷却水路7と暖気水路8の両方に分流される。したがって、冷媒液は、暖気水路8の熱交換器6と、冷却水路7のエンジンラジエータ4の両方に循環される。エンジンラジエータ4は、循環させる冷媒液を冷却し、熱交換器6は冷媒液に加温された組電池1を暖気する。
[The state in which the on / off valve 9 of the thermostat opens when the refrigerant liquid is heated]
When the temperature of the refrigerant liquid further increases, the thermostat on / off valve 9 is opened. Since the control circuit 16 detects the temperature of the refrigerant liquid and opens the bypass valve 5, the refrigerant liquid is divided into both the cooling water passage 7 and the warm air water passage 8 as shown in FIG. 10. Therefore, the refrigerant liquid is circulated through both the heat exchanger 6 in the warm air channel 8 and the engine radiator 4 in the cooling channel 7. The engine radiator 4 cools the refrigerant liquid to be circulated, and the heat exchanger 6 warms the assembled battery 1 heated by the refrigerant liquid.

[組電池1が加温されて暖気が終了する状態]
組電池1の暖気が終了すると、バイパス弁5が閉弁される。バイパス弁5は、制御回路16で開閉される。したがって、制御回路16は、組電池1の温度を検出して、組電池1の温度が設定温度まで上昇して暖気が終了したことを検出すると、バイパス弁5を閉弁する。この状態では、冷媒液は、図11に示すように、冷却水路7のエンジンラジエータ4にのみ循環される。
[State in which the assembled battery 1 is heated and the warming is finished]
When warming up of the assembled battery 1 ends, the bypass valve 5 is closed. The bypass valve 5 is opened and closed by the control circuit 16. Therefore, the control circuit 16 detects the temperature of the assembled battery 1 and closes the bypass valve 5 when detecting that the temperature of the assembled battery 1 has risen to the set temperature and the warming has ended. In this state, the refrigerant liquid is circulated only to the engine radiator 4 in the cooling water passage 7 as shown in FIG.

[組電池1の温度が上昇する状態]
組電池1が充放電されて温度が高くなり、冷却温度まで上昇すると、制御回路16は組電池1の温度を検出して循環ポンプ13を運転して、図12に示すように、熱交換器6の冷媒液をバッテリラジエータ14に循環させる。バッテリラジエータ14は冷媒液を冷却し、この冷媒液は熱交換器6を介して組電池1を冷却する。組電池1の温度が冷却温度よりも低くなると、循環ポンプ13の運転が停止される。循環ポンプ13が運転される状態で、冷媒液の温度が組電池1を冷却できない高い温度にあると、制御回路16は送風ファン15を運転して、バッテリラジエータ14に送風して強制冷却する。この状態は、冷却水路2aの冷媒液をエンジンラジエータ4に循環してエンジンを設定温度に冷却し、また、熱交換器6の冷媒液をバッテリラジエータ14に循環して、組電池1を設定温度に冷却する。
[State in which the temperature of the assembled battery 1 rises]
When the assembled battery 1 is charged / discharged and the temperature rises and rises to the cooling temperature, the control circuit 16 detects the temperature of the assembled battery 1 and operates the circulation pump 13, as shown in FIG. 6 refrigerant liquid is circulated through the battery radiator 14. The battery radiator 14 cools the refrigerant liquid, and the refrigerant liquid cools the assembled battery 1 via the heat exchanger 6. When the temperature of the assembled battery 1 becomes lower than the cooling temperature, the operation of the circulation pump 13 is stopped. When the circulating pump 13 is operated and the temperature of the refrigerant liquid is at a high temperature at which the assembled battery 1 cannot be cooled, the control circuit 16 operates the blower fan 15 to send air to the battery radiator 14 and forcibly cool it. In this state, the refrigerant liquid in the cooling water channel 2a is circulated to the engine radiator 4 to cool the engine to a set temperature, and the refrigerant liquid in the heat exchanger 6 is circulated to the battery radiator 14 to set the assembled battery 1 to the set temperature. Cool down.

さらに、図3と図4のハイブリッドカーは、図13ないし図18に示すように以下の動作をして、寒冷地においてエンジンを始動した後に、組電池1を暖気する。   Further, the hybrid car of FIGS. 3 and 4 performs the following operation as shown in FIGS. 13 to 18, and warms up the assembled battery 1 after starting the engine in a cold region.

[始動した水冷エンジン2の冷却水路2aにおける冷媒液の温度が極低温の状態]
この状態において、制御回路16は、エンジンの温度を検出して第2の開閉弁19とバイパス弁5を閉弁している。水冷エンジン2が始動されると、サーモスタットの開閉弁9は閉弁している。サーモスタットの開閉弁9は、冷却水路2aの冷媒液の温度を検出して閉弁している。閉弁する開閉弁9は、冷却水路2aの冷媒液をエンジンラジエータ4に循環させない。したがって、冷媒液は、図13に示すように、ウォーターポンプ11でもって、水冷エンジン2の冷却水路2aの内部で循環される。閉弁するサーモスタットの開閉弁9は、エンジンラジエータ4と熱交換器6の両方に冷媒液を循環せず、冷却水路2aの内部でのみ循環させる。制御回路16は、冷媒液の温度が低い状態を検出して、バイパス弁5を閉弁している。
[State of refrigerant liquid in cooling water passage 2a of started water-cooled engine 2 at extremely low temperature]
In this state, the control circuit 16 detects the temperature of the engine and closes the second on-off valve 19 and the bypass valve 5. When the water-cooled engine 2 is started, the thermostat on-off valve 9 is closed. The thermostat on / off valve 9 is closed by detecting the temperature of the refrigerant liquid in the cooling water passage 2a. The on-off valve 9 that closes does not circulate the refrigerant liquid in the cooling water passage 2 a to the engine radiator 4. Accordingly, the refrigerant liquid is circulated inside the cooling water passage 2a of the water-cooled engine 2 by the water pump 11, as shown in FIG. The open / close valve 9 of the thermostat that closes does not circulate the refrigerant liquid to both the engine radiator 4 and the heat exchanger 6 but circulates only inside the cooling water passage 2a. The control circuit 16 detects a state where the temperature of the refrigerant liquid is low and closes the bypass valve 5.

さらに、冷却水路2aの冷媒液の温度が、サーモスタットの開閉弁9を開弁する温度まで上昇されない状態において、エンジンラジエータ4に蓄えられる冷媒液の温度が設定温度よりも高い場合には、制御回路16は、バイパス弁5と第2の開閉弁19を開弁し、循環ポンプ13を運転する。この状態で、エンジンラジエータ4に蓄えられる冷媒液は、図14に示すように、冷却水路2aには循環されず、暖気水路8に循環されて熱交換器6を加温し、熱交換器6が組電池1を加温する。エンジンラジエータ4に蓄えられる冷媒液は、大きな熱エネルギーを蓄熱している。したがって、エンジンラジエータ4の冷媒液の温度が組電池1を加温できる温度よりも高い状態では、エンジンラジエータ4の冷媒液を熱交換器6に循環して組電池1を効率よく加温できる。この制御は、水冷エンジン2の冷却水路2a内の冷媒液の温度が、組電池1を加温できる温度まで上昇していない状態であっても、極めて有効に組電池1を加温できる。なお、この制御は、エンジンが始動される前に行うことも可能である。   Further, when the temperature of the refrigerant liquid stored in the engine radiator 4 is higher than the set temperature in a state where the temperature of the refrigerant liquid in the cooling water passage 2a is not raised to a temperature at which the thermostat on / off valve 9 is opened, a control circuit 16 opens the bypass valve 5 and the second on-off valve 19 and operates the circulation pump 13. In this state, as shown in FIG. 14, the refrigerant liquid stored in the engine radiator 4 is not circulated through the cooling water passage 2 a but is circulated through the warm air water passage 8 to heat the heat exchanger 6. Warms the assembled battery 1. The refrigerant liquid stored in the engine radiator 4 stores large heat energy. Therefore, in a state where the temperature of the refrigerant liquid of the engine radiator 4 is higher than the temperature at which the assembled battery 1 can be heated, the refrigerant liquid of the engine radiator 4 is circulated to the heat exchanger 6 so that the assembled battery 1 can be efficiently heated. This control can heat the assembled battery 1 very effectively even when the temperature of the refrigerant liquid in the cooling water passage 2a of the water-cooled engine 2 does not rise to a temperature at which the assembled battery 1 can be heated. This control can also be performed before the engine is started.

[冷媒液が加温されてサーモスタットの開閉弁9が開弁する状態]
その後、エンジンの廃熱で冷媒液の温度が上昇してサーモスタットの開閉弁9が開弁される。この状態で、制御回路16は第2の開閉弁19を閉弁して、バイパス弁5を開弁する。冷媒液は、図15に示すように、冷却水路27には循環されず、暖気水路8にのみ循環される。暖気水路8に循環される冷媒液は、熱交換器6を加温し、熱交換器6が組電池1を加温する。
この状態で、冷媒液の温度がさらに高くなって、エンジンがオーバーヒートする状態になると、図16に示すように、第2の開閉弁19を開弁して、冷媒液をエンジンラジエータ4で冷却しながら組電池1を加温する。第2の開閉弁19は、たとえば冷媒液の温度を80℃〜90℃に保持するように制御される。組電池1の暖気が終了すると、図17に示すように、バイパス弁5を閉弁し、第2の開閉弁19を開弁状態に保持する。この状態で、冷媒液は熱交換器6を加温することなく、バッテリラジエータ4で冷却されて所定の温度に保持される。
[The state in which the on / off valve 9 of the thermostat opens when the refrigerant liquid is heated]
Thereafter, the temperature of the refrigerant liquid rises due to the waste heat of the engine, and the on / off valve 9 of the thermostat is opened. In this state, the control circuit 16 closes the second on-off valve 19 and opens the bypass valve 5. As shown in FIG. 15, the refrigerant liquid is not circulated through the cooling water passage 27 but is circulated only through the warm air water passage 8. The refrigerant liquid circulated through the warm air channel 8 heats the heat exchanger 6, and the heat exchanger 6 warms the assembled battery 1.
In this state, when the temperature of the refrigerant liquid further increases and the engine is overheated, the second on-off valve 19 is opened and the refrigerant liquid is cooled by the engine radiator 4 as shown in FIG. While heating the battery pack 1. The second on-off valve 19 is controlled, for example, so as to maintain the temperature of the refrigerant liquid at 80 ° C. to 90 ° C. When warming of the assembled battery 1 is completed, as shown in FIG. 17, the bypass valve 5 is closed and the second on-off valve 19 is held in the open state. In this state, the refrigerant liquid is cooled by the battery radiator 4 and is kept at a predetermined temperature without heating the heat exchanger 6.

[組電池1の温度が上昇する状態]
組電池1が充放電されて温度が高くなり、冷却温度まで上昇すると、制御回路16は組電池1の温度を検出して循環ポンプ13を運転して、図18に示すように、熱交換器6の冷媒液をバッテリラジエータ14に循環させる。バッテリラジエータ14は冷媒液を冷却し、この冷媒液は熱交換器6を介して組電池1を冷却する。組電池1の温度が冷却温度よりも低くなると、循環ポンプ13の運転が停止される。循環ポンプ13が運転される状態で、冷媒液の温度が組電池1を冷却できない高い温度にあると、制御回路16は送風ファン15を運転して、バッテリラジエータ14に送風して強制冷却する。この状態は、冷却水路2aの冷媒液をエンジンラジエータ4に循環してエンジンを設定温度に冷却し、また、熱交換器6の冷媒液をバッテリラジエータ14に循環して、組電池1を設定温度に冷却する。
[State in which the temperature of the assembled battery 1 rises]
When the assembled battery 1 is charged / discharged and the temperature rises and rises to the cooling temperature, the control circuit 16 detects the temperature of the assembled battery 1 and operates the circulation pump 13, as shown in FIG. 6 refrigerant liquid is circulated through the battery radiator 14. The battery radiator 14 cools the refrigerant liquid, and the refrigerant liquid cools the assembled battery 1 via the heat exchanger 6. When the temperature of the assembled battery 1 becomes lower than the cooling temperature, the operation of the circulation pump 13 is stopped. When the circulating pump 13 is operated and the temperature of the refrigerant liquid is at a high temperature at which the assembled battery 1 cannot be cooled, the control circuit 16 operates the blower fan 15 to send air to the battery radiator 14 and forcibly cool it. In this state, the refrigerant liquid in the cooling water channel 2a is circulated to the engine radiator 4 to cool the engine to a set temperature, and the refrigerant liquid in the heat exchanger 6 is circulated to the battery radiator 14 to set the assembled battery 1 to the set temperature. Cool down.

本発明のハイブリッドカーは、水冷エンジン2の冷却水路2aに循環される冷媒液でもって、低温に冷却された組電池1を加温する。すなわち、水冷エンジン2の大きな廃熱を有効に利用して、寒冷地において、無駄なエネルギーを消費することなく組電池1を速やかに暖気する。   The hybrid car of the present invention warms the assembled battery 1 cooled to a low temperature with the refrigerant liquid circulated in the cooling water passage 2a of the water-cooled engine 2. That is, the large waste heat of the water-cooled engine 2 is effectively used to quickly warm the assembled battery 1 in a cold region without consuming unnecessary energy.

本発明の一実施例にかかるハイブリッドカーの概略斜視図である。1 is a schematic perspective view of a hybrid car according to an embodiment of the present invention. 図1に示すハイブリッドカーのブロック図である。It is a block diagram of the hybrid car shown in FIG. 本発明の他の実施例にかかるハイブリッドカーの概略斜視図である。It is a schematic perspective view of the hybrid car concerning the other Example of this invention. 図3に示すハイブリッドカーのブロック図である。FIG. 4 is a block diagram of the hybrid car shown in FIG. 3. 熱交換器の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of a heat exchanger. 熱交換器の他の一例を示す概略断面図である。It is a schematic sectional drawing which shows another example of a heat exchanger. 熱交換器の他の一例を示す概略断面図である。It is a schematic sectional drawing which shows another example of a heat exchanger. 図2に示すハイブリッドカーの動作状態を示すブロック図である。FIG. 3 is a block diagram showing an operating state of the hybrid car shown in FIG. 2. 図2に示すハイブリッドカーの動作状態を示すブロック図である。FIG. 3 is a block diagram showing an operating state of the hybrid car shown in FIG. 2. 図2に示すハイブリッドカーの動作状態を示すブロック図である。FIG. 3 is a block diagram showing an operating state of the hybrid car shown in FIG. 2. 図2に示すハイブリッドカーの動作状態を示すブロック図である。FIG. 3 is a block diagram showing an operating state of the hybrid car shown in FIG. 2. 図2に示すハイブリッドカーの動作状態を示すブロック図である。FIG. 3 is a block diagram showing an operating state of the hybrid car shown in FIG. 2. 図4に示すハイブリッドカーの動作状態を示すブロック図である。FIG. 5 is a block diagram showing an operating state of the hybrid car shown in FIG. 4. 図4に示すハイブリッドカーの動作状態を示すブロック図である。FIG. 5 is a block diagram showing an operating state of the hybrid car shown in FIG. 4. 図4に示すハイブリッドカーの動作状態を示すブロック図である。FIG. 5 is a block diagram showing an operating state of the hybrid car shown in FIG. 4. 図4に示すハイブリッドカーの動作状態を示すブロック図である。FIG. 5 is a block diagram showing an operating state of the hybrid car shown in FIG. 4. 図4に示すハイブリッドカーの動作状態を示すブロック図である。FIG. 5 is a block diagram showing an operating state of the hybrid car shown in FIG. 4. 図4に示すハイブリッドカーの動作状態を示すブロック図である。FIG. 5 is a block diagram showing an operating state of the hybrid car shown in FIG. 4.

符号の説明Explanation of symbols

1…組電池
2…水冷エンジン 2a…冷却水路
3…モータ
4…エンジンラジエータ
5…バイパス弁
6…熱交換器
7…冷却水路
8…暖気水路
9…開閉弁
10…ホース
11…ウォーターポンプ
12…冷却ファン
13…循環ポンプ
14…バッテリラジエータ
15…送風ファン
16…制御回路
17…温度センサ
18…温度センサ
19…第2の開閉弁
21…防水ケース
22…防水シート
26…熱交換器
27…冷却水路
31…組電池
32…ケース
33…循環ファン
34…熱交換パイプ
35…放熱フィン
36…熱交換器
37…空気ダクト
38…切換弁
41…組電池
42…ケース
43…循環ファン
44…熱交換パイプ
45…放熱フィン
46…熱交換器
DESCRIPTION OF SYMBOLS 1 ... Assembly battery 2 ... Water cooling engine 2a ... Cooling water channel 3 ... Motor 4 ... Engine radiator 5 ... Bypass valve 6 ... Heat exchanger 7 ... Cooling water channel 8 ... Warm air channel 9 ... On-off valve 10 ... Hose 11 ... Water pump 12 ... Cooling Fan 13 ... Circulation pump 14 ... Battery radiator 15 ... Blower fan 16 ... Control circuit 17 ... Temperature sensor 18 ... Temperature sensor 19 ... Second on-off valve 21 ... Waterproof case 22 ... Waterproof sheet 26 ... Heat exchanger 27 ... Cooling channel 31 ... assembled battery 32 ... case 33 ... circulation fan 34 ... heat exchange pipe 35 ... heat radiating fin 36 ... heat exchanger 37 ... air duct 38 ... switching valve 41 ... battery pack 42 ... case 43 ... circulation fan 44 ... heat exchange pipe 45 ... Radiation fin 46 ... Heat exchanger

Claims (7)

車両を走行させる水冷エンジン(2)及びモータ(3)と、このモータ(3)に電力を供給する組電池(1)と、前記水冷エンジン(2)の冷却水路(2a)に連結されて水冷エンジン(2)との間で冷媒液を循環させるエンジンラジエータ(4)と、水冷エンジン(2)の冷却水路(2a)にバイパス弁(5)を介して連結されて、水冷エンジン(2)に循環される冷媒液で組電池(1)を暖気する熱交換器(6)とを備え、
バイパス弁(5)を開弁する状態で、水冷エンジン(2)の冷却水路(2a)に循環される冷媒液が熱交換器(6)に循環されて、熱交換器(6)でもって組電池(1)を加温するようにしてなるハイブリッドカー。
A water-cooled engine (2) and a motor (3) for running the vehicle, a battery pack (1) for supplying electric power to the motor (3), and a cooling water passage (2a) of the water-cooled engine (2) An engine radiator (4) that circulates refrigerant liquid between the engine (2) and a cooling water passage (2a) of the water-cooled engine (2) via a bypass valve (5) is connected to the water-cooled engine (2). A heat exchanger (6) for warming the assembled battery (1) with the circulated refrigerant liquid,
With the bypass valve (5) opened, the refrigerant liquid circulated through the cooling water passage (2a) of the water-cooled engine (2) is circulated through the heat exchanger (6) and assembled by the heat exchanger (6). A hybrid car that heats the battery (1).
前記熱交換器(6)に、熱交換器(6)に循環される冷媒液を冷却するバッテリラジエータ(14)を連結しており、このバッテリラジエータ(14)でもって、熱交換器(6)に循環される冷媒液を冷却して組電池(1)を冷却するようにしてなる請求項1に記載されるハイブリッドカー。   A battery radiator (14) for cooling the refrigerant liquid circulated to the heat exchanger (6) is connected to the heat exchanger (6), and with this battery radiator (14), the heat exchanger (6) The hybrid car according to claim 1, wherein the battery pack (1) is cooled by cooling the refrigerant liquid circulated in the vehicle. 前記熱交換器(6)に冷媒液を循環させる循環ポンプ(13)を連結している請求項1に記載されるハイブリッドカー。   The hybrid car according to claim 1, wherein a circulation pump (13) for circulating a refrigerant liquid is connected to the heat exchanger (6). 水冷エンジン(2)の冷却水路(2a)とエンジンラジエータ(4)との間に開閉弁(9)を接続しており、この開閉弁(9)とエンジンラジエータ(4)を直列に接続している冷却水路(7)、(27)と、熱交換器(6)とバイパス弁(5)とを直列に接続している暖気水路(8)とを並列に連結しており、開閉弁(9)を閉弁して冷却水路(2a)の冷媒液を暖気水路(8)の熱交換器(6)に循環するようにしてなる請求項1に記載されるハイブリッドカー。   An on-off valve (9) is connected between the cooling water passage (2a) of the water-cooled engine (2) and the engine radiator (4), and the on-off valve (9) and the engine radiator (4) are connected in series. The cooling water passages (7), (27) and the warm air water passage (8) connecting the heat exchanger (6) and the bypass valve (5) in series are connected in parallel. ) Is closed to circulate the refrigerant liquid in the cooling water passage (2a) to the heat exchanger (6) in the warm air water passage (8). 開閉弁(9)が、冷媒液の温度が設定温度になると開弁するサーモスタットである請求項4に記載されるハイブリッドカー。   The hybrid car according to claim 4, wherein the on-off valve (9) is a thermostat that opens when the temperature of the refrigerant liquid reaches a set temperature. 水冷エンジン(2)が、冷媒液の温度が設定温度になると開弁するサーモスタットを有し、このサーモスタットの排出側に、互いに並列に連結している冷却水路(27)と暖気水路(8)を連結している請求項4に記載されるハイブリッドカー。   The water-cooled engine (2) has a thermostat that opens when the temperature of the refrigerant liquid reaches a set temperature. The hybrid car according to claim 4 connected. 組電池(1)の温度を検出する温度センサ(17)と、この温度センサ(17)が検出する組電池(1)の温度でバイパス弁(5)を制御する制御回路(16)とを備え、組電池(1)の温度が設定温度なると、制御回路(16)がバイパス弁(5)を閉弁するようにしてなる請求項1に記載されるハイブリッドカー。   A temperature sensor (17) for detecting the temperature of the assembled battery (1), and a control circuit (16) for controlling the bypass valve (5) with the temperature of the assembled battery (1) detected by the temperature sensor (17). The hybrid car according to claim 1, wherein the control circuit (16) closes the bypass valve (5) when the temperature of the assembled battery (1) reaches a set temperature.
JP2007139800A 2007-05-26 2007-05-26 Hybrid car Expired - Fee Related JP4958637B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007139800A JP4958637B2 (en) 2007-05-26 2007-05-26 Hybrid car

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007139800A JP4958637B2 (en) 2007-05-26 2007-05-26 Hybrid car

Publications (2)

Publication Number Publication Date
JP2008290636A true JP2008290636A (en) 2008-12-04
JP4958637B2 JP4958637B2 (en) 2012-06-20

Family

ID=40165809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007139800A Expired - Fee Related JP4958637B2 (en) 2007-05-26 2007-05-26 Hybrid car

Country Status (1)

Country Link
JP (1) JP4958637B2 (en)

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010133661A (en) * 2008-12-05 2010-06-17 Sanyo Electric Co Ltd Air conditioning-power generating device
JP2010228686A (en) * 2009-03-30 2010-10-14 Toyota Motor Corp Control device for hybrid system
WO2011142431A1 (en) 2010-05-14 2011-11-17 株式会社豊田中央研究所 Battery temperature adjustment device
KR101144078B1 (en) 2010-08-26 2012-05-23 기아자동차주식회사 Thermal management system and method for hybrid electric vehicle
KR20120059902A (en) * 2010-12-01 2012-06-11 현대자동차주식회사 Automobile
JP2012523520A (en) * 2009-04-09 2012-10-04 ルノー・エス・アー・エス Automotive cooling system
DE102011001923A1 (en) * 2011-04-08 2012-10-11 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Hybrid motor car i.e. parallel hybrid motor car, has heat shield arrangement comprising shield element that is movable by regulating unit such that heat is transferred from combustion engine to high voltage source in cold start phase
JP2013073533A (en) * 2011-09-28 2013-04-22 Toshiba Mach Co Ltd Temperature control device and temperature control method
JP2013085390A (en) * 2011-10-11 2013-05-09 Toyota Central R&D Labs Inc Power supply system
WO2013080980A1 (en) * 2011-11-28 2013-06-06 カルソニックカンセイ株式会社 Engine cooling apparatus and engine cooling method
EP2590254A3 (en) * 2011-11-07 2013-12-04 Aisin Seiki Kabushiki Kaisha Battery warm-up apparatus and method thereof
KR101387757B1 (en) 2012-08-29 2014-04-21 삼성중공업 주식회사 Steam generation apparatus for ship
WO2014174549A1 (en) * 2013-04-23 2014-10-30 株式会社Tbk Fluid supply device
JP2014218135A (en) * 2013-05-07 2014-11-20 株式会社デンソー Temperature control system
US20140356660A1 (en) * 2013-06-03 2014-12-04 Denso Corporation Battery cooling apparatus
JP2014229560A (en) * 2013-05-24 2014-12-08 株式会社デンソー Battery pack
US20150010802A1 (en) * 2013-07-04 2015-01-08 Denso Corporation Battery temperature adjustment apparatus
US8935023B2 (en) 2009-01-26 2015-01-13 Kabushiki Kaisha Toyota Chuo Kenkyusho Secondary battery system and vehicle having secondary battery system
JP2015511480A (en) * 2012-02-24 2015-04-16 ヴァレオ システム テルミク Equipment for thermal management of automobile compartments and drivetrains
JP2015170418A (en) * 2014-03-05 2015-09-28 株式会社デンソー battery pack
JP2016119196A (en) * 2014-12-19 2016-06-30 ダイムラー・アクチェンゲゼルシャフトDaimler AG Warming-up device for vehicular molten salt battery
CN105946604A (en) * 2016-04-28 2016-09-21 郑州宇通客车股份有限公司 Method and system for controlling heating of power battery
KR20170024611A (en) 2015-03-03 2017-03-07 히다찌 겐끼 가부시키가이샤 Hybrid construction machine
CN106532191A (en) * 2016-12-13 2017-03-22 北京新能源汽车股份有限公司 Battery temperature control system of hybrid electric vehicle, control method and control device
CN106696686A (en) * 2015-09-09 2017-05-24 北汽福田汽车股份有限公司 Electric vehicle water circulation system, control method and device thereof, and vehicle
WO2017150818A1 (en) * 2016-03-03 2017-09-08 주식회사 엘지화학 Vehicular battery system
JP2017208298A (en) * 2016-05-20 2017-11-24 株式会社エクセディ Storage battery unit
JP2017222239A (en) * 2016-06-14 2017-12-21 マツダ株式会社 Secondary battery heating device for hybrid vehicle
CN107839432A (en) * 2017-11-28 2018-03-27 中国第汽车股份有限公司 The thermal management system of whole of plug-in hybrid-power automobile
KR20180050393A (en) 2015-12-25 2018-05-14 히다찌 겐끼 가부시키가이샤 Hybrid construction machine
US20180163607A1 (en) * 2016-12-14 2018-06-14 Honda Motor Co., Ltd. Cooling system for vehicle
CN108550952A (en) * 2018-06-11 2018-09-18 东风小康汽车有限公司重庆分公司 A kind of battery of hybrid vehicle group humidity control system and hybrid electric vehicle
JP2019023059A (en) * 2017-07-24 2019-02-14 株式会社デンソー Coolant circuit
JP2019060239A (en) * 2017-09-25 2019-04-18 トヨタ自動車株式会社 Vehicular cooling system
JP2019517765A (en) * 2016-06-07 2019-06-24 テスラ,インコーポレイテッド Motor waste heat mode of thermal battery
JP2019156108A (en) * 2018-03-12 2019-09-19 トヨタ自動車株式会社 Temperature control device of vehicle
CN110444832A (en) * 2019-08-13 2019-11-12 太原科技大学 A kind of lithium battery constant-temperature device
CN110861485A (en) * 2019-12-17 2020-03-06 徐工集团工程机械股份有限公司 Hybrid vehicle radiator assembly, radiating system and method and hybrid vehicle
WO2020129259A1 (en) * 2018-12-21 2020-06-25 本田技研工業株式会社 Temperature adjustment circuit
CN112389274A (en) * 2020-11-24 2021-02-23 浙江吉利控股集团有限公司 Cooling module for vehicle and vehicle
CN112455214A (en) * 2020-12-04 2021-03-09 安徽江淮汽车集团股份有限公司 Heat dissipation device and automobile heat dissipation system
US10967702B2 (en) 2017-09-07 2021-04-06 Tesla, Inc. Optimal source electric vehicle heat pump with extreme temperature heating capability and efficient thermal preconditioning
CN113097629A (en) * 2021-03-04 2021-07-09 戴书秀 New energy automobile battery heat abstractor based on water-cooling principle
JP2021139305A (en) * 2020-03-03 2021-09-16 本田技研工業株式会社 Temperature management system for battery
JP2021144785A (en) * 2020-03-10 2021-09-24 いすゞ自動車株式会社 Battery module and battery
CN113471572A (en) * 2021-07-26 2021-10-01 沈阳理工大学 Emergency treatment device for maintaining temperature and spontaneous combustion of battery of electric vehicle
WO2021205973A1 (en) * 2020-04-08 2021-10-14 Denso Corporation Cooling circuit with several cooling temperatures for motor vehicle and method for operating such cooling circuit
CN114435115A (en) * 2020-11-06 2022-05-06 上海汽车集团股份有限公司 Hybrid electric vehicle and thermal management system thereof
US11932078B2 (en) 2021-03-31 2024-03-19 Tesla, Inc. Electric vehicle heat pump using enhanced valve unit

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6662031B2 (en) * 2015-12-24 2020-03-11 三菱自動車工業株式会社 Cooling system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1122466A (en) * 1997-07-04 1999-01-26 Nissan Motor Co Ltd Cooling device for hybrid type electric vehicle
JPH11350956A (en) * 1998-06-08 1999-12-21 Nissan Motor Co Ltd Cooling system of vehicle
JP2006051852A (en) * 2004-08-10 2006-02-23 Fuji Heavy Ind Ltd Heating system for hybrid vehicle
JP2006151091A (en) * 2004-11-26 2006-06-15 Nissan Motor Co Ltd Vehicular power source and vehicle mounted with the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1122466A (en) * 1997-07-04 1999-01-26 Nissan Motor Co Ltd Cooling device for hybrid type electric vehicle
JPH11350956A (en) * 1998-06-08 1999-12-21 Nissan Motor Co Ltd Cooling system of vehicle
JP2006051852A (en) * 2004-08-10 2006-02-23 Fuji Heavy Ind Ltd Heating system for hybrid vehicle
JP2006151091A (en) * 2004-11-26 2006-06-15 Nissan Motor Co Ltd Vehicular power source and vehicle mounted with the same

Cited By (77)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010133661A (en) * 2008-12-05 2010-06-17 Sanyo Electric Co Ltd Air conditioning-power generating device
US8935023B2 (en) 2009-01-26 2015-01-13 Kabushiki Kaisha Toyota Chuo Kenkyusho Secondary battery system and vehicle having secondary battery system
JP2010228686A (en) * 2009-03-30 2010-10-14 Toyota Motor Corp Control device for hybrid system
JP2012523520A (en) * 2009-04-09 2012-10-04 ルノー・エス・アー・エス Automotive cooling system
WO2011142431A1 (en) 2010-05-14 2011-11-17 株式会社豊田中央研究所 Battery temperature adjustment device
US9660307B2 (en) 2010-05-14 2017-05-23 Kabushiki Kaisha Toyota Chuo Kenkyusho Battery temperature adjustment device
KR101144078B1 (en) 2010-08-26 2012-05-23 기아자동차주식회사 Thermal management system and method for hybrid electric vehicle
US8689741B2 (en) 2010-08-26 2014-04-08 Hyundai Motor Corporation Thermal management system, vehicles embodying same and methods related thereto
KR20120059902A (en) * 2010-12-01 2012-06-11 현대자동차주식회사 Automobile
KR101593240B1 (en) * 2010-12-01 2016-02-11 현대자동차주식회사 Automobile
DE102011001923A1 (en) * 2011-04-08 2012-10-11 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Hybrid motor car i.e. parallel hybrid motor car, has heat shield arrangement comprising shield element that is movable by regulating unit such that heat is transferred from combustion engine to high voltage source in cold start phase
JP2013073533A (en) * 2011-09-28 2013-04-22 Toshiba Mach Co Ltd Temperature control device and temperature control method
JP2013085390A (en) * 2011-10-11 2013-05-09 Toyota Central R&D Labs Inc Power supply system
EP2590254A3 (en) * 2011-11-07 2013-12-04 Aisin Seiki Kabushiki Kaisha Battery warm-up apparatus and method thereof
WO2013080980A1 (en) * 2011-11-28 2013-06-06 カルソニックカンセイ株式会社 Engine cooling apparatus and engine cooling method
JP2015511480A (en) * 2012-02-24 2015-04-16 ヴァレオ システム テルミク Equipment for thermal management of automobile compartments and drivetrains
KR101387757B1 (en) 2012-08-29 2014-04-21 삼성중공업 주식회사 Steam generation apparatus for ship
US10012227B2 (en) 2013-04-23 2018-07-03 Tbk Co., Ltd. Fluid supply device
WO2014174549A1 (en) * 2013-04-23 2014-10-30 株式会社Tbk Fluid supply device
JP2014218135A (en) * 2013-05-07 2014-11-20 株式会社デンソー Temperature control system
JP2014229560A (en) * 2013-05-24 2014-12-08 株式会社デンソー Battery pack
JP2014235899A (en) * 2013-06-03 2014-12-15 株式会社デンソー Battery cooling device
US20140356660A1 (en) * 2013-06-03 2014-12-04 Denso Corporation Battery cooling apparatus
US10461381B2 (en) * 2013-06-03 2019-10-29 Denso Corporation Battery cooling apparatus
US20150010802A1 (en) * 2013-07-04 2015-01-08 Denso Corporation Battery temperature adjustment apparatus
JP2015170418A (en) * 2014-03-05 2015-09-28 株式会社デンソー battery pack
JP2016119196A (en) * 2014-12-19 2016-06-30 ダイムラー・アクチェンゲゼルシャフトDaimler AG Warming-up device for vehicular molten salt battery
KR20170024611A (en) 2015-03-03 2017-03-07 히다찌 겐끼 가부시키가이샤 Hybrid construction machine
CN106696686A (en) * 2015-09-09 2017-05-24 北汽福田汽车股份有限公司 Electric vehicle water circulation system, control method and device thereof, and vehicle
CN106696686B (en) * 2015-09-09 2019-05-10 北京宝沃汽车有限公司 Electric car water circulation system and its control method, device and automobile
US10450723B2 (en) 2015-12-25 2019-10-22 Hitachi Construction Machinery Co., Ltd. Hybrid construction machinery
KR20180050393A (en) 2015-12-25 2018-05-14 히다찌 겐끼 가부시키가이샤 Hybrid construction machine
EP3396075A4 (en) * 2015-12-25 2019-10-16 Hitachi Construction Machinery Co., Ltd. Hybrid construction machinery
WO2017150818A1 (en) * 2016-03-03 2017-09-08 주식회사 엘지화학 Vehicular battery system
US10680298B2 (en) 2016-03-03 2020-06-09 Lg Chem, Ltd. Battery system for vehicle
CN105946604A (en) * 2016-04-28 2016-09-21 郑州宇通客车股份有限公司 Method and system for controlling heating of power battery
CN105946604B (en) * 2016-04-28 2018-08-17 郑州宇通客车股份有限公司 Power battery method for heating and controlling and power battery heating control system
JP2017208298A (en) * 2016-05-20 2017-11-24 株式会社エクセディ Storage battery unit
US11218045B2 (en) 2016-06-07 2022-01-04 Tesla, Inc. Electric motor waste heat mode to heat battery
US11088582B2 (en) 2016-06-07 2021-08-10 Tesla, Inc. Electric motor rotor discharge protection
JP2019517765A (en) * 2016-06-07 2019-06-24 テスラ,インコーポレイテッド Motor waste heat mode of thermal battery
US11757320B2 (en) 2016-06-07 2023-09-12 Tesla, Inc. Electric motor rotor discharge protection
JP2017222239A (en) * 2016-06-14 2017-12-21 マツダ株式会社 Secondary battery heating device for hybrid vehicle
CN106532191A (en) * 2016-12-13 2017-03-22 北京新能源汽车股份有限公司 Battery temperature control system of hybrid electric vehicle, control method and control device
CN106532191B (en) * 2016-12-13 2019-03-05 北京新能源汽车股份有限公司 Battery temperature control, control method and the control device of hybrid vehicle
US10570805B2 (en) 2016-12-14 2020-02-25 Honda Motor Co., Ltd. Cooling system for vehicle
JP2018095127A (en) * 2016-12-14 2018-06-21 本田技研工業株式会社 Cooling device of vehicle
US20180163607A1 (en) * 2016-12-14 2018-06-14 Honda Motor Co., Ltd. Cooling system for vehicle
JP2019023059A (en) * 2017-07-24 2019-02-14 株式会社デンソー Coolant circuit
US10967702B2 (en) 2017-09-07 2021-04-06 Tesla, Inc. Optimal source electric vehicle heat pump with extreme temperature heating capability and efficient thermal preconditioning
JP2019060239A (en) * 2017-09-25 2019-04-18 トヨタ自動車株式会社 Vehicular cooling system
CN107839432B (en) * 2017-11-28 2024-02-20 中国第一汽车股份有限公司 Whole vehicle thermal management system of plug-in hybrid electric vehicle
CN107839432A (en) * 2017-11-28 2018-03-27 中国第汽车股份有限公司 The thermal management system of whole of plug-in hybrid-power automobile
JP2019156108A (en) * 2018-03-12 2019-09-19 トヨタ自動車株式会社 Temperature control device of vehicle
JP6992615B2 (en) 2018-03-12 2022-02-04 トヨタ自動車株式会社 Vehicle temperature control device
CN108550952A (en) * 2018-06-11 2018-09-18 东风小康汽车有限公司重庆分公司 A kind of battery of hybrid vehicle group humidity control system and hybrid electric vehicle
WO2020129259A1 (en) * 2018-12-21 2020-06-25 本田技研工業株式会社 Temperature adjustment circuit
US11888139B2 (en) 2018-12-21 2024-01-30 Honda Motor Co., Ltd. Temperature adjustment circuit
JP7042362B2 (en) 2018-12-21 2022-03-28 本田技研工業株式会社 Temperature control circuit
JPWO2020129259A1 (en) * 2018-12-21 2021-11-11 本田技研工業株式会社 Temperature control circuit
CN110444832A (en) * 2019-08-13 2019-11-12 太原科技大学 A kind of lithium battery constant-temperature device
CN110861485A (en) * 2019-12-17 2020-03-06 徐工集团工程机械股份有限公司 Hybrid vehicle radiator assembly, radiating system and method and hybrid vehicle
JP7377136B2 (en) 2020-03-03 2023-11-09 本田技研工業株式会社 Battery temperature management system
JP2021139305A (en) * 2020-03-03 2021-09-16 本田技研工業株式会社 Temperature management system for battery
JP7287315B2 (en) 2020-03-10 2023-06-06 いすゞ自動車株式会社 battery module and battery
JP2021144785A (en) * 2020-03-10 2021-09-24 いすゞ自動車株式会社 Battery module and battery
WO2021205973A1 (en) * 2020-04-08 2021-10-14 Denso Corporation Cooling circuit with several cooling temperatures for motor vehicle and method for operating such cooling circuit
CN114435115A (en) * 2020-11-06 2022-05-06 上海汽车集团股份有限公司 Hybrid electric vehicle and thermal management system thereof
CN114435115B (en) * 2020-11-06 2024-03-08 上海汽车集团股份有限公司 Hybrid electric vehicle and thermal management system thereof
CN112389274B (en) * 2020-11-24 2022-03-25 浙江吉利控股集团有限公司 Cooling module for vehicle and vehicle
CN112389274A (en) * 2020-11-24 2021-02-23 浙江吉利控股集团有限公司 Cooling module for vehicle and vehicle
CN112455214B (en) * 2020-12-04 2022-06-21 安徽江淮汽车集团股份有限公司 Heat abstractor and car cooling system
CN112455214A (en) * 2020-12-04 2021-03-09 安徽江淮汽车集团股份有限公司 Heat dissipation device and automobile heat dissipation system
CN113097629A (en) * 2021-03-04 2021-07-09 戴书秀 New energy automobile battery heat abstractor based on water-cooling principle
US11932078B2 (en) 2021-03-31 2024-03-19 Tesla, Inc. Electric vehicle heat pump using enhanced valve unit
CN113471572B (en) * 2021-07-26 2023-02-24 沈阳理工大学 Emergency treatment device for maintaining temperature and spontaneous combustion of battery of electric vehicle
CN113471572A (en) * 2021-07-26 2021-10-01 沈阳理工大学 Emergency treatment device for maintaining temperature and spontaneous combustion of battery of electric vehicle

Also Published As

Publication number Publication date
JP4958637B2 (en) 2012-06-20

Similar Documents

Publication Publication Date Title
JP4958637B2 (en) Hybrid car
JP5945768B2 (en) Waste heat management system and management method for electric vehicle
KR101144078B1 (en) Thermal management system and method for hybrid electric vehicle
CN109980246B (en) Thermal management system of fuel cell vehicle
US5624003A (en) Battery temperature-raising device for electric vehicle
KR20190068357A (en) Hvac system of vehicle
CN109962268B (en) Thermal management method for fuel cell vehicle
CN105633508B (en) Battery system and its control method
JP2006177265A (en) Thermoelectric power generation device
CN107946696A (en) A kind of automobile power cell group temperature control device based on liquid medium
EP3923398B1 (en) Battery pack thermal management system and thermal management system for electric vehicle
CN112895886A (en) Electric automobile thermal management system
JP2020133588A (en) Battery temperature raising device
JP6363289B2 (en) Temperature control system and electric vehicle using the same
CN105716343A (en) Air cooling type heat radiation control method for semiconductor refrigeration equipment
JP2015085699A (en) Method for adjusting temperature of refrigerant liquid for cooling engine of hybrid vehicle
KR20110131885A (en) Seat air conditioner for vehicle
JP2008103108A (en) Warming system of battery, and automobile using battery as power source
KR20080028174A (en) Heating device for vehicles
JP2011143911A (en) Vehicular air-conditioning unit and vehicular air-conditioning system
CN208515373U (en) A kind of hybrid vehicle heat management system
KR20120094567A (en) Heating system for electric vehicles using waste heat
JP4396351B2 (en) Thermoelectric generator
KR101610082B1 (en) Heating system for fuel cell vehicle and orerating method thereof
KR20120035528A (en) A generator set having a preheater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120319

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150330

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4958637

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees