WO2013080980A1 - Engine cooling apparatus and engine cooling method - Google Patents

Engine cooling apparatus and engine cooling method Download PDF

Info

Publication number
WO2013080980A1
WO2013080980A1 PCT/JP2012/080646 JP2012080646W WO2013080980A1 WO 2013080980 A1 WO2013080980 A1 WO 2013080980A1 JP 2012080646 W JP2012080646 W JP 2012080646W WO 2013080980 A1 WO2013080980 A1 WO 2013080980A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
sub
engine
cooling water
main
Prior art date
Application number
PCT/JP2012/080646
Other languages
French (fr)
Japanese (ja)
Inventor
祟 金田
純平 稲葉
Original Assignee
カルソニックカンセイ株式会社
東京ラヂエーター製造株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by カルソニックカンセイ株式会社, 東京ラヂエーター製造株式会社 filed Critical カルソニックカンセイ株式会社
Priority to EP12853010.2A priority Critical patent/EP2787189A4/en
Priority to CN201280058311.2A priority patent/CN103987935A/en
Priority to US14/360,787 priority patent/US20140326198A1/en
Publication of WO2013080980A1 publication Critical patent/WO2013080980A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/20Cooling circuits not specific to a single part of engine or machine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/12Arrangements for cooling other engine or machine parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/165Controlling of coolant flow the coolant being liquid by thermostatic control characterised by systems with two or more loops
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/33Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage controlling the temperature of the recirculated gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P5/00Pumping cooling-air or liquid coolants
    • F01P5/10Pumping liquid coolant; Arrangements of coolant pumps
    • F01P2005/105Using two or more pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P2007/146Controlling of coolant flow the coolant being liquid using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2037/00Controlling
    • F01P2037/02Controlling starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/02Intercooler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/16Outlet manifold
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/18Heater

Definitions

  • the present invention relates to an engine cooling apparatus having an EGR system or the like and a cooling method thereof.
  • EGR systems exhaust gas recirculation mechanisms that recirculate exhaust gas to the engine have been widely adopted as a countermeasure against air pollution by exhaust gas in vehicles equipped with diesel engines.
  • an EGR cooler heat exchanger
  • the exhaust gas is cooled by cooling water and then returned to the engine.
  • Most of the cooling water used in the EGR cooler is cooling water that also serves as engine cooling.
  • the cooling water radiated from the radiator by the running wind is returned to the engine, but a part is led out and allowed to flow into the EGR cooler before the engine is cooled.
  • This cooling water cools the EGR gas (exhaust gas) with the EGR cooler, and then merges with the cooling water flowing into the engine from the radiator. Further, a part of the cooling water flows again into the EGR cooler, and the remaining cooling water The engine is cooled to form a flow path that circulates to the radiator overnight.
  • the temperature of the cooling water after the heat is generally dissipated by the radiator is generally over 80 ° C. while the engine is running. For this reason, the exhaust gas cooled by the EGR cooler with the cooling water does not fall below the cooling water temperature.
  • Patent Document 1 describes a cooling device for EGR gas shown in FIG. This includes a water pump 53 disposed in the cooling water passage 52 of the engine 51, an EGR cooler 57 disposed in the branch circulation passage 56 branched from the downstream cooling water passage, and the downstream thereof.
  • An EGR radiator 59 or the like is provided to reduce the dependency of the EGR gas temperature on the engine coolant temperature.
  • Patent Document 2 describes an EGR device in which an EGR radiator independent from an engine cooling system is provided, and the EGR cooler is thermally coupled to increase the cooling capacity of the EGR cooler.
  • Patent Document 3 discloses a high temperature first cooling loop in which an internal combustion engine, a heat exchanger, and the like are incorporated, a cooling unit (intercooler), and a low temperature for the purpose of shortening the warm-up time of an internal combustion engine of an automobile such as a truck.
  • a cooling system for a supercharged internal combustion engine having a low temperature second cooling loop in which a heat exchanger or the like is incorporated is disclosed.
  • the present invention has been made to solve the above-described problems.
  • the capacity of the main radiator can be reduced, the cost can be reduced, and the mounting space can be effectively used. It is an object of the present invention to provide an engine cooling device and a cooling method thereof.
  • an engine cooling apparatus includes a main radiator that cools cooling water flowing through the engine, and a main circuit of cooling water that circulates between the engine and the main radiator. Cooling the cooling water that is provided on the upstream side of the engine of the main circuit and that is used in a cooler device that cools the heating element mounted on the vehicle independently of the main circuit and the first pump that circulates and drives the cooling water.
  • Cooling water sent to the main radiator when this temperature exceeds the upper limit value of the cooling water temperature during steady operation of the engine A sub-control valve that diverts a part of the sub-circuit and sends the sub-control valve to the sub circuit. Cooling water sent to the sub circuit by the sub-control valve is cooled by the sub-radiator and flows into the cooler device. In addition, the cooling water of the sub circuit is diverted and returned to the upstream side of the first pump of the main circuit.
  • the engine cooling device detects the temperature of the cooling water in the main circuit, and passes through the engine when the temperature does not reach the lower limit value of the temperature of the cooling water in the steady state of the engine.
  • Main control that returns the cooling water to the engine and warms up the engine, and when the temperature is equal to or higher than the lower limit value, sends a part or all of the cooling water that has passed through the engine toward the main radiator of the main circuit It is the structure which provided the valve.
  • the engine cooling device has a configuration in which the lower limit value of the temperature of the cooling water at the time of steady operation of the engine is 80 ° C. and the upper limit value is 100 ° C.
  • the lower limit value of the temperature of the cooling water in the steady state of the engine is any value in the range of 70 ° C to 90 ° C
  • the upper limit value is any value in the range of 90 ° C to 120 ° C. It is the structure made into the value of.
  • the lower limit value can be set to, for example, 70 ° C. or 85 ° C. within the above range
  • the upper limit value can also be set to, for example, 95 ° C. or 120 ° C.
  • the engine cooling device has a configuration in which a bypass circuit is provided that sends the cooling water divided by the sub control valve to the upstream or downstream sub circuit of the second pump.
  • the engine cooling device has a configuration in which an EGR cooler is provided in a lead-out circulation circuit that divides cooling water from the main circuit.
  • the engine cooling apparatus has an EGR cooler provided in the middle of the sub-circuit.
  • An engine cooling method uses any one of the engine cooling apparatuses described above, sends a part of the cooling water of the main circuit to the sub circuit, and cools the cooling water with the sub radiator. It is to return to the upstream side of the engine of the main circuit again.
  • the cooling water sent to the sub circuit by the sub control valve is cooled by the sub radiator and flows into the cooler device, and the cooling water of the sub circuit is divided and the main circuit
  • the main radiator can be set to a size that matches the low / medium-load operation, and a main radiator that is smaller than before can be configured. Therefore, the main radiator can be prevented from being enlarged, and the cost can be reduced and the radiator can be effectively used.
  • the main radiator can be set to a size suitable for low / medium-load operation, avoiding an increase in the size of the main radiator, reducing costs, and making effective use of the radiator's mounting space It also has the effect of contributing.
  • FIG. 1 is a block diagram illustrating a configuration of an engine cooling device according to a first embodiment.
  • FIG. It is a block diagram which shows the distribution
  • It is a block diagram which shows the structure of the cooling device of the engine which concerns on other embodiment.
  • It is a block diagram which concerns on 2nd embodiment and shows the structure of the cooling device of an engine.
  • FIG. 10 is a block diagram illustrating a configuration of an engine cooling device according to a third embodiment. It is a figure which shows the cooling device of EGR gas which concerns on a prior art example.
  • FIG. 1 is a block diagram showing a configuration of an engine cooling device 2 according to the first embodiment.
  • the engine cooling device 2 includes a main circuit 8 for cooling water that cools the engine 4 and the first EGR cooler 6 using the main radiator 16, and a second cooling water that uses the sub radiator 28 to cool the second water.
  • the sub-circuit 12 that cools the EGR cooler 10 is provided. Further, the sub-circuit 12 is provided with a branching portion 14, and cooling water flowing through the sub-circuit 12 flows into the main circuit 8 from the branching portion 14 under a predetermined condition, flows through the engine 4 and again flows into the main circuit 8. To the sub-circuit 12.
  • the main circuit 8 is provided with an engine 4, a main radiator 16, a first pump 18, a main control valve 20, a sub control valve 22, and a first EGR cooler 6.
  • the sub circuit 12 is provided with a sub radiator 28, a second EGR cooler 10, and a second pump 30.
  • the cooling device 2 is provided with an intercooler 38.
  • the cooling water from the main radiator 16 flows into the engine 4 via the first pump 18 and returns to the main radiator 16 again, and a part of the cooling water is derived from the engine 4.
  • a lead-out circulation circuit 9 is formed which flows into the first EGR cooler 6 and returns to the engine 4 again.
  • the lead-out circulation circuit 9 a circuit in which cooling water is derived from the main circuit 8 other than the engine 4, flows into the first EGR cooler 6, and is returned to the main circuit 8 again is possible.
  • the main circuit 8 is provided with a first bypass circuit 27 for circulating cooling water from the main control valve 20 to the first pump 18. Further, the main circuit 8 is provided with a second bypass circuit 31 for circulating cooling water from the sub control valve 22 to the second pump 30.
  • a circulation circuit is formed in which the cooling water from the sub-radiator 28 flows into the second EGR cooler 10 and is returned to the sub-radiator 28 again via the second pump 30.
  • the exhaust gas (EGR gas) cooled by the first EGR cooler 6 is further cooled to a low temperature, so that the cooling at a lower temperature than the cooling water cooled by the main radiator 16 is performed. Water is needed.
  • the main radiator 16 mainly cools the cooling water for the engine 4, and the sub radiator 28 mainly cools the cooling water used for the cooler equipment such as the second EGR cooler 10 and the intercooler 38.
  • the first EGR cooler 6 and the second EGR cooler 10 both cool the exhaust gas (EGR gas).
  • the intercooler 38 cools the supercharged air.
  • Each of the first pump 18 and the second pump 30 provided in each circuit is a water pump, and drives the cooling water to circulate in the circuit.
  • a mechanical pump using the driving force of the engine 4 or an electric pump is used as the first pump 18, and the same mechanical pump as the first pump 18 is used as the second pump 30, or an electric pump is used only for the second pump 30. You can also.
  • the electric pump is electrically controlled and can be easily controlled from an ECU or the like.
  • Each of the first pump 18 and the second pump 30 is provided with one inlet for cooling water (however, the first pump 18 is provided with an inlet for cooling water from two circuits) and has one outlet. It is a thing.
  • the first pump 18 is provided in the main circuit 8 (upstream side of the engine 4) between the main radiator 16 and the engine 4, and drives the coolant output from the main radiator 16 toward the engine 4, Cooling water in the main circuit 8 is circulated.
  • the second pump 30 is provided in the sub circuit 12 (on the downstream side of the second EGR cooler 10) between the second EGR cooler 10 and the sub radiator 28, and the cooling water of the sub circuit 12 is supplied to the sub radiator 28. The cooling water in the sub-circuit 12 is circulated.
  • the main control valve 20 and the sub control valve 22 are all three-way valves (two inlet and outlet ports), both of which are so-called thermostats that detect the temperature of the cooling water and open and close (divide) the cooling water channel. It is.
  • the main control valve 20 opens and closes the valve based on the temperature of the cooling water, for example, 85 ° C. (cooling during steady engine operation, the lower limit value of the water temperature).
  • the sub control valve 22 opens and closes the valve on the basis of a temperature higher than that of the main control valve 20, for example, 95 ° C. (the upper limit value of the cooling water temperature when the engine is stationary).
  • the main control valve 20 can be fully opened and fully closed (and intermediately opened), and the sub control valve 22 may not be fully closed (flow to the main circuit 8 is ensured).
  • the main control valve 20 is provided in the main circuit 8 at a position where the coolant has passed through the engine 4 (on the downstream side of the engine 4). This main control valve 20 detects the temperature of the cooling water in the vicinity of the main circuit 8 to open and close the valve, and allows the cooling water that has passed through the engine 4 to flow toward the main radiator 16 or the first bypass. It is controlled whether it flows to the circuit 27 (circulates in the engine 4 again).
  • the sub control valve 22 is provided in the main circuit 8 between the main control valve 20 and the main radiator 16, and detects the temperature of the coolant near the main circuit 8 to open and close the valve. The sub control valve 22 controls whether the coolant that has passed through the main control valve 20 flows to the main radiator 16 or the second bypass circuit 31 (inflow into the sub circuit 12).
  • the main circuit 8 is provided with a junction 34 in the vicinity of the inlet (upstream side) of the first pump 18.
  • a circuit for the cooling water flowing out from the first EGR cooler 6 joins the joining portion 34.
  • the sub circuit 12 is provided with a branch portion 14 in a circuit between the second EGR cooler 10 and the second pump 30, and a sub bypass circuit 36 branched from the branch portion 14 is connected to the junction portion 34.
  • the sub bypass circuit 36 connects the sub circuit 12 and the main circuit 8, and returns the cooling water of the sub circuit 12 to the main circuit 8.
  • the cooling water from the circuit from the main radiator 16, the circuit from the first EGR cooler 6, and the three circuits of the sub-bypass circuit 36 are merged, and the merged cooling water is the first pump. 18 flows.
  • a check valve 37 (flowing only in one direction) is provided between the branch portion 14 of the sub circuit 12 and the location where the second bypass circuit 31 joins the sub circuit 12. This is to prevent back flow of the sub-circuit 12 due to competition between the second pump 30 and the first pump 18.
  • the distribution form of the cooling water flowing through the main circuit 8 and the sub circuit 12 will be described according to the temperature of the cooling water flowing through the main circuit 8 based on the operating state of the engine 4.
  • the temperature of the cooling water in the main circuit (near the main control valve 20 and the sub control valve 22) during normal operation (normal operation) is 85 ° C. (lower limit value) to 95 ° C. (upper limit value) here. It is said.
  • a lower limit value may be set to 80 ° C. and an upper limit value may be set to 100 ° C.
  • the lower limit value of the temperature of the cooling water at the steady state of the engine may be any value in the range of 70 ° C. to 90 ° C.
  • the upper limit value may be any value in the range of 90 ° C. to 120 ° C.
  • the lower limit value of the temperature of the cooling water in the steady state of the engine varies depending on engine friction and the engine friction based on the temperature. If the engine oil is not warmed, it will be highly viscous and will cause loss due to friction, resulting in poor fuel consumption.
  • the upper limit varies depending on the boiling of water and the durability of engine parts. For example, in high altitudes, it boils even below 90 ° C. Although the boiling point of cooling water increases when pressurized, the upper limit is limited by the heat resistance and durability against heat load of the components used for engine components. In view of these circumstances, the lower limit value and the upper limit value have different ranges or value ranges.
  • the coolant temperature of the main circuit 8 is in a range that is less than the lower limit (85 ° C.) of the steady state temperature.
  • the main control valve 20 is in a closed state by detecting the temperature of the cooling water, and all the cooling water is divided by the main control valve 20 and flows to the first bypass circuit 27, and passes through the first pump 18.
  • the cooling water circulates in the engine 4 again. That is, the cooling water of the main circuit 8 is driven by the first pump 18 to flow through the first bypass circuit 27 from the inside of the engine 4, is returned to the first pump 18 again, and is sent to the engine 4.
  • a warm-up state is circulated through the engine 4.
  • a part of the cooling water flowing through the main circuit 8 is used for cooling the first EGR cooler 6, and the cooling water that has passed through the first EGR cooler 6 is returned to the main circuit 8.
  • the cooling water for the first EGR cooler 6 is led out from the engine 4 and circulates through the first EGR cooler 6, and then sent to the merging portion 34 to send the cooling water from the main radiator 16 or the like. And then returned to the engine 4 again.
  • the flow form of the cooling water related to the first EGR cooler 6 is constant and does not change depending on the operating state of the engine 4.
  • the sub circuit 12 forms an independent cooling water circuit different from the main circuit 8 for cooling the engine 4.
  • the cooling water in the sub-circuit 12 is driven by the second pump 30 to flow through the sub-radiator 28, passes through the second EGR cooler 10, and returns to the second pump 30 again.
  • the second pump 30 is an electric pump and cooling by the second EGR cooler 10 is not necessary, the second pump 30 may not be driven.
  • the temperature of the cooling water in the main circuit 8 is in the range from the lower limit value to the upper limit value (85 ° C. to 95 ° C.) of the steady state temperature.
  • the main control valve 20 of the main circuit 8 detects the coolant temperature and opens the valve, and the coolant flows toward the main radiator 16 through the main circuit 8.
  • the sub-control valve 22 is also in an open state, the cooling water passes through the sub-control valve 22, flows through the main circuit 8 toward the main radiator 16, and the sub-circuit 12 is in a closed state. There is no flow to the second bypass circuit 31.
  • the main control valve 20 In the normal temperature range of the cooling water, the main control valve 20 repeatedly opens and closes due to a change in the water temperature (intermediate open state), whereby the cooling water flows toward the main radiator 16 or the first bypass circuit 27.
  • the temperature of the cooling water is kept constant while flowing toward
  • the cooling water driven by the first pump 18 circulates inside the engine 4, and from the main control valve 20 (open to the main circuit) to the main circuit. 8 to the sub-control valve 22, and is sent from the sub-control valve 22 (open to the main circuit, fully closed to the sub circuit) to the main radiator 16 and returned to the first pump 18 again.
  • the main circuit 8 is circulated.
  • the second pump 30 forms a circulation circuit related to the cooling water sub-circuit 12 independent of the main circuit 8 for cooling the engine 4.
  • This sub-circuit 12 is maintained as an independent circuit so long as there is no inflow and outflow of the cooling water. Even if a negative pressure is generated in the branching section 14 from the sub circuit 12 to the main circuit 8 and the circuit is depressurized, the cooling water does not flow out from the sub circuit 12 to the main circuit 8.
  • the cooling water flow in the sub-circuit 12 is driven by the second pump 30 to flow through the sub-radiator 28, passes through the second EGR cooler 10, and again passes through the second pump 30. Is returned to circulates through the sub-circuit 12.
  • This sub-circuit 12 is a circuit whose cooling water has a lower water temperature than the main circuit 8. The amount of cooling water in the sub circuit 12 is, for example, 30 L / min.
  • the coolant temperature of the main circuit 8 exceeds the upper limit (95 ° C.) of the steady state temperature. At this temperature, the engine is in a state just before overheating.
  • the main control valve 20 of the main circuit 8 detects the coolant temperature and opens the valve, while the sub control valve 22 of the main circuit 8 The temperature of the water is detected and narrowed from an open state to a slightly closed state. Then, the cooling water of the main circuit 8 is diverted to the second bypass circuit 31 by the sub control valve 22 and flows to the sub circuit 12.
  • the sub control valve 22 is such that the flow path to the main circuit 8 is slightly closed (not fully closed), a part of the cooling water is diverted to the sub circuit 12, and the rest is circulated through the main circuit 8. .
  • the flow rate to the sub circuit 12 can be increased by increasing the resistance on the main circuit 8 side.
  • a part of the cooling water of the main circuit 8 is diverted (for example, 50 L / min) and flows (joins) through the second pump 30 through the sub circuit 12. .
  • the amount of cooling water in the sub circuit 12 is added to the original amount (30 L / min) by the amount (50 L / min) flowing from the main circuit.
  • the cooling water (30 + 50 L / min) of the sub circuit 12 is cooled by the sub radiator 28, flows through the second EGR cooler 10, and reaches the second pump 30.
  • the amount of water (50 L / min) divided from the main circuit 8 is returned to the main circuit 8 from the branching section 14 again.
  • the circulation form of the cooling water in the main circuit 8 is the same as that in the steady state except for the diversion by the sub-control valve 22, and the cooling water driven by the first pump 18 circulates inside the engine 4 to The flow from the control valve 20 (open) toward the sub-control valve 22 is sent from the sub-control valve 22 (open) to the main radiator 16 and returned to the first pump 18 again.
  • FIG. 2 shows the flow form of the cooling water in the sub circuit 12 (and a part of the main circuit 8).
  • a part of the cooling water of the main circuit 8 is diverted (5 OL / min) from the sub control valve 22 and flows into the inlet of the second pump 30 via the second bypass circuit 31.
  • cooling water (30 L / min) that has passed through the branch portion 14 and passed through the sub-circuit 12 flows into the inlet of the second pump 30.
  • cooling water joins the inlet of the second pump 30 (30 + 50 L / min), and further flows through the sub-radiator 28 via the sub-circuit 12 via the outlet of the second pump 30.
  • the cooling water (50 L / min) that has been diverted at the branching portion 14 of the sub-circuit 12 passes through the sub-bypass circuit 36 and the junction 34. Further, it is driven by the first pump 18 to flow through the engine 4, passes through the main circuit 8, reaches the sub control valve 22 through the main control valve 20. Further, the cooling water (30 L / min) that has not been diverted from the branch portion 14 of the sub-circuit 12 flows through the sub-circuit 12 and flows into the second pump 30 as it is.
  • the sub circuit 12 is subordinate to the main circuit 8, and the cooling water cooled by the sub radiator 28 of the sub circuit 12 contributes to cooling of the engine 4 of the main circuit 8.
  • the switching control of the flow of the cooling water is performed, and the sub-radiator 28 that cools the cooling water to a low water temperature is used to compensate for the decrease in the heat radiation amount of the main radiator 16.
  • FIG. 3 is a block diagram showing a configuration of an engine cooling device 40 according to another embodiment.
  • the same components as those of the engine cooling device 2 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the cooling device 40 is provided with a third bypass circuit 32 in place of the second bypass circuit 31 according to the engine cooling device 2, and the cooling water of the main circuit 8 diverted by the sub control valve 22 is supplied to the sub circuit. 12 is merged.
  • the third bypass circuit 32 communicates the sub control valve 22 with the sub circuit 12 downstream of the second pump 30 (between the second pump 30 and the sub radiator 28).
  • the third bypass circuit 32 bypasses the second pump 30.
  • the second pump 30 may not be driven. .
  • the cooling water can flow through the pump.
  • the cooling water flowing into the sub circuit 12 from the sub control valve 22 via the third bypass circuit 32 flows back through the sub circuit 12, passes through the second pump 30, and has a low pressure. Distribution to the pump 18 is expected. For this reason, a check valve 37 is provided between the branch portion 14 of the sub circuit 12 and the second pump 30 to prevent back flow of the sub circuit 12.
  • the sub circuit 12 is subordinate to the main circuit 8, and the first pump 18 of the main circuit 8 has a higher output than the second pump 30.
  • the cooling water of both the main circuit 8 and the sub circuit 12 can be circulated by the pump 18.
  • the cooling water is driven to flow. For this reason, the drive by the 2nd pump 30 becomes unnecessary.
  • the cooling device 40 is the same as the configuration and circuit of the cooling device 2 of the engine, except for the third bypass circuit 32 and the circuit related thereto.
  • the sub control valve 22 of the main circuit 8 detects the coolant temperature. It is narrowed from an open state to a slightly closed state. Then, the cooling water is diverted to the third bypass circuit 32 by the sub control valve 22 and flows to the sub circuit 12 via the third bypass circuit 32. Thereby, the sub circuit 12 is subordinate to the main circuit 8, and the cooling water cooled by the sub radiator 28 of the sub circuit 12 contributes to cooling of the engine 4 of the main circuit 8 as described above.
  • the cooling capacity of the sub-radiator for low water temperature provided for improving fuel efficiency is used as a radiator to assist the main radiator temporarily (during high load operation), thereby
  • the size of the radiator can be set to match the low / medium load operation. Therefore, it is possible to configure a main radiator that is smaller than the conventional one, avoiding an increase in the size of the main radiator, and contributing to cost reduction and effective use of the radiator mounting space.
  • FIG. 4 is a block diagram showing the configuration of the engine cooling device 42.
  • the cooling device 42 includes a main circuit 8 in which cooling water circulates between the main radiator 16 and the engine 4, and a sub circuit in which low-temperature cooling water circulates between the sub radiator 28, the second EGR cooler 10, and the intercooler 38. 12. As described above, the sub-circuit 12 is provided with the intercooler 38.
  • the main circuit 8 includes an engine 4, a main radiator 16, a first pump 18, a main control valve 20, a sub control valve 22, and a first EGR cooler 6.
  • the main circuit 8 is provided with a first bypass circuit 27 and a second bypass circuit 31.
  • the sub-circuit 12 includes a sub-radiator 28, a second EGR cooler 10, a second pump 30, and an intercooler 38.
  • the intercooler 38 is branched from the sub-circuit 12 extending from the second pump 30 to the sub-radiator 28, and is provided in a state where the diverted cooling water flows in.
  • the cooling water flowing out from the intercooler 38 is
  • the EGR cooler 10 joins the downstream sub-circuit 12.
  • the cooling device 42 is the same as the configuration and circuit of the engine cooling device 2 according to the first embodiment except for the intercooler 38 and the circuit related thereto.
  • the intercooler 38 shows an example in which the sub-circuit 12 that circulates between the sub-cooler 28 is configured. Therefore, the cooling device 42 has a configuration in which the intercooler 38 and the second EGR cooler 10 are provided as cooler devices that constitute the circulation circuit with the sub radiator 28.
  • the sub-circuit 12 is provided with a branch portion 14, and cooling water flowing through the sub-circuit 12 under a predetermined condition flows into the main circuit 8 from the branch portion 14, flows through the engine 4, and again flows into the main circuit. 8 is returned to the sub-circuit 12.
  • the sub circuit 12 is subordinate to the main circuit 8, and the cooling water cooled by the sub radiator 28 of the sub circuit 12 contributes to cooling of the engine 4 of the main circuit 8.
  • the main radiator can be set to a size adjusted during low / medium load operation, and the main radiator can be increased in size. It is avoided and contributes to cost reduction and effective use of the radiator mounting space.
  • FIG. 5 is a block diagram showing the configuration of the engine cooling device 44.
  • the same components as those of the engine cooling device 2 according to the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the engine cooling device 44 includes a main circuit 8 for cooling water that cools the engine 4 and a sub-circuit 12 that cools the second EGR cooler 10 and the first EGR cooler 6 with cooling water having a low water temperature. It has two circuits.
  • the main circuit 8 is provided with an engine 4, a main radiator 16, a first pump 18, a main control valve 20, and a sub control valve 22.
  • the main circuit 8 is provided with a first bypass circuit 27 and a second bypass circuit 31.
  • the sub circuit 12 is provided with a sub radiator 28, a second EGR cooler 10, a first EGR cooler 6, and a second pump 30.
  • the sub-circuit 12 forms a circulation circuit in which the cooling water from the sub-radiator 28 is circulated through the second EGR cooler 10, the first EGR cooler 6 is further circulated, and returned to the sub-radiator 28 again.
  • the cooling device 44 is the same as the configuration and circuit of the engine cooling device 2 of the first embodiment except for the circuit related to the second EGR cooler 10. Also for this cooling device 44, the cooling water flowing through the main circuit 8 and the sub circuit 12 in accordance with the operating state of the engine 4 (except for the flow related to the second EGR cooler 10) is the cooling of the engine. This is the same as the device 2. Further, the sub-circuit 12 is provided with a branch portion 14, and cooling water flowing through the sub-circuit 12 under a predetermined condition flows into the main circuit 8 from the branch portion 14, flows through the engine 4, and again flows into the main circuit. 8 is returned to the sub-circuit 12. Thereby, the sub circuit 12 is subordinate to the main circuit 8, and the cooling water cooled by the sub radiator 28 of the sub circuit 12 contributes to cooling of the engine 4 of the main circuit 8.
  • the main radiator can be set to a size that is adjusted during low / medium load operation, and the main radiator can be increased in size. It is avoided and contributes to cost reduction and effective use of the radiator mounting space.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust-Gas Circulating Devices (AREA)

Abstract

The present invention relates to an engine cooling apparatus which comprises an EGR system or the like, and an engine cooling method. Provided are the engine cooling apparatus and the engine cooling method which are capable of reducing the capacity of a main radiator, saving costs, and effectively using a mounting space by providing a sub-radiator having an auxiliary function for the main radiator. A sub-control valve (22) is disposed to split and send a portion of a coolant sent to a main radiator (16) to a sub-circuit when a temperature of the coolant is higher than an upper limit of the temperature of the coolant in a normal engine state, as the result of detecting the temperature of the coolant in a main circuit. The coolant sent by the sub-control valve (22) to the sub-circuit (12) is cooled by a sub-radiator (28) and introduced into a cooler device, and the coolant at the sub-circuit (12) is split to be returned to an upper stream portion of a first pump (18) of the main circuit (8).

Description

エンジンの冷却装置及びその冷却方法Engine cooling device and cooling method thereof
 本発明は、EGRシステム等を有するエンジンの冷却装置及びその冷却方法に関する。 The present invention relates to an engine cooling apparatus having an EGR system or the like and a cooling method thereof.
 従来、排気ガスによる大気汚染の対策として、ディーゼルエンジン搭載車両では、排気ガスをエンジンに還流させるEGRシステム(排気ガス再循環機構)が広く採用されている。 Conventionally, EGR systems (exhaust gas recirculation mechanisms) that recirculate exhaust gas to the engine have been widely adopted as a countermeasure against air pollution by exhaust gas in vehicles equipped with diesel engines.
 上記ディーゼルエンジンでは、高温の排気ガスをそのままエンジンの吸気に還流させると、SOOT(すす)が発生し、また燃料消費量が増大する。これらの問題の解消手段として、EGRクーラ(熱交換器)を設け、排気ガスを冷却水によって冷却してからエンジンに還流させることが一般的であった。上記EGRクーラに用いられる冷却水は、多くはエンジンの冷却を兼ねた冷却水である。 In the above diesel engine, if hot exhaust gas is recirculated to the intake air of the engine as it is, SOOT (soot) is generated and fuel consumption increases. As a means for solving these problems, an EGR cooler (heat exchanger) is generally provided, and the exhaust gas is cooled by cooling water and then returned to the engine. Most of the cooling water used in the EGR cooler is cooling water that also serves as engine cooling.
 エンジンの冷却を行うメインの冷却水回路では、走行風によりラジエータで放熱した冷却水がエンジンに戻されるが、エンジンを冷却する前に一部を導出してEGRクーラに流入させる。この冷却水は、上記EGRクーラでEGRガス(排気ガス)を冷却した後、ラジエータからエンジンに流れ込む冷却水に合流し、さらに一部の冷却水が再度EGRクーラに流され、残りの冷却水がエンジンを冷却してラジエ一夕へと循環する流路を形成する。 In the main cooling water circuit that cools the engine, the cooling water radiated from the radiator by the running wind is returned to the engine, but a part is led out and allowed to flow into the EGR cooler before the engine is cooled. This cooling water cools the EGR gas (exhaust gas) with the EGR cooler, and then merges with the cooling water flowing into the engine from the radiator. Further, a part of the cooling water flows again into the EGR cooler, and the remaining cooling water The engine is cooled to form a flow path that circulates to the radiator overnight.
 車両の運転条件にもよるが、一般にエンジン稼動中において、ラジエータで放熱した後の冷却水の温度は概ね80℃を超えている。このため、上記冷却水によってEGRクーラで冷却される排気ガスは、この冷却水の水温以下になることはない。 Although it depends on the driving conditions of the vehicle, the temperature of the cooling water after the heat is generally dissipated by the radiator is generally over 80 ° C. while the engine is running. For this reason, the exhaust gas cooled by the EGR cooler with the cooling water does not fall below the cooling water temperature.
 近年では、排気ガスに対する規制強化のため、EGRクーラの大容量化及びエンジンの燃焼温度の低下等による対策が求められている。このうち、EGRクーラの大容量化については、EGRクーラの大型化、或いはEGRクーラの使用台数を複数に増やすことで対応していた。また、エンジンの燃焼温度を低下させるためには、エンジンに還流する排気ガス(EGRガス)の温度を低下させる必要がある。 In recent years, in order to tighten regulations on exhaust gas, measures such as increasing the capacity of the EGR cooler and lowering the combustion temperature of the engine are required. Among these, increasing the capacity of the EGR cooler has been dealt with by increasing the size of the EGR cooler or increasing the number of EGR coolers to be used. Further, in order to lower the combustion temperature of the engine, it is necessary to lower the temperature of the exhaust gas (EGR gas) that returns to the engine.
 従来技術として、例えば特許文献1には、図6に示すEGRガスの冷却装置の記載がある。これは、エンジン51の冷却水通路52に配設されたウォータポンプ53、この下流側冷却水水路から分岐した分岐循環通路56に配設されたEGRクーラ57、及びこの下流側に配設されたEGR用ラジエータ59等を備え、EGRガス温度のエンジン冷却水温度依存度を低減するものである。 As a conventional technique, for example, Patent Document 1 describes a cooling device for EGR gas shown in FIG. This includes a water pump 53 disposed in the cooling water passage 52 of the engine 51, an EGR cooler 57 disposed in the branch circulation passage 56 branched from the downstream cooling water passage, and the downstream thereof. An EGR radiator 59 or the like is provided to reduce the dependency of the EGR gas temperature on the engine coolant temperature.
 特許文献2には、エンジン冷却系から独立したEGR用ラジエータを設け、これとEGRクーラを熱的に結合し、EGRクーラの冷却能力を高くしたEGR装置の記載がある。
 また特許文献3には、トラック等の自動車の内燃機関の暖機時間短縮を目的として、内燃機関及び熱交換機等が組み込まれる高温の第一の冷却ループと、冷却するユニット(インタークーラ)及び低温熱交換機等が組み込まれる低温の第二の冷却ループとを有する過給内燃機関の冷却方式が開示されている。
Patent Document 2 describes an EGR device in which an EGR radiator independent from an engine cooling system is provided, and the EGR cooler is thermally coupled to increase the cooling capacity of the EGR cooler.
Patent Document 3 discloses a high temperature first cooling loop in which an internal combustion engine, a heat exchanger, and the like are incorporated, a cooling unit (intercooler), and a low temperature for the purpose of shortening the warm-up time of an internal combustion engine of an automobile such as a truck. A cooling system for a supercharged internal combustion engine having a low temperature second cooling loop in which a heat exchanger or the like is incorporated is disclosed.
日本国特開2006-132469号公報Japanese Unexamined Patent Publication No. 2006-132469 日本国特開2003-278608号公報Japanese Unexamined Patent Publication No. 2003-278608 米国特許出願公開第2008/0066697号US Patent Application Publication No. 2008/0066697
 さて、登坂走行など車速が低く高負荷運転ではエンジン冷却水は高温となる。これは、車速が遅くなると、ラジエータにあたる風速が落ちて冷却効率が落ちるためである。また登坂走行によりエンジンの負荷は高くなり、エンジンの発生熱量が多くなるためでもある。 Now, when the vehicle speed is low, such as running uphill, the engine coolant becomes hot during high-load operation. This is because when the vehicle speed is slowed down, the wind speed corresponding to the radiator falls and the cooling efficiency falls. Moreover, it is also because the load of an engine becomes high by climbing and the amount of heat generated by the engine increases.
 このため、従来では上記最大負荷を想定して、ラジエータの放熱性能を設定していた。しかし、車両運転時間の大半を占める低・中負荷運転では、上記ラジエータの能力の一部しか使用していないというのが実情である。 For this reason, in the past, the heat dissipation performance of the radiator was set assuming the above maximum load. However, in the low / medium load operation that occupies most of the vehicle operation time, the actual situation is that only a part of the capability of the radiator is used.
 上記エンジンの高負荷運転に合わせてラジエータを設計した場合には、大きなサイズのラジエータを作らざるを得ないという問題があった。上記特許文献1~3に係る従来技術においても同様である。なお、低・中負荷運転だけを考慮すれば良いのであれば、ラジエータを小さくする事が可能である。 When the radiator was designed for the high load operation of the engine, there was a problem that a large size radiator had to be made. The same applies to the conventional techniques according to Patent Documents 1 to 3. If only low / medium load operation needs to be considered, the radiator can be made smaller.
 本発明は上記問題点を解決するためになされたものであり、サブラジエータにメインラジエータを補助する機能を持たせたことにより、メインラジエータの容量を軽減し、コスト削減、搭載スペースの有効活用を図ったエンジンの冷却装置及びその冷却方法を提供することを目的とする。 The present invention has been made to solve the above-described problems. By providing the sub-radiator with a function of assisting the main radiator, the capacity of the main radiator can be reduced, the cost can be reduced, and the mounting space can be effectively used. It is an object of the present invention to provide an engine cooling device and a cooling method thereof.
 以上の技術的課題を解決するため、本発明に係るエンジンの冷却装置は、エンジン内を流通する冷却水を冷却するメインラジエータと、上記エンジンと上記メインラジエータとを循環する冷却水のメイン回路と、上記メイン回路の上記エンジンの上流側に設けられ、上記冷却水を流通駆動する第一のポンプと、上記メイン回路から独立して車載の発熱体を冷却するクーラ機器に用いる冷却水を冷却するサブラジエータと、上記クーラ機器と上記サブラジエータとを循環する冷却水のサブ回路と、上記サブ回路の途中に設けられ、このサブ回路の冷却水を流通駆動する第二のポンプと、上記メイン回路の冷却水の温度を検知し、この温度が上記エンジンの定常時における冷却水の温度の上限値を超えた場合、上記メインラジエータへ送る冷却水の一部を分流して上記サブ回路へ送るサブ制御弁と、を有し、上記サブ制御弁により上記サブ回路へ送られた冷却水を、上記サブラジエータで冷却して上記クーラ機器に流入させるとともに、上記サブ回路の冷却水を分流して上記メイン回路の上記第一のポンプの上流側に戻す構成である。 In order to solve the above technical problems, an engine cooling apparatus according to the present invention includes a main radiator that cools cooling water flowing through the engine, and a main circuit of cooling water that circulates between the engine and the main radiator. Cooling the cooling water that is provided on the upstream side of the engine of the main circuit and that is used in a cooler device that cools the heating element mounted on the vehicle independently of the main circuit and the first pump that circulates and drives the cooling water. A sub-radiator, a sub-circuit for cooling water circulating through the cooler device and the sub-radiator, a second pump provided in the middle of the sub-circuit for driving the cooling water in the sub-circuit, and the main circuit Cooling water sent to the main radiator when this temperature exceeds the upper limit value of the cooling water temperature during steady operation of the engine A sub-control valve that diverts a part of the sub-circuit and sends the sub-control valve to the sub circuit. Cooling water sent to the sub circuit by the sub-control valve is cooled by the sub-radiator and flows into the cooler device. In addition, the cooling water of the sub circuit is diverted and returned to the upstream side of the first pump of the main circuit.
 本発明に係るエンジンの冷却装置は、上記メイン回路の冷却水の温度を検知し、この温度が上記エンジンの定常時における冷却水の温度の下限値に満たない場合には、上記エンジンを通過した冷却水をエンジンに戻してエンジンの暖機を行い、上記温度が上記下限値以上のときには、上記エンジンを通過した冷却水の一部又は全部を、メイン回路の上記メインラジエータに向けて送るメイン制御弁を設けた構成である。 The engine cooling device according to the present invention detects the temperature of the cooling water in the main circuit, and passes through the engine when the temperature does not reach the lower limit value of the temperature of the cooling water in the steady state of the engine. Main control that returns the cooling water to the engine and warms up the engine, and when the temperature is equal to or higher than the lower limit value, sends a part or all of the cooling water that has passed through the engine toward the main radiator of the main circuit It is the structure which provided the valve.
 本発明に係るエンジンの冷却装置は、上記エンジンの定常時における冷却水の温度の下限値を80℃、上限値を100℃とした構成である。 The engine cooling device according to the present invention has a configuration in which the lower limit value of the temperature of the cooling water at the time of steady operation of the engine is 80 ° C. and the upper limit value is 100 ° C.
 本発明に係るエンジンの冷却装置は、上記エンジンの定常時における冷却水の温度の下限値を70℃~90℃の範囲の何れかの値、上限値を90℃~120℃の範囲の何れかの値とした構成である。
 この場合、上記範囲内で、下限値を例えば70℃或いは85℃等に設定することができ、また上限値についても、例えば95℃或いは120℃等に設定することができる。
In the engine cooling device according to the present invention, the lower limit value of the temperature of the cooling water in the steady state of the engine is any value in the range of 70 ° C to 90 ° C, and the upper limit value is any value in the range of 90 ° C to 120 ° C. It is the structure made into the value of.
In this case, the lower limit value can be set to, for example, 70 ° C. or 85 ° C. within the above range, and the upper limit value can also be set to, for example, 95 ° C. or 120 ° C.
 また、本発明に係るエンジンの冷却装置は、上記サブ制御弁により分流された冷却水を、上記第二のポンプの上流側又は下流側のサブ回路へ送るバイパス回路を設けた構成である。
 本発明に係るエンジンの冷却装置は、上記メイン回路から冷却水を分流した導出循環回路に、EGRクーラを設けた構成である。
 また、本発明に係るエンジンの冷却装置は、上記サブ回路の途中に、EGRクーラを、設けた構成である。
In addition, the engine cooling device according to the present invention has a configuration in which a bypass circuit is provided that sends the cooling water divided by the sub control valve to the upstream or downstream sub circuit of the second pump.
The engine cooling device according to the present invention has a configuration in which an EGR cooler is provided in a lead-out circulation circuit that divides cooling water from the main circuit.
The engine cooling apparatus according to the present invention has an EGR cooler provided in the middle of the sub-circuit.
 本発明に係るエンジンの冷却方法は、上記の何れかに記載のエンジンの冷却装置を用い、上記メイン回路の冷却水の一部を上記サブ回路に送り、この冷却水を上記サブラジエータで冷却し、再び上記メイン回路のエンジンの上流側に戻すことである。 An engine cooling method according to the present invention uses any one of the engine cooling apparatuses described above, sends a part of the cooling water of the main circuit to the sub circuit, and cools the cooling water with the sub radiator. It is to return to the upstream side of the engine of the main circuit again.
 本発明に係るエンジンの冷却装置によれば、サブ制御弁によりサブ回路へ送られた冷却水を、サブラジエータで冷却してクーラ機器に流入させるとともに、サブ回路の冷却水を分流してメイン回路の第一のポンプの上流側に戻す構成を採用したから、メインラジエータを低・中負荷運転時に合わせた大きさに設定することができて、従来に比べ小型化されたメインラジエータを構成することが可能となり、メインラジエータの大型化が回避され、またコストの削減、及びラジエータの搭載スペースの有効利用にも寄与するという効果を奏する。 According to the engine cooling apparatus of the present invention, the cooling water sent to the sub circuit by the sub control valve is cooled by the sub radiator and flows into the cooler device, and the cooling water of the sub circuit is divided and the main circuit Because the main pump is configured to return to the upstream side of the first pump, the main radiator can be set to a size that matches the low / medium-load operation, and a main radiator that is smaller than before can be configured. Therefore, the main radiator can be prevented from being enlarged, and the cost can be reduced and the radiator can be effectively used.
 本発明に係るエンジンの冷却方法によれば、エンジンの冷却装置を用い、メイン回路の冷却水の一部をサブ回路に送り、この冷却水をサブラジエータで冷却し、再びメイン回路のエンジンの上流側に戻すこととしたから、メインラジエータを低・中負荷運転時に合わせた大きさに設定することができてメインラジエータの大型化が回避され、またコストの削減、及びラジエータの搭載スペースの有効利用にも寄与するという効果を奏する。 According to the engine cooling method of the present invention, a part of the cooling water of the main circuit is sent to the sub-circuit using the engine cooling device, the cooling water is cooled by the sub-radiator, and again the upstream of the engine of the main circuit. Therefore, the main radiator can be set to a size suitable for low / medium-load operation, avoiding an increase in the size of the main radiator, reducing costs, and making effective use of the radiator's mounting space It also has the effect of contributing.
第一の実施の形態に係り、エンジンの冷却装置の構成を示すブロック図である。1 is a block diagram illustrating a configuration of an engine cooling device according to a first embodiment. FIG. 実施の形態に係り、サブ回路(及びメイン回路の一部)における冷却水の流通形態を示すブロック図である。It is a block diagram which shows the distribution | circulation form of the cooling water in a subcircuit (and a part of main circuit) concerning embodiment. 他の実施の形態に係るエンジンの冷却装置の構成を示すブロック図である。It is a block diagram which shows the structure of the cooling device of the engine which concerns on other embodiment. 第二の実施の形態に係り、エンジンの冷却装置の構成を示すブロック図である。It is a block diagram which concerns on 2nd embodiment and shows the structure of the cooling device of an engine. 第三の実施の形態に係り、エンジンの冷却装置の構成を示すブロック図である。FIG. 10 is a block diagram illustrating a configuration of an engine cooling device according to a third embodiment. 従来例に係るEGRガスの冷却装置を示す図である。It is a figure which shows the cooling device of EGR gas which concerns on a prior art example.
 以下、本発明の実施の形態を図面に基づいて説明する。
 この実施の形態では、エンジンの冷却装置2及びエンジンの冷却方法を、トラック等、排気ガス規制を大容量のEGR機構等で対応したエンジン4(ここではディーゼルエンジン)を搭載した車両に適用する。
 図1は、第一の実施の形態に係るエンジンの冷却装置2の構成を示すブロック図である。
Hereinafter, an embodiment of the present invention with reference to the accompanying drawings.
In this embodiment, the engine cooling device 2 and the engine cooling method are applied to a vehicle equipped with an engine 4 (here, a diesel engine) that supports exhaust gas regulation with a large-capacity EGR mechanism or the like, such as a truck.
FIG. 1 is a block diagram showing a configuration of an engine cooling device 2 according to the first embodiment.
 このエンジンの冷却装置2は、メインラジエータ16を用いてエンジン4及び第一のEGRクーラ6の冷却を行う冷却水のメイン回路8、またサブラジエータ28を用いて低水温の冷却水により第二のEGRクーラ10の冷却を行うサブ回路12の2つの回路を有している。
 また上記サブ回路12には分岐部14が設けられ、所定の条件によりサブ回路12を流通する冷却水がこの分岐部14からメイン回路8に流入し、エンジン4内を流通して再びメイン回路8からサブ回路12に戻される。
The engine cooling device 2 includes a main circuit 8 for cooling water that cools the engine 4 and the first EGR cooler 6 using the main radiator 16, and a second cooling water that uses the sub radiator 28 to cool the second water. The sub-circuit 12 that cools the EGR cooler 10 is provided.
Further, the sub-circuit 12 is provided with a branching portion 14, and cooling water flowing through the sub-circuit 12 flows into the main circuit 8 from the branching portion 14 under a predetermined condition, flows through the engine 4 and again flows into the main circuit 8. To the sub-circuit 12.
 上記メイン回路8には、エンジン4、メインラジエータ16、第一のポンプ18、メイン制御弁20、サブ制御弁22、及び第一のEGRクーラ6が設けられている。また上記サブ回路12には、サブラジエータ28、第二のEGRクーラ10、及び第二のポンプ30が設けられている。また、冷却装置2にはインタークーラ38が設けられている。 The main circuit 8 is provided with an engine 4, a main radiator 16, a first pump 18, a main control valve 20, a sub control valve 22, and a first EGR cooler 6. The sub circuit 12 is provided with a sub radiator 28, a second EGR cooler 10, and a second pump 30. The cooling device 2 is provided with an intercooler 38.
 上記メイン回路8には、メインラジエータ16からの冷却水を第一のポンプ18を介してエンジン4に流入させ、再びメインラジエータ16に戻す循環回路、及びエンジン4内から冷却水の一部を導出し、これを第一のEGRクーラ6に流入させ、再びエンジン4内に戻す導出循環回路9が形成されている。なお、この導出循環回路9として、エンジン4以外のメイン回路8から冷却水を導出し、これを第一のEGRクーラ6に流入させ、再度メイン回路8に戻す回路も可能である。 In the main circuit 8, the cooling water from the main radiator 16 flows into the engine 4 via the first pump 18 and returns to the main radiator 16 again, and a part of the cooling water is derived from the engine 4. In addition, a lead-out circulation circuit 9 is formed which flows into the first EGR cooler 6 and returns to the engine 4 again. As the lead-out circulation circuit 9, a circuit in which cooling water is derived from the main circuit 8 other than the engine 4, flows into the first EGR cooler 6, and is returned to the main circuit 8 again is possible.
 またメイン回路8には、冷却水をメイン制御弁20から第一のポンプ18に流通させる第一のバイパス回路27が設けられている。さらにメイン回路8には、冷却水をサブ制御弁22から第二のポンプ30に流通させる第二のバイパス回路31が設けられている。 Also, the main circuit 8 is provided with a first bypass circuit 27 for circulating cooling water from the main control valve 20 to the first pump 18. Further, the main circuit 8 is provided with a second bypass circuit 31 for circulating cooling water from the sub control valve 22 to the second pump 30.
 上記サブ回路12には、サブラジエータ28からの冷却水を第二のEGRクーラ10に流入させ、第二のポンプ30を介して再びサブラジエータ28に戻す循環回路が形成されている。
 上記第二のEGRクーラ10では、上記第一のEGRクーラ6で冷却した排気ガス(EGRガス)をさらに冷却して低温にするため、メインラジエータ16で冷却される冷却水よりさらに低い温度の冷却水が必要となる。
In the sub-circuit 12, a circulation circuit is formed in which the cooling water from the sub-radiator 28 flows into the second EGR cooler 10 and is returned to the sub-radiator 28 again via the second pump 30.
In the second EGR cooler 10, the exhaust gas (EGR gas) cooled by the first EGR cooler 6 is further cooled to a low temperature, so that the cooling at a lower temperature than the cooling water cooled by the main radiator 16 is performed. Water is needed.
 上記メインラジエータ16は、主にエンジン4用の冷却水を冷却し、またサブラジエータ28は、主に第二のEGRクーラ10、インタークーラ38などのクーラ機器に用いる冷却水を冷却する。
 また上記第一のEGRクーラ6、第二のEGRクーラ10は、ともに排気ガス(EGRガス)を冷却する。上記インタークーラ38は過給気を冷却する。
The main radiator 16 mainly cools the cooling water for the engine 4, and the sub radiator 28 mainly cools the cooling water used for the cooler equipment such as the second EGR cooler 10 and the intercooler 38.
The first EGR cooler 6 and the second EGR cooler 10 both cool the exhaust gas (EGR gas). The intercooler 38 cools the supercharged air.
 上記各回路に設けられる第一のポンプ18及び第二のポンプ30は、何れもウォータポンプであり、冷却水を駆動して回路内を流通させる。これら第一のポンプ18及び第二のポンプ30としては、エンジン4の駆動力を用いる機械式ポンプ、または電動式ポンプを用いる。この場合、第一のポンプ18として機械式ポンプを使用し、第二のポンプ30として第一のポンプ18と同じ機械式ポンプを使用するか、または第二のポンプ30だけ電動式のポンプを用いることもできる。電動式ポンプは電気制御であり、ECU等から制御が容易に行える。
 上記第一のポンプ18及び第二のポンプ30は、何れも冷却水の入口が1箇所(但し、第一のポンプ18は入口で二回路からの冷却水が合流)、出口が1箇所設けられたものである。
Each of the first pump 18 and the second pump 30 provided in each circuit is a water pump, and drives the cooling water to circulate in the circuit. As the first pump 18 and the second pump 30, a mechanical pump using the driving force of the engine 4 or an electric pump is used. In this case, a mechanical pump is used as the first pump 18, and the same mechanical pump as the first pump 18 is used as the second pump 30, or an electric pump is used only for the second pump 30. You can also. The electric pump is electrically controlled and can be easily controlled from an ECU or the like.
Each of the first pump 18 and the second pump 30 is provided with one inlet for cooling water (however, the first pump 18 is provided with an inlet for cooling water from two circuits) and has one outlet. It is a thing.
 上記第一のポンプ18は、メインラジエータ16とエンジン4との間のメイン回路8(エンジン4の上流側)に設けられ、メインラジエータ16から出力される冷却水をエンジン4に向けて駆動し、メイン回路8内の冷却水を循環させる。また第二のポンプ30は、第二のEGRクーラ10とサブラジエータ28との間のサブ回路12(第二のEGRクーラ10の下流側)に設けられ、サブ回路12の冷却水をサブラジエータ28の入力側に向けて駆動し、サブ回路12内の冷却水を循環させる。 The first pump 18 is provided in the main circuit 8 (upstream side of the engine 4) between the main radiator 16 and the engine 4, and drives the coolant output from the main radiator 16 toward the engine 4, Cooling water in the main circuit 8 is circulated. The second pump 30 is provided in the sub circuit 12 (on the downstream side of the second EGR cooler 10) between the second EGR cooler 10 and the sub radiator 28, and the cooling water of the sub circuit 12 is supplied to the sub radiator 28. The cooling water in the sub-circuit 12 is circulated.
 上記メイン制御弁20及びサブ制御弁22は、何れも三方弁(入ローつ出口二つ)であり、何れも冷却水の温度を検知して冷却水の水路の開閉(分流)を行う所謂サーモスタットである。
 このメイン制御弁20は、冷却水の温度例えば85℃(エンジンの定常時における冷却、水の温度の下限値)を基準に弁の開閉動作を行う。また、サブ制御弁22はメイン制御弁20より高い温度例えば95℃(エンジンの定常時における冷却水の温度の上限値)を基準に弁の開閉動作を行う。またメイン制御弁20は、全開及び全閉の動作(及び中間開)が可能であり、サブ制御弁22は全閉とはならない場合がある(メイン回路8への流通は確保される)。
The main control valve 20 and the sub control valve 22 are all three-way valves (two inlet and outlet ports), both of which are so-called thermostats that detect the temperature of the cooling water and open and close (divide) the cooling water channel. It is.
The main control valve 20 opens and closes the valve based on the temperature of the cooling water, for example, 85 ° C. (cooling during steady engine operation, the lower limit value of the water temperature). The sub control valve 22 opens and closes the valve on the basis of a temperature higher than that of the main control valve 20, for example, 95 ° C. (the upper limit value of the cooling water temperature when the engine is stationary). The main control valve 20 can be fully opened and fully closed (and intermediately opened), and the sub control valve 22 may not be fully closed (flow to the main circuit 8 is ensured).
 上記メイン制御弁20は、冷却水がエンジン4を通過した位置(エンジン4の下流側)のメイン回路8に設けられる。このメイン制御弁20は、メイン回路8の近傍の冷却水の温度を検知して弁の開閉を行ない、エンジン4内を通過した冷却水をメインラジエータ16に向けて流すか、または第一のバイパス回路27に流すか(再度エンジン4内を流通)を制御する。 The main control valve 20 is provided in the main circuit 8 at a position where the coolant has passed through the engine 4 (on the downstream side of the engine 4). This main control valve 20 detects the temperature of the cooling water in the vicinity of the main circuit 8 to open and close the valve, and allows the cooling water that has passed through the engine 4 to flow toward the main radiator 16 or the first bypass. It is controlled whether it flows to the circuit 27 (circulates in the engine 4 again).
 また、上記サブ制御弁22は、メイン制御弁20とメインラジエータ16との間のメイン回路8に設けられ、メイン回路8の近傍の冷却水の温度を検知して弁の開閉を行なう。このサブ制御弁22は、メイン制御弁20を通過した冷却水をメインラジエータ16へ流すか、第二のバイパス回路31へ流すか(サブ回路12に流入)を制御する。 The sub control valve 22 is provided in the main circuit 8 between the main control valve 20 and the main radiator 16, and detects the temperature of the coolant near the main circuit 8 to open and close the valve. The sub control valve 22 controls whether the coolant that has passed through the main control valve 20 flows to the main radiator 16 or the second bypass circuit 31 (inflow into the sub circuit 12).
 さらに上記メイン回路8には、第一のポンプ18の入口(上流側)近傍に合流部34が設けられている。この合流部34には、第一のEGRクーラ6から流出される冷却水の回路が合流する。
 また、上記サブ回路12には、第二のEGRクーラ10と第二のポンプ30との間の回路に分岐部14が設けられ、この分岐部14から分岐したサブバイパス回路36が上記合流部34に合流する。このサブバイパス回路36は、サブ回路12とメイン回路8とを連通させ、サブ回路12の冷却水をメイン回路8に戻す。
Further, the main circuit 8 is provided with a junction 34 in the vicinity of the inlet (upstream side) of the first pump 18. A circuit for the cooling water flowing out from the first EGR cooler 6 joins the joining portion 34.
Further, the sub circuit 12 is provided with a branch portion 14 in a circuit between the second EGR cooler 10 and the second pump 30, and a sub bypass circuit 36 branched from the branch portion 14 is connected to the junction portion 34. To join. The sub bypass circuit 36 connects the sub circuit 12 and the main circuit 8, and returns the cooling water of the sub circuit 12 to the main circuit 8.
 したがって上記合流部34では、メインラジエータ16からの回路、第一のEGRクーラ6からの回路、及びサブバイパス回路36の3回路からの冷却水が合流し、この合流した冷却水は第一のポンプ18に流れる。
 また、サブ回路12の分岐部14と第二のバイパス回路31がサブ回路12に合流する箇所との間に、逆止弁37(一方向へのみ流通)を設けた。これは、第二のポンプ30と第一のポンプ18との競合によるサブ回路12の逆流を防止するためである。
Accordingly, in the merging section 34, the cooling water from the circuit from the main radiator 16, the circuit from the first EGR cooler 6, and the three circuits of the sub-bypass circuit 36 are merged, and the merged cooling water is the first pump. 18 flows.
In addition, a check valve 37 (flowing only in one direction) is provided between the branch portion 14 of the sub circuit 12 and the location where the second bypass circuit 31 joins the sub circuit 12. This is to prevent back flow of the sub-circuit 12 due to competition between the second pump 30 and the first pump 18.
 ここで、メイン回路8及びサブ回路12を流通する冷却水の流通形態を、エンジン4の運転状況に基づくメイン回路8を流通する冷却水の温度に応じて説明する。
 このエンジン4に係り、定常時(通常稼動時)のメイン回路(メイン制御弁20、サブ制御弁22の近傍)の冷却水の温度はここでは85℃(下限値)~95℃(上限値)としている。
Here, the distribution form of the cooling water flowing through the main circuit 8 and the sub circuit 12 will be described according to the temperature of the cooling water flowing through the main circuit 8 based on the operating state of the engine 4.
The temperature of the cooling water in the main circuit (near the main control valve 20 and the sub control valve 22) during normal operation (normal operation) is 85 ° C. (lower limit value) to 95 ° C. (upper limit value) here. It is said.
 なお、上記エンジンの定常時の冷却水の温度としては、他に、下限値を80℃、上限値を100℃としてもよい。また、上記エンジンの定常時の冷却水の温度の下限値を70℃~90℃の範囲の何れかの値とし、上限値を90℃~120℃の範囲の何れかの値としてもよい。
 上記エンジンの定常時にける冷却水の温度の下限値は、エンジンオイルの特性及び温度に基づくエンジンのフリクションにより変動する。エンジンオイルは、温まっていないと粘性が高くフリクションによるロスが発生し燃費が悪化する。また上記上限値は、水の沸騰とエンジン部品の耐久性等により変動する。例えば高地では、90℃未満でも沸騰する。冷却水は加圧することで沸騰点が高くなるが、エンジン部品に使われる部品の耐熱性、熱負荷に対する耐久性により上記上限値が制限される。これらの事情に鑑み、上記下限値、及び上限値に別の範囲また値の幅などをもたせた。
In addition, as a temperature of the cooling water at the steady state of the engine, a lower limit value may be set to 80 ° C. and an upper limit value may be set to 100 ° C. Further, the lower limit value of the temperature of the cooling water at the steady state of the engine may be any value in the range of 70 ° C. to 90 ° C., and the upper limit value may be any value in the range of 90 ° C. to 120 ° C.
The lower limit value of the temperature of the cooling water in the steady state of the engine varies depending on engine friction and the engine friction based on the temperature. If the engine oil is not warmed, it will be highly viscous and will cause loss due to friction, resulting in poor fuel consumption. The upper limit varies depending on the boiling of water and the durability of engine parts. For example, in high altitudes, it boils even below 90 ° C. Although the boiling point of cooling water increases when pressurized, the upper limit is limited by the heat resistance and durability against heat load of the components used for engine components. In view of these circumstances, the lower limit value and the upper limit value have different ranges or value ranges.
 まず、エンジン4が暖機中の場合について説明する。
 この場合、メイン回路8の冷却水の水温は上記定常時の温度の下限値(85℃)に満たない範囲である。
 このとき、メイン制御弁20は冷却水の水温を検知して閉じた状態となり、メイン制御弁20により全ての冷却水は分流して第一のバイパス回路27へ流れ、第一のポンプ18を経て冷却水はエンジン4内を再び循環する。
 即ち、メイン回路8の冷却水は、第一のポンプ18に駆動されてエンジン4内部から第一のバイパス回路27を流通し、再び第一のポンプ18に戻されエンジン4に送られる流れとなり、エンジン4内部を循環する暖機状態となる。
First, the case where the engine 4 is warming up will be described.
In this case, the coolant temperature of the main circuit 8 is in a range that is less than the lower limit (85 ° C.) of the steady state temperature.
At this time, the main control valve 20 is in a closed state by detecting the temperature of the cooling water, and all the cooling water is divided by the main control valve 20 and flows to the first bypass circuit 27, and passes through the first pump 18. The cooling water circulates in the engine 4 again.
That is, the cooling water of the main circuit 8 is driven by the first pump 18 to flow through the first bypass circuit 27 from the inside of the engine 4, is returned to the first pump 18 again, and is sent to the engine 4. A warm-up state is circulated through the engine 4.
 またメイン回路8を流通する冷却水の一部は、第一のEGRクーラ6の冷却に利用され、第一のEGRクーラ6を通過した冷却水はメイン回路8に戻される。ここでは、第一のEGRクーラ6用の冷却水は、エンジン4内から導出してこの第一のEGRクーラ6を流通させた後、上記合流部34に送ってメインラジエータ16からの冷却水等と合流させ、エンジン4に再び戻すようにしている。
 なお、第一のEGRクーラ6に係る冷却水の流通形態は一定しており、エンジン4の運転状態によって変わらない。
A part of the cooling water flowing through the main circuit 8 is used for cooling the first EGR cooler 6, and the cooling water that has passed through the first EGR cooler 6 is returned to the main circuit 8. Here, the cooling water for the first EGR cooler 6 is led out from the engine 4 and circulates through the first EGR cooler 6, and then sent to the merging portion 34 to send the cooling water from the main radiator 16 or the like. And then returned to the engine 4 again.
In addition, the flow form of the cooling water related to the first EGR cooler 6 is constant and does not change depending on the operating state of the engine 4.
 一方、サブ回路12は、エンジン4を冷却するメイン回路8とは異なる独立した冷却水の回路を形成する。このサブ回路12における冷却水は、第二のポンプ30に駆動されてサブラジエータ28を流通し、第二のEGRクーラ10を通過して再び第二のポンプ30に戻される流れとなる。
 この場合、第二のポンプ30が電動ポンプであって、第二のEGRクーラ10による冷却の必要がない場合は、この第二のポンプ30は駆動させなくてもよい。
On the other hand, the sub circuit 12 forms an independent cooling water circuit different from the main circuit 8 for cooling the engine 4. The cooling water in the sub-circuit 12 is driven by the second pump 30 to flow through the sub-radiator 28, passes through the second EGR cooler 10, and returns to the second pump 30 again.
In this case, when the second pump 30 is an electric pump and cooling by the second EGR cooler 10 is not necessary, the second pump 30 may not be driven.
 次に、エンジンが定常時の場合について説明する。
 この場合、メイン回路8の冷却水の水温は上記定常時の温度の下限値から上限値(85℃~95℃)の範囲にある。
 まず、メイン回路8について説明する。メイン回路8のメイン制御弁20は、冷却水の水温を検知して弁が開いた状態となり、冷却水はメイン回路8をメインラジエータ16に向けて流れる。
 一方、サブ制御弁22も弁が開いた状態となり、冷却水はサブ制御弁22を通過してメイン回路8をメインラジエータ16に向けて流れ、サブ回路12に対しては弁が閉じた状態となり第二のバイパス回路31へは流れない。
Next, a case where the engine is stationary will be described.
In this case, the temperature of the cooling water in the main circuit 8 is in the range from the lower limit value to the upper limit value (85 ° C. to 95 ° C.) of the steady state temperature.
First, the main circuit 8 will be described. The main control valve 20 of the main circuit 8 detects the coolant temperature and opens the valve, and the coolant flows toward the main radiator 16 through the main circuit 8.
On the other hand, the sub-control valve 22 is also in an open state, the cooling water passes through the sub-control valve 22, flows through the main circuit 8 toward the main radiator 16, and the sub-circuit 12 is in a closed state. There is no flow to the second bypass circuit 31.
 また、定常時の冷却水の温度帯では、水温変化によりメイン制御弁20は開閉を繰り返し(中間開状態)、これにより冷却水はメインラジエータ16へ向けて流れたり、又は第一のバイパス回路27へ向けて流れたりしながら、冷却水の温度が一定に保たれる。 In the normal temperature range of the cooling water, the main control valve 20 repeatedly opens and closes due to a change in the water temperature (intermediate open state), whereby the cooling water flows toward the main radiator 16 or the first bypass circuit 27. The temperature of the cooling water is kept constant while flowing toward
 エンジン4が定常時の通常の冷却水の流通形態としては、第一のポンプ18に駆動された冷却水はエンジン4内部を流通し、メイン制御弁20(メイン回路に対して開)からメイン回路8を経由してサブ制御弁22へ流れ、このサブ制御弁22(メイン回路に対して開、サブ回路に対して全閉)からメインラジエータ16に送られ、再び第一のポンプ18に戻されメイン回路8を循環する。 As a normal cooling water circulation mode when the engine 4 is in a steady state, the cooling water driven by the first pump 18 circulates inside the engine 4, and from the main control valve 20 (open to the main circuit) to the main circuit. 8 to the sub-control valve 22, and is sent from the sub-control valve 22 (open to the main circuit, fully closed to the sub circuit) to the main radiator 16 and returned to the first pump 18 again. The main circuit 8 is circulated.
 次に、サブ回路12について説明する。上記第二のポンプ30により、エンジン4を冷却するメイン回路8とは独立した、冷却水のサブ回路12に係る循環回路が形成される。
 このサブ回路12は、冷却水の流入及び流出がなければ独立した回路として一定の冷却水の量が保たれる。仮に、サブ回路12からメイン回路8への分岐部14に負圧が生じ回路が減圧することがあっても、冷却水がサブ回路12からメイン回路8へ流出することはない。
Next, the sub circuit 12 will be described. The second pump 30 forms a circulation circuit related to the cooling water sub-circuit 12 independent of the main circuit 8 for cooling the engine 4.
This sub-circuit 12 is maintained as an independent circuit so long as there is no inflow and outflow of the cooling water. Even if a negative pressure is generated in the branching section 14 from the sub circuit 12 to the main circuit 8 and the circuit is depressurized, the cooling water does not flow out from the sub circuit 12 to the main circuit 8.
 エンジン4が定常時、サブ回路12における冷却水の流通形態としては、第二のポンプ30に駆動されてサブラジエータ28を流通し、第二のEGRクーラ10を通過し、再び第二のポンプ30に戻されてサブ回路12を循環する。このサブ回路12は、メイン回路8に比べて冷却水が低水温の回路である。また、サブ回路12の冷却水量は例えば30L/minである。 When the engine 4 is in a steady state, the cooling water flow in the sub-circuit 12 is driven by the second pump 30 to flow through the sub-radiator 28, passes through the second EGR cooler 10, and again passes through the second pump 30. Is returned to circulates through the sub-circuit 12. This sub-circuit 12 is a circuit whose cooling water has a lower water temperature than the main circuit 8. The amount of cooling water in the sub circuit 12 is, for example, 30 L / min.
 次に、エンジンが高負荷運転時の場合について説明する。
 この場合、メイン回路8の冷却水の水温は上記定常時の温度の上限値(95℃)を超えている。この温度では、エンジンはオーバヒート直前の状態にある。
 冷却水の水温が上記上限値を超えると、メイン回路8のメイン制御弁20は、冷却水の水温を検知して弁が開いた状態となる一方、メイン回路8のサブ制御弁22はこの冷却水の水温を検知して開状態から少し閉じた状態に絞られる。そして、メイン回路8の冷却水はサブ制御弁22により第二のバイパス回路31へ分流し、サブ回路12へ流れる。
 但し、サブ制御弁22は、メイン回路8への流路が少し閉じる(全閉にはならない)程度であり、冷却水の一部はサブ回路12へ分流し、残りはメイン回路8を流通する。この場合、メイン回路8側の抵抗を増やすことでサブ回路12への流量を増やす構造とすることもできる。
Next, the case where the engine is operating at a high load will be described.
In this case, the coolant temperature of the main circuit 8 exceeds the upper limit (95 ° C.) of the steady state temperature. At this temperature, the engine is in a state just before overheating.
When the coolant temperature exceeds the upper limit, the main control valve 20 of the main circuit 8 detects the coolant temperature and opens the valve, while the sub control valve 22 of the main circuit 8 The temperature of the water is detected and narrowed from an open state to a slightly closed state. Then, the cooling water of the main circuit 8 is diverted to the second bypass circuit 31 by the sub control valve 22 and flows to the sub circuit 12.
However, the sub control valve 22 is such that the flow path to the main circuit 8 is slightly closed (not fully closed), a part of the cooling water is diverted to the sub circuit 12, and the rest is circulated through the main circuit 8. . In this case, the flow rate to the sub circuit 12 can be increased by increasing the resistance on the main circuit 8 side.
 このとき、サブ制御弁22の開程度にもよるが、メイン回路8の冷却水の一部が分流し(例えば50L/min)、第二のポンプ30を経てサブ回路12を流通(合流)する。このときサブ回路12の冷却水の量は、本来の量(30L/min)に上記メイン回路から流入した量(50L/min)が加わる。
 そしてサブ回路12の冷却水(30+50L/min)は、サブラジエータ28で冷却され、第二のEGRクーラ10を流通し第二のポンプ30に至る。このサブ回路12を流通する冷却水の内、メイン回路8から分流した水量(50L/min)は分岐部14から再びメイン回路8へ戻される。
At this time, although depending on the degree of opening of the sub control valve 22, a part of the cooling water of the main circuit 8 is diverted (for example, 50 L / min) and flows (joins) through the second pump 30 through the sub circuit 12. . At this time, the amount of cooling water in the sub circuit 12 is added to the original amount (30 L / min) by the amount (50 L / min) flowing from the main circuit.
Then, the cooling water (30 + 50 L / min) of the sub circuit 12 is cooled by the sub radiator 28, flows through the second EGR cooler 10, and reaches the second pump 30. Of the cooling water flowing through the sub-circuit 12, the amount of water (50 L / min) divided from the main circuit 8 is returned to the main circuit 8 from the branching section 14 again.
 メイン回路8における冷却水の流通形態は、上記サブ制御弁22による分流を除いて上記定常時と同じであり、第一のポンプ18に駆動された冷却水は、エンジン4内部を流通し、メイン制御弁20(開)からサブ制御弁22に向けて流れ、このサブ制御弁22(開)からメインラジエータ16に送られ再び第一のポンプ18に戻される。 The circulation form of the cooling water in the main circuit 8 is the same as that in the steady state except for the diversion by the sub-control valve 22, and the cooling water driven by the first pump 18 circulates inside the engine 4 to The flow from the control valve 20 (open) toward the sub-control valve 22 is sent from the sub-control valve 22 (open) to the main radiator 16 and returned to the first pump 18 again.
 図2は、サブ回路12(及びメイン回路8の一部)における冷却水の流通形態を示したものである。
 サブ制御弁22からメイン回路8の冷却水の一部が分流(5OL/min)し、第二のバイパス回路31を経由して第二のポンプ30の入口に流入する。他に、後述する第三のバイパス回路32を経由して第二のポンプの下流のサブ回路12に流入する回路もある。
 さらに第二のポンプ30の入口には、分岐部14を通過してサブ回路12を経由した冷却水(30L/min)が流入する。
FIG. 2 shows the flow form of the cooling water in the sub circuit 12 (and a part of the main circuit 8).
A part of the cooling water of the main circuit 8 is diverted (5 OL / min) from the sub control valve 22 and flows into the inlet of the second pump 30 via the second bypass circuit 31. In addition, there is a circuit that flows into the sub-circuit 12 downstream of the second pump via a third bypass circuit 32 described later.
Furthermore, cooling water (30 L / min) that has passed through the branch portion 14 and passed through the sub-circuit 12 flows into the inlet of the second pump 30.
 そして、上記第二のポンプ30の入口には冷却水が合流し(30+50L/min)、さらに第二のポンプ30の出口を経てサブ回路12を経由し、サブラジエータ28を流通する。
 このサブラジエータ28を経て第二のEGRクーラ10を通過した冷却水の内、サブ回路12の分岐部14で分流した冷却水(50L/min)は、サブバイパス回路36及び合流部34を経由し、さらに第一のポンプ18に駆動されてエンジン4内を流通し、メイン回路8を通過しメイン制御弁20を経て上記サブ制御弁22に至る。
 また、上記サブ回路12の分岐部14から分流しなかった冷却水(30L/min)は、そのままサブ回路12を流通し上記第二のポンプ30に流入する。
Then, cooling water joins the inlet of the second pump 30 (30 + 50 L / min), and further flows through the sub-radiator 28 via the sub-circuit 12 via the outlet of the second pump 30.
Of the cooling water that has passed through the second EGR cooler 10 via the sub-radiator 28, the cooling water (50 L / min) that has been diverted at the branching portion 14 of the sub-circuit 12 passes through the sub-bypass circuit 36 and the junction 34. Further, it is driven by the first pump 18 to flow through the engine 4, passes through the main circuit 8, reaches the sub control valve 22 through the main control valve 20.
Further, the cooling water (30 L / min) that has not been diverted from the branch portion 14 of the sub-circuit 12 flows through the sub-circuit 12 and flows into the second pump 30 as it is.
 これにより、サブ回路12はメイン回路8に従属することになり、サブ回路12のサブラジエータ28により冷却された冷却水が、メイン回路8のエンジン4の冷却に寄与する。このように、エンジン4の高負荷運転時には、冷却水の流れの切り替え制御を行ない、冷却水を低水温に冷却するサブラジエータ28を、メインラジエータ16の放熱量低下を補うために使用する。 Thus, the sub circuit 12 is subordinate to the main circuit 8, and the cooling water cooled by the sub radiator 28 of the sub circuit 12 contributes to cooling of the engine 4 of the main circuit 8. As described above, during the high load operation of the engine 4, the switching control of the flow of the cooling water is performed, and the sub-radiator 28 that cools the cooling water to a low water temperature is used to compensate for the decrease in the heat radiation amount of the main radiator 16.
 図3は、他の形態に係るエンジンの冷却装置40の構成を示すブロック図である。
 ここでは、このエンジンの冷却装置40の構成について、上記エンジンの冷却装置2と同様の構成要素は同じ符号を付して、詳細な説明は省略する。
FIG. 3 is a block diagram showing a configuration of an engine cooling device 40 according to another embodiment.
Here, with regard to the configuration of the engine cooling device 40, the same components as those of the engine cooling device 2 are denoted by the same reference numerals, and detailed description thereof is omitted.
 この冷却装置40は、上記エンジンの冷却装置2に係る第二のバイパス回路31に替えて第三のバイパス回路32を設け、サブ制御弁22により分流されたメイン回路8の冷却水を、サブ回路12に合流させるものである。
 この第三のバイパス回路32は、サブ制御弁22と、第二のポンプ30の下流側(第二のポンプ30とサブラジエータ28との間)のサブ回路12とを連通する。この第三のバイパス回路32は、第二のポンプ30を迂回するものである。この第二のポンプ30を迂回することで、第一のポンプ18の水圧(第二のポンプ30より出力大)による第二のポンプ30への影響が回避できる。
The cooling device 40 is provided with a third bypass circuit 32 in place of the second bypass circuit 31 according to the engine cooling device 2, and the cooling water of the main circuit 8 diverted by the sub control valve 22 is supplied to the sub circuit. 12 is merged.
The third bypass circuit 32 communicates the sub control valve 22 with the sub circuit 12 downstream of the second pump 30 (between the second pump 30 and the sub radiator 28). The third bypass circuit 32 bypasses the second pump 30. By bypassing the second pump 30, it is possible to avoid the influence on the second pump 30 due to the hydraulic pressure of the first pump 18 (the output is larger than that of the second pump 30).
 また上記サブ制御弁22により、第三のバイパス回路32を経由してメイン回路8からサブ回路12へ冷却水の一部が流入している場合、第二のポンプ30は駆動させなくてもよい。
 この第二のポンプ30を駆動させない状態では、このポンプ内を冷却水が流通することは可能である。この場合、サブ制御弁22から第三のバイパス回路32を経由してサブ回路12に流入した冷却水が、サブ回路12を逆流し、第二のポンプ30を通過して圧力の低い第一のポンプ18へと流通することが予測される。
 このため、サブ回路12の分岐部14と第二のポンプ30との間に逆止弁37を設け、上記サブ回路12の逆流を防止する。
Further, when a part of the cooling water flows from the main circuit 8 to the sub circuit 12 via the third bypass circuit 32 by the sub control valve 22, the second pump 30 may not be driven. .
In a state where the second pump 30 is not driven, the cooling water can flow through the pump. In this case, the cooling water flowing into the sub circuit 12 from the sub control valve 22 via the third bypass circuit 32 flows back through the sub circuit 12, passes through the second pump 30, and has a low pressure. Distribution to the pump 18 is expected.
For this reason, a check valve 37 is provided between the branch portion 14 of the sub circuit 12 and the second pump 30 to prevent back flow of the sub circuit 12.
 上記第三のバイパス回路32によれば、サブ回路12はメイン回路8に従属する形態となり、またメイン回路8の第一のポンプ18は第二のポンプ30より高出力であるため、第一のポンプ18によりメイン回路8とサブ回路12の双方の冷却水を循環させることができる。上記第一のポンプ18によれば、メイン回路8の駆動以外に、メイン回路8から第三のバイパス回路32を経由してサブ回路12に至り、このサブ回路からから再びメイン回路8に戻る回路の冷却水を流通駆動させる。このため、第二のポンプ30による駆動は不要となる。 According to the third bypass circuit 32, the sub circuit 12 is subordinate to the main circuit 8, and the first pump 18 of the main circuit 8 has a higher output than the second pump 30. The cooling water of both the main circuit 8 and the sub circuit 12 can be circulated by the pump 18. According to the first pump 18, in addition to driving the main circuit 8, a circuit that reaches the sub circuit 12 from the main circuit 8 via the third bypass circuit 32 and returns from the sub circuit to the main circuit 8 again. The cooling water is driven to flow. For this reason, the drive by the 2nd pump 30 becomes unnecessary.
 この冷却装置40は、上記第三のバイパス回路32及びこれに係る回路以外は、上記工ンジンの冷却装置2の構成、回路と同様である。
 この冷却装置40では、メイン回路8の冷却水の水温が上記定常時の温度の上限値(95℃)を超えると、メイン回路8のサブ制御弁22は、この冷却水の水温を検知して開状態から少し閉じた状態に絞られる。そして、冷却水はサブ制御弁22により第三のバイパス回路32へ分流し、この第三のバイパス回路32を経てサブ回路12へ流れる。
 これにより、サブ回路12はメイン回路8に従属することになり、上述したようにサブ回路12のサブラジエータ28により冷却された冷却水が、メイン回路8のエンジン4の冷却に寄与する。
The cooling device 40 is the same as the configuration and circuit of the cooling device 2 of the engine, except for the third bypass circuit 32 and the circuit related thereto.
In the cooling device 40, when the coolant temperature of the main circuit 8 exceeds the upper limit value (95 ° C.) of the steady state temperature, the sub control valve 22 of the main circuit 8 detects the coolant temperature. It is narrowed from an open state to a slightly closed state. Then, the cooling water is diverted to the third bypass circuit 32 by the sub control valve 22 and flows to the sub circuit 12 via the third bypass circuit 32.
Thereby, the sub circuit 12 is subordinate to the main circuit 8, and the cooling water cooled by the sub radiator 28 of the sub circuit 12 contributes to cooling of the engine 4 of the main circuit 8 as described above.
 従って、上記実施の形態によれば、燃費改善の為に設けた低水温用のサブラジエータの、冷却能力を、一時的(高負荷運転時)にメインラジエータを補助するラジエータとして使い、これによりメインラジエータを低・中負荷運転時に合わせた大きさに設定することができる。よって、従来に比べ小型化されたメインラジエータを構成することが可能となり、メインラジエータの大型化が回避され、またコストの削減及びラジエータの搭載スペースの有効利用にも寄与する。 Therefore, according to the above-described embodiment, the cooling capacity of the sub-radiator for low water temperature provided for improving fuel efficiency is used as a radiator to assist the main radiator temporarily (during high load operation), thereby The size of the radiator can be set to match the low / medium load operation. Therefore, it is possible to configure a main radiator that is smaller than the conventional one, avoiding an increase in the size of the main radiator, and contributing to cost reduction and effective use of the radiator mounting space.
 次に、第二の実施の形態に係るエンジンの冷却装置42について説明する。
 図4は、このエンジンの冷却装置42の構成を示すブロック図である。
 ここでは、このエンジンの冷却装置42の構成について、上記第一の実施の形態に係るエンジンの冷却装置2と同様の構成要素は同じ符号を付して、詳細な説明は省略する。
 この冷却装置42は、冷却水がメインラジエータ16とエンジン4とを循環するメイン回路8、また低水温の冷却水がサブラジエータ28と第二のEGRクーラ10及びインタークーラ38間を循環するサブ回路12を有している。
 このように、このサブ回路12にはインタークーラ38が設けられている。
Next, the engine cooling device 42 according to the second embodiment will be described.
FIG. 4 is a block diagram showing the configuration of the engine cooling device 42.
Here, regarding the configuration of the engine cooling device 42, the same components as those of the engine cooling device 2 according to the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
The cooling device 42 includes a main circuit 8 in which cooling water circulates between the main radiator 16 and the engine 4, and a sub circuit in which low-temperature cooling water circulates between the sub radiator 28, the second EGR cooler 10, and the intercooler 38. 12.
As described above, the sub-circuit 12 is provided with the intercooler 38.
 上記メイン回路8には、エンジン4、メインラジエータ16、第一のポンプ18、メイン制御弁20、サブ制御弁22、及び第一のEGRクーラ6が設けられている。また、メイン回路8には、第一のバイパス回路27及び第二のバイパス回路31が設けられている。
 上記サブ回路12は、サブラジエータ28、第二のEGRクーラ10、第二のポンプ30及びインタークーラ38が設けられている。
The main circuit 8 includes an engine 4, a main radiator 16, a first pump 18, a main control valve 20, a sub control valve 22, and a first EGR cooler 6. The main circuit 8 is provided with a first bypass circuit 27 and a second bypass circuit 31.
The sub-circuit 12 includes a sub-radiator 28, a second EGR cooler 10, a second pump 30, and an intercooler 38.
 上記インタークーラ38は、第二のポンプ30からサブラジエータ28に至るサブ回路12から分岐し、分流した冷却水を流入させる状態で設けられ、このインタークーラ38から流出した冷却水は、第二のEGRクーラ10から下流のサブ回路12に合流する。 The intercooler 38 is branched from the sub-circuit 12 extending from the second pump 30 to the sub-radiator 28, and is provided in a state where the diverted cooling water flows in. The cooling water flowing out from the intercooler 38 is The EGR cooler 10 joins the downstream sub-circuit 12.
 この冷却装置42は、上記インタークーラ38及びこれに係る回路以外は、上記第一の実施の形態に係るエンジンの冷却装置2の構成、回路と同様である。
 上記インタークーラ38は、サブラジエータ28との間を循環するサブ回路12を構成する例を示したものである。したがってこの冷却装置42は、サブラジエータ28と循環回路を構成するクーラ機器として、インタークーラ38と第二のEGRクーラ10とが設けられた構成である。
The cooling device 42 is the same as the configuration and circuit of the engine cooling device 2 according to the first embodiment except for the intercooler 38 and the circuit related thereto.
The intercooler 38 shows an example in which the sub-circuit 12 that circulates between the sub-cooler 28 is configured. Therefore, the cooling device 42 has a configuration in which the intercooler 38 and the second EGR cooler 10 are provided as cooler devices that constitute the circulation circuit with the sub radiator 28.
 この冷却装置42についても、エンジン4の運転状況に応じたメイン回路8及びサブ回路12を流通する冷却水の流通形態は(上記インタークーラ38に係る流通を除き)、上記エンジンの冷却装置2と同様である。
 また、サブ回路12には分岐部14が設けられ、所定の条件によりサブ回路12を流通する冷却水が、この分岐部14からメイン回路8に流入し、エンジン4内を流通して再びメイン回路8からサブ回路12に戻される。これにより、サブ回路12はメイン回路8に従属することになり、サブ回路12のサブラジエータ28により冷却された冷却水が、メイン回路8のエンジン4の冷却に寄与する。
Also for this cooling device 42, the circulation form of the cooling water that circulates through the main circuit 8 and the sub circuit 12 according to the operating state of the engine 4 (except for the circulation related to the intercooler 38), It is the same.
Further, the sub-circuit 12 is provided with a branch portion 14, and cooling water flowing through the sub-circuit 12 under a predetermined condition flows into the main circuit 8 from the branch portion 14, flows through the engine 4, and again flows into the main circuit. 8 is returned to the sub-circuit 12. Thereby, the sub circuit 12 is subordinate to the main circuit 8, and the cooling water cooled by the sub radiator 28 of the sub circuit 12 contributes to cooling of the engine 4 of the main circuit 8.
 従って、この第二の実施の形態によれば、上記第一の実施の形態と同様、メインラジエータを低・中負荷運転時に合わせた大きさに設定することができて、メインラジエータの大型化が回避され、またコストの削減及びラジエータの搭載スペースの有効利用にも寄与する。 Therefore, according to the second embodiment, as in the first embodiment, the main radiator can be set to a size adjusted during low / medium load operation, and the main radiator can be increased in size. It is avoided and contributes to cost reduction and effective use of the radiator mounting space.
 次に、第三の実施の形態に係るエンジンの冷却装置44について説明する。
 図5は、このエンジンの冷却装置44の構成を示すブロック図である。
 ここでは、このエンジンの冷却装置44の構成について、上記第一の実施の形態に係るエンジンの冷却装置2と同様の構成要素は同じ符号を付して、詳細な説明は省略する。
Next, an engine cooling device 44 according to a third embodiment will be described.
FIG. 5 is a block diagram showing the configuration of the engine cooling device 44.
Here, regarding the configuration of the engine cooling device 44, the same components as those of the engine cooling device 2 according to the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
 このエンジンの冷却装置44は、エンジン4の冷却を行う冷却水のメイン回路8、また低水温の冷却水により第二のEGRクーラ10及び第一のEGRクーラ6の冷却を行うサブ回路12の2つの回路を有している。 The engine cooling device 44 includes a main circuit 8 for cooling water that cools the engine 4 and a sub-circuit 12 that cools the second EGR cooler 10 and the first EGR cooler 6 with cooling water having a low water temperature. It has two circuits.
 上記メイン回路8には、エンジン4、メインラジエータ16、第一のポンプ18、メイン制御弁20、及びサブ制御弁22が設けられている。また、メイン回路8には、第一のバイパス回路27及び第二のバイパス回路31が設けられている。
 上記サブ回路12は、サブラジエータ28、第二のEGRクーラ10、第一のEGRクーラ6、及び第二のポンプ30が設けられている。
 このサブ回路12は、サブラジエータ28からの冷却水を第二のEGRクーラ10を流通させ、さらに第一のEGRクーラ6を流通させ、再びサブラジエータ28に戻す循環回路を形成している。
The main circuit 8 is provided with an engine 4, a main radiator 16, a first pump 18, a main control valve 20, and a sub control valve 22. The main circuit 8 is provided with a first bypass circuit 27 and a second bypass circuit 31.
The sub circuit 12 is provided with a sub radiator 28, a second EGR cooler 10, a first EGR cooler 6, and a second pump 30.
The sub-circuit 12 forms a circulation circuit in which the cooling water from the sub-radiator 28 is circulated through the second EGR cooler 10, the first EGR cooler 6 is further circulated, and returned to the sub-radiator 28 again.
 この冷却装置44は、上記第二のEGRクーラ10に係る回路以外は、上記第一の実施の形態のエンジンの冷却装置2の構成、回路と同様である。
 この冷却装置44についても、エンジン4の運転状況に応じたメイン回路8及びサブ回路12を流通する冷却水の流通形態は(上記第二のEGRクーラ10に係る流通を除き)、上記エンジンの冷却装置2と同様である。
 また、サブ回路12には分岐部14が設けられ、所定の条件によりサブ回路12を流通する冷却水が、この分岐部14からメイン回路8に流入し、エンジン4内を流通して再びメイン回路8からサブ回路12に戻される。これにより、サブ回路12はメイン回路8に従属することになり、サブ回路12のサブラジエータ28により冷却された冷却水が、メイン回路8のエンジン4の冷却に寄与する。
The cooling device 44 is the same as the configuration and circuit of the engine cooling device 2 of the first embodiment except for the circuit related to the second EGR cooler 10.
Also for this cooling device 44, the cooling water flowing through the main circuit 8 and the sub circuit 12 in accordance with the operating state of the engine 4 (except for the flow related to the second EGR cooler 10) is the cooling of the engine. This is the same as the device 2.
Further, the sub-circuit 12 is provided with a branch portion 14, and cooling water flowing through the sub-circuit 12 under a predetermined condition flows into the main circuit 8 from the branch portion 14, flows through the engine 4, and again flows into the main circuit. 8 is returned to the sub-circuit 12. Thereby, the sub circuit 12 is subordinate to the main circuit 8, and the cooling water cooled by the sub radiator 28 of the sub circuit 12 contributes to cooling of the engine 4 of the main circuit 8.
 従って、この第三の実施の形態によれば、上記第一の実施の形態と同様、メインラジエータを低・中負荷運転時に合わせた大きさに設定することができて、メインラジエータの大型化が回避され、またコストの削減及びラジエータの搭載スペースの有効利用にも寄与する。 Therefore, according to the third embodiment, as in the first embodiment, the main radiator can be set to a size that is adjusted during low / medium load operation, and the main radiator can be increased in size. It is avoided and contributes to cost reduction and effective use of the radiator mounting space.
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2011年11月28日出願の日本特許出願・出願番号2011-258712に基づくものであり、その内容はここに参照として取り込まれる。
Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
This application is based on Japanese Patent Application No. 2011-258712 filed on Nov. 28, 2011, the contents of which are incorporated herein by reference.
 4:エンジン、6:EGRクーラ/(第一のEGRクーラ)、8:メイン回路、9:導出循環回路、10:クーラ機器(第二のEGRクーラ)、12:サブ回路、14:分岐部、16:メインラジエータ、18:第一のポンプ、20:メイン制御弁、22:サブ制御弁、28:サブラジエータ、30:第二のポンプ、31:バイパス回路(第二のバイパス回路)、32:バイパス回路(第三のバイパス回路)、38:クーラ機器(インタークーラ) 4: engine, 6: EGR cooler / (first EGR cooler), 8: main circuit, 9: derivation circulation circuit, 10: cooler device (second EGR cooler), 12: sub circuit, 14: branching section, 16: main radiator, 18: first pump, 20: main control valve, 22: sub-control valve, 28: sub-radiator, 30: second pump, 31: bypass circuit (second bypass circuit), 32: Bypass circuit (third bypass circuit), 38: cooler equipment (intercooler)

Claims (8)

  1.  エンジン内を流通する冷却水を冷却するメインラジエータと、
     上記エンジンと上記メインラジエータとを循環する冷却水のメイン回路と、
     上記メイン回路の上記エンジンの上流側に設けられ、上記冷却水を流通駆動する第一のポンプと、
     上記メイン回路から独立して車載の発熱体を冷却するクーラ機器に用いる冷却水を冷却するサブラジエータと、
     上記クーラ機器と上記サブラジエータとを循環する冷却水のサブ回路と、
     上記サブ回路の途中に設けられ、このサブ回路の冷却水を流通駆動する第二のポンプと、
     上記メイン回路の冷却水の温度を検知し、この温度が上記エンジンの定常時における冷却水の温度の上限値を超えた場合、上記メインラジエータへ送る冷却水の一部を分流して上記サブ回路へ送るサブ制御弁と、を有し、
     上記サブ制御弁により上記サブ回路へ送られた冷却水を、上記サブラジエータで冷却して上記クーラ機器に流入させるとともに、上記サブ回路の冷却水を分流して上記メイン回路の上記第一のポンプの上流側に戻すことを特徴とするエンジンの冷却装置。
    A main radiator for cooling the cooling water flowing through the engine;
    A main circuit of cooling water circulating through the engine and the main radiator;
    A first pump provided on the upstream side of the engine of the main circuit and driving the coolant to flow;
    A sub-radiator that cools cooling water used in a cooler device that cools an in-vehicle heating element independently of the main circuit;
    A sub-circuit of cooling water circulating through the cooler device and the sub-radiator;
    A second pump that is provided in the middle of the sub-circuit and drives the cooling water of the sub-circuit to flow through;
    The temperature of the cooling water in the main circuit is detected, and when this temperature exceeds the upper limit value of the cooling water temperature in the steady state of the engine, a part of the cooling water to be sent to the main radiator is diverted to the sub circuit. A sub-control valve to send to
    The cooling water sent to the sub circuit by the sub control valve is cooled by the sub radiator and flows into the cooler device, and the cooling water of the sub circuit is diverted and the first pump of the main circuit The engine cooling apparatus is characterized by being returned to the upstream side of the engine.
  2.  上記メイン回路の冷却水の温度を検知し、この温度が上記エンジンの定常時における冷却水の温度の下限値に満たない場合には、上記エンジンを通過した冷却水をエンジンに戻してエンジンの暖機を行い、上記温度が上記下限値以上のときには、上記エンジンを通過した冷却水の一部又は全部を、メイン回路の上記メインラジエータに向けて送るメイン制御弁を設けたことを特徴とする請求項1に記載のエンジンの冷却装置。 If the temperature of the cooling water in the main circuit is detected and this temperature is less than the lower limit value of the cooling water temperature during steady operation of the engine, the cooling water that has passed through the engine is returned to the engine to warm the engine. A main control valve is provided that sends a part or all of the cooling water that has passed through the engine to the main radiator of the main circuit when the temperature is equal to or higher than the lower limit. Item 4. The engine cooling device according to Item 1.
  3.  上記エンジンの定常時における冷却水の温度の下限値を80℃、上限値を100℃としたことを特徴とする請求項1又は2に記載のエンジンの冷却装置。 The engine cooling device according to claim 1 or 2, wherein the lower limit value of the temperature of the cooling water during steady operation of the engine is 80 ° C and the upper limit value is 100 ° C.
  4.  上記エンジンの定常時における冷却水の温度の下限値を70℃~90℃の範囲の何れかの値、上限値を90℃~120℃の範囲の何れかの値としたことを特徴とする請求項1又は2に記載のエンジンの冷却装置。 The lower limit value of the temperature of the cooling water in a steady state of the engine is any value in the range of 70 ° C to 90 ° C, and the upper limit value is any value in the range of 90 ° C to 120 ° C. Item 3. The engine cooling device according to Item 1 or 2.
  5.  上記サブ制御弁により分流された冷却水を、上記第二のポンプの上流側又は下流側のサブ回路へ送るバイパス回路を設けたことを特徴とする請求項1から4の何れか一項に記載のエンジンの冷却装置。 The bypass circuit which sends the cooling water branched by the sub control valve to the sub circuit on the upstream side or the downstream side of the second pump is provided. Engine cooling system.
  6.  上記メイン回路から冷却水を分流した導出循環回路に、EGRクーラを設けたことを特徴とする請求項1から5の何れか一項に記載のエンジンの冷却装置。 The engine cooling device according to any one of claims 1 to 5, wherein an EGR cooler is provided in a lead-out circulation circuit that divides cooling water from the main circuit.
  7.  上記サブ回路の途中に、EGRクーラを設けたことを特徴とする請求項1から5の何れか一項に記載のエンジンの冷却装置。 The engine cooling device according to any one of claims 1 to 5, wherein an EGR cooler is provided in the middle of the sub-circuit.
  8.  請求項1から請求項7の何れか一項に記載のエンジンの冷却装置を用い、上記メイン回路の冷却水の一部を上記サブ回路に送り、この冷却水を上記サブラジエータで冷却し、再び上記メイン回路のエンジンの上流側に戻すことを特徴とするエンジンの冷却方法。
     
     
    Using the engine cooling device according to any one of claims 1 to 7, a part of the cooling water of the main circuit is sent to the sub circuit, the cooling water is cooled by the sub radiator, and again A method for cooling an engine, comprising returning the main circuit to the upstream side of the engine.

PCT/JP2012/080646 2011-11-28 2012-11-27 Engine cooling apparatus and engine cooling method WO2013080980A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP12853010.2A EP2787189A4 (en) 2011-11-28 2012-11-27 Engine cooling apparatus and engine cooling method
CN201280058311.2A CN103987935A (en) 2011-11-28 2012-11-27 Engine cooling apparatus and engine cooling method
US14/360,787 US20140326198A1 (en) 2011-11-28 2012-11-27 Engine Cooling Apparatus and Engine Cooling Method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-258712 2011-11-28
JP2011258712A JP2013113182A (en) 2011-11-28 2011-11-28 Cooling apparatus for engine and cooling method thereof

Publications (1)

Publication Number Publication Date
WO2013080980A1 true WO2013080980A1 (en) 2013-06-06

Family

ID=48535431

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/080646 WO2013080980A1 (en) 2011-11-28 2012-11-27 Engine cooling apparatus and engine cooling method

Country Status (5)

Country Link
US (1) US20140326198A1 (en)
EP (1) EP2787189A4 (en)
JP (1) JP2013113182A (en)
CN (1) CN103987935A (en)
WO (1) WO2013080980A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016125525A1 (en) * 2015-02-06 2017-10-05 本田技研工業株式会社 Cooling control device for internal combustion engine

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10202886B1 (en) * 2015-05-02 2019-02-12 Darius Teslovich Engine temperature control system
JP6582848B2 (en) * 2015-10-08 2019-10-02 いすゞ自動車株式会社 Engine cooling system
JP6397445B2 (en) * 2016-04-28 2018-09-26 株式会社Subaru vehicle
JP6790723B2 (en) * 2016-10-26 2020-11-25 いすゞ自動車株式会社 Internal combustion engine
CN108757227A (en) * 2018-06-04 2018-11-06 广西玉柴机器股份有限公司 Independent cooling system for recycled exhaust gas
KR20200040996A (en) 2018-10-11 2020-04-21 현대자동차주식회사 Hvac of a vehicle

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1122460A (en) * 1997-06-30 1999-01-26 Nissan Motor Co Ltd Cooling system of hybrid electric automobile
JP2002276364A (en) * 2001-03-14 2002-09-25 Denso Corp Cooling system for hybrid electric vehicle
JP2003278608A (en) 2002-03-20 2003-10-02 Hino Motors Ltd Egr device
JP2006132469A (en) 2004-11-08 2006-05-25 Mitsubishi Fuso Truck & Bus Corp Cooling device for egr gas
US20080066697A1 (en) 2006-09-20 2008-03-20 Man Nutzfahrzeuge Oesterreich Ag Cooling system of an internal combustion engine having charge air feed
JP2008290636A (en) * 2007-05-26 2008-12-04 Sanyo Electric Co Ltd Hybrid car
JP2010064527A (en) * 2008-09-08 2010-03-25 Denso Corp Vehicular cooling system
JP2010228686A (en) * 2009-03-30 2010-10-14 Toyota Motor Corp Control device for hybrid system
JP2011523691A (en) * 2008-06-09 2011-08-18 スカニア シーブイ アクチボラグ Equipment for supercharged combustion engines

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2245257B2 (en) * 1972-09-15 1974-06-27 Motoren- Und Turbinen-Union Friedrichshafen Gmbh, 7990 Friedrichshafen Cooling device for a supercharged internal combustion engine
KR920006509Y1 (en) * 1985-10-09 1992-09-19 마쯔다 가부시기가이샤 Engine cool structure
US5201285A (en) * 1991-10-18 1993-04-13 Touchstone, Inc. Controlled cooling system for a turbocharged internal combustion engine
SE0300923L (en) * 2003-03-28 2004-02-24 Scania Cv Abp Cooling device and method of cooling a retarder
KR100622472B1 (en) * 2003-05-19 2006-09-18 현대자동차주식회사 a system for cooling an engine
DE102005055323B4 (en) * 2005-11-21 2010-01-14 Audi Ag Cooling device and method for operating a cooling device and cooling circuit
US7717069B2 (en) * 2007-11-15 2010-05-18 Caterpillar Inc. Engine cooling system having two cooling circuits
SE532245C2 (en) * 2008-04-18 2009-11-24 Scania Cv Ab Cooling arrangement of a supercharged internal combustion engine
US8833313B2 (en) * 2010-05-17 2014-09-16 GM Global Technology Operations LLC Grille airflow shutter system with discrete shutter control
SE535564C2 (en) * 2010-12-22 2012-09-25 Scania Cv Ab Cooling system in a vehicle

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1122460A (en) * 1997-06-30 1999-01-26 Nissan Motor Co Ltd Cooling system of hybrid electric automobile
JP2002276364A (en) * 2001-03-14 2002-09-25 Denso Corp Cooling system for hybrid electric vehicle
JP2003278608A (en) 2002-03-20 2003-10-02 Hino Motors Ltd Egr device
JP2006132469A (en) 2004-11-08 2006-05-25 Mitsubishi Fuso Truck & Bus Corp Cooling device for egr gas
US20080066697A1 (en) 2006-09-20 2008-03-20 Man Nutzfahrzeuge Oesterreich Ag Cooling system of an internal combustion engine having charge air feed
JP2008290636A (en) * 2007-05-26 2008-12-04 Sanyo Electric Co Ltd Hybrid car
JP2011523691A (en) * 2008-06-09 2011-08-18 スカニア シーブイ アクチボラグ Equipment for supercharged combustion engines
JP2010064527A (en) * 2008-09-08 2010-03-25 Denso Corp Vehicular cooling system
JP2010228686A (en) * 2009-03-30 2010-10-14 Toyota Motor Corp Control device for hybrid system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2787189A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016125525A1 (en) * 2015-02-06 2017-10-05 本田技研工業株式会社 Cooling control device for internal combustion engine

Also Published As

Publication number Publication date
CN103987935A (en) 2014-08-13
JP2013113182A (en) 2013-06-10
EP2787189A1 (en) 2014-10-08
EP2787189A4 (en) 2015-05-20
US20140326198A1 (en) 2014-11-06

Similar Documents

Publication Publication Date Title
US7594483B2 (en) Internal combustion engine cooling system
US7650753B2 (en) Arrangement for cooling exhaust gas and charge air
EP2663753B1 (en) Thermal management system and method
WO2013080980A1 (en) Engine cooling apparatus and engine cooling method
EP2286068B1 (en) Cooling arrangement for a supercharged internal combustion engine
US7299771B2 (en) Coolant valve system for internal combustion engine and method
US8205443B2 (en) Heat exchanging systems for motor vehicles
US20130167784A1 (en) Method for operating a coolant circuit
WO2014132798A1 (en) Engine intake air cooling device and cooling method
JP3975399B2 (en) Engine cooling system for vehicles
GB2442839A (en) Cooling system for an internal combustion engine comprising an exhaust gas cooler
WO2013039176A1 (en) Egr gas cooling system
JP7375648B2 (en) Vehicle cooling system
JP5918474B2 (en) EGR device
JP5918475B2 (en) EGR device
JP2013064340A (en) Egr gas cooling system
JP2011185245A (en) Cooling device for internal combustion engine
JP7460029B2 (en) vehicle cooling system
JP5304573B2 (en) Engine warm-up promotion system
JP7135402B2 (en) cooling system
JP2013064339A (en) Egr gas cooling system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12853010

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012853010

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE