JP2016119196A - Warming-up device for vehicular molten salt battery - Google Patents

Warming-up device for vehicular molten salt battery Download PDF

Info

Publication number
JP2016119196A
JP2016119196A JP2014257555A JP2014257555A JP2016119196A JP 2016119196 A JP2016119196 A JP 2016119196A JP 2014257555 A JP2014257555 A JP 2014257555A JP 2014257555 A JP2014257555 A JP 2014257555A JP 2016119196 A JP2016119196 A JP 2016119196A
Authority
JP
Japan
Prior art keywords
molten salt
heat exchanger
working fluid
salt battery
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014257555A
Other languages
Japanese (ja)
Other versions
JP6174555B2 (en
Inventor
英行 ▲高▼橋
英行 ▲高▼橋
Hideyuki Takahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mercedes Benz Group AG
Original Assignee
Daimler AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daimler AG filed Critical Daimler AG
Priority to JP2014257555A priority Critical patent/JP6174555B2/en
Publication of JP2016119196A publication Critical patent/JP2016119196A/en
Application granted granted Critical
Publication of JP6174555B2 publication Critical patent/JP6174555B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Landscapes

  • Hybrid Electric Vehicles (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a warming-up device for a vehicular molten salt battery that efficiently raises the temperature of the molten salt battery without adding any heat source such as a heater, and also maintaining the temperature of the molten salt battery itself within an operational temperature range.SOLUTION: A warming-up device for a vehicular molten salt battery has: a main circulation passage (18) in which a working fluid circulates; a first heat exchanger (13) which heats the working fluid with a waste heat medium of an engine (2) of a vehicle (1); an expander (14) which expands the working fluid heated by the first heat exchanger to generate turning driving force; a second heat exchanger (15) which exchanges heat with the working fluid discharged from the expander; a condenser (16) which cools the working fluid discharged from the second heat exchanger; a pump (17) which sends the working fluid having been cooled by the condenser to the first heat exchanger; and the molten salt battery (40) which exchanges heat with the second heat exchanger to be warmed up to the operational temperature range.SELECTED DRAWING: Figure 1

Description

本発明は、車両用溶融塩電池の暖機装置に係り、詳しくは車両用溶融塩電池の動作温度保持の技術に関する。   The present invention relates to a warming-up device for a molten salt battery for a vehicle, and more particularly to a technique for maintaining the operating temperature of a molten salt battery for a vehicle.

近年、環境問題等を考慮して、エンジンとモータとを駆動源とするハイブリッド電気自動車の開発が進んでいる。このようなハイブリッド車両には、大容量のバッテリが搭載されているが、バッテリは適切な温度範囲になければ大幅に充放電効率が低下し、更にはバッテリ自体の寿命を縮めることになる。また、ハイブリッドシステムの使用範囲が制限され、燃費改善効果が得られない。   In recent years, taking into consideration environmental problems and the like, development of hybrid electric vehicles using an engine and a motor as drive sources has been progressing. Such a hybrid vehicle is equipped with a large-capacity battery. However, if the battery is not within an appropriate temperature range, the charge / discharge efficiency is significantly reduced, and the life of the battery itself is shortened. In addition, the range of use of the hybrid system is limited, and the fuel efficiency improvement effect cannot be obtained.

そこで、例えば冬季などの氷点下となる使用環境においては、バッテリ温度を使用可能な温度範囲まで暖機する必要がある。例えば、特許文献1では、エンジン近傍及びバッテリ近傍に冷媒が循環する循環経路を形成し、車両始動直後にエンジンの暖機とともにバッテリの暖機を行っている。   Therefore, for example, in a usage environment that is below freezing, such as in winter, it is necessary to warm up the battery temperature to a usable temperature range. For example, in Patent Document 1, a circulation path through which refrigerant circulates is formed in the vicinity of the engine and in the vicinity of the battery, and the battery is warmed up together with the warming up of the engine immediately after starting the vehicle.

ところで、ハイブリッド車両の駆動用電源に用いられる二次電池としては、従来からリチウムイオン電池やニッケル水素電池等が知られているが、近年においては、高エネルギー密度で大容量の溶融塩電池の使用が検討され、その研究及び開発が行われている。例えば、特許文献2では、溶融塩電池を車両に搭載することが開示されている。   By the way, as a secondary battery used for a power source for driving a hybrid vehicle, a lithium ion battery, a nickel metal hydride battery, and the like have been conventionally known. However, in recent years, a high energy density and large capacity molten salt battery is used. Is being studied and researched and developed. For example, Patent Document 2 discloses mounting a molten salt battery on a vehicle.

特開2006−151091号公報JP 2006-151091 A 特開2012−174526号公報JP 2012-174526 A

しかしながら、このような溶融塩電池は、動作温度範囲がリチウムイオン電池やニッケル水素電池等よりも比較的高温であるため、冷却システムの簡素化が図れるものの、溶融塩電池自体を少なくとも動作温度範囲の下限値まで効率的に昇温し、且つ溶融塩電池自体の温度を動作温度範囲内に維持することが重要となる。   However, such a molten salt battery has an operating temperature range that is relatively higher than that of a lithium ion battery, a nickel metal hydride battery, or the like. Therefore, although the cooling system can be simplified, the molten salt battery itself is at least within the operating temperature range. It is important to efficiently raise the temperature to the lower limit and maintain the temperature of the molten salt battery itself within the operating temperature range.

本発明はこのような問題を解決するためになされたもので、その目的とするところは、ヒーター等の熱源を追加することなく溶融塩電池を効率的に昇温し、且つ溶融塩電池自体の温度を動作温度範囲内に維持することができる車両用溶融塩電池の暖機装置を提供することにある。   The present invention has been made to solve such problems. The object of the present invention is to efficiently raise the temperature of the molten salt battery without adding a heat source such as a heater, and to improve the temperature of the molten salt battery itself. An object of the present invention is to provide a warm-up device for a molten salt battery for a vehicle that can maintain the temperature within an operating temperature range.

本発明は前述の課題の少なくとも一部を解決するためになされたものであり、以下の態様又は適用例として実現することができる。   SUMMARY An advantage of some aspects of the invention is to solve at least a part of the problems described above, and the invention can be implemented as the following aspects or application examples.

本発明の第1の態様としては、エンジンを駆動源とする車両に搭載される車両用溶融塩電池の暖機装置であって、作動流体が循環する主循環流路と、前記車両のエンジンの廃熱媒体によって前記作動流体を加熱する第1熱交換器と、前記第1熱交換器で加熱された前記作動流体を膨張させて回転駆動力を発生する膨張器と、前記膨張器から吐出された前記作動流体と熱交換をなす第2熱交換器と、前記第2熱交換器から吐出された前記作動流体を冷却する凝縮器と、前記凝縮器で冷却された前記作動流体を前記第1熱交換器に送るポンプと、前記第2熱交換器と熱交換をして、動作温度範囲までに暖機される溶融塩電池と、を有する。   According to a first aspect of the present invention, there is provided a warm-up device for a molten salt battery for a vehicle mounted on a vehicle having an engine as a drive source, a main circulation passage through which a working fluid circulates, A first heat exchanger that heats the working fluid with a waste heat medium; an expander that expands the working fluid heated by the first heat exchanger to generate a rotational driving force; and a discharge from the expander. A second heat exchanger that exchanges heat with the working fluid; a condenser that cools the working fluid discharged from the second heat exchanger; and the working fluid cooled by the condenser is the first heat exchanger. A pump for sending to the heat exchanger; and a molten salt battery that exchanges heat with the second heat exchanger and is warmed up to an operating temperature range.

第2の態様では、上記第1の態様において、前記溶融塩電池の温度を検出する温度を検出する温度検出部と、前記膨張器から前記凝縮器に前記作動流体を直接的に循環する副循環流路と、前記溶融塩電池の温度が動作温度範囲内である場合に、前記副循環流路を経由して前記作動流体を循環させる暖機制御手段と、を有する。   In a second aspect, in the first aspect, a temperature detection unit that detects a temperature for detecting the temperature of the molten salt battery, and a secondary circulation that circulates the working fluid directly from the expander to the condenser And a warm-up control means for circulating the working fluid through the auxiliary circulation channel when the temperature of the molten salt battery is within an operating temperature range.

第3の態様では、上記第1又は第2の態様において、前記暖機制御手段は、前記溶融塩電池の温度が動作温度範囲内である場合に、前記第2熱交換器を経由せずに、前記副循環流路のみを経由して前記作動流体を循環させる。   According to a third aspect, in the first or second aspect, the warm-up control means does not pass through the second heat exchanger when the temperature of the molten salt battery is within an operating temperature range. The working fluid is circulated only through the auxiliary circulation channel.

第4の態様では、上記第1又は第2の態様において、前記暖機制御手段は、前記主循環流路上であって、前記膨張器と前記第2熱交換器との間、及び前記第2熱交換器と前記凝縮器との間に流量調整バルブを備える。   According to a fourth aspect, in the first or second aspect, the warm-up control means is on the main circulation flow path, between the expander and the second heat exchanger, and the second A flow control valve is provided between the heat exchanger and the condenser.

上記手段を用いる本発明によれば、ヒーター等の熱源を追加することなく溶融塩電池を効率的に昇温し、且つ溶融塩電池自体の温度を動作温度範囲内に維持することができる。   According to the present invention using the above means, the temperature of the molten salt battery can be increased efficiently without adding a heat source such as a heater, and the temperature of the molten salt battery itself can be maintained within the operating temperature range.

本発明の一実施形態に係る暖機装置を搭載するハイブリッド車両の概略構成図である。It is a schematic structure figure of a hybrid vehicle carrying a warming-up device concerning one embodiment of the present invention. 本発明の一実施形態に係る暖機装置を構成する溶融塩電池の概略構成図である。It is a schematic block diagram of the molten salt battery which comprises the warming-up apparatus which concerns on one Embodiment of this invention.

以下、本発明の一実施形態を図面に基づき説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

図1は本発明の一実施形態に係る暖機装置を搭載するハイブリッド車両の概略構成図であり、図2は本発明の暖機装置を構成する溶融塩電池の概略構成図であり、これらの図面に基づいて本実施形態を説明する。   FIG. 1 is a schematic configuration diagram of a hybrid vehicle equipped with a warm-up device according to an embodiment of the present invention, and FIG. 2 is a schematic configuration diagram of a molten salt battery configuring the warm-up device of the present invention. The present embodiment will be described with reference to the drawings.

ハイブリッド車両1はいわゆるパラレル型ハイブリッドシステムから構成されており、以下の説明では、単に車両1とも称する。   The hybrid vehicle 1 is composed of a so-called parallel type hybrid system, and is also simply referred to as a vehicle 1 in the following description.

車両1には走行用の動力源としてディーゼルエンジン(以下、エンジンという)2、及び発電機としても作動可能なモータ3(電動機)が搭載されている。エンジン2の出力軸にはクラッチ4が連結され、クラッチ4にはモータ3の回転軸を介して変速機5の入力側が連結されている。変速機5の出力側にはプロペラシャフト6を介して差動装置7が連結され、差動装置7には駆動軸8を介して左右の駆動輪9が連結されている。   A vehicle 1 is equipped with a diesel engine (hereinafter referred to as an engine) 2 as a driving power source and a motor 3 (electric motor) that can also operate as a generator. A clutch 4 is connected to the output shaft of the engine 2, and an input side of the transmission 5 is connected to the clutch 4 via a rotating shaft of the motor 3. A differential device 7 is connected to the output side of the transmission 5 via a propeller shaft 6, and left and right drive wheels 9 are connected to the differential device 7 via a drive shaft 8.

エンジン2には、燃焼によって生じた排ガスを排出するための排ガス管11が設けられている。そして、排ガス管11には、当該排ガスを廃熱媒体として利用し、廃熱回収を行うための廃熱回収回路12が設置されている。   The engine 2 is provided with an exhaust gas pipe 11 for exhausting exhaust gas generated by combustion. The exhaust gas pipe 11 is provided with a waste heat recovery circuit 12 for recovering waste heat using the exhaust gas as a waste heat medium.

具体的な廃熱回収回路12の構成としては、エンジン2の廃熱媒体である排ガスによって作動流体を加熱するための第1熱交換器13、第1熱交換器13で作動流体を膨張させて回転駆動力を発生する膨張器14、膨張器14から吐出された作動流体と熱交換をなす第2熱交換器15、第2熱交換器15から吐出された作動流体を冷却する凝縮器16、凝縮器16で冷却された作動流体を第1熱交換器に送るポンプ17を備えている。ここで、第1熱交換器13は、エンジン2から延設された排ガス管11に隣接するように配置されてもよく、排ガス管11の外周部を囲むように配置されてもよい。   As a specific configuration of the waste heat recovery circuit 12, the working fluid is expanded by the first heat exchanger 13 and the first heat exchanger 13 for heating the working fluid by the exhaust gas that is the waste heat medium of the engine 2. An expander 14 that generates a rotational driving force, a second heat exchanger 15 that exchanges heat with the working fluid discharged from the expander 14, a condenser 16 that cools the working fluid discharged from the second heat exchanger 15, A pump 17 is provided to send the working fluid cooled by the condenser 16 to the first heat exchanger. Here, the 1st heat exchanger 13 may be arrange | positioned so that the exhaust gas pipe 11 extended from the engine 2 may be adjoined, and may be arrange | positioned so that the outer peripheral part of the exhaust gas pipe 11 may be enclosed.

また、廃熱回収回路12は、第1熱交換器13、膨張器14、第2熱交換器15、凝縮器16、ポンプ17の順序で作動流体を循環させるための主循環流路18、膨張器14から第2熱交換器15を経由せずに凝縮器16へ直接的に作動流体を循環する副循環流路19を備えている。更に、第1熱交換器13と膨張器14との間の主循環流路18には流量調整バルブ20が配設され、膨張器14と第2熱交換器15との間の主循環流路18と副循環流路19の分岐部分にはバイパスバルブ21が配設され、第2熱交換器15と凝縮器16との間の主循環流路18にはバイパスバルブ22が配設されている。   Further, the waste heat recovery circuit 12 includes a main circulation channel 18 for circulating the working fluid in the order of the first heat exchanger 13, the expander 14, the second heat exchanger 15, the condenser 16, and the pump 17, expansion A sub-circulation passage 19 that circulates the working fluid directly from the condenser 14 to the condenser 16 without passing through the second heat exchanger 15 is provided. Further, a flow rate adjusting valve 20 is disposed in the main circulation channel 18 between the first heat exchanger 13 and the expander 14, and the main circulation channel between the expander 14 and the second heat exchanger 15. A bypass valve 21 is disposed at a branch portion between the second heat exchanger 15 and the auxiliary circulation channel 19, and a bypass valve 22 is disposed in the main circulation channel 18 between the second heat exchanger 15 and the condenser 16. .

本実施形態における廃熱回収回路12においては、作動流体として例えばアルコールを用いることができるが、要求される廃熱回収回路12の廃熱回収効率等に応じて、その他の最適な作動流体を用いることができる。   In the waste heat recovery circuit 12 in this embodiment, for example, alcohol can be used as the working fluid, but other optimal working fluid is used depending on the required waste heat recovery efficiency of the waste heat recovery circuit 12 or the like. be able to.

モータ3は、具体的には永久磁石が貼り付けられたロータと三相コイルが巻回されたステータとを備えた同期発電電動機である。すなわち、モータ3は、エンジン2に代わって変速機5にその駆動力を伝達することができ、更にはエンジン2の駆動や駆動輪側からの逆駆動により発電する。また、モータ3は、配線30を介して電力変換装置31と接続されている。   Specifically, the motor 3 is a synchronous generator motor including a rotor on which a permanent magnet is attached and a stator on which a three-phase coil is wound. That is, the motor 3 can transmit the driving force to the transmission 5 instead of the engine 2, and further generates electric power by driving the engine 2 or reverse driving from the driving wheel side. Further, the motor 3 is connected to the power conversion device 31 via the wiring 30.

電力変換装置31は、一般的なインバータ及びコンバータを備えており、配線32を介してバッテリ33と接続され、更には配線34を介して発電機35に接続されている。すなわち、電力変換装置31はモータ3、バッテリ33、及び発電機35と電気的に接続されている。ここで、発電機35は、配線36を介して膨張器14に接続されており、膨張器14で発生した回転駆動力を用いて発電を行う。従って、電力変換装置31は、バッテリ33から供給される直流電力を交流電力に変換してモータ3に供給可能であるとともに、モータ3及び発電機35から供給される交流電力を整流してバッテリ33へ供給可能である。   The power conversion device 31 includes a general inverter and converter, and is connected to a battery 33 via a wiring 32 and further connected to a generator 35 via a wiring 34. That is, the power conversion device 31 is electrically connected to the motor 3, the battery 33, and the generator 35. Here, the generator 35 is connected to the expander 14 via the wiring 36, and generates power using the rotational driving force generated by the expander 14. Therefore, the power conversion device 31 can convert the DC power supplied from the battery 33 into AC power and supply it to the motor 3, and rectifies the AC power supplied from the motor 3 and the generator 35 to rectify the battery 33. Can be supplied.

バッテリ33は、溶融塩電池40、当該溶融塩電池40の温度を検出する温度センサ(温度検出部)41、廃熱回収回路12の主循環流路18に配設された第2熱交換器15を有している。本実施形態においては、第2熱交換器15から溶融塩電池40により効率的な熱の供給を可能にするため、第2熱交換器15と溶融塩電池と40は隣接して配置されている。ここで、溶融塩電池40の数量は1つに限定されず、バッテリ33に要求される蓄電量に応じ、溶融塩電池40の数量を適宜変更することができる。例えば、バッテリ33は、複数の溶融塩電池40を接続した直列回路を備えていてもよく、或いは複数の溶融塩電池40及び第2熱交換器15等から構成される溶融塩電池モジュールを1つ又は複数備えてもよい。なお、第2熱交換器15は、溶融塩電池40を加熱することができれば、バッテリ33に内蔵されず、バッテリ33の外部に配設されるような形態でもよい。   The battery 33 includes a molten salt battery 40, a temperature sensor (temperature detection unit) 41 that detects the temperature of the molten salt battery 40, and the second heat exchanger 15 disposed in the main circulation flow path 18 of the waste heat recovery circuit 12. have. In the present embodiment, in order to enable efficient supply of heat from the second heat exchanger 15 to the molten salt battery 40, the second heat exchanger 15 and the molten salt battery 40 are disposed adjacent to each other. . Here, the quantity of the molten salt battery 40 is not limited to one, and the quantity of the molten salt battery 40 can be changed as appropriate according to the amount of power required for the battery 33. For example, the battery 33 may include a series circuit in which a plurality of molten salt batteries 40 are connected, or one molten salt battery module including the plurality of molten salt batteries 40 and the second heat exchanger 15. Or you may provide two or more. The second heat exchanger 15 may be arranged outside the battery 33 instead of being built in the battery 33 as long as the molten salt battery 40 can be heated.

また、車両1に搭載された他の機器(図示せず)に対してバッテリ33が電力の供給を行えるように、バッテリ33には当該他の機器と電力変換装置11あるいはDC/DCコンバータを介して電気的な接続(図示せず)が施されている。   Further, in order to allow the battery 33 to supply power to other devices (not shown) mounted on the vehicle 1, the battery 33 is connected to the other devices and the power conversion device 11 or the DC / DC converter. Electrical connection (not shown) is provided.

図2に示すように、バッテリ33を構成する1つの溶融塩電池40は、電池容器42の内部に、正極43、負極44、及び正極43と負極44との間に介在するセパレート45とを収容する構造から構成されている。   As shown in FIG. 2, one molten salt battery 40 constituting the battery 33 accommodates a positive electrode 43, a negative electrode 44, and a separate 45 interposed between the positive electrode 43 and the negative electrode 44 inside a battery container 42. It consists of a structure that

正極43は、正極集電体43a、及び当該正極集電体43aの内側(すなわち、正極集電体43aとセパレート45との間)に配置された正極活物質層43bから構成されている。正極集電体43aは例えばアルミニウム合金の多孔質体により構成されており、正極活物質層43bは正極活物質として例えば亜クロム酸ナトリウム(NaCrO)を含んでいる。 The positive electrode 43 includes a positive electrode current collector 43a and a positive electrode active material layer 43b disposed inside the positive electrode current collector 43a (that is, between the positive electrode current collector 43a and the separate 45). The positive electrode current collector 43a is made of, for example, a porous body of an aluminum alloy, and the positive electrode active material layer 43b contains, for example, sodium chromite (NaCrO 2 ) as the positive electrode active material.

負極44は、負極集電体44a、及び当該負極集電体44aの内側(すなわち、負極集電体44aとセパレート45との間)に配置された負極活物質層44bから構成されている。負極集電体44aは例えばアルミニウム箔により構成されており、負極活物質層44bは負極活物質として例えば錫(Sn)を含んでいる。   The negative electrode 44 includes a negative electrode current collector 44a and a negative electrode active material layer 44b disposed inside the negative electrode current collector 44a (that is, between the negative electrode current collector 44a and the separate 45). The negative electrode current collector 44a is made of, for example, aluminum foil, and the negative electrode active material layer 44b contains, for example, tin (Sn) as the negative electrode active material.

セパレート45は、溶融塩電池40が動作する温度で溶融塩に対する耐性を有するフッ素樹脂の多孔質膜により構成されている。また、セパレート45は、電池容器42内に充填されている溶融塩(図示省略)に浸漬されている。   The separate 45 is composed of a porous film of a fluororesin having resistance to molten salt at a temperature at which the molten salt battery 40 operates. Further, the separate 45 is immersed in a molten salt (not shown) filled in the battery container 42.

このような溶融塩電池40においては、動作温度範囲が例えば20度〜90度となり、比較的高いエネルギー密度が実現され、優れた安全性を確保できる。そして、溶融塩電池40を当該動作温度範囲に加熱することにより、溶融塩が融解して充電及び放電が可能になる。   In such a molten salt battery 40, the operating temperature range is, for example, 20 degrees to 90 degrees, a relatively high energy density is realized, and excellent safety can be ensured. Then, by heating the molten salt battery 40 to the operating temperature range, the molten salt is melted and can be charged and discharged.

このように構成された車両1は、エンジン2又はモータ3で発生させた駆動力を変速機5で変速された後、駆動輪9に伝達されることで走行する。また、例えば車両1の減速時や降坂路での走行時には、駆動輪9側からの逆駆動によりモータ3が発電機として作動する。そしてモータ3が発生した負側の駆動力は制動力として駆動輪9側に伝達されると共に、モータ3が発電した交流電力が電力変換装置31で直流電力に変換されてバッテリ33に充電される。   The vehicle 1 configured as described above travels by transmitting the driving force generated by the engine 2 or the motor 3 by the transmission 5 and then transmitting it to the driving wheels 9. For example, when the vehicle 1 decelerates or travels on a downhill road, the motor 3 operates as a generator by reverse driving from the drive wheel 9 side. The negative driving force generated by the motor 3 is transmitted to the driving wheel 9 side as a braking force, and the AC power generated by the motor 3 is converted into DC power by the power converter 31 and charged to the battery 33. .

また、このように構成された車両1においは、廃熱回収回路12が設けられているため、エンジン2の廃熱を利用して発電機35によって発電をし、バッテリ33において蓄電或いは他の機器に電力供給をすることができる。ここで、本実施形態の廃熱回収回路12においては、膨張器14で膨張された後の高温の作動流体を第2熱交換器15を経由して凝縮器16に供給することができることから、第2熱交換器15によって当該高温の作動流体と熱交換をなし、第2熱交換器15に隣接する溶融塩電池40を加熱(暖機)することができる。このように、第2熱交換器15によって作動流体を冷却する熱交換を行うことにより、膨張器14と凝縮器16とにおける作動流体の温度差をより大きくすることができ、廃熱回収回路12としての凝縮効率を向上することができる。   Further, in the vehicle 1 configured as described above, since the waste heat recovery circuit 12 is provided, the waste heat of the engine 2 is used to generate power by the generator 35, and the battery 33 stores electricity or other equipment. Can be powered. Here, in the waste heat recovery circuit 12 of the present embodiment, the high-temperature working fluid after being expanded by the expander 14 can be supplied to the condenser 16 via the second heat exchanger 15. The second heat exchanger 15 can exchange heat with the high-temperature working fluid, and the molten salt battery 40 adjacent to the second heat exchanger 15 can be heated (warmed up). In this way, by performing heat exchange for cooling the working fluid by the second heat exchanger 15, the temperature difference between the working fluid in the expander 14 and the condenser 16 can be further increased, and the waste heat recovery circuit 12 is recovered. As a result, the condensation efficiency can be improved.

更に、このように構成された車両1においは、第1熱交換器13、流量調整バルブ20、膨張器14、バイパスバルブ21、副循環流路19、凝縮器16、及びポンプ17の順序で作動流体を循環させる既存の廃熱回収回路を適用しつつ、第2熱交換器15及びバイパスバルブ22を追加することで本実施形態の廃熱回収回路12を実現できるため、溶融塩電池40を加熱するために専用の追加設備を車両1に設ける必要がなくなる。換言すれば、本実施形態の構成によれば、第2熱交換器15によって溶融塩電池40を加熱することができるため、溶融塩電池40に対して新たな専用の熱源を設ける必要がなくなり、車両1自体のコストの低減を図ることができる。すなわち、本実施形態においては、廃熱回収回路12の凝縮効率を向上させるために第2熱交換器15から放熱される熱を有効に利用し、溶融塩電池40を効率的に暖機することができる。   Furthermore, in the vehicle 1 configured as described above, the first heat exchanger 13, the flow rate adjusting valve 20, the expander 14, the bypass valve 21, the auxiliary circulation channel 19, the condenser 16, and the pump 17 are operated in this order. Since the waste heat recovery circuit 12 of this embodiment can be realized by adding the second heat exchanger 15 and the bypass valve 22 while applying the existing waste heat recovery circuit that circulates the fluid, the molten salt battery 40 is heated. Therefore, it is not necessary to provide the vehicle 1 with a dedicated additional facility. In other words, according to the configuration of the present embodiment, since the molten salt battery 40 can be heated by the second heat exchanger 15, it is not necessary to provide a new dedicated heat source for the molten salt battery 40. The cost of the vehicle 1 itself can be reduced. That is, in this embodiment, in order to improve the condensation efficiency of the waste heat recovery circuit 12, the heat radiated from the second heat exchanger 15 is effectively used to efficiently warm up the molten salt battery 40. Can do.

車両1には、寒冷地での走行や車両1の始動直後等でバッテリ33(すなわち、溶融塩電池40)が低温状態にある場合に、溶融塩電池40の効率的な暖機制御をなす暖機制御部50を備えている。暖機制御部50は、車両1に搭載されている一つ又は複数のECU(電子コントロールユニット)からなり、モータ3、ポンプ17、流量調整バルブ20、バイパスバルブ21、22、電力変換装置31の制御が可能である。   When the battery 33 (that is, the molten salt battery 40) is in a low temperature state, such as when the vehicle 1 travels in a cold region or immediately after the vehicle 1 is started, the vehicle 1 performs warm-up for efficient warm-up control of the molten salt battery 40. A machine control unit 50 is provided. The warm-up control unit 50 includes one or a plurality of ECUs (electronic control units) mounted on the vehicle 1, and includes a motor 3, a pump 17, a flow rate adjustment valve 20, bypass valves 21 and 22, and a power conversion device 31. Control is possible.

そして、暖機制御部50には、溶融塩電池40に設けられた温度センサ41が接続されており、溶融塩電池40(すなわち、バッテリ33)の温度信号が供給される。   And the temperature sensor 41 provided in the molten salt battery 40 is connected to the warm-up control part 50, and the temperature signal of the molten salt battery 40 (namely, battery 33) is supplied.

このような構成により、暖機制御部50は、溶融塩電池40の温度に応じ、流量調整バルブ20、バイパスバルブ21、22のそれぞれの開閉状態を制御することができ、第2熱交換器15に供給される作動流体の流量を調整することができる。すなわち、暖機制御部50は、溶融塩電池40の温度がその動作温度範囲の下限値(20度)以下の場合に、第2熱交換器15を用いて溶融塩電池40を動作温度範囲内に収まるように暖機することができる。また、暖機制御部50は、溶融塩電池40の温度がその動作温度範囲の上限値(90度)を超える場合には、第2熱交換器15に対する作動流体の供給を停止して、溶融塩電池40の暖機を停止することができる。   With such a configuration, the warm-up control unit 50 can control the open / close states of the flow rate adjustment valve 20 and the bypass valves 21 and 22 according to the temperature of the molten salt battery 40, and the second heat exchanger 15. The flow rate of the working fluid supplied to can be adjusted. That is, the warm-up control unit 50 uses the second heat exchanger 15 to bring the molten salt battery 40 within the operating temperature range when the temperature of the molten salt battery 40 is equal to or lower than the lower limit value (20 degrees) of the operating temperature range. It can be warmed up to fit in. Further, when the temperature of the molten salt battery 40 exceeds the upper limit value (90 degrees) of the operating temperature range, the warm-up control unit 50 stops supplying the working fluid to the second heat exchanger 15 and melts it. The warm-up of the salt battery 40 can be stopped.

このような溶融塩電池40の暖機機構から、暖機制御部50及びバイパスバルブ21、22から暖機制御手段が構成される。そして、本実施形態においては、第1熱交換器13、膨張器14、第2熱交換器15、凝縮器16、ポンプ17、主循環流路18、副循循環流路19、バイパスバルブ21、22、溶融塩電池40、温度センサ41、及び暖機制御部50から車両用溶融塩電池の暖機装置60が構成されていることになる。   A warm-up control unit is configured by the warm-up control unit 50 and the bypass valves 21 and 22 from such a warm-up mechanism of the molten salt battery 40. And in this embodiment, the 1st heat exchanger 13, the expander 14, the 2nd heat exchanger 15, the condenser 16, the pump 17, the main circulation flow path 18, the auxiliary circulation flow path 19, the bypass valve 21, 22, the molten salt battery 40, the temperature sensor 41, and the warm-up control unit 50 constitute a vehicle molten salt battery warm-up device 60.

以下において、暖機制御部50が実行する溶融塩電池40の暖機制御について詳しく説明する。   Hereinafter, the warm-up control of the molten salt battery 40 performed by the warm-up control unit 50 will be described in detail.

先ず、溶融塩電池40の温度が動作温度範囲の下限値(すなわち、20度)よりも高い場合に、暖機制御部50は、第2熱交換器15へは作動流体を供給させず、膨張器14から凝縮器16に直接的に作動流体を循環するようにする。具体的に、暖機制御部50は、温度センサ41から供給される温度信号によって、溶融塩電池40の温度が上記動作温度範囲内であるか否かを判別する。その後、暖機制御部50は、溶融塩電池40の温度が上記動作温度範囲であり、溶融塩電池40の暖機が不要であると判断し、バッテリ33へ作動流体が循環しないように、バイパスバルブ21、22の開閉状態を制御する。バイパスバルブ21、22の開閉状態の制御が完了すると、暖機制御部50はポンプ17を駆動させ、第1熱交換器13、流量調整バルブ20、膨張器14、バイパスバルブ21、凝縮器16、ポンプ17の順序となる流路で作動流体を循環させる。   First, when the temperature of the molten salt battery 40 is higher than the lower limit value of the operating temperature range (that is, 20 degrees), the warm-up control unit 50 does not supply the working fluid to the second heat exchanger 15 and expands. The working fluid is circulated directly from the condenser 14 to the condenser 16. Specifically, the warm-up control unit 50 determines whether or not the temperature of the molten salt battery 40 is within the operating temperature range based on the temperature signal supplied from the temperature sensor 41. Thereafter, the warm-up control unit 50 determines that the temperature of the molten salt battery 40 is within the above operating temperature range and does not require the warm-up of the molten salt battery 40, and bypasses the working fluid so that the working fluid does not circulate to the battery 33. The open / close state of the valves 21 and 22 is controlled. When the control of the open / close state of the bypass valves 21 and 22 is completed, the warm-up control unit 50 drives the pump 17, and the first heat exchanger 13, the flow rate adjustment valve 20, the expander 14, the bypass valve 21, the condenser 16, The working fluid is circulated through the flow path in the order of the pumps 17.

このような作動流体の循環により、エンジン2の廃熱を利用して、発電機35によって発電を行うことができ、良好な廃熱回収を行うことができる。   By such a circulation of the working fluid, it is possible to generate power by the generator 35 using the waste heat of the engine 2 and to perform good waste heat recovery.

次に、溶融塩電池40の温度が動作温度範囲の下限値よりも低い場合に、暖機制御部50は、溶融塩電池40を暖機するように、バイパスバルブ21、22の開閉状態を制御する。   Next, when the temperature of the molten salt battery 40 is lower than the lower limit value of the operating temperature range, the warm-up control unit 50 controls the open / close state of the bypass valves 21 and 22 so as to warm up the molten salt battery 40. To do.

具体的に、暖機制御部50は、副循環流路19に作動流体を流さず、バッテリ33を経由して作動流体が流れるようにバイパスバルブ21、22の開閉状態を制御する。バイパスバルブ21、22の開閉状態により、第1熱交換器13、流量調整バルブ20、膨張器14、バイパスバルブ21、第2熱交換器15、凝縮器16、ポンプ17の順序となる作動流体の流路が形成される。   Specifically, the warm-up control unit 50 controls the open / close state of the bypass valves 21 and 22 so that the working fluid flows through the battery 33 without flowing the working fluid through the auxiliary circulation channel 19. Depending on the open / closed state of the bypass valves 21 and 22, the first heat exchanger 13, the flow rate adjustment valve 20, the expander 14, the bypass valve 21, the second heat exchanger 15, the condenser 16, and the pump 17 are arranged in this order. A flow path is formed.

このような流路で作動流体を循環させると、膨張器14にて発電機35を駆動した作動流体が第2熱交換器15を経由する。一般的に用いられる公知の車両用ランキンサイクルにおいては、膨張器14下流側の作動流体の温度は、溶融塩電池40の動作温度下限を十分に上回る温度(例えば70℃以上)であることから、第2熱交換器15における熱交換により溶融塩電池40の温度をその動作温度範囲内に収まるように、溶融塩電池40を良好に暖機することができる。また、溶融塩電池40が所望の温度範囲に暖機されるよう、第2熱交換器15の交換効率や、廃熱回収回路の効率を適宜調整してもよい。   When the working fluid is circulated through such a flow path, the working fluid that has driven the generator 35 by the expander 14 passes through the second heat exchanger 15. In a known Rankine cycle for vehicles generally used, the temperature of the working fluid downstream of the expander 14 is sufficiently higher than the lower limit of the operating temperature of the molten salt battery 40 (for example, 70 ° C. or higher). The molten salt battery 40 can be satisfactorily warmed up so that the temperature of the molten salt battery 40 falls within the operating temperature range by heat exchange in the second heat exchanger 15. Further, the exchange efficiency of the second heat exchanger 15 and the efficiency of the waste heat recovery circuit may be appropriately adjusted so that the molten salt battery 40 is warmed up to a desired temperature range.

また、第2熱交換器15による作動流体の冷却作用により、膨張器14と凝縮器16とにおける作動流体の温度差を大きくすることができ、廃熱回収回路12としの凝縮効率を向上することができる。すなわち、エンジン2の廃熱を利用して、発電機35によって効率よく発電を行いつつ、第2熱交換器15によって溶融塩電池40を暖機することができる。   In addition, the cooling effect of the working fluid by the second heat exchanger 15 can increase the temperature difference between the working fluid in the expander 14 and the condenser 16, thereby improving the condensation efficiency of the waste heat recovery circuit 12. Can do. That is, the molten salt battery 40 can be warmed up by the second heat exchanger 15 while efficiently generating power by the generator 35 using the waste heat of the engine 2.

その後、温度センサ41から供給される温度信号によって暖機制御部50が溶融塩電池40の暖機が完了した(すなわち、20度以上等の所望の温度まで暖機された)と判断すると、暖機制御部50は、バイパスバルブ21、22の開閉状態を制御し、バッテリ33への作動流体の供給を停止し、副循環流路19を経由して作動流体を循環させる。   After that, when the warm-up control unit 50 determines that the warm-up of the molten salt battery 40 has been completed based on the temperature signal supplied from the temperature sensor 41 (that is, warmed up to a desired temperature such as 20 degrees or higher), The machine control unit 50 controls the open / closed state of the bypass valves 21, 22, stops the supply of the working fluid to the battery 33, and circulates the working fluid via the auxiliary circulation channel 19.

そして、溶融塩電池40の暖機後に、再び溶融塩電池40の温度が20度未満となった場合には、上記制御によって溶融塩電池40を同様に暖機することになる。このように制御することで、溶融塩電池40の温度を動作温度範囲内に維持することができる。   Then, after the molten salt battery 40 is warmed up, when the temperature of the molten salt battery 40 becomes less than 20 degrees again, the molten salt battery 40 is similarly warmed up by the above control. By controlling in this way, the temperature of the molten salt battery 40 can be maintained within the operating temperature range.

なお、溶融塩電池40の暖機が完了した後、溶融塩電池40の温度を20度以上等の動作温度範囲の下限温度以上に維持するために、第2熱交換器15への作動流体の供給を停止させずにその供給量を減少させ、溶融塩電池40の温度が動作温度範囲の上限(すなわち、90度)を超えない範囲で作動流体の供給量を調整してもよい。このような制御によっても、溶融塩電池40の温度を、動作温度範囲内に維持することができる。   In addition, after the warming-up of the molten salt battery 40 is completed, in order to maintain the temperature of the molten salt battery 40 above the lower limit temperature of the operating temperature range such as 20 degrees or more, the working fluid to the second heat exchanger 15 The supply amount of the working fluid may be adjusted within a range where the temperature of the molten salt battery 40 does not exceed the upper limit (that is, 90 degrees) of the operating temperature range without decreasing the supply. Also by such control, the temperature of the molten salt battery 40 can be maintained within the operating temperature range.

以上で本発明に係る車両用バッテリの暖機装置の実施形態についての説明を終えるが、本発明の実施形態は上記実施形態に限られるものではない。   Although the description about the embodiment of the warming-up device for a vehicle battery according to the present invention is finished above, the embodiment of the present invention is not limited to the above-described embodiment.

上記実施形態ではクラッチ4と変速機5の間にモータ3を配置したハイブリッド車両1において暖機装置を構成していたが、モータ3の配置を変更(たとえばエンジン2とクラッチ4の間、あるいは変速機5の後方)してもよい。また、システム中にモータ3を複数搭載した形態や、いわゆるシリーズハイブリッドシステムやシリーズ/パラレルハイブリッドシステムといった、異なるハイブリッドシステム構成であっても構わない。あるいはモータ3を発電機としてのみ機能させ、エンジン(例えば、ガソリンエンジン又はディーゼルエンジン)のみを駆動源とする車両において暖機装置を構成してもよい。   In the above embodiment, the warm-up device is configured in the hybrid vehicle 1 in which the motor 3 is disposed between the clutch 4 and the transmission 5. However, the arrangement of the motor 3 is changed (for example, between the engine 2 and the clutch 4 or the speed change). It may be behind the machine 5). Further, different hybrid system configurations such as a configuration in which a plurality of motors 3 are mounted in the system, a so-called series hybrid system, or a series / parallel hybrid system may be used. Alternatively, the warm-up device may be configured in a vehicle in which only the engine (for example, a gasoline engine or a diesel engine) is used as a drive source by causing the motor 3 to function only as a generator.

また、上記実施形態では、第1熱交換器13においてエンジン2の排ガスと直接的に熱交換を行う構成であったが、エンジン2の排ガスとエンジン2のエンジン冷却水とを別の熱交換器によって先ず熱交換させ、その後に排ガスによって加熱された当該エンジン冷却水と第1熱交換器13とによって熱交換を行う構成(すなわち、エンジン冷却水を介在させた熱交換)としてもよい。更に、エンジン2の排ガスを利用せず、エンジン2の冷却水を熱源とした既存の廃熱回収回路に本実施形態のバッテリ33(すなわち、第2熱交換器15、溶融塩電池40、及び温度センサ41)を組み合わせて、暖機装置60を構成してもよい。   In the above embodiment, the first heat exchanger 13 directly exchanges heat with the exhaust gas of the engine 2. However, the exhaust gas of the engine 2 and the engine cooling water of the engine 2 are separated by another heat exchanger. The first heat exchanger 13 may be configured to perform heat exchange with the engine cooling water heated by the exhaust gas and then the first heat exchanger 13 (that is, heat exchange with the engine cooling water interposed). Furthermore, the battery 33 (that is, the second heat exchanger 15, the molten salt battery 40, and the temperature) of the present embodiment is added to the existing waste heat recovery circuit that does not use the exhaust gas of the engine 2 and uses the cooling water of the engine 2 as a heat source. The warming-up device 60 may be configured by combining the sensor 41).

1 ハイブリッド車両(車両)
2 エンジン
3 モータ(電動機)
11 排ガス管
12 廃熱回収回路
13 第1熱交換器
14 膨張器
15 第2熱交換器
16 凝縮器
17 ポンプ
18 主循環流路
19 副循環流路
20 流量調整バルブ
21 バイパスバルブ
22 バイパスバルブ
40 溶融塩電池
41 温度センサ(温度検出部)
50 暖機制御部
60 暖機装置
1 Hybrid vehicle (vehicle)
2 Engine 3 Motor (electric motor)
DESCRIPTION OF SYMBOLS 11 Exhaust pipe 12 Waste heat recovery circuit 13 1st heat exchanger 14 Expander 15 2nd heat exchanger 16 Condenser 17 Pump 18 Main circulation flow path 19 Subcirculation flow path 20 Flow control valve 21 Bypass valve 22 Bypass valve 40 Melting Salt battery 41 Temperature sensor (temperature detector)
50 Warm-up control unit 60 Warm-up device

Claims (4)

エンジンを駆動源とする車両に搭載される車両用溶融塩電池の暖機装置であって、
作動流体が循環する主循環流路と、
前記車両のエンジンの廃熱媒体によって前記作動流体を加熱する第1熱交換器と、
前記第1熱交換器で加熱された前記作動流体を膨張させて回転駆動力を発生する膨張器と、
前記膨張器から吐出された前記作動流体と熱交換をなす第2熱交換器と、
前記第2熱交換器から吐出された前記作動流体を冷却する凝縮器と、
前記凝縮器で冷却された前記作動流体を前記第1熱交換器に送るポンプと、
前記第2熱交換器と熱交換をして、動作温度範囲までに暖機される溶融塩電池と、を有する車両用溶融塩電池の暖機装置。
A warm-up device for a molten salt battery for a vehicle mounted on a vehicle having an engine as a drive source,
A main circulation channel through which the working fluid circulates;
A first heat exchanger for heating the working fluid by a waste heat medium of the vehicle engine;
An expander that expands the working fluid heated by the first heat exchanger to generate a rotational driving force;
A second heat exchanger that exchanges heat with the working fluid discharged from the expander;
A condenser for cooling the working fluid discharged from the second heat exchanger;
A pump for sending the working fluid cooled by the condenser to the first heat exchanger;
A warming-up device for a molten salt battery for a vehicle, comprising: a molten salt battery that exchanges heat with the second heat exchanger and is warmed up to an operating temperature range.
前記溶融塩電池の温度を検出する温度を検出する温度検出部と、
前記膨張器から前記凝縮器に前記作動流体を直接的に循環する副循環流路と、
前記溶融塩電池の温度が動作温度範囲内である場合に、前記副循環流路を経由して前記作動流体を循環させる暖機制御手段と、を有する請求項1に記載の車両用溶融塩電池の暖機装置。
A temperature detection unit for detecting a temperature for detecting the temperature of the molten salt battery;
A secondary circulation flow path for directly circulating the working fluid from the expander to the condenser;
The vehicle molten salt battery according to claim 1, further comprising: a warm-up control unit that circulates the working fluid through the auxiliary circulation channel when the temperature of the molten salt battery is within an operating temperature range. Warm-up device.
前記暖機制御手段は、前記溶融塩電池の温度が動作温度範囲内である場合に、前記第2熱交換器を経由せずに、前記副循環流路のみを経由して前記作動流体を循環させる請求項2に記載の車両用溶融塩電池の暖機装置。   When the temperature of the molten salt battery is within an operating temperature range, the warm-up control means circulates the working fluid only through the sub-circulation flow path without passing through the second heat exchanger. The warming-up device of the molten salt battery for vehicles according to claim 2 to be made. 前記暖機制御手段は、前記主循環流路上であって、前記膨張器と前記第2熱交換器との間、及び前記第2熱交換器と前記凝縮器との間に流量調整バルブを備える請求項2又は3に記載の車両用溶融塩電池の暖機装置。   The warm-up control means includes a flow rate adjustment valve on the main circulation channel, between the expander and the second heat exchanger, and between the second heat exchanger and the condenser. The warming-up device for the molten salt battery for a vehicle according to claim 2 or 3.
JP2014257555A 2014-12-19 2014-12-19 Warm-up device for molten salt battery for vehicle Expired - Fee Related JP6174555B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014257555A JP6174555B2 (en) 2014-12-19 2014-12-19 Warm-up device for molten salt battery for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014257555A JP6174555B2 (en) 2014-12-19 2014-12-19 Warm-up device for molten salt battery for vehicle

Publications (2)

Publication Number Publication Date
JP2016119196A true JP2016119196A (en) 2016-06-30
JP6174555B2 JP6174555B2 (en) 2017-08-02

Family

ID=56243079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014257555A Expired - Fee Related JP6174555B2 (en) 2014-12-19 2014-12-19 Warm-up device for molten salt battery for vehicle

Country Status (1)

Country Link
JP (1) JP6174555B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106401833A (en) * 2016-09-27 2017-02-15 北京新能源汽车股份有限公司 Heat exchange system of engine and power battery, control method and automobile
CN108312840A (en) * 2018-03-02 2018-07-24 南京好龙电子有限公司 A kind of temperature control system of vehicle electric system
JPWO2018047539A1 (en) * 2016-09-09 2019-02-21 株式会社デンソー Equipment temperature controller
CN109751110A (en) * 2017-11-01 2019-05-14 本田技研工业株式会社 Heat circulating system
CN110048188A (en) * 2019-04-16 2019-07-23 香江科技股份有限公司 A kind of outdoor base station power supply heat management system based on redundant power device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001037009A (en) * 1999-06-07 2001-02-09 Mitsubishi Heavy Ind Ltd Temperature controller for battery of vehicle
JP2008505010A (en) * 2004-07-02 2008-02-21 ゼネラル・エレクトリック・カンパニイ High-temperature battery system for hybrid tow vehicles and asymmetrical vehicles
JP2008290636A (en) * 2007-05-26 2008-12-04 Sanyo Electric Co Ltd Hybrid car
JP2013038998A (en) * 2011-08-10 2013-02-21 Toyota Industries Corp Secondary battery-loaded vehicle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001037009A (en) * 1999-06-07 2001-02-09 Mitsubishi Heavy Ind Ltd Temperature controller for battery of vehicle
JP2008505010A (en) * 2004-07-02 2008-02-21 ゼネラル・エレクトリック・カンパニイ High-temperature battery system for hybrid tow vehicles and asymmetrical vehicles
JP2008290636A (en) * 2007-05-26 2008-12-04 Sanyo Electric Co Ltd Hybrid car
JP2013038998A (en) * 2011-08-10 2013-02-21 Toyota Industries Corp Secondary battery-loaded vehicle

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018047539A1 (en) * 2016-09-09 2019-02-21 株式会社デンソー Equipment temperature controller
CN106401833A (en) * 2016-09-27 2017-02-15 北京新能源汽车股份有限公司 Heat exchange system of engine and power battery, control method and automobile
CN106401833B (en) * 2016-09-27 2019-04-12 北京新能源汽车股份有限公司 Heat exchange system of engine and power battery, control method and automobile
CN109751110A (en) * 2017-11-01 2019-05-14 本田技研工业株式会社 Heat circulating system
JP2019085876A (en) * 2017-11-01 2019-06-06 本田技研工業株式会社 Heat cycle system
US10662822B2 (en) 2017-11-01 2020-05-26 Honda Motor Co., Ltd. Heat cycle system
CN109751110B (en) * 2017-11-01 2021-06-29 本田技研工业株式会社 Heat cycle system
CN108312840A (en) * 2018-03-02 2018-07-24 南京好龙电子有限公司 A kind of temperature control system of vehicle electric system
CN110048188A (en) * 2019-04-16 2019-07-23 香江科技股份有限公司 A kind of outdoor base station power supply heat management system based on redundant power device
CN110048188B (en) * 2019-04-16 2024-02-02 香江科技股份有限公司 Outdoor base station power supply thermal management system based on redundant power device

Also Published As

Publication number Publication date
JP6174555B2 (en) 2017-08-02

Similar Documents

Publication Publication Date Title
AU2019409171B2 (en) Vehicle and temperature control apparatus thereof
JP6174555B2 (en) Warm-up device for molten salt battery for vehicle
JP6687895B2 (en) Vehicle fuel cell warm-up device
CN111354996B (en) Vehicle and power battery temperature control device thereof
CN102610838B (en) Thermal management system of fuel cell, fuel cell system, and vehicle with the fuel cell system
US20060046895A1 (en) Vehicular control system for regenerative braking
US20130330578A1 (en) Method and device for warming a traction battery of a vehicle
WO2005122311A1 (en) Cooling device for fuel cell and vehicle having the same
JP2012046163A (en) Thermal management system and method of hybrid vehicle
CN103660916A (en) Heat control system for hybrid power or range-extending type electric automobile
JP2015081089A (en) Cooling system of electric motorcar and cooling system driving method
JP5582013B2 (en) Hybrid vehicle
CN102689586A (en) Integral temperature control system for electric automobile
GB2462904A (en) Cooling system for a hybrid electric vehicle (HEV)
CN105501071A (en) Automotive thermal management system
JP2019055649A (en) Battery temperature control system
JP2013038998A (en) Secondary battery-loaded vehicle
US10875381B2 (en) Thermal management system in a vehicle and method for operation of the system
GB2509308A (en) Heat transfer arrangement for heating battery
CN203766487U (en) Heat control system for hybrid power or range extending type electric automobile
CN202474108U (en) Fuel cell heat managing system, fuel cell system and vehicle using the same
JP2016107818A (en) Warmup device of hybrid vehicle
JP2016119195A (en) Temperature control device for vehicular molten salt battery
JP2019064566A (en) Battery heating system
JP6455097B2 (en) Cooling system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160803

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20161102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170628

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170706

R150 Certificate of patent or registration of utility model

Ref document number: 6174555

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees