JP2010132150A - 電動パワーステアリング制御装置 - Google Patents

電動パワーステアリング制御装置 Download PDF

Info

Publication number
JP2010132150A
JP2010132150A JP2008310282A JP2008310282A JP2010132150A JP 2010132150 A JP2010132150 A JP 2010132150A JP 2008310282 A JP2008310282 A JP 2008310282A JP 2008310282 A JP2008310282 A JP 2008310282A JP 2010132150 A JP2010132150 A JP 2010132150A
Authority
JP
Japan
Prior art keywords
motor rotation
current command
rotation angle
motor
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008310282A
Other languages
English (en)
Other versions
JP5188376B2 (ja
Inventor
Isao Kezobo
勲 家造坊
Masahiko Kurishige
正彦 栗重
Masaya Endo
雅也 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2008310282A priority Critical patent/JP5188376B2/ja
Publication of JP2010132150A publication Critical patent/JP2010132150A/ja
Application granted granted Critical
Publication of JP5188376B2 publication Critical patent/JP5188376B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】モータ回転角センサを持たないブラシレスモータを、2種類以上の方式で推定されるモータ回転角度の推定値を用いて制御する電動パワーステアリング制御装置を得る。
【解決手段】電流指令生成手段11、各相の電圧指令とモータ回転角度信号及びモータ回転角速度信号を算出する電流制御手段12を備えた電動パワーステアリング制御装置であって、電流指令生成手段11は、ダンピング、慣性、摩擦の各補償器を有し、補償器のいずれか1つ以上の補償電流指令とアシスト電流指令とに応じて電流指令を算出し、電流制御手段12は、2つの異なるモータ回転角推定手段を有し、モータ回転角速度に基づきいずれかのモータ回転角度推定手段の出力を選択してモータ回転角度信号を算出し、算出されたモータ回転角度信号とそれを微分して得られるモータ回転角速度信号とを、いずれかの補償器へのモータ回転角度信号またはモータ回転角速度信号として与える。
【選択図】図2

Description

この発明は、自動車等に搭載される電動パワーステアリング装置に関し、特に、運転者が感じる操舵感(操舵フィーリングとも言う)の改善に関するものである。
従来、モータの制御装置として、モータ回転角度を推定し、その推定値に基づきモータを制御するものがある(例えば、特許文献1参照)。この特許文献1に記載の装置は、電動パワーステアリング装置に限らず、ブラシレスモータの制御方法に関するものであり、モータの回転角度を検出するモータ回転角センサ(ロータ位置センサとも言う)を備えることなく、モータ回転角度を推定し、その推定値に基づきモータを制御するセンサレス制御と言われるものである。
この特許文献1では、モータ回転角度の推定手段は、異なる方式で2つの手段を備えており、モータの回転速度に応じて切換えている。モータの停止時と低速回転時は、高周波の電圧を印加し、その応答電流によりモータ回転角度を推定するものを用いている。これは、モータの突極性を利用した方式である。ただし、一般に、この方式は、推定のための電圧を印加する必要があるため、電圧利用効率が低下し、本来のモータトルクの出力に用いる電圧に割り当てられる電源電圧が高周波の印加電圧の分だけ小さくなるので、低速回転時より高電圧を要する高速回転時の駆動には適していないことが知られている。
一方、中高速回転時は、モータの誘起電圧に基づいてモータ回転角度を推定する方式を用いている。この方式は、誘起電圧がロータの磁極位置に基づいて変化することに着目した方式であり、一般に、推定のための電圧を印加する必要がなく、誘起電圧が比較的大きく発生する中高速回転時に適しているが、停止時と低速時は推定精度が悪化することが知られている。
他の従来装置の例として、モータ回転角度を推定し制御する電動パワーステアリング装置がある(例えば、特許文献2参照)。この特許文献2献も、モータ回転角センサを持たないブラシレスモータにおいて、モータ回転角度を推定し制御するものであり、近年、電動パワーステアリング装置においても、このような構成についての研究開発がなされている。この特許文献2の発明が解決しようとする課題の段落0007にもあるように、モータ回転角速度に応じて、モータ回転角度の推定方式を切換えるのが望ましいことが示されている。
さらに、他の従来装置の例として、トルクリップルを抑制するトルクリップル補償をする電動パワーステアリング装置がある(例えば、特許文献3参照)。ブラシレスモータにおいては、出力トルクにリップル(脈動)が生じることが知られており、電動パワーステアリング装置では、このトルクリップルによる操舵フィーリングの悪化がしばしば指摘され、その改善が課題となっている。この課題に対して、制御によりトルクリップルを抑制する一つの方法が提案されている。この特許文献3では、電流指令、モータ回転角度と、その微分であるモータ回転角速度に基づいて、トルクリップルを抑制するトルクリップル補償が記載されている。
このように、トルクリップル補償において、モータ回転角度と、モータ回転角速度を用いることが有効なのは一般に知られており、この文献以外にも、さまざまな手法が提案されている。また、この文献にも示されている通り、モータ回転角速度は、トルクリップル補償だけではなく、ダンピング補償(収斂性補償、または、粘性補償ともいう)などトルクリップル以外の操舵フィーリングを改善する様々な補償制御においても利用されている。
特許第3695342号公報 特開2007−307940号公報 特許第4033030号公報
しかしながら、特許文献3のような装置にあっては、モータ回転角センサ付きのブラシレスモータを対象として、トルクリップルを抑制するトルクリップル補償や、収斂性を補償する収斂性補償(ダンピング補償、または、粘性補償ともいう)が記載されているが、ブラシレスモータでかつモータ回転角センサが無い構成において、これらの補償を最適に実施する方法は示されていない。
トルクリップル補償、ダンピング補償、慣性補償、摩擦補償などの各種補償制御は、特許文献3以外にも様々な方法が提案されているが、いずれも、モータ回転角センサを必要としないブラシ付きモータか、あるいは、モータ回転角センサ付きのブラシレスモータを対象としている。
これらの各種補償制御を実現するには、モータ回転角度、モータ回転角速度、モータ回転角加速度といった状態量を検出あるいは推定により制御装置に信号として取り入れる必要があり、これらの信号の精度は、各種補償制御の効果に影響を与える。
例えば、トルクリップル補償制御においては、モータ回転角度あるいはモータ回転角速度に基づいて、トルクリップルの周波数あるいは位相に適した補償電流指令を演算する必要があり、モータ回転角度やモータ回転角速度を検出あるいは推定した信号の誤差が増大すれば、補償電流指令としても、本来のトルクリップルの周波数あるいは位相に適した補償電流指令からの誤差が増大し、トルクリップルを抑制する効果が低下し、操舵フィーリングが悪化する。
他の補償制御においても、同様なことが言え、ダンピング補償、摩擦補償においては、モータ回転角速度、慣性補償においては、モータ回転角速度の微分であるモータ回転角加速度を用いるため、それらの信号の精度が低下すれば、その補償制御が適切な位相、周波数、大きさで実行できないため補償制御の効果が低下する。
したがって、モータ回転角センサが無いブラシレスモータのように、2種類以上のモータ回転角推定手段を用いてモータ制御を行う必要がある場合には、これらの推定手段が出力する推定信号を各種の補償制御において適切に利用しなければならない。仮に、2種のモータ回転角推定手段で推定された信号を切換えることなく、あるいは、適切な切換えを行わずに各種補償制御に利用したとすると、精度の低い領域が生じるため、この領域では、上述したように各種の補償制御の効果が低下し操舵フィーリングが悪化する。
なお、モータの誘起電圧に基づいてモータ回転角度を推定する方式と、印加した高周波電圧の応答電流によりモータ回転角度を推定する方式では、動作領域に応じて精度の優劣があるので、本来、モータの誘起電圧に基づいてモータ回転角度を推定する方式の方が精度が高い領域で、印加した高周波電圧の応答電流によりモータ回転角度を推定する方式を用いると、その領域におけるそれぞれの方式の精度の差分だけ、精度が低下することになる。逆も同様である。
ところが、これまでに2種以上のモータ回転角推定手段を各種補償制御に利用する方法が提示された例はない。
この発明は、上記のような課題を解決するためになされたものであり、モータ回転角センサを持たないブラシレスモータを用いた電動パワーステアリング装置において、2種類以上の方式で推定されるモータ回転角度の推定値を適切に利用して、トルクリップル補償やダンピング補償など各種の補償制御を実施するようにして、運転者の感じる操舵フィーリングを良好なものにすることが可能な電動パワーステアリング制御装置を得ることを目的としている。
この発明に係る電動パワーステアリング制御装置は、アシストトルクの目標値に相当する電流指令を算出する電流指令生成手段と、モータ回転角センサを備えないブラシレスモータの各相に流れる電流を検出して電流信号を出力する電流検出部と、前記電流指令及び前記電流信号に応じて各相の電圧指令とモータ回転角度信号及びモータ回転角速度信号を算出する電流制御手段とを備え、前記電流指令に基づいて前記ブラシレスモータを制御し、運転者の操舵を補助するモータトルクを発生させる電動パワーステアリング制御装置であって、前記電流指令生成手段は、前記モータ回転角速度信号に基づいてダンピング補償電流指令を算出するダンピング補償器と、前記モータ回転角速度信号を微分することで得られるモータ回転角加速度に基づいて慣性補償電流指令を算出する慣性補償器と、前記モータ回転角速度信号に基づいて摩擦補償電流指令を算出する摩擦補償器とを有し、前記補償器のいずれか1つ以上の補償電流指令と、操舵トルクに基づいて算出されるアシスト電流指令とに応じて電流指令を算出し、前記電流制御手段は、異なる2つの方法でそれぞれモータ回転角度推定値を算出する2種類のモータ回転角推定手段を有し、モータ回転角速度に基づいて2つのモータ回転角度推定手段が出力するモータ回転角度推定値のうちの一方を選択してモータ回転角度信号を算出し、算出されたモータ回転角度信号とそれを微分して得られるモータ回転角速度信号とを、前記電流指令生成手段のいずれかの補償器へのモータ回転角度信号またはモータ回転角速度信号として与えることを特徴とする。
この発明によれば、2種類以上の方式で推定されるモータ回転角度またはモータ回転角速度の推定値が適切な方法で切換えられることで、精度良く得られたモータ回転角度信号やモータ回転角速度信号を、トルクリップル補償やダンピング補償、慣性補償、摩擦補償などの補償制御に利用できるため、トルクリップルや収斂性、摩擦感、慣性感などを改善する効果を十分に得ることができ、運転者の感じる操舵フィーリングが良好になる、といった従来にない顕著な効果を奏することができる。
実施の形態1.
この発明の実施の形態1に係る電動パワーステアリング制御装置について図1から図6までを参照しながら説明する。図1は、この発明の実施の形態1に係る電動パワーステアリング装置の構成を示す図である。なお、以降では、各図中、同一符号は同一又は相当部分を示す。
図1において、ステアリングホイール1に連結したステアリングシャフト2の回転に応じてラック・ピニオンギヤ3を介して左右の車輪4a、4bが転舵される。ブラシレスモータ(以下、単にモータという)5は、モータ減速ギヤ6を介してステアリングシャフト2に連結しており、モータ5が発生するトルクをステアリングシャフト2に付与することができる。ステアリングシャフト2には、トルクセンサ8が配置され、ステアリングシャフト2に作用する操舵トルクを検出する。また、車両の車速は車速センサ9で検出される。電動パワーステアリング制御装置10は、トルクセンサ8及び車速センサ9の検出信号に応じて所定のアシストトルクをモータ5に発生させるべく、電源(バッテリ)7からモータ5に流す電流を制御する。
図2は、この発明の実施の形態1に係る電動パワーステアリング装置の電動パワーステアリング制御装置10(コントローラユニットとも言う)の構成を示すブロック図である。図2において、電動パワーステアリング制御装置10は、アシストトルクの目標値に相当する電流指令を算出する電流指令生成手段11と、インバータを介して、モータ5の各相に流れる電流を検出して電流信号を出力する電流検出回路15と、電流指令及び電流信号に応じて各相の電圧指令と、モータ回転角度信号及びモータ回転角速度信号を算出する電流制御手段12と、電圧指令をPWM変調してインバータへスイッチング操作信号を出力するスイッチング素子駆動回路13と、スイッチング操作信号に基づいてスイッチング素子61a〜63a、61b〜63bをチョッパ制御し、電源7から供給される電力により、モータ5に電流を供給するインバータ14とを備えている。なお、コントローラユニット10の構成要素のうち、電流検出回路15、スイッチング素子駆動回路13及びインバータ14を除くほかの構成要素は、通常、マイコンのソフトウェアとして実装されるものである。
次に、この実施の形態1に係る電動パワーステアリング装置の動作について図面を参照しながら説明する。図1において、図示しない運転者からステアリングホイール1に加えられた操舵トルクは、トルクセンサ8、ステアリングシャフト2を通り、ラック・ピニオンギヤ3を介してラックに伝達され、車輪4a、4bを転舵させる。
ブラシレスモータ5(モータとも言う)は、モータ減速ギヤ6を介してステアリングシャフト2と連結している。モータ5から発生するアシストトルク(以下モータトルクとも言う)は、モータ減速ギヤ6を介してステアリングシャフト2に伝達され、操舵時に運転者が加える操舵トルクを軽減する。このモータ5は、ブラシレスモータのような同期モータを使用する。本実施の形態では、U相、V相、W相の3相を有するブラシレスモータとする。
トルクセンサ8は、運転者がステアリングホイール1を操舵することによりステアリングシャフトに加わった操舵トルクを検出する。コントローラユニット10は、トルクセンサ8で検出した操舵トルク信号と、車速センサ9で検出した車速信号に応じて、モータ5が付与するアシストトルクの方向と大きさを決定し、このアシストトルクをモータ5に発生させるべく、電源7からモータ5に流す電流を制御する。
図2において、アシストトルクの目標値に相当する電流指令Irを算出する電流指令生成手段11は、トルクセンサ8で検出した操舵トルク信号と、車速センサ9で検出した車速信号に応じたモータトルクの方向と大きさを決定することで、基本的な電流指令を算出する。さらに、詳細は後述するが、図4のように、操舵トルク信号やモータ回転角速度信号に応じて、操舵フィーリングを改善する各種の補償制御を実現する補償器23〜26を備え、これらの補償器の出力する補償電流指令の加算値により、電流指令を補正する。
電流検出部15は、インバータ14内部の電流センサ19を介して、モータ5の各相に流れる電流を検出し、電流信号を出力する。なお、ここでは、3相全てを検出する例を示しているが、一般に、3相電流の和は零になるという三相平衡条件が成立するので、いずれか2相のみの検出としても良い。
電流制御手段12は、電流指令及び電流信号に応じて各相の電圧指令Vur、Vvr、Vwrと、モータ回転角度信号θest、モータ回転角速度信号ωestを算出する。その算出方法は、後述する。
スイッチング素子駆動回路13は、この電圧指令をPWM変調してインバータ14へスイッチング操作を指示する。インバータ14は、スイッチング操作信号を受けてスイッチング素子61a〜63a、61b〜63bのチョッパ制御を実現し、電源7から供給される電力により、モータ5に電流を流す。この電流によって、モータトルクすなわちアシストトルクが発生する。
次に、電流制御手段12の演算内容について図3を用いて説明する。ただし、この内容は、特許文献1に記載の制御装置4と同様なものでもよい。電流制御手段12は、電流指令Ir、電流信号Iu、Iv、Iw、モータ回転角度信号θest及び推定用電圧指令Vhに基づいて、電圧指令Vur、Vvr、Vwrを算出するdq軸電流制御手段31と、電流信号に基づいてモータ回転角度推定値θAを算出するモータ5の回転角度を推定するモータ回転角推定手段A32、電流信号に基づいてモータ回転角度推定値θBを算出するモータ回転角推定手段B33及びモータ回転角速度の演算結果に応じてモータ回転角推定手段を切換える切換え手段34とを備えている。
モータ回転角推定手段A32は、推定用の電圧を印加してその応答電流に基づいて推定する方式を用いる。この方式は、モータの突極性を利用した方式であり、比較的高周波の周期信号である推定用電圧指令Vhをdq軸電流制御手段31に与え、その結果、モータ5の磁極位置に応じた応答として発生する電流を検出した電流信号から、推定用電圧指令と同じ周波数成分に基づいて、モータ回転角度を推定し、モータ回転角度推定値θAを算出する。詳細には、例えば特許文献1に記載の搬送波同期型位置推定手段と同様でよい。
モータ回転角推定手段B33は、モータ5の誘起電圧に基づいて推定する方式を用いる。この方式は、モータの回転角度に応じて誘起電圧が変化することを利用した方式であり、誘起電圧が中高速回転時に比較的大きくなるので、この速度帯域に限定して使うこととし、それ故に、推定向けに電圧を印加する必要はない。誘起電圧の応答として発生する電流を検出した電流信号に基づいて、モータ回転角度を推定し、モータ回転角度推定値θBを算出する。詳細には、例えば特許文献1に記載の同電位型位置推定手段と同様でよい。なお、電流信号のみでなく、電圧指令にも基づいたオブザーバを用いた方法も一般に知られており、この方法を用いても良い。
切換え手段34は、モータ回転角速度を演算し、この演算結果に応じてモータ回転角推定手段を切換えるものであり、図5に示すように、角度切換部41と速度演算部42を備えている。角度切換部41は、入力されたモータ回転角速度信号ωestに基づいて、2つのモータ回転角度推定手段A32、モータ回転角度推定手段B33がそれぞれ出力するモータ回転角度推定値θA、θBのうちの一方を選択し、それをモータ回転角度信号θestとして出力する。速度演算部42は、角度切換部41から出力されたモータ回転角度信号θestに基づいて、微分することで、モータ回転角速度信号ωestを演算する。詳細には、例えば特許文献1の実施例1〜5に記載のいずれかの磁極位置切換手段と同様でよい。特に、この文献の実施例4に示された方法は、2つの推定手段のモータ回転角度信号に反映する割合を速度に応じて徐々に切換えるので、切換時におけるトルク変動を抑制しスムーズに切換えることができる。
dq軸電流制御手段31は、電流指令Irと、電流信号Iu、Iv、Iwと、モータ回転角度信号θest及び推定用電圧指令Vhとに基づいて、電圧指令Vur、Vvr、Vwrを算出するものであり、基本的には、一般的な制御方式であるdq制御と言われる制御を実施するよう図示しないdq変換や3相変換、PI制御器などで構成されている。推定用電圧指令Vhは、dq制御内部の変数である図示しないq軸電圧指令に加算したり、あるいは、それを3相変換して、電圧指令Vur、Vvr、Vwrに加算して補正したりする方法で用いられる。dq制御の中身については一般的なので説明は省略する。なお、電流指令Irは、q軸電流指令として使用され、d軸電流指令は、この実施の形態では零であるとするが、他の値を用いても良い。
次に、電流指令生成手段11について図4を用いて説明する。電流指令生成手段11には、操舵トルク信号、車速信号、モータ回転角度信号θest、モータ回転角速度信号ωestが入力される。ここで、モータ回転角度信号θestとモータ回転角速度信号ωestは、前述の切換え手段34が出力したものであり、適切に推定手段を切換えたことで得られた信号である。
ただし、本実施の形態1では、モータ回転角度信号θestは電流指令生成手段11で用いないので、入力する必要は無い。モータ回転角度信号θestの利用例は実施の形態2で示す。実施の形態1において、モータ回転角速度信号ωestに代えてモータ回転角度信号θestを入力して用いる場合は、電流指令生成手段11内部で、モータ回転角度信号θestを微分してモータ回転角速度信号ωestを得ればよい。
位相補償器22では、操舵トルク信号に対して、位相補償を行う。アシスト電流演算器21では、位相補償器22が出力する位相補償後の操舵トルク信号と車速センサ9で検出した車速信号に応じたアシスト電流指令の値をマップ値として予め記憶しており、位相補償後の操舵トルク信号と車速に応じたアシスト電流指令を演算する。
ダンピング補償器23(粘性補償器または収斂性補償器ともいう)では、モータ回転角速度ωestからダンピング補償電流指令を演算する。ダンピング補償電流指令はステアリングホイールの収斂性を向上し操舵を安定化させる効果がある。
摩擦補償器24では、モータ回転角速度の符号から摩擦補償電流指令を演算する。摩擦補償電流指令はステアリング機構に存在する摩擦をキャンセルするトルクをモータ4が発生させるための電流であり、手放し時のハンドル戻り向上といった操舵フィーリングを向上させる効果がある。
角加速度演算器27では、モータ回転角速度を微分しモータ角加速度を演算する。慣性補償器25では、モータ角加速度から慣性補償電流指令を演算する。慣性補償電流指令はモータの慣性力をキャンセルするため、慣性力による遅れが改善され速応性が向上し操舵フィーリングが向上する。なお、アシスト電流演算器21、ダンピング補償器23、摩擦補償器24、慣性補償器25の詳細に関しては、三菱電機技報Vol. 70 No. 9 P43〜P48に記載された従来の電動パワーステアリング制御装置と同様なものでよい。
トルクリップル補償器26は、例えば、操舵トルク信号から、モータ回転角速度に応じて、トルクリップル成分を抽出し、その抽出結果に応じてトルクリップル補償電流指令を演算するものであり、例えば、図6のように、トルクリップル抽出器50、トルクリップル抑制制御器53で構成される。詳細は後述する。トルクリップル補償電流指令は、コギングトルクやトルクリップルによる操舵トルク等の脈動を低減することができる。
アシスト電流演算器21からのアシスト電流指令、ダンピング補償器23からのダンピング補償電流指令、摩擦補償器24からの摩擦補償電流指令、慣性補償器25からの慣性補償電流指令、およびトルクリップル補償器26からのトルクリップル補償電流指令を足し合わせて電流指令Irとする。
次に、トルクリップル補償器26について図6を用いて説明する。トルクリップル抽出器50は、トルクセンサ8で検出した操舵トルク信号から、運転者の操舵成分や、脈動成分よりも高周波域のノイズ成分等を除去し、コギングトルクやトルクリプルによる操舵トルクの脈動成分を抽出する。
モータ5では、モータの極数やスロット数、または、製造誤差などのモータの構造に起因するコギングトルクや、誘起電圧波形の歪みや鉄心の磁気飽和等に起因するトルクリプルが電動モータの回転にともない発生する。ここで、モータの極対数Pn、モータの電気角θe(モータ回転角度信号θestに相当)とすると、モータの機械角θmは、式(1)となる。
θm=θest/Pn (1)
モータ一回転あたりに発生するトルク脈動の数を極対数Pnで割った値をトルクリプル発生調波次数nとする。一般に、電動モータのトルクリプル発生調波次数nは複数存在するが、nは整数であり、n=1、2、6、12等の成分が発生する。発生調波次数n次成分のトルクリプルの周波数fn[Hz]は、式(2−1)となる。
fn=(dθm/dt)×Pn×n/(360) (2−1)
すなわち、トルクリプルの周波数fn[Hz]はモータ回転角速度dθm/dtに応じて変化する。よって、バンドパスフィルタの中心周波数fcを式(2−2)のようにfnと等しくなるように設定する。
fc=fn (2−2)
さらに、バンドパスフィルタの時定数Tcは、式(2−3)で設定する。
Tc=1/(2πfc) (2−3)
バンドパスフィルタの時定数を式(2−3)で設定する時定数可変フィルタを操舵トルク信号に適用すれば、操舵トルク信号から運転者の操舵成分や、比較的高周波域のノイズ成分等を除去し、コギングトルクやトルクリプルによる操舵トルクの脈動成分を抽出することができる。
式(2−1)から式(2−3)までの演算が、図6に示す時定数演算器51で実施される。ただし、式(2−1)の(dθm/dt)×Pnは、モータ回転角速度信号ωestを利用する。
バンドパスフィルタ52としては、例えば式(3)に示す重根を含む4次のバンドパスフィルタを用いる。式(3)において、Gbpfはフィルタの伝達関数、sはラプラス演算子である。またK1は中心周波数fc[Hz]でゲインが−12dBになることに対する補正ゲインであり、中心周波数fc[Hz]でゲインが0dBになるようにK1を設定する。
Figure 2010132150
バンドパスフィルタを、重根を含む4次で構成するとき、中心周波数fcではゲイン0dB、位相遅れ0(ゼロ)で脈動成分を抽出でき、その他の成分を低周波域、高周波域ともに−40dB/decadeの傾きで除去することができるため、脈動成分を精度良く抽出することができる。
図6に示すトルクリップル抑制制御器53では、トルクリップル抽出器50で抽出した脈動成分に応じて、脈動成分を低減するためのトルクリップル補償電流指令が演算される。例えば、トルクリップル抽出器50で抽出した脈動成分に比例ゲインを掛けたものをトルクリップル補償電流指令とする。
上述のように、トルクリップル補償器26を構成したが、これに限ったものではなく、他の構成で実施しても良い。
このように、本実施の形態1で示した方法であれば、2種類以上の方式で推定されるモータ回転角度またはモータ回転角速度の推定値が適切な方法で切換えられることで、精度良く得られたモータ回転角度信号やモータ回転角速度信号を、トルクリップル補償やダンピング補償、慣性補償、摩擦補償などいずれかの補償制御に利用できるため、トルクリップルや収斂性、摩擦感、慣性感などを改善する効果を十分に得ることができ、運転者の感じる操舵フィーリングが良好になる、といった従来にない顕著な効果を奏することができる。
実施の形態2.
本実施の形態2では、実施の形態1の電流指令生成手段11を、図7に示すもので置き換えた電動パワーステアリング制御装置について述べる。説明は、実施の形態1との相違点、すなわち、トルクリップル補償器26に入力される信号と、トルクリップル補償器26の内容についてのみ行う。トルクリップル補償器26に入力される信号は、操舵トルク信号、モータ回転角速度信号、およびモータ回転角度信号となっている。トルクリップル補償器26については、図8および図9を用いて説明する。
トルクリップル補償器26は、モータ機械角回転角度信号θ、対象とするトルクリップルの発生調波次数n、および、モータの極対数Pに基づく正弦波成分sin(nPθ)および余弦波成分cos(nPθ)からなる基準波ベクトルν[sin(nPθ) cos(nPθ)]を演算し、トルクセンサ8で検出した操舵トルク信号、および、基準波ベクトルからトルクリップルを相殺するトルクリップル補償電流指令の位相と振幅を調整する係数ベクトルφ=[φ φ]を演算する。
ここで、トルクリップル発生調波次数はモータ一回転あたりに発生するトルク脈動の数を極対数Pで割った値である。一般に、電動モータのトルクリプル発生調波次数は複数存在する。また、モータ機械角回転角度信号θは、モータ回転角度信号θestを極対数Pで除算することで得られる。基準波ベクトルはトルクリップルと同じ周波数を有する正弦波および余弦波から構成される。また、sin(nPθ)をトルクリップル発生調波次数nのトルクリップルの基準波とする。
次に、基準波ベクトルνおよび係数ベクトルφからトルクリップルを相殺するためのトルクリップル補償電流指令を演算する。ここで、モータ軸に作用するトルクリップルをTとすると,トルクリップルは、モータ回転角に依存した脈動となるため、式(4−1)で表現できる。また、トルクリップル補償器で推定するモータ軸に作用するトルクリップルの推定値
Figure 2010132150
を式(4−2)で表現する。
Figure 2010132150
すなわち、係数ベクトルφを逐次調整することで、トルクリップルの振幅および基準波に対するトルクリップルの位相差を推定することができる。その結果、トルクリップルを相殺するためのトルクリップル補償電流指令Icompは次式(5)となる。Kはモータのトルク定数である。
Figure 2010132150
また、係数ベクトルφはマイコンの演算周期毎に逐次調整するため、トルクリップルの振幅や位相の変化にも対応して、適切にトルクリップルを抑制することができる。
次に、トルクリップル補償器26について図8に示すブロック図および図9に示すフローチャートに基づいて説明する。図9のフローチャートは、例えばイグニッションスイッチが閉じた時に、係数ベクトルφ=[φ φ]の初期値の設定した後に、マイコンの演算周期で繰り返し実行する。係数ベクトルφの初期値としては、予め測定しておいたトルクリップルの振幅と電気角に対する位相差の平均的な値から設定する。その結果、推定するトルクリップルの振幅と位相差の真値への収束が早くなる。ただし、初期値としてφ=[0 0]としてもよい。
図9のS1では、操舵トルク信号T、モータ機械角回転角度信号θをメモリに記憶する。また、モータ一回転あたりに発生するトルク脈動の数を極対数Pで割った値をトルクリップル発生調波次数と定義する。一般に、電動モータのトルクリプル発生調波次数は複数存在する。図9のS2(図8の基準波ベクトル演算器81)では、抑制したいトルクリップルのトルクリップル発生調波次数をnとし、トルクリップルと同じ周波数を有する正弦波および余弦波からなる基準波ベクトルを式(6)に従って演算する。三角関数の演算にはマイコンのROMに記憶している正弦波テーブルを用いる。また、sin(nPθ)を発生調波次数nのトルクリップルに対する基準波とする。
ν[sin(nPθ) cos(nPθ)] (6)
S3では、モータ回転角速度信号ωestを読み込む。S4では、演算したモータ回転角速度信号が所定のモータ回転角速度閾値ωより小さいか判定する。モータ回転角速度信号がモータ回転角速度閾値ωより小さい場合は、S5に進む。モータ回転角速度信号がモータ回転角速度閾値ω以上の場合は、S8に進む。
モータ回転角速度が高くなると、実施の形態1でも述べた通り、トルクリップルの周波数が高くなる。トルクリップルの周波数が十分に高い場合、ステアリング機構の減衰特性などにより、操舵トルクの脈動が十分に減衰する帯域が存在する。よって、トルクリップルによる操舵トルクの脈動が十分に減衰するモータ回転角速度をモータ回転角速度閾値ωと設定する。
S5では、検出した操舵トルク信号Tをハイパスフィルタ処理し、操舵トルクから低周波成分を除去し、新たな操舵トルク信号Ts2とする。操舵トルク信号Tは、トルクリップルによる脈動成分の他に、運転者による操舵成分が含まれる。運転者の操舵は通常約5Hz以下であるため、ハイパスフィルタのカットオフ周波数を5Hz付近に設定することで、操舵トルク信号Tから運転者の操舵成分を除去することができ、トルクリップルの推定精度を向上することができる。
S6では、S5でハイパスフィルタ処理した操舵トルクTs2に、さらに位相補償、例えば位相進み補償を実施し、新たな操舵トルクTs3とする。位相補償を1次で構成すると、位相を最大90deg進ませることができる(2次ならば180deg)。これにより、モータの目標電流から操舵トルクにゲイン−1を掛けた−Tまでの伝達特性における位相遅れを最大で90deg小さくすることができ、トルクリップルの推定精度を向上することができる。なお、本実施の形態では、ステアリングホイールを固定し、モータ電流を負の方向に流した時に出力されるトルクセンサ出力を正としている。なお、S5およびS6の処理が、図8に示すフィルタ処理器82の動作に対応する。
S7では、基準波ベクトルν[sin(nPθ) cos(nPθ)]と操舵トルクTs3から係数ベクトルφを式(7)より演算する。すなわち、図8に示すゲイン掛算器83において、基準波ベクトルνにフィードバックゲインKを掛け、さらに、掛算器84でフィルタ処理後の操舵トルクTs3を掛けたものを積分器85で時間積分し、積分器85の演算結果を係数ベクトルφとする。
Figure 2010132150
本実施の形態では、フィードバックゲインKは負の値としている。負の値の場合、係数ベクトルφはトルクリップルの振幅と、基準波に対するトルクリップルの位相差を推定することになる。したがって、式(5)に示す補償電流指令によって、トルクリップルを相殺するトルクをモータが出力し、操舵トルクの脈動を抑制することができる。
S8では、モータ回転角速度信号が閾値ω以上のため、S5〜S7に示す係数ベクトルφの演算は行わず、1未満の正数、または0であるゲインLを係数ベクトルφ(前回値)に掛けて係数ベクトルφとする。これにより、補償電流の基準波に対するトルクリップルの位相差は変更せずに、補償電流の振幅だけL倍小さくなり、前述したようにモータ回転角速度が高くトルクリップルによる操舵トルク脈動が小さい領域では、トルクリップル補償電流指令を徐々に小さくすることができる。
S9は補償電流演算器86およびゲイン87の動作に相当し、式(5)に示す演算を実施し、トルクリップル補償電流指令Icompを演算する。
このように構成されたトルクリップル補償器26によって、トルクリップルを相殺するトルクを出力するため、トルクリップルを抑制し、操舵トルクの脈動を抑制することができる。
上述のように、トルクリップル補償器を構成したが、これに限ったものではなく、他の構成で実施しても良い。
このように、本実施の形態2で示した方法であれば、実施の形態1と同様に、2種類以上の方式で推定されるモータ回転角度またはモータ回転角速度の推定値が適切な方法で切換えられることで、精度良く得られたモータ回転角度信号やモータ回転角速度信号を、トルクリップル補償やダンピング補償、慣性補償、摩擦補償などの補償制御に利用できるため、トルクリップルや収斂性、摩擦感、慣性感などを改善する効果を十分に得ることができ、運転者の感じる操舵フィーリングが良好になる、といった従来にない顕著な効果を奏することができる。
実施の形態3.
本実施の形態3では、実施の形態1および2の電流制御手段12と電流指令生成手段11の間に、図10で示すように、平滑化手段43および44を挟んだ構成とした電動パワーステアリング制御装置について述べる。説明は、実施の形態1および2との相違点についてのみ述べる。
角度平滑化処理手段43は、切換え手段34が出力したモータ回転角度信号θestに対して、平滑化処理を実行し、第二のモータ回転角度信号θest2を演算する。これを、電流指令生成手段11に、モータ回転角度信号として入力する。
また、速度平滑化処理手段44は、切換え手段34が出力したモータ回転角速度信号ωestに対して、平滑化処理を実行し、第二のモータ回転角速度信号ωest2を演算する。これを、電流指令生成手段11に、モータ回転角速度信号として入力する。
角度平滑化処理手段43および速度平滑化処理手段44における平滑化処理の具体的方法は公知のものでよく、例えば、ローパスフィルタや移動平均などが挙げられるが、これに限らず、他の手段でもよい。
モータ回転角推定手段A32およびB33による推定信号は、モータ回転角センサにより検出した信号に比べて、含まれるノイズあるいは脈動誤差が大きいことがある。特に、モータ回転角推定手段A32は、高周波周期信号の電圧指令を加算した応答で推定するので、推定結果にのるノイズあるいは脈動誤差が推定手段B33よりも大きくなりやすい。
また、電流指令生成手段11に用いるモータ回転角度信号やモータ回転角速度信号は、電流制御に用いるものと比較して、遅れが比較的大きくても、各種補償制御の効果が十分得られて、許容されることが多い。一般に、平滑化処理を行うと、信号が遅れる周波数帯域が低下して、遅れが大きくなる傾向があるが、電流指令生成手段に用いる信号には、平滑化処理が可能である。
したがって、図10のように、平滑化手段43および44により、電流指令生成手段11に利用するモータ回転角度信号やモータ回転角速度信号に対してのみ、平滑化処理を実施する構成をこの実施の形態で提案した。
この実施の形態による電動パワーステアリング制御装置ならば、電流指令生成手段11に利用するモータ回転角度とモータ回転角速度の推定信号にのみ、平滑化処理を行うので、電流制御は遅れなく実施でき、電流指令と実際の電流を精度良く追従させ、なおかつ、電流指令生成手段11に用いる信号は、ノイズや脈動を低減し滑らかになるので、トルクリップル補償やダンピング補償、慣性補償、摩擦補償などの補償制御の効果を良好に得ることが可能である。その結果、良好な操舵フィーリングを得ることができる。
実施の形態4.
本実施の形態4では、実施の形態1および2の電流制御手段12と電流指令生成手段11の間に、図11で示すように、電流指令向け切換え手段28を挟んだ構成とした電動パワーステアリング制御装置について述べる。説明は、実施の形態1および2との相違点についてのみ述べる。
電流指令向け切換え手段28は、モータ回転角速度を演算し、この演算結果に応じてモータ回転角推定手段を切換えるものであり、図11に示すように、角度切換部41Bと速度演算部42B、角度平滑化処理手段43および速度平滑化処理手段44を備えている。角度切換部41Bは、入力された第二のモータ回転角速度信号ωest2に基づいて、2つのモータ回転角度推定手段A32、B33がそれぞれ出力するモータ回転角度推定値θA、θBのうちの一方を選択し、それをモータ回転角度信号θest2として出力する。速度演算部42Bは、角度切換部41Bから出力されたモータ回転角度信号θest2を微分し、さらに、速度平滑化処理手段44により平滑化処理を行うことで、第二のモータ回転角速度信号ωest2を演算する。角度平滑化処理手段43は、切換え手段34が出力したモータ回転角度信号θestに対して、平滑化処理を実行し、第二のモータ回転角度信号θest2を演算する。
電流指令向け切換え手段28は、角度平滑化処理手段43と速度平滑化処理手段44を除く部分の詳細については、例えば特許文献1の実施例1〜5に記載のいずれかの磁極位置切換手段と同様でよい。特に、この文献の実施例4に示された方法は、2つの推定手段のモータ回転角度信号に反映する割合を速度に応じて徐々に切換えるので、切換時におけるトルク変動を抑制しスムーズに切換えることができる。なお、この反映する割合を、電流指令向け切換え手段28においては、切換え手段34と異なる割合に設定してもよい。
次に、第二のモータ回転角度信号θest2、第二のモータ回転角速度信号ωest2を、電流指令生成手段11に、それぞれモータ回転角度信号、モータ回転角速度信号として入力する。
角度平滑化処理手段43および速度平滑化処理手段44における平滑化処理の具体的方法は公知のものでよく、例えば、ローパスフィルタや移動平均などが挙げられるが、これに限らず、他の手段でもよい。
実施の形態3で述べたように、電流指令生成手段11に用いるモータ回転角度信号やモータ回転角速度信号は、電流制御に用いるものと比較して、遅れが比較的大きくても許容されることが多いので、この実施の形態4では、電流制御手段12内部の切換え手段34とは別に備えられた電流指令向け切換え手段28によって、2種の推定信号を切換えるようにしている。
この実施の形態4による電動パワーステアリング制御装置ならば、電流制御には遅れの無い推定信号を用いるので、電流指令と実際の電流を精度良く追従させることができ、なおかつ、各種補償制御に対しては電流制御とは別に電流指令向け切換え手段28を用いて、補償制御に適した切換えを実施できるので、電流指令生成手段11に用いるモータ回転角度信号およびモータ回転角速度信号は、ノイズや脈動を低減し滑らかになり、トルクリップル補償やダンピング補償、慣性補償、摩擦補償などの補償制御の効果を良好に得ることが可能である。その結果、良好な操舵フィーリングを得ることができる。
さらに、具体的に言うと、電流指令向け切換え手段28を用いれば、角度切換部41Bに用いるモータ回転角速度信号ωest2が平滑化され、ノイズや脈動が低減されているので、電流制御手段12内部の切換え手段34よりもさらに切換えを滑らかに行うことができる。したがって、電流指令生成手段11に用いるモータ回転角度信号およびモータ回転角速度信号は、ノイズや脈動を低減し滑らかになるので、トルクリップル補償やダンピング補償、慣性補償、摩擦補償などの補償制御の効果を良好に得ることが可能である。その結果、良好な操舵フィーリングを得ることができる。
この発明の実施の形態1〜4による電動パワーステアリング装置の概略構成図である。 この発明の実施の形態1および2による電動パワーステアリング制御装置を示すブロック線図である。 この発明の実施の形態1および2による電流制御手段12を示すブロック線図である。 この発明の実施の形態1による電流指令生成手段11を示すブロック線図である。 この発明の実施の形態1〜4による切換え手段34を示すブロック線図である。 この発明の実施の形態1によるトルクリップル補償器を示すブロック線図である。 この発明の実施の形態2による電流指令生成手段11を示すブロック線図である。 この発明の実施の形態2によるトルクリップル補償器を示すブロック線図である。 この発明の実施の形態2によるトルクリップル補償器を示すフローチャートである。 この発明の実施の形態3による電動パワーステアリング制御装置の要部を示すブロック線図である。 この発明の実施の形態4による電動パワーステアリング制御装置の要部を示すブロック線図である。
符号の説明
5 ブラシレスモータ、10 電動パワーステアリング制御装置、11 電流指令生成手段、12 電流制御手段、23 ダンピング補償器、24 摩擦補償器、25 慣性補償器、26 トルクリップル補償器、28 電流指令向け切換え手段、32 モータ回転角推定手段A、33 モータ回転角推定手段B、34 切換え手段、43 角度平滑化処理手段、44 速度平滑化処理手段。

Claims (5)

  1. アシストトルクの目標値に相当する電流指令を算出する電流指令生成手段と、
    モータ回転角センサを備えないブラシレスモータの各相に流れる電流を検出して電流信号を出力する電流検出部と、
    前記電流指令及び前記電流信号に応じて各相の電圧指令とモータ回転角度信号及びモータ回転角速度信号を算出する電流制御手段と
    を備え、
    前記電流指令に基づいて前記ブラシレスモータを制御し、運転者の操舵を補助するモータトルクを発生させる電動パワーステアリング制御装置であって、
    前記電流指令生成手段は、
    前記モータ回転角速度信号に基づいてダンピング補償電流指令を算出するダンピング補償器と、
    前記モータ回転角速度信号を微分することで得られるモータ回転角加速度に基づいて慣性補償電流指令を算出する慣性補償器と、
    前記モータ回転角速度信号に基づいて摩擦補償電流指令を算出する摩擦補償器と
    を有し、
    前記補償器のいずれか1つ以上の補償電流指令と、操舵トルクに基づいて算出されるアシスト電流指令とに応じて電流指令を算出し、
    前記電流制御手段は、
    異なる2つの方法でそれぞれモータ回転角度推定値を算出する2種類のモータ回転角推定手段を有し、
    モータ回転角速度に基づいて2つのモータ回転角度推定手段が出力するモータ回転角度推定値のうちの一方を選択してモータ回転角度信号を算出し、算出されたモータ回転角度信号とそれを微分して得られるモータ回転角速度信号とを、前記電流指令生成手段のいずれかの補償器へのモータ回転角度信号またはモータ回転角速度信号として与える
    ことを特徴とする電動パワーステアリング制御装置。
  2. 請求項1に記載の電動パワーステアリング制御装置において、
    前記電流指令生成手段は、前記モータ回転角速度信号または前記モータ回転角度信号に基づいてトルクリップル補償電流指令を算出するトルクリップル補償器をさらに有し、トルクリップル補償器を含めたいずれか1つ以上の補償電流指令と、操舵トルクに基づいて算出されるアシスト電流指令とに応じて電流指令を算出する
    ことを特徴とする電動パワーステアリング制御装置。
  3. 請求項1または2に記載の電動パワーステアリング制御装置において、
    前記電流制御手段から前記電流指令生成手段に与えられるモータ回転角度信号またはモータ回転角速度信号を平滑化する平滑化処理手段をさらに備えた
    ことを特徴とする電動パワーステアリング制御装置。
  4. 請求項1または2に記載の電動パワーステアリング制御装置において、
    前記2つのモータ回転角推定手段をモータ回転角速度に応じて切換え、前記ブラシレスモータの回転角度を推定しモータ回転角度信号を算出する電流指令向け切換え手段を備え、
    前記電流指令向け切換え手段は、算出したモータ回転角度信号またはそれを微分して得られるモータ回転角速度信号を、前記補償器のいずれかに対してモータ回転角度あるいはモータ回転角速度として与える
    ことを特徴とする電動パワーステアリング制御装置。
  5. 請求項4に記載の電動パワーステアリング制御装置において、
    前記電流指令向け切換え手段は、モータ回転角速度を平滑化する平滑化処理手段を備え、前記2つのモータ回転角推定手段を前記平滑化されたモータ回転角速度に応じて切換え、前記ブラシレスモータの回転角度を推定しモータ回転角度信号を算出する
    ことを特徴とする電動パワーステアリング制御装置。
JP2008310282A 2008-12-04 2008-12-04 電動パワーステアリング制御装置 Active JP5188376B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008310282A JP5188376B2 (ja) 2008-12-04 2008-12-04 電動パワーステアリング制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008310282A JP5188376B2 (ja) 2008-12-04 2008-12-04 電動パワーステアリング制御装置

Publications (2)

Publication Number Publication Date
JP2010132150A true JP2010132150A (ja) 2010-06-17
JP5188376B2 JP5188376B2 (ja) 2013-04-24

Family

ID=42343924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008310282A Active JP5188376B2 (ja) 2008-12-04 2008-12-04 電動パワーステアリング制御装置

Country Status (1)

Country Link
JP (1) JP5188376B2 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014221586A (ja) * 2013-05-13 2014-11-27 日産自動車株式会社 車両用操舵制御装置及び車両用操舵制御方法
KR101557967B1 (ko) 2013-10-22 2015-10-06 현대모비스 주식회사 Mdps 마찰 보상 로직 및 이를 이용한 마찰 보상 방법
JP2016088106A (ja) * 2014-10-29 2016-05-23 株式会社ジェイテクト 電動パワーステアリング装置
CN111315635A (zh) * 2017-10-18 2020-06-19 Zf汽车英国有限公司 电力辅助转向系统
JP2020175693A (ja) * 2019-04-15 2020-10-29 日本精工株式会社 車両用操向装置
WO2023181521A1 (ja) * 2022-03-21 2023-09-28 日立Astemo株式会社 制御装置、車両挙動制御装置および力発生機構システム

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005262936A (ja) * 2004-03-17 2005-09-29 Hitachi Ltd 電動パワーステアリング装置
JP2007261520A (ja) * 2006-03-29 2007-10-11 Jtekt Corp 電動パワーステアリング装置
JP2007307940A (ja) * 2006-05-16 2007-11-29 Jtekt Corp 電動パワーステアリング装置
JP4033030B2 (ja) * 2003-04-21 2008-01-16 株式会社ジェイテクト 電動パワーステアリング装置
JP2008174013A (ja) * 2007-01-16 2008-07-31 Mitsubishi Motors Corp パワーステアリング機構の制御装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4033030B2 (ja) * 2003-04-21 2008-01-16 株式会社ジェイテクト 電動パワーステアリング装置
JP2005262936A (ja) * 2004-03-17 2005-09-29 Hitachi Ltd 電動パワーステアリング装置
JP2007261520A (ja) * 2006-03-29 2007-10-11 Jtekt Corp 電動パワーステアリング装置
JP2007307940A (ja) * 2006-05-16 2007-11-29 Jtekt Corp 電動パワーステアリング装置
JP2008174013A (ja) * 2007-01-16 2008-07-31 Mitsubishi Motors Corp パワーステアリング機構の制御装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014221586A (ja) * 2013-05-13 2014-11-27 日産自動車株式会社 車両用操舵制御装置及び車両用操舵制御方法
KR101557967B1 (ko) 2013-10-22 2015-10-06 현대모비스 주식회사 Mdps 마찰 보상 로직 및 이를 이용한 마찰 보상 방법
JP2016088106A (ja) * 2014-10-29 2016-05-23 株式会社ジェイテクト 電動パワーステアリング装置
CN111315635A (zh) * 2017-10-18 2020-06-19 Zf汽车英国有限公司 电力辅助转向系统
JP2020175693A (ja) * 2019-04-15 2020-10-29 日本精工株式会社 車両用操向装置
JP7153239B2 (ja) 2019-04-15 2022-10-14 日本精工株式会社 車両用操向装置
WO2023181521A1 (ja) * 2022-03-21 2023-09-28 日立Astemo株式会社 制御装置、車両挙動制御装置および力発生機構システム

Also Published As

Publication number Publication date
JP5188376B2 (ja) 2013-04-24

Similar Documents

Publication Publication Date Title
JP5130716B2 (ja) モータ制御装置および電気式動力舵取装置
JP4737402B2 (ja) 電動パワーステアリング装置
JP5435252B2 (ja) 車両用操舵装置
JP6324627B2 (ja) 交流回転機の制御装置および電動パワーステアリングの制御装置
JP5561516B2 (ja) モータ制御装置および車両用操舵装置
WO2010001579A1 (ja) モータ制御装置およびそれを備えた車両用操舵装置
EP2779414A2 (en) Motor control system having bandwidth compensation
JP2000092887A (ja) 回生制動装置
JPWO2005035333A1 (ja) 電動パワーステアリング装置
JP5408469B2 (ja) モータ制御装置
JP5188376B2 (ja) 電動パワーステアリング制御装置
JP2014150604A (ja) 電気自動車用同期モータの制御装置
JP5376213B2 (ja) モータ制御装置
JPH09308300A (ja) モータ制御装置及び電気車用制御装置
JP5313553B2 (ja) 電動パワーステアリング制御装置
WO2005069475A1 (ja) 電動パワーステアリング装置の制御装置
JP5397664B2 (ja) モータ制御装置
JP5050387B2 (ja) モーター制御装置
JP4680754B2 (ja) Dcブラシレスモータのロータ角度推定方法及びdcブラシレスモータの制御装置
JP5444983B2 (ja) 回転機の制御装置
JP6641053B1 (ja) 電動機制御装置および電動パワーステアリング装置
JP2008068666A (ja) 電動パワーステアリング装置
JP2005119417A (ja) 電動パワーステアリング装置の制御装置
JP5546754B2 (ja) 電気車制御装置
JP5408475B2 (ja) 車両用操舵装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101021

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120619

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130122

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160201

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5188376

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250