JP2010127564A - Heat source system - Google Patents
Heat source system Download PDFInfo
- Publication number
- JP2010127564A JP2010127564A JP2008304122A JP2008304122A JP2010127564A JP 2010127564 A JP2010127564 A JP 2010127564A JP 2008304122 A JP2008304122 A JP 2008304122A JP 2008304122 A JP2008304122 A JP 2008304122A JP 2010127564 A JP2010127564 A JP 2010127564A
- Authority
- JP
- Japan
- Prior art keywords
- flow rate
- heat medium
- pump
- control
- pressure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000001514 detection method Methods 0.000 claims abstract description 43
- 230000007423 decrease Effects 0.000 claims description 39
- 230000003247 decreasing effect Effects 0.000 claims description 15
- 238000010992 reflux Methods 0.000 claims description 9
- 238000011144 upstream manufacturing Methods 0.000 claims description 2
- 238000010438 heat treatment Methods 0.000 abstract description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 62
- 239000000498 cooling water Substances 0.000 description 9
- 238000001816 cooling Methods 0.000 description 6
- 238000005265 energy consumption Methods 0.000 description 5
- 238000000034 method Methods 0.000 description 4
- 238000004364 calculation method Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 238000004088 simulation Methods 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 2
- 238000004378 air conditioning Methods 0.000 description 1
- 239000012267 brine Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
Images
Landscapes
- Other Air-Conditioning Systems (AREA)
- Air Conditioning Control Device (AREA)
Abstract
Description
本発明は、空調設備などで用いる熱源システムに関し、詳しくは、熱源機で冷却又は加熱した熱媒を負荷装置に供給する熱媒送給路に複数の熱媒ポンプを並列配置で介装するとともに、負荷装置が必要とする熱媒流量である負荷流量の変化に応じて熱媒ポンプの運転台数を変更するポンプ制御手段を装備した熱源システムに関する。 The present invention relates to a heat source system used in an air conditioner or the like, and more specifically, a plurality of heat medium pumps are arranged in parallel in a heat medium supply path for supplying a heat medium cooled or heated by a heat source machine to a load device. The present invention relates to a heat source system equipped with pump control means for changing the number of operating heat medium pumps in accordance with a change in load flow rate that is a heat medium flow rate required by a load device.
従来、この種の熱源システムでは熱負荷の増減に伴う負荷流量の変化に応じて熱媒ポンプの運転台数を変更するのに、次の(イ)〜(ハ)の如き制御方式を採っていた(特許文献1参照)。 Conventionally, in this type of heat source system, the following control methods (a) to (c) have been adopted to change the number of operating heat medium pumps according to the change in the load flow rate accompanying the increase or decrease of the heat load. (See Patent Document 1).
(イ)図5に示すように各運転台数Nでの熱媒ポンプ運転において運転熱媒ポンプの夫々を最大出力(一般的には定格最大出力)で運転した場合における熱媒送給流量Qと熱媒送給圧力Pとの相関を示す運転台数N毎のポンプ性能曲線L1〜L3(即ち、運転状態にある熱媒ポンプの全体を1台のポンプと見なしたときの流量と圧力に関するポンプ性能曲線)を設定する。 (A) As shown in FIG. 5, the heat medium feed flow rate Q when each of the operation heat medium pumps is operated at the maximum output (generally the rated maximum output) in the heat medium pump operation with each operation number N. Pump performance curves L1 to L3 for each operating number N showing a correlation with the heat medium supply pressure P (that is, pumps related to flow rate and pressure when the entire heat medium pump in the operating state is regarded as one pump) Performance curve).
(ロ)負荷装置に供給する熱媒の送給圧力制御として、各運転台数Nでの熱媒ポンプ運転において負荷装置への熱媒送給圧力Pを一定の目標圧力Pmsに調整するいわゆる吐出圧一定制御を実施することに対し、上記運転台数N毎のポンプ性能曲線L1〜L3上で吐出圧一定制御の目標圧力Pms(一定)に対応する流量値Qs′(Qs1′〜Qs3′)を閾値流量とする。 (B) As a supply pressure control of the heat medium supplied to the load device, a so-called discharge pressure that adjusts the heat medium supply pressure P to the load device to a constant target pressure Pms in the heat medium pump operation with each operation number N. In contrast to the constant control, the flow rate value Qs ′ (Qs1 ′ to Qs3 ′) corresponding to the target pressure Pms (constant) of the constant discharge pressure control on the pump performance curves L1 to L3 for each of the operating units N is a threshold value. The flow rate.
(ハ)負荷流量Qを検出する流量検出手段の検出情報に基づき、上記閾値流量Qs′の各々について、負荷流量Qが閾値流量Qs′よりも減少すると熱媒ポンプの運転台数Nを一台減少させ、かつ、負荷流量Qが閾値流量Qs′よりも増加すると熱媒ポンプの運転台数Nを一台増加させる。
換言すれば、負荷流量Qが各閾値流量Qs′よりも減少するごとに熱媒ポンプの運転台数Nを一台ずつ減少させ、かつ、負荷流量Qが各閾値流量Qs′よりも増加するごとに熱媒ポンプの運転台数Nを一台ずつ増加させる。
(C) Based on the detection information of the flow rate detection means for detecting the load flow rate Q, for each of the threshold flow rates Qs ′, when the load flow rate Q decreases below the threshold flow rate Qs ′, the number N of operating heat medium pumps is decreased by one. When the load flow rate Q increases above the threshold flow rate Qs', the number N of operating heat medium pumps is increased by one.
In other words, every time the load flow rate Q decreases below each threshold flow rate Qs ′, the number N of operating heat medium pumps is decreased by one, and every time the load flow rate Q increases above each threshold flow rate Qs ′. Increase the operating number N of heat medium pumps one by one.
つまり、この従来方式では、熱媒送給圧力Pを一定値Pmsとする圧力条件下で熱媒ポンプの夫々を最大出力で運転したときに得られる熱媒ポンプ夫々の熱媒送給流量ΔQごとの配分(一般的には等間隔配分)で閾値流量Qs′(Qs1′〜Qs3′)を設定し、これら閾値流量Qs′を台数変更指標として負荷流量Qの変化に応じ熱媒ポンプの運転台数Nを変更していた。 That is, in this conventional system, each heat medium pump flow rate ΔQ of each heat medium pump obtained when each of the heat medium pumps is operated at the maximum output under a pressure condition in which the heat medium supply pressure P is a constant value Pms. The threshold flow rate Qs ′ (Qs1 ′ to Qs3 ′) is set by the distribution (generally at regular intervals), and the number of operating heat medium pumps according to the change of the load flow rate Q using these threshold flow rates Qs ′ as the number change index N was changed.
また、上記の吐出圧一定制御に代え、送給圧力制御として、同図5に示すように負荷流量Qと、その負荷流量Qの熱媒を負荷装置に供給するのに必要な送給圧力Pとの相関を示すポンプ制御線Mを配管抵抗等も考慮した状態で設定し、このポンプ制御線M上で各時点の負荷流量Q(現状流量)に対応する圧力値を目標圧力Pmとして、熱媒送給圧力Pの検出情報に基づき負荷装置への熱媒送給圧力Pを各時点の目標圧力Pm(即ち、負荷流量Qの変化に伴い変化する目標圧力)に調整する改良システムも提案されている(特許文献2参照)。 Further, instead of the above-described constant discharge pressure control, as supply pressure control, as shown in FIG. 5, a load flow rate Q and a supply pressure P necessary to supply the load medium with the heating medium of the load flow rate Q are provided. The pump control line M showing the correlation with the pressure is set in consideration of the pipe resistance, etc., and the pressure value corresponding to the load flow rate Q (current flow rate) at each time point on the pump control line M is set as the target pressure Pm. An improved system for adjusting the heat medium supply pressure P to the load device to the target pressure Pm at each time point (that is, the target pressure that changes as the load flow rate Q changes) based on the detection information of the medium supply pressure P is also proposed. (See Patent Document 2).
しかし、この改良システムにしても熱媒ポンプの運転台数制御ついては前述の従来方式を踏襲しており、熱媒送給圧力Pを一定値Pmsとする圧力条件下で熱媒ポンプの夫々を最大出力で運転したときに得られる熱媒ポンプ夫々の熱媒送給流量ΔQごとの配分で設定した閾値流量Qs′(Qs1′〜Qs3′)を台数変更指標として、負荷流量Qの変化に応じ熱媒ポンプの運転台数Nを変更していた。 However, even in this improved system, the above-mentioned conventional method is followed for controlling the number of operating heat medium pumps, and the maximum output of each of the heat medium pumps is achieved under pressure conditions where the heat medium supply pressure P is a constant value Pms. The threshold flow rate Qs ′ (Qs1 ′ to Qs3 ′) set by the distribution for each heating medium feed flow rate ΔQ of the heating medium pump obtained when operating with the heat medium pump is used as the number change index, and the heating medium according to the change in the load flow rate Q The number of pumps N was changed.
しかし、上記従来方式のポンプ運転台数制御では、閾値流量Qs′(Q1′〜Q3′)と負荷流量Qとの比較により決定される熱媒ポンプの運転台数Nより仮に少ない運転台数N−1で熱媒ポンプを運転しても、流量面及び圧力面の夫々について何ら問題なく負荷装置に熱媒を供給できる状況(即ち、閾値流量Qs′と負荷流量Qとの比較により決定される運転台数Nが実際に必要なポンプ運転台数よりも過大となる状況)が頻繁に生じていた。 However, in the above-described conventional control of the number of operating pumps, the operating number N−1 is temporarily smaller than the number N of operating heat medium pumps determined by comparing the threshold flow rate Qs ′ (Q1 ′ to Q3 ′) with the load flow rate Q. Even when the heat medium pump is operated, the heat medium can be supplied to the load device without any problem on both the flow surface and the pressure surface (that is, the operating number N determined by comparing the threshold flow rate Qs ′ and the load flow rate Q). However, there were frequent occurrences of situations where the number of pumps actually exceeded that required.
そして、このように必要以上の運転台数Nで熱媒ポンプが運転されると、個々の出力を絞った状態で複数の熱媒ポンプを運転することになってポンプ効率の低下を招いたり、また、余剰のポンプ出力が大きくなって熱媒ポンプの出力ロスが増大する、あるいはまた、個々の熱媒ポンプの運転で生じる不可避的なエネルギロスの合計が増大するといったことを招き、この点、省エネルギ化を図る上で改善の余地があった。 And when the heat medium pump is operated with the number N of operation more than necessary as described above, a plurality of heat medium pumps are operated in a state where the individual outputs are reduced, resulting in a decrease in pump efficiency. In this respect, the excess pump output is increased and the output loss of the heat medium pump is increased, or the total inevitable energy loss caused by the operation of the individual heat medium pumps is increased. There was room for improvement in achieving energy.
この実情に鑑み、本発明の主たる課題は、熱媒ポンプの運転台数変更において合理的な制御形態を採ることで、上記の如き問題を解消して省エネルギ化を促進する点にある。 In view of this situation, the main problem of the present invention is to eliminate the above problems and promote energy saving by adopting a rational control mode in changing the number of operating heat medium pumps.
本発明の第1特徴構成は熱源システムに係り、その特徴は、
熱源機で冷却又は加熱した熱媒を負荷装置に供給する熱媒送給路に複数の熱媒ポンプを並列配置で介装するとともに、
前記負荷装置が必要とする熱媒流量である負荷流量の変化に応じて前記熱媒ポンプの運転台数を変更するポンプ制御手段を装備した熱源システムであって、
各運転台数での熱媒ポンプ運転において運転熱媒ポンプの夫々を最大出力で運転した場合における熱媒送給流量と熱媒送給圧力との相関を示す運転台数毎のポンプ性能曲線を設定するとともに、
前記負荷流量とその負荷流量の熱媒を前記負荷装置に供給するのに必要な送給圧力との相関を示すポンプ制御線を設定して、
これら運転台数毎のポンプ性能曲線とポンプ制御線との各交点における流量値又はその近傍流量値の夫々を閾値流量として設定し、
これらの設定に対して前記ポンプ制御手段は、ポンプ運転台数制御として、負荷流量を検出する流量検出手段の検出情報に基づき、
前記閾値流量の各々について、負荷流量が閾値流量よりも減少すると前記熱媒ポンプの運転台数を一台減少させ、かつ、負荷流量が閾値流量よりも増加すると前記熱媒ポンプの運転台数を一台増加させる構成にしてある点にある。
The first characteristic configuration of the present invention relates to a heat source system, and the characteristic is as follows:
While interposing a plurality of heat medium pumps in parallel arrangement in the heat medium feed path for supplying the heat medium cooled or heated by the heat source machine to the load device,
A heat source system equipped with pump control means for changing the number of operating heat medium pumps according to a change in load flow rate that is a heat medium flow rate required by the load device,
Set the pump performance curve for each number of operating units that shows the correlation between the heat medium supply flow rate and the heat medium supply pressure when each of the operating heat medium pumps is operated at the maximum output in the operation of the heat medium pump with each operating number. With
Setting a pump control line indicating the correlation between the load flow rate and the supply pressure required to supply the load medium with the heat medium of the load flow rate,
Each of the flow rate value at each intersection of the pump performance curve and the pump control line for each number of operating units or its neighboring flow rate value is set as the threshold flow rate,
With respect to these settings, the pump control means, based on the detection information of the flow rate detection means for detecting the load flow rate, as the pump operation number control,
For each of the threshold flow rates, when the load flow rate decreases below the threshold flow rate, the number of operating heat medium pumps decreases by one, and when the load flow rate increases above the threshold flow rate, the number of operating heat medium pumps decreases by one. It is in the point which is made the structure to increase.
つまり、この構成において(図2参照)、上記した運転台数N毎のポンプ性能曲線L1〜L3とポンプ制御線Mとの交点X1〜X3の夫々は、各運転台数N(N=1,2,3)での熱媒ポンプ運転において運転熱媒ポンプの夫々を最大出力運転する状況下でポンプ制御線Mが示す流量・圧力相関(即ち、負荷流量Qとその負荷流量Qの熱媒を負荷装置に供給するのに必要な送給圧力との相関)を満足することができる運転台数毎の上限的なポンプ運転状態を示す点となる。 That is, in this configuration (see FIG. 2), each of the intersections X1 to X3 between the pump performance curves L1 to L3 and the pump control line M for each of the operating units N described above corresponds to each operating unit N (N = 1, 2, In the heat medium pump operation in 3), the flow rate / pressure correlation indicated by the pump control line M under the condition that each of the operation heat medium pumps is operated at maximum output (that is, the load flow rate Q and the heat medium of the load flow rate Q are used as the load device) (Correlation with the supply pressure necessary for supplying to the pump) is a point indicating the upper limit pump operating state for each number of operating units.
したがって、これら各交点X1〜X3における流量値Qs(Qs1〜Qs3)の夫々を閾値流量として、上記の如く、これら閾値流量Qsの各々について、負荷流量Qが閾値流量Qsよりも減少すると熱媒ポンプの運転台数Nを一台減少させ、かつ、負荷流量Qが閾値流量Qsよりも増加すると熱媒ポンプの運転台数Nを一台増加させるようにすれば、負荷流量Qの変化に応じた熱媒ポンプの運転台数変更において必要以上の運転台数Nで熱媒ポンプが運転されるといった状況が生じるのを回避しながら、負荷流量Qの熱媒を負荷装置に対して適切に供給することができる。 Accordingly, when each of the flow rate values Qs (Qs1 to Qs3) at the intersections X1 to X3 is set as a threshold flow rate, as described above, when the load flow rate Q decreases below the threshold flow rate Qs for each of the threshold flow rates Qs, the heat medium pump If the operating number N of the heat medium pump is decreased by one and the operating number N of the heat medium pump is increased by one when the load flow rate Q increases above the threshold flow rate Qs, the heat medium corresponding to the change in the load flow rate Q is obtained. While avoiding a situation in which the heat medium pump is operated with an operation number N more than necessary in changing the number of pumps to be operated, the heat medium with the load flow rate Q can be appropriately supplied to the load device.
即ち、熱媒送給圧力Pを一定値Pmsとする圧力条件下で熱媒ポンプの夫々を最大出力で運転したときに得られる熱媒ポンプ夫々の熱媒送給流量ΔQごとの配分で台数変更指標としての閾値流量Qs′(Qs1′〜Qs3′)を設定していた先述の従来方式では(図5参照)、閾値流量Qs′と負荷流量Qとの比較により決定される熱媒ポンプの運転台数Nより一台少ない運転台数で熱媒ポンプを運転しても、流量面及び圧力面の夫々について何ら問題なく負荷装置に熱媒を供給できる運転台数過大状況が図2におけるQs1〜Qs1′の流量域、及び、Qs2〜Qs2′の流量域の夫々で生じており、これに対し上記構成によれば、このような状況が生じるのを回避することができて、熱媒ポンプの運転台数Nを各時点での可能な範囲で確実に最小化することができ、これにより、省エネルギ化を促進することができる。 That is, the number of heat medium pumps obtained by operating each heat medium pump at the maximum output under a pressure condition where the heat medium supply pressure P is a constant value Pms is changed according to the distribution for each heat medium supply flow rate ΔQ. In the above-described conventional method in which the threshold flow rate Qs ′ (Qs1 ′ to Qs3 ′) is set as an index (see FIG. 5), the operation of the heat medium pump is determined by comparing the threshold flow rate Qs ′ with the load flow rate Q. Even if the heat medium pump is operated with an operation number one less than the number N, an excessive number of operation units can supply the heat medium to the load device without any problem on both the flow rate side and the pressure side, as shown by Qs1 to Qs1 ′ in FIG. It occurs in each of the flow rate range and the flow rate range of Qs2 to Qs2 ′. On the other hand, according to the above configuration, such a situation can be avoided and the number N of operating heat medium pumps can be avoided. To the extent possible at each time point It can be minimized, thereby, it is possible to promote energy saving.
なお、上記例では3台の熱媒ポンプを装備する場合を示したが、熱媒送給路に並列配置で介装する熱媒ポンプの台数は3台に限らず2台以上の複数であれば何台であってもよく、また、それら複数の熱媒ポンプは最大出力等の仕様が互いに異なるものであってもよい。 In the above example, three heat medium pumps are provided. However, the number of heat medium pumps arranged in parallel in the heat medium supply path is not limited to three and may be two or more. Any number of units may be used, and the plurality of heat medium pumps may have different specifications such as maximum output.
装備した複数の熱媒ポンプの全てを運転台数変更の対象ポンプとするに限らず、装備した熱媒ポンプのうちの一部の複数ポンプについてはシステム運転時において常時運転し、その他の複数ポンプのみを運転台数変更の対象とするようにしてもよい。 Not all of the equipped multiple heat medium pumps are subject to change in the number of operating units, but some of the equipped heat medium pumps are always operated during system operation, and only other multiple pumps May be the target of changing the number of operating units.
運転台数N毎のポンプ性能曲線L1〜L3は、運転熱媒ポンプの夫々を定格の最大出力で運転した場合における流量・圧力相関を示すもの、あるいは、運転熱媒ポンプの夫々を実質的な最大出力で運転した場合における流量・圧力相関を示すもののいずれであってもよい。 The pump performance curves L1 to L3 for each operation number N indicate the flow rate / pressure correlation when each of the operation heat medium pumps is operated at the rated maximum output, or each of the operation heat medium pumps is substantially maximum. Any of those showing a flow rate / pressure correlation in the case of operation with output may be used.
ポンプ制御線Mは実測により求めることが望ましいが、システムの実施を容易にするため、ポンプ制御線Mとしてシミュレートや演算により求めた近似的な曲線、折れ線、直線などを用いてもよい。また、ポンプ制御線Mとしてシミュレートや演算により求めた近似的なものを採用する場合、求めたポンプ制御線Mを実測データ等に基づき補正した上で使用するのが望ましい。 Although it is desirable to obtain the pump control line M by actual measurement, an approximate curve, a broken line, a straight line, or the like obtained by simulation or calculation may be used as the pump control line M in order to facilitate the implementation of the system. Further, when an approximate one obtained by simulation or calculation is adopted as the pump control line M, it is desirable to use the pump control line M after correcting the obtained pump control line M based on actual measurement data or the like.
運転台数N毎のポンプ性能曲線L1〜L3、ポンプ制御線M、並びに、それらの交点X1〜X3は図上に描いたものである必要はなく、ポンプ制御手段が式や座標としてのみ認識するものであってもよく、また、これらポンプ性能曲線L1〜L3やポンプ制御線M、あるいは、それらの交点X1〜X3や閾値流量Qs(Qs1〜Qs3)の夫々は、予め決定したものを初期設定的な入力によりポンプ制御手段に記憶させる方式、あるいは、所要データの入力によりポンプ制御手段に演算させる方式のいずれを採用してもよい。 The pump performance curves L1 to L3, the pump control lines M, and their intersections X1 to X3 for each number of operating units N do not have to be drawn on the figure, and are recognized only by the pump control means as equations and coordinates. In addition, the pump performance curves L1 to L3, the pump control line M, or their intersections X1 to X3 and the threshold flow rate Qs (Qs1 to Qs3) are set to default values. Either a method of storing in the pump control means by simple input or a method of causing the pump control means to calculate by inputting required data may be adopted.
台数変更指標としての閾値流量Qs(Qs1〜Qs3)は、運転台数N毎のポンプ性能曲線L1〜L3とポンプ制御線Mとの各交点X1〜X3における流量値と必ずしも厳密に合致させる必要はなく、例えば、安全率を見込んで各交点X1〜X3における流量値よりも若干小さい流量値を閾値流量Qsにしたり、また逆に、各熱媒ポンプの実質の最大出力が定格の最大出力よりも大きいことを安全分として各交点X1〜X3における流量値よりも若干大きい流量値を閾値流量Qsにするなど、各交点X1〜X3における流量値の近傍流量値を閾値流量Qsにしてもよい。 The threshold flow rate Qs (Qs1 to Qs3) as the number change index does not necessarily exactly match the flow rate values at the intersections X1 to X3 between the pump performance curves L1 to L3 and the pump control lines M for each number N of operating units. For example, the flow rate value slightly smaller than the flow rate value at each of the intersections X1 to X3 is set to the threshold flow rate Qs in anticipation of the safety factor, or conversely, the actual maximum output of each heat medium pump is larger than the rated maximum output. For example, a flow rate value slightly larger than the flow rate value at each of the intersection points X1 to X3 may be set as the threshold flow rate Qs, and the flow rate value near the flow rate value at each of the intersection points X1 to X3 may be set as the threshold flow rate Qs.
負荷流量Qを検出する流量検出手段は、負荷装置における熱媒流量Qを直接的に検出するもの、あるいは、間接的に検出するもののいずれであってもよく、また、その検出方式の種々のものを採用することができる。 The flow rate detecting means for detecting the load flow rate Q may be either one that directly detects the heat medium flow rate Q in the load device or one that is indirectly detected, and various detection methods thereof. Can be adopted.
本発明の第2特徴構成は、第1特徴構成の実施に好適な実施形態を特定するものであり、その特徴は、
前記ポンプ制御手段は、前記ポンプ運転台数制御とともに、負荷流量を検出する流量検出手段の検出情報に基づき運転熱媒ポンプのうちの少なくとも1台の熱媒ポンプの出力を負荷流量の変化に応じて調整するポンプ出力制御を実行する構成にしてある点にある。
The second feature configuration of the present invention specifies an embodiment suitable for the implementation of the first feature configuration.
The pump control means outputs the output of at least one heat medium pump of the operation heat medium pumps according to the change of the load flow rate based on the detection information of the flow rate detection means for detecting the load flow rate together with the pump operation number control. The pump output control to be adjusted is executed.
つまり、この構成によれば、前記ポンプ運転台数制御に加え、運転熱媒ポンプのうちの少なくとも1台の熱媒ポンプの出力を負荷流量Qの変化に応じて調整するので、ある運転台数Nでの熱媒ポンプ運転において運転熱媒ポンプの夫々を最大出力で運転する上限側の閾値流量Qs(即ち、現状の運転台数よりも熱媒ポンプの運転台数を一台増加させる側の台数変更指標となる閾値流量Qs)よりも負荷流量Qが減少した状態では、少なくとも1台の運転熱媒ポンプの出力が最大出力よりも低下側に調整され、その分、運転熱媒ポンプ全体としての出力が低下する。 That is, according to this configuration, in addition to the pump operation number control, the output of at least one heat medium pump of the operation heat medium pumps is adjusted according to the change in the load flow rate Q. In the heat medium pump operation, the upper threshold flow rate Qs for operating each of the operation heat medium pumps at the maximum output (that is, the number change index on the side that increases the number of operation of the heat medium pump by one from the current operation number) In the state where the load flow rate Q is reduced from the threshold flow rate Qs), the output of at least one operating heat medium pump is adjusted to the lower side than the maximum output, and the output of the entire operating heat medium pump is reduced accordingly. To do.
即ち、各運転台数Nでの熱媒ポンプ運転において運転熱媒ポンプを常に最大出力で運転するのに比べ、上記の出力低下分だけ運転熱媒ポンプ全体としての消費エネルギを低減することができ、これにより、熱媒ポンプの運転台数Nを各時点での可能な範囲で確実に最小化し得る前記ポンプ運転台数制御と相まって、省エネルギ化を一層効果的に促進することができる。 That is, compared with always operating the operating heat medium pump at the maximum output in the operation of the heat medium pump with each operating number N, the energy consumption of the entire operating heat medium pump can be reduced by the amount of the above output reduction, Thereby, energy saving can be promoted more effectively, coupled with the above-mentioned pump operation number control that can reliably minimize the number N of operating heat medium pumps within a possible range at each time point.
なお、運転熱媒ポンプの出力を調整するには、負荷流量Qの変化に応じて運転熱媒ポンプの出力を連続的に変更する調整形態あるいは段階的に変更する調整形態のいずれを採用してもよいが、いずれにしても前記ポンプ制御線Mを出力調整の基準線とする形態で負荷流量Qの変化に応じて運転熱媒ポンプの出力を調整するのが望ましい。 In order to adjust the output of the operation heat medium pump, either an adjustment mode in which the output of the operation heat medium pump is continuously changed in accordance with a change in the load flow rate Q or an adjustment mode in which the output is changed step by step is adopted. However, in any case, it is desirable to adjust the output of the operating heat medium pump according to the change of the load flow rate Q in the form in which the pump control line M is the reference line for output adjustment.
負荷流量Qの変化に応じた運転熱媒ポンプの出力調整は、ポンプ運転台数制御による各運転台数Nでの熱媒ポンプ運転の全てについて実施するに限らず、各運転台数Nでの熱媒ポンプ運転のうちの一部の熱媒ポンプ運転についてのみ実施するようにしてもよい。 The output adjustment of the operation heat medium pump according to the change of the load flow rate Q is not limited to the operation of all the heat medium pump operations at each operation number N by the pump operation number control, but the heat medium pump at each operation number N You may make it implement only about the one part heat medium pump driving | operation of driving | operation.
また、運転熱媒ポンプの出力を調整するには、インバータ制御(周波数制御)によるポンプ回転数の調整を初め、種々の出力調整方式を採用することができる。 In order to adjust the output of the operating heat medium pump, various output adjustment methods can be employed, including adjustment of the pump rotation speed by inverter control (frequency control).
この構成において用いる流量検出手段は、負荷装置における熱媒流量Qを直接的に検出するもの、あるいは、間接的に検出するもののいずれにしても種々の検出方式のものを採用することができ、また、第1特徴構成の実施において用いる流量検出手段を兼用するもの、あるいは、それとは別個のもののいずれであってもよい。 As the flow rate detection means used in this configuration, various detection methods can be adopted regardless of whether the flow rate Q in the load device is directly detected or indirectly detected. The flow rate detecting means used in the implementation of the first characteristic configuration may be used, or may be a separate one.
本発明の第3特徴構成は、第2特徴構成の実施に好適な実施形態を特定するものであり、その特徴は、
前記ポンプ制御手段は、前記ポンプ出力制御として、
前記負荷装置への熱媒送給圧力を検出する圧力検出手段の検出情報に基づき運転熱媒ポンプのうちの少なくとも1台の熱媒ポンプの出力を調整して、前記負荷装置への熱媒送給圧力を目標圧力に調整する送給圧力制御と、
前記流量検出手段の検出情報に基づき前記送給圧力制御の目標圧力を負荷流量の変化に応じて変更する目標変更制御とを実行する構成にしてある点にある。
The third feature configuration of the present invention specifies an embodiment suitable for the implementation of the second feature configuration.
The pump control means, as the pump output control,
Based on the detection information of the pressure detection means for detecting the heat medium supply pressure to the load device, the output of at least one heat medium pump of the operation heat medium pumps is adjusted to supply the heat medium to the load device. Feed pressure control that adjusts the feed pressure to the target pressure;
The target change control for changing the target pressure of the supply pressure control according to the change of the load flow rate based on the detection information of the flow rate detecting means is configured.
つまり、この構成では、運転熱媒ポンプのうちの少なくとも1台の熱媒ポンプの出力を負荷流量Qの変化に応じて調整する前記ポンプ出力制御として、1つは運転熱媒ポンプのうちの少なくとも1台の熱媒ポンプの出力を調整することで、負荷装置への熱媒送給圧力Pを目標圧力Pmに調整する送給圧力制御を実行させる。 That is, in this configuration, as the pump output control for adjusting the output of at least one of the operating heat medium pumps according to the change in the load flow rate Q, one of the operating heat medium pumps is at least one of the operating heat medium pumps. By adjusting the output of one heat medium pump, the supply pressure control for adjusting the heat medium supply pressure P to the load device to the target pressure Pm is executed.
そして、他の1つとして送給圧力制御における目標圧力Pmを負荷流量Qの変化に応じて変更する目標変更制御を実行させ、このように負荷流量Qの変化に応じて目標圧力Pmを変更する形態で上記送給圧力制御を実行させることにより、全体としては、運転熱媒ポンプのうちの少なくとも1台の熱媒ポンプの出力を負荷流量Qの変化に応じて調整する。 And as another one, the target change control which changes the target pressure Pm in feed pressure control according to the change of the load flow rate Q is performed, and the target pressure Pm is changed according to the change of the load flow rate Q in this way. By executing the above-mentioned supply pressure control in the form, as a whole, the output of at least one heat medium pump among the operation heat medium pumps is adjusted according to the change in the load flow rate Q.
即ち、上記構成によれば、全体としては負荷流量Qの変化に応じたポンプ運転台数制御と同様、負荷流量Qの変化に応じて運転熱媒ポンプの出力を調整するものの、制御端末では実質的に、負荷流量Qの変化に応じたポンプ運転台数制御とは異なり、前記ポンプ出力制御での運転熱媒ポンプの出力調整を熱媒送給圧力Pに応じて行なわせる形態となり、これにより、前記ポンプ運転台数制御及び前記ポンプ出力制御夫々の独立性を高めてシステム運転の安定性を高めることができる。 That is, according to the above configuration, although the output of the operation heat medium pump is adjusted according to the change of the load flow rate Q as a whole, the output of the operation heat medium pump is adjusted substantially according to the change of the load flow rate Q, as in the control of the number of operating pumps. Unlike the pump operation number control according to the change in the load flow rate Q, the output adjustment of the operation heat medium pump in the pump output control is performed according to the heat medium supply pressure P. The independence of the pump operation number control and the pump output control can be increased to improve the stability of system operation.
なお、この構成の実施において、送給圧力制御で調整する熱媒送給圧力P、目標変更制御で変更する送給圧力制御の目標圧力Pm、圧力検出手段が検出する熱媒送給圧力Pは、運転熱媒ポンプ全体としての吐出圧力に限られるものではなく、負荷装置の入口熱媒圧力や運転熱媒ポンプ全体としての入出口熱媒差圧などであってもよい。 In the implementation of this configuration, the heat medium supply pressure P adjusted by the supply pressure control, the target pressure Pm of the supply pressure control changed by the target change control, and the heat medium supply pressure P detected by the pressure detection means are: The pressure is not limited to the discharge pressure of the entire operating heat medium pump, and may be the inlet heat medium pressure of the load device, the inlet / outlet heat medium differential pressure of the entire operating heat medium pump, or the like.
本発明の第4特徴構成は、第3特徴構成の実施に好適な実施形態を特定するものであり、その特徴は、
前記ポンプ制御手段は、前記目標変更制御として、
前記ポンプ運転台数制御で熱媒ポンプの運転台数を一台減少させたときには、前記送給圧力制御の目標圧力を、そのときの運転台数減少の指標となった前記閾値流量に対して前記ポンプ制御線上で対応する圧力値又はその近傍圧力値に変更し、
かつ、前記ポンプ運転台数制御で熱媒ポンプの運転台数を一台増加させたときには、前記送給圧力制御の目標圧力を、そのときの運転台数増加の指標となった前記閾値流量よりも一段階だけ大流量側の前記閾値流量に対して前記ポンプ制御線上で対応する圧力値又はその近傍圧力値に変更する形態で、
前記送給圧力制御の目標圧力を熱媒ポンプ運転台数の変更毎に段階的に変更する構成にしてある点にある。
The fourth feature configuration of the present invention specifies an embodiment suitable for the implementation of the third feature configuration.
The pump control means, as the target change control,
When the number of operating heat medium pumps is decreased by one in the pump operation number control, the pump control is performed with respect to the target flow rate of the supply pressure control with respect to the threshold flow rate that is an index of the decrease in the number of operation at that time. Change to the corresponding pressure value on or near the line,
In addition, when the number of operating heat medium pumps is increased by one in the control of the number of operating pumps, the target pressure of the supply pressure control is one step higher than the threshold flow rate that is an index of the increase in the operating number at that time. In the form of changing to the pressure value corresponding to the pump control line or the pressure value in the vicinity thereof with respect to the threshold flow rate on the large flow rate side only,
The target pressure of the supply pressure control is configured to be changed step by step whenever the number of operating heat medium pumps is changed.
つまり(図2参照)、熱媒ポンプの運転台数Nを一台減少させたときの運転台数減少の指標となった閾値流量Qs、及び、熱媒ポンプの運転台数Nを一台増加させたときの運転台数増加の指標となった閾値流量Qsよりも一段階だけ大流量側の閾値流量Qsはいずれも、略言すれば、各運転台数Nでの熱媒ポンプ運転における上限側の閾値流量Qs(即ち、現状の運転台数Nよりも熱媒ポンプの運転台数を一台増加させる側の台数変更指標となる閾値流量Qs)に相当する。 That is, (see FIG. 2), when the threshold flow rate Qs, which is an index of the decrease in the number of operating units when the number N of operating heat medium pumps is decreased, and when the number N of operating heat medium pumps is increased by one. In short, the threshold flow rate Qs on the large flow rate side by one step from the threshold flow rate Qs that is an index of the increase in the number of operating units is simply the threshold flow rate Qs on the upper limit side in the heat medium pump operation with each operating number N. (In other words, it corresponds to the threshold flow rate Qs that serves as the number change index on the side that increases the number of operating heat pumps by one from the current number N of operating heat pumps).
したがって、上記構成では、各運転台数Nでの熱媒ポンプ運転における上限側の閾値流量Qsに対して前記ポンプ制御線M上で対応する圧力値Ps(Ps1〜Ps3)又は近傍圧力値を前記送給圧力制御の目標圧力Pmとする形態で、前記送給圧力制御の目標圧力Pmを熱媒ポンプ運転台数の変更毎に段階的に変更する。 Therefore, in the above-described configuration, the pressure value Ps (Ps1 to Ps3) corresponding to the upper limit side threshold flow rate Qs in the heat medium pump operation with each operation number N or the pressure value near the pressure control line M is sent. The target pressure Pm for the supply pressure control is changed step by step every time the number of operating heat medium pumps is changed in the form of the target pressure Pm for the supply pressure control.
即ち、このように送給圧力制御の目標圧力Pmを段階的に変更すれば、前記ポンプ出力制御として、各運転台数Nでの熱媒ポンプ運転において負荷流量Qが上限側の閾値流量Qsよりも減少した状態では、その流量減少分だけ運転熱媒ポンプ全体としての出力が低下するように少なくとも1台の運転熱媒ポンプの出力が最大出力よりも低下側に調整され、その分、運転熱媒ポンプ全体としての消費エネルギを低減することができて、省エネルギ化を一層促進することができる。 That is, if the target pressure Pm of the supply pressure control is changed stepwise in this way, as the pump output control, the load flow rate Q is higher than the upper limit side threshold flow rate Qs in the heat medium pump operation with each operation number N. In the reduced state, the output of at least one operation heat medium pump is adjusted to be lower than the maximum output so that the output of the entire operation heat medium pump is reduced by the amount of the decrease in the flow rate. Energy consumption of the pump as a whole can be reduced, and energy saving can be further promoted.
また、上記構成では、熱媒ポンプの運転台数変更があったときのみ送給圧力制御の目標圧力Pmが変更され、それ以外の定常運転状態では送給圧力制御の目標圧力Pmが一定に維持される(言わば、熱媒ポンプ運転台数Nごとの個別の吐出圧一定制御となる)から、熱媒ポンプの運転台数変更には至らない小幅な負荷流量Q変化が多い場合においてシステムの運転を安定化するのに有効である。 Further, in the above configuration, the target pressure Pm for the feed pressure control is changed only when the number of operating heat pumps is changed, and the target pressure Pm for the feed pressure control is maintained constant in other steady operation states. (In other words, it becomes the individual discharge pressure constant control for each number N of heat medium pumps operated), so the system operation is stabilized when there are many small changes in load flow rate Q that do not lead to changes in the number of heat medium pumps operated. It is effective to do.
本発明の第5特徴構成は、第3特徴構成の実施に好適な実施形態を特定するものであり、その特徴は、
前記ポンプ制御手段は、前記目標変更制御として、
前記流量検出手段の検出情報に基づき、各時点の負荷流量に対して前記ポンプ制御線上で対応する圧力値又はその近傍圧力値を前記送給圧力制御の目標圧力とする形態で、
前記送給圧力制御の目標圧力を負荷流量の変化に伴い連続的に変更する構成にしてある点にある。
The fifth feature configuration of the present invention specifies an embodiment suitable for the implementation of the third feature configuration.
The pump control means, as the target change control,
Based on the detection information of the flow rate detecting means, the pressure value corresponding to the load flow rate at each time point on the pump control line or a pressure value in the vicinity thereof is set as the target pressure of the supply pressure control,
The target pressure of the supply pressure control is configured to be continuously changed as the load flow rate changes.
つまり、この構成によれば、各時点の負荷流量Q(現状流量)に対して前記ポンプ制御線M上で対応する圧力値P又はその近傍圧力値を前記送給圧力制御の目標圧力Pmとする形態で、前記送給圧力制御の目標圧力Pmを負荷流量Qの変化に伴い連続的に変更するから、各運転台数Nでの熱媒ポンプ運転において負荷流量Qが上限側の閾値流量Qs(現状の運転台数Nよりも熱媒ポンプの運転台数を一台増加させる側の台数変更指標となる閾値流量Qs)よりも減少した状態では、その流量減少分とその流量減少に対応する圧力減少分とについて、運転熱媒ポンプ全体としての出力が低下するように少なくとも1台の運転熱媒ポンプの出力が最大出力よりも低下側に調整され、その分、運転熱媒ポンプ全体としての消費エネルギを低減することができて、省エネルギ化を一層効果的に促進することができる。 That is, according to this configuration, the pressure value P corresponding to the load flow rate Q (current flow rate) at each time point on the pump control line M or a pressure value in the vicinity thereof is set as the target pressure Pm for the feed pressure control. In the embodiment, the target pressure Pm of the supply pressure control is continuously changed with the change of the load flow rate Q. Therefore, in the heat medium pump operation with each operation number N, the load flow rate Q is the upper limit side threshold flow rate Qs (current state) In the state where the operating number of the heat medium pump is decreased from the threshold flow rate Qs), which is the number change index on the side where the operating number of the heat medium pump is increased by one, the decrease in the flow rate and the pressure decrease corresponding to the decrease in flow rate The output of at least one operating heat medium pump is adjusted to be lower than the maximum output so that the output of the entire operating heat medium pump is reduced, and the energy consumption of the entire operating heat medium pump is reduced accordingly. To do And be can promote energy saving more effectively.
本発明の第6特徴構成は、第3〜第5特徴構成のいずれかの実施に好適な実施形態を特定するものであり、その特徴は、
前記ポンプ制御手段は、前記ポンプ運転台数制御として、
前記圧力検出手段により検出される熱媒送給圧力が前記送給圧力制御における目標圧力の設定許容範囲内にある状態において、負荷流量が閾値流量よりも減少すると前記熱媒ポンプの運転台数を一台減少させ、かつ、負荷流量が閾値流量よりも増加すると前記熱媒ポンプの運転台数を一台増加させる構成にしてある点にある。
The sixth characteristic configuration of the present invention specifies an embodiment suitable for implementation of any of the third to fifth characteristic configurations,
The pump control means, as the pump operation number control,
In the state where the heat medium supply pressure detected by the pressure detection means is within the target pressure setting allowable range in the supply pressure control, when the load flow rate decreases below the threshold flow rate, the number of operating heat medium pumps is reduced. When the load is reduced and the load flow rate is increased above the threshold flow rate, the number of operating heat medium pumps is increased by one.
つまり、この構成では、前記送給圧力制御において負荷装置への熱媒送給圧力Pが目標圧力Pmの設定許容範囲から外れている状況、即ち、適正な熱媒送給圧力Pが確保されていない状況では、負荷流量Qが閾値流量Qs(下限側の閾値流量)より減少したとしても、また、負荷流量Qが閾値流量Qs(上限側の閾値流量)より増加したとしても熱媒ポンプの運転台数変更は実施せず、現状の熱媒ポンプ運転台数が保持される。 In other words, in this configuration, a situation in which the heat medium supply pressure P to the load device is out of the set allowable range of the target pressure Pm in the supply pressure control, that is, an appropriate heat medium supply pressure P is ensured. In such a situation, even when the load flow rate Q decreases from the threshold flow rate Qs (lower limit side threshold flow rate) or the load flow rate Q increases from the threshold flow rate Qs (upper limit side threshold flow rate), the operation of the heat medium pump is performed. The current number of heat medium pumps is maintained without changing the number.
したがって、この構成によれば、適正な熱媒送給圧力Pが確保されていない状況で熱媒ポンプの運転台数Nを変更するために負荷装置に対する熱媒送給圧力Pがさらに不適切なものになるといったことを防止することができ、この点でシステム運転の安定性を高めることができる。 Therefore, according to this configuration, in order to change the number N of operating heat medium pumps in a situation where an appropriate heat medium supply pressure P is not secured, the heat medium supply pressure P for the load device is more inappropriate. In this respect, the stability of system operation can be improved.
本発明の第7特徴構成は、第1特徴構成の実施に好適な実施形態を特定するものであり、その特徴は、
前記熱媒送給路における熱媒ポンプ並列配置群の下流側部分と上流側部分とを短絡する短絡還流路を設けて、この短絡還流路に短絡流量調整弁を介装し、
前記ポンプ制御手段は、前記ポンプ運転台数制御とともに、短絡還流量制御として、
前記負荷装置への熱媒送給圧力を検出する圧力検出手段の検出情報に基づき前記短絡流量調整弁の開度を調整して前記負荷装置への熱媒送給圧力を目標圧力に調整する短絡式の送給圧力制御と、
前記ポンプ運転台数制御で熱媒ポンプの運転台数を一台減少させたときには、前記送給圧力制御の目標圧力を、そのときの運転台数減少の指標となった前記閾値流量に対して前記ポンプ制御線上で対応する圧力値又はその近傍圧力値に変更し、
かつ、前記ポンプ運転台数制御で熱媒ポンプの運転台数を一台増加させたときには、前記送給圧力制御の目標圧力を、そのときの運転台数増加の指標となった前記閾値流量よりも一段階だけ大流量側の前記閾値流量に対して前記ポンプ制御線上で対応する圧力値又はその近傍圧力値に変更する形態で、
前記送給圧力制御の目標圧力を熱媒ポンプ運転台数の変更毎に段階的に変更する目標変更制御とを実行する構成にしてある点にある。
The seventh feature configuration of the present invention specifies an embodiment suitable for the implementation of the first feature configuration.
Provide a short circuit reflux path that short-circuits the downstream part and the upstream part of the heat medium pump parallel arrangement group in the heat medium supply path, and a short circuit flow rate adjustment valve is interposed in the short circuit reflux path,
The pump control means, together with the pump operation number control, as a short circuit reflux amount control,
A short circuit that adjusts the opening of the short-circuit flow rate adjustment valve based on detection information of pressure detection means for detecting the heat medium supply pressure to the load device to adjust the heat medium supply pressure to the load device to a target pressure. Supply pressure control of the type,
When the number of operating heat medium pumps is decreased by one in the pump operation number control, the pump control is performed with respect to the target flow rate of the supply pressure control with respect to the threshold flow rate that is an index of the decrease in the number of operation at that time. Change to the corresponding pressure value on or near the line,
In addition, when the number of operating heat medium pumps is increased by one in the control of the number of operating pumps, the target pressure of the supply pressure control is one step higher than the threshold flow rate that is an index of the increase in the operating number at that time. In the form of changing to the pressure value corresponding to the pump control line or the pressure value in the vicinity thereof with respect to the threshold flow rate on the large flow rate side only,
The target pressure of the supply pressure control is configured to execute target change control that changes step by step every time the number of operating heat medium pumps is changed.
つまり、前述の如く(図2参照)、熱媒ポンプの運転台数Nを一台減少させたときの運転台数減少の指標となった閾値流量Qs、及び、熱媒ポンプの運転台数Nを一台増加させたときの運転台数増加の指標となった閾値流量Qsよりも一段階だけ大流量側の閾値流量Qsはいずれも、略言すれば、各運転台数Nでの熱媒ポンプ運転における上限側の閾値流量Qs(即ち、現状の運転台数Nよりも熱媒ポンプの運転台数を一台増加させる側の台数変更指標となる閾値流量Qs)に相当する。 That is, as described above (see FIG. 2), the threshold flow rate Qs that is an index of the decrease in the number of operating medium pumps when the operating medium pump operating number N is decreased by one, and the operating number N of the heat medium pumps are one. In short, the threshold flow rate Qs on the large flow rate side by one step from the threshold flow rate Qs, which is an index of the increase in the number of operating units when increased, is simply the upper limit side in the heat medium pump operation with each operating number N. Is equivalent to a threshold flow rate Qs (that is, a threshold flow rate Qs that serves as a number change index for increasing the number of operating heat medium pumps by one from the current operating number N).
したがって、上記構成では、各運転台数Nでの熱媒ポンプ運転における上限側の閾値流量Qsに対して前記ポンプ制御線M上で対応する圧力値Ps(Ps1〜Ps3)又は近傍圧力値を上記短絡式の送給圧力制御における目標圧力Pmとする形態で、その送給圧力制御の目標圧力Pmを熱媒ポンプ運転台数Nの変更毎に段階的に変更する。 Therefore, in the above configuration, the pressure value Ps (Ps1 to Ps3) corresponding to the upper limit side threshold flow rate Qs in the heat medium pump operation with each operation number N on the pump control line M or the nearby pressure value is short-circuited. The target pressure Pm for the supply pressure control is changed step by step every time the number N of operating heat medium pumps is changed.
即ち、このように短絡式の送給圧力制御における目標圧力Pmを段階的に変更すれば、複数の熱媒ポンプの夫々に出力固定型のポンプを用いる場合でも、各運転台数Nでの熱媒ポンプ運転において負荷流量Qが上限側の閾値流量Qsより減少した状態では、その負荷流量Qの減少で生じる運転熱媒ポンプ全体としての熱媒送給流量うちの余剰分を短絡式の送給圧力制御による短絡流量調整弁の開度調整により短絡還流路を通じ逃がすことができて、各運転台数Nでの熱媒ポンプ運転の夫々につき負荷装置への熱媒送給圧力Pを熱媒ポンプ運転台数N毎の目標圧力Pmに安定的に維持することができ、これによりシステムの運転を安定化することができる。 That is, if the target pressure Pm in the short-circuit type supply pressure control is changed stepwise in this way, even when a fixed output type pump is used for each of the plurality of heat medium pumps, In a state where the load flow rate Q is lower than the upper limit side threshold flow rate Qs in the pump operation, the surplus of the heat medium supply flow rate as a whole of the operation heat medium pump generated by the decrease of the load flow rate Q is short-circuited supply pressure. By adjusting the opening degree of the short-circuit flow rate adjustment valve by control, it is possible to escape through the short-circuit reflux path, and for each of the heat medium pump operations at each operation number N, the heat medium supply pressure P to the load device is set to the number of heat medium pump operations. It is possible to stably maintain the target pressure Pm for each N, thereby stabilizing the operation of the system.
〔第1実施形態〕
図1は空調用の熱源システムを示し、このシステムは熱源機としてインバータ装置INVによる出力調整(即ち容量制御)が可能な複数の冷凍機Rを備え、各冷凍機Rには冷却水循環路1を介して冷却塔CTを個別に接続してある。
[First Embodiment]
FIG. 1 shows a heat source system for air conditioning. This system is provided with a plurality of refrigerators R capable of output adjustment (ie capacity control) by an inverter device INV as heat source units, and each of the refrigerators R has a cooling
2aは各冷凍機Rから1次側冷水往路3aを通じて並列的に供給される冷水Cを受け入れる1次側ヘッダ、2bは複数の冷水中継路3bを通じて1次側ヘッダ2aから冷水Cの供給を受ける2次側ヘッダであり、この2次側ヘッダ2bから空調機等の複数の負荷装置Uに対し熱媒としての冷水Cを2次側冷水往路3cを通じて並列的に送給することで、各負荷装置Uでは供給冷水Cの保有冷熱を冷房等の所要目的に消費する。
2a is a primary header that receives chilled water C supplied from each refrigerator R in parallel through the primary chilled water
2cは冷熱消費で昇温した冷水Cを各負荷装置Uから2次側冷水還路3dを通じて受け入れ、その受け入れ冷水Cを1次側冷水還路3eを通じて各冷凍機Rに戻す還側ヘッダであり、冷凍機Rと負荷装置Uとを結ぶ冷水循環系は1次側ヘッダ2aと還側ヘッダ2cとを境として冷凍機Rの側である1次側(換言すれば熱源側)と負荷装置Uの側である2次側(換言すれば負荷側)とに区分される。
Reference numeral 2c denotes a return header that receives the chilled water C that has been heated by cold consumption from each load device U through the secondary chilled water return path 3d, and returns the received chilled water C to each refrigerator R through the primary chilled
この熱源システムの構成機器としては冷凍機R、冷却塔CT、負荷装置Uの他、各冷凍機Rへの1次側冷水還路3eに介装した1次ポンプJA、2次側冷水往路3cとともに負荷装置Uへの熱媒送給路を構成する並列の冷水中継路3b夫々に介装した2次ポンプJB、各冷却水循環路1に介装した冷却水ポンプJCなどを備え、これらポンプJA,JB,JCは各々に装備のインバータ装置INVを用いた周波数制御によるポンプモータの回転数調整でポンプ出力を連続的に調整し得る可変ポンプにしてある。
In addition to the refrigerator R, the cooling tower CT, and the load device U, the components constituting the heat source system include a primary pump JA and a secondary chilled water
なお、冷却塔CT、冷却水ポンプJC、1次ポンプJAの夫々は対応する冷凍機Rの発停に応じて発停され、2次ポンプJBは負荷装置Uの側の必要冷水流量である負荷流量Qに応じて運転台数制御されるとともに出力制御される。 Note that each of the cooling tower CT, the cooling water pump JC, and the primary pump JA is started and stopped according to the start and stop of the corresponding refrigerator R, and the secondary pump JB is a load that is a required cooling water flow rate on the load device U side. The number of operating units is controlled and the output is controlled according to the flow rate Q.
Vaは1次側冷水往路3aの夫々に装備した開閉弁であり、これら開閉弁Vaは対応する冷凍機R及び1次ポンプJAの運転時に開弁される。
Va is an opening / closing valve provided in each of the primary side cold water
Vbは各負荷装置Uに装備した流量調整弁であり、1次ポンプJA及び2次ポンプJBによる冷水循環の下で、これら流量調整弁Vbにより各負荷装置Uの冷水流量q(即ち、負荷装置U個々の負荷流量)が各負荷装置Uの熱負荷g(即ち、負荷装置U個々の必要冷熱量)に応じて調整される。 Vb is a flow rate adjusting valve provided in each load device U. Under the chilled water circulation by the primary pump JA and the secondary pump JB, the flow rate adjusting valve Vb causes the cold water flow rate q (that is, the load device) of each load device U. U individual load flow rate) is adjusted in accordance with the thermal load g of each load device U (that is, the required amount of cooling energy of each load device U).
Vsは1次側ヘッダ2aと2次側ヘッダ2bとにわたらせた短絡還流路3fに装備した流量バランス調整用の短絡流量調整弁であり、この短絡流量調整弁Vsは後述の圧力センサPSにより検出される負荷装置Uへの冷水送給圧力P(本例では2次側ヘッダ2b内の冷水圧力)に応じて、その冷水送給圧力Pを適正値に保つように開度調整される。
Vs is a short-circuit flow rate adjusting valve for adjusting a flow rate balance provided in a short-
4は1次側ヘッダ2aと還側ヘッダ2cとを短絡するバイパス路であり、このバイパス路4を通じた冷水流動により1次側と2次側との冷水流量差が吸収される。即ち、2次側よりも1次側の冷水流量が大きい状態ではその差分の冷水Cが1次側ヘッダ2aからバイパス路4を通じて還側ヘッダ2cの方に流れ、逆に、1次側よりも2次側の冷水流量が大きい状態ではその差分の冷水Cが還側ヘッダ2cからバイパス路4を通じて1次側ヘッダ2aの方に流れる。
Reference numeral 4 denotes a bypass path that short-circuits the
各部の流量、温度、圧力等を検出するセンサとしては、負荷装置Uへの冷水送給圧力Pを検出する上記圧力センサPSの他、負荷装置U側の負荷流量Q(即ち、各負荷装置Uからの戻り冷水Cの合計流量Q=Σq)を検出する流量センサFS、負荷装置Uへの供給冷
水温度Ti及び冷凍機Rへの戻り冷水温度Toを検出する温度センサTSを装備し、また、各1次ポンプJAの流量・送水圧力、各冷凍機Rの出口冷水温度・入口冷却水温度・出口冷却水温度、各負荷装置Uの入口冷水圧力・出口冷水圧力、各冷却水ポンプJCの流量、外気の温度・湿度などを検出するセンサSも装備してある。
As sensors for detecting the flow rate, temperature, pressure, etc. of each part, in addition to the pressure sensor PS for detecting the chilled water supply pressure P to the load device U, the load flow rate Q on the load device U side (that is, each load device U) A flow rate sensor FS for detecting the total flow rate Q = Σq) of the return chilled water C from the chiller, a temperature sensor TS for detecting the supply chilled water temperature Ti to the load unit U and the return chilled water temperature To to the refrigerator R, and Flow rate / water supply pressure of each primary pump JA, outlet cold water temperature / inlet cooling water temperature / outlet cooling water temperature of each refrigerator R, inlet cold water pressure / outlet cold water pressure of each load device U, flow rate of each cooling water pump JC A sensor S for detecting the temperature and humidity of the outside air is also provided.
5はシステム制御器であり、このシステム制御器5は上記各センサの検出情報に基づき1次側及び2次側の夫々について次の如き制御を実行する構成にしてある。
各負荷装置Uの熱負荷gに応じて各負荷装置Uの冷水流量qが流量調整弁Vbにより調整されることに対し、1次側については、温度センサTSにより検出される負荷装置Uへの供給冷水温度Tiと冷凍機Rへの戻り冷水温度Toとの差温、並びに、流量センサFSにより検出される負荷装置U側の負荷流量Q(=Σq)に基づき、負荷装置U側の熱負荷
総計G(=Σg)を逐次演算する。
The chilled water flow rate q of each load device U is adjusted by the flow rate adjustment valve Vb according to the thermal load g of each load device U, whereas the primary side is supplied to the load device U detected by the temperature sensor TS. Based on the temperature difference between the supplied cold water temperature Ti and the return cold water temperature To to the refrigerator R and the load flow rate Q (= Σq) on the load device U side detected by the flow sensor FS, the thermal load on the load device U side The total G (= Σg) is calculated sequentially.
そして、各負荷装置Uにおける熱負荷gの変化に伴い熱負荷総計Gが変化することに対し、その熱負荷総計Gの変化に応じて冷凍機Rの運転台数を変更する熱源側の運転台数制御を行なうとともに、運転冷凍機R並びにそれに対する1次ポンプJA及び冷却水ポンプJC夫々の出力を熱負荷総計Gの変化に伴いインバータ装置INVにより連続的に調整する熱源側の出力制御を行い、これにより、熱負荷総計Gに対して1次側の発生冷熱量を平衡させる。 And the heat load side operation number control which changes the operation number of the refrigerator R according to the change of the heat load total G with respect to the heat load total G changing with the change of the heat load g in each load apparatus U. And the output control on the heat source side that continuously adjusts the output of each of the operating refrigerator R and the primary pump JA and the cooling water pump JC with the inverter INV according to the change of the heat load total G, Thus, the amount of generated cold heat on the primary side is balanced with respect to the total heat load G.
一方、2次側については、上記流量調整弁Vbによる冷熱流量qの調整で負荷流量Q(=Σq)が変化することに対し、流量センサFSによる検出負荷流量Qに基づき、2次ポ
ンプJBの運転台数Nを負荷流量Qの変化に応じて変更するポンプ運転台数制御を行なうとともに、運転2次ポンプJBの出力を負荷流量Qの変化に伴いインバータ装置INVにより連続的に調整するポンプ出力制御を行なう。
On the other hand, on the secondary side, the load flow rate Q (= Σq) changes due to the adjustment of the cooling flow rate q by the flow rate adjustment valve Vb, whereas the load of the secondary pump JB is based on the detected load flow rate Q by the flow rate sensor FS. Pump output control is performed to control the number of operating pumps N to change the operating number N according to the change in the load flow rate Q, and to continuously adjust the output of the operating secondary pump JB by the inverter device INV as the load flow rate Q changes. Do.
更に詳述すると、負荷装置Uへの熱媒送給路に並列配置で介装される熱媒ポンプの一例である2次ポンプJBについて上記ポンプ運転台数制御及びポンプ出力制御を実行するのに、具体的には次の(A)〜(F)の制御形態を採用している(図2,図3参照)。 More specifically, in order to execute the above pump operation number control and pump output control for the secondary pump JB which is an example of the heat medium pump interposed in parallel in the heat medium supply path to the load device U, Specifically, the following control modes (A) to (F) are employed (see FIGS. 2 and 3).
(A)各運転台数Nでの2次ポンプ運転において運転2次ポンプJBの夫々を最大出力で運転した場合における冷水送給流量Qと冷水送給圧力Pとの相関を示す運転台数N毎のポンプ性能曲線L1〜L3を設定する。 (A) In the secondary pump operation with each operation number N, each of the operation secondary pumps JB is operated at the maximum output, and the correlation between the chilled water supply flow rate Q and the chilled water supply pressure P is shown for each operation number N. Set pump performance curves L1 to L3.
また、配管抵抗なども考慮して、負荷流量Qと、その負荷流量Qの冷水Cを各負荷装置Uに供給するのに必要な送給圧力Pとの相関を示すポンプ制御線Mを設定する。
これら運転台数N毎のポンプ性能曲線L1〜L3とポンプ制御線Mとの各交点X1〜K3における流量値Qs(Qs1〜Qs3)の夫々を閾値流量として設定する。
In consideration of piping resistance and the like, a pump control line M indicating a correlation between the load flow rate Q and the supply pressure P necessary to supply the cold water C of the load flow rate Q to each load device U is set. .
Each of the flow rate values Qs (Qs1 to Qs3) at the intersections X1 to K3 between the pump performance curves L1 to L3 and the pump control line M for each number N of operating units is set as a threshold flow rate.
なお、本例では、このように設定した閾値流量Qs(Qs1〜Qs3)をポンプ制御手段としてのシステム制御器5に対し初期設定により記憶させ、同様にポンプ制御線Mを関数式として初期設定によりシステム制御器5に記憶させる。
In this example, the threshold flow rate Qs (Qs1 to Qs3) set in this way is stored in the
また本例では、ポンプ制御線Mとしてシミュレートや演算により求めた近似的な2次曲線をシステム試運転時の実測データ等に基づき補正した上で使用している。 In this example, an approximate quadratic curve obtained by simulation or calculation is used as the pump control line M after being corrected based on actual measurement data at the time of system test operation.
(B)そして、ポンプ運転台数制御として、負荷流量Qを検出する流量センサFSの検出情報に基づき、上記閾値流量Qs(Qs1〜Qs3)の各々について、負荷流量Qが閾値流量Qsよりも減少すると2次ポンプJBの運転台数Nを一台減少させ、かつ、負荷流量Qが閾値流量Qsよりも増加すると2次ポンプJBの運転台数Nを一台増加させる。 (B) And, as the pump operation number control, based on the detection information of the flow rate sensor FS that detects the load flow rate Q, when the load flow rate Q decreases below the threshold flow rate Qs for each of the threshold flow rates Qs (Qs1 to Qs3). When the operating number N of the secondary pumps JB is decreased by one and when the load flow rate Q increases beyond the threshold flow rate Qs, the operating number N of the secondary pumps JB is increased by one.
つまり、図2において負荷流量QがQs3〜Qs2の流量域にある状態では3台の2次ポンプJBの全てを運転し、負荷流量QがQs2〜Qs1の流量域にある状態では2台の2次ポンプJBを運転し、負荷流量QがQs1以下の流量域にある状態では1台の2次ポンプJBを運転する。 That is, in FIG. 2, when the load flow rate Q is in the flow rate range of Qs3 to Qs2, all three secondary pumps JB are operated, and in the state where the load flow rate Q is in the flow rate range of Qs2 to Qs1, two 2 The secondary pump JB is operated, and one secondary pump JB is operated in a state where the load flow rate Q is in a flow rate range of Qs1 or less.
即ち、このポンプ運転台数制御により、2次ポンプJBの運転台数Nが過大となる状況が生じるのを回避して、2次ポンプJBの運転台数Nを各時点での可能な範囲で確実に最小化する。 That is, by controlling the number of operating pumps, the situation where the operating number N of the secondary pumps JB becomes excessive is avoided, and the operating number N of the secondary pumps JB is surely minimized to the extent possible at each time point. Turn into.
(C)一方、運転2次ポンプJBの出力を負荷流量Qの変化に伴い調整するポンプ出力制御としては、負荷装置Uへの冷水送給圧力Pを検出する圧力センサPSの検出情報に基づき、ポンプ運転台数制御による各運転台数N(N=1,2,3)での2次ポンプ運転において運転2次ポンプJB夫々の出力をインバータ装置INVにより調整して、負荷装置Uへの熱媒送給圧力Pを目標圧力Pmに調整する送給圧力制御を実行するとともに、流量センサFSの検出情報に基づき、この送給圧力制御の目標圧力Pmを負荷流量Qの変化に応じて変更する目標変更制御を実行する。 (C) On the other hand, as the pump output control for adjusting the output of the operating secondary pump JB with the change of the load flow rate Q, based on the detection information of the pressure sensor PS that detects the chilled water supply pressure P to the load device U, In the secondary pump operation at each operation number N (N = 1, 2, 3) by pump operation number control, the output of each of the operation secondary pumps JB is adjusted by the inverter device INV, and the heat medium is sent to the load device U A target change is performed in which the supply pressure control for adjusting the supply pressure P to the target pressure Pm is executed, and the target pressure Pm for the supply pressure control is changed according to the change in the load flow rate Q based on the detection information of the flow rate sensor FS. Execute control.
(D)そして、この目標変更制御については、上記ポンプ運転台数制御で2次ポンプJBの運転台数Nを一台減少させたときには、送給圧力制御の目標圧力Pmを、そのときの運転台数減少の指標となった閾値流量Qsに対してポンプ制御線M上で対応する圧力値Ps(Ps1〜Ps3)に変更する。 (D) With regard to this target change control, when the number N of operating secondary pumps JB is decreased by one in the pump operation number control, the target pressure Pm of the feed pressure control is decreased, and the number of operating pumps at that time decreases. Is changed to a pressure value Ps (Ps1 to Ps3) corresponding to the threshold flow rate Qs, which is an index of.
また、上記運転台数制御で2次ポンプJBの運転台数Nを一台増加させたときには、送給圧力制御の目標圧力Pmを、そのときの運転台数増加の指標となった閾値流量Qsよりも一段階だけ大流量側の閾値流量Qsに対してポンプ制御線M上で対応する圧力値Ps(Ps1〜Ps3)に変更する。 Further, when the number N of secondary pumps JB is increased by one in the operation number control, the target pressure Pm of the feed pressure control is set to be smaller than the threshold flow rate Qs that is an index of the increase in the number of operations at that time. The pressure value Ps (Ps1 to Ps3) corresponding to the threshold flow rate Qs on the large flow rate side on the pump control line M is changed by the level.
換言すれば、各運転台数Nでの2次ポンプ運転における上限側の閾値流量Qs(現状の運転台数Nよりも2次ポンプJBの運転台数を一台増加させる側の台数変更指標となる閾値流量Qs)に対してポンプ制御線M上で対応する圧力値Ps(Ps1〜Ps3)を送給圧力制御の目標圧力Pmとする形態で、送給圧力制御の目標圧力Pmを2次ポンプ運転台数Nの変更毎に段階的に変更する。 In other words, the threshold flow rate Qs on the upper limit side in the secondary pump operation with each operation number N (the threshold flow rate serving as the number change index on the side where the number of operation of the secondary pump JB is increased by one from the current operation number N) Qs) is set so that the pressure value Ps (Ps1 to Ps3) corresponding to the pump control line M on the pump control line M is set as the target pressure Pm for the feed pressure control, and the target pressure Pm for the feed pressure control is set to the number N of secondary pumps operated. Change in stages for each change.
即ち、この目標変更制御の下で送給圧力制御を行なうポンプ出力制御では、負荷流量Qの変化に対し負荷装置Uへの冷水送給圧力Pは図2における圧力変化線PLmに沿って変化する。 That is, in the pump output control in which the supply pressure control is performed under this target change control, the chilled water supply pressure P to the load device U changes along the pressure change line PLm in FIG. .
そして、各運転台数Nでの2次ポンプ運転において負荷流量Qが上限側の閾値流量Qsよりも減少した状態では、その流量減少分だけ運転2次ポンプ全体としての出力が低下するように運転2次ポンプJB夫々の出力が最大出力よりも低下側に調整されることで、上記ポンプ運転台数制御による2次ポンプ運転台数Nの最小化と相まって2次ポンプ運転の消費エネルギがさらに低減される。
In the state where the load flow rate Q is reduced below the upper limit threshold flow rate Qs in the secondary pump operation with each operation number N, the
(E)なお本例では、上記ポンプ運転台数制御により2次ポンプJBの運転台数Nを変更するのに、各運転台数Nでの2次ポンプ運転において圧力センサPSにより検出される冷水送給圧力Pが上記送給圧力制御における目標圧力Pm(Ps1〜のPs3)の設定許容範囲内にある状態でのみ、負荷流量Qが閾値流量Qsよりも減少すると2次ポンプJBの運転台数Nを一台減少させる。 (E) In this example, the chilled water supply pressure detected by the pressure sensor PS in the secondary pump operation at each operation number N is used to change the operation number N of the secondary pumps JB by the pump operation number control. Only when P is within the set allowable range of the target pressure Pm (Ps1 to Ps3) in the feed pressure control, if the load flow rate Q decreases below the threshold flow rate Qs, the number N of operating secondary pumps JB is reduced to one. Decrease.
また同様に、各運転台数Nでの2次ポンプ運転において圧力センサPSにより検出される冷水送給圧力Pが上記送給圧力制御における目標圧力Pm(Ps1〜のPs3)の設定許容範囲内にある状態でのみ、負荷流量Qが閾値流量Qsよりも増加すると2次ポンプJBの運転台数Nを一台増加させる。 Similarly, the chilled water supply pressure P detected by the pressure sensor PS in the secondary pump operation with each operation number N is within the set allowable range of the target pressure Pm (Ps1 to Ps3) in the supply pressure control. Only in the state, when the load flow rate Q increases above the threshold flow rate Qs, the number N of operating secondary pumps JB is increased by one.
即ち、このように適正な冷水送給圧力Pが確保される状況での2次ポンプ運転台数変更のみを許容することにより、適正な熱媒送給圧力Pが確保されていない状況で2次ポンプJBの運転台数Nを変更するために負荷装置Uに対する冷水送給圧力Pがさらに不適切なものになるといったことを防止する。 That is, by allowing only the change in the number of secondary pumps operating in a situation where an appropriate cold water supply pressure P is ensured in this way, the secondary pump can be used in a situation where the appropriate heat medium supply pressure P is not ensured. In order to change the number N of operating JBs, it is possible to prevent the cold water supply pressure P for the load device U from becoming inappropriate.
(F)また本例では、短絡還流路3fに装備した短絡流量調整弁Vsの開度制御として、圧力センサPSの検出情報に基づき短絡流量調整弁Vsすることによっても、負荷装置Uへの冷水送給圧力Pを各運転台数Nでの2次ポンプ運転における送給圧力制御の目標圧力Pm(即ち、目標変更制御により2次ポンプ運転台数Nの変更毎に変更される目標圧力Ps1〜Ps3)に調整するようにしてある。
(F) Moreover, in this example, as the opening degree control of the short circuit flow rate adjustment valve Vs equipped in the short
換言すれば、圧力センサPSの検出情報に基づき短絡流量調整弁Vsの開度を調整して負荷装置Uへの冷水送給圧力Pを目標圧力Pmに調整する短絡流量調整弁Vsの開度制御において、その目標圧力Pmを前記目標変更制御により2次ポンプ運転台数Nの変更毎に段階的に変更する。 In other words, the opening degree control of the short circuit flow rate adjusting valve Vs that adjusts the opening degree of the short circuit flow rate adjusting valve Vs based on the detection information of the pressure sensor PS to adjust the cold water supply pressure P to the load device U to the target pressure Pm. , The target pressure Pm is changed stepwise for each change of the number N of secondary pumps operated by the target change control.
つまり、各運転台数Nでの2次ポンプ運転で運転2次ポンプJBの出力を負荷流量Qの変化に伴い調整する前記出力制御において、運転2次ポンプJBの出力が調整範囲の下限に至って、それ以上は運転2次ポンプJBの出力を低下側に調整できない状態に至ったとしても、この短絡流量調整弁Vsの開度制御により負荷装置Uへの冷水送給圧力Pを各運転台数Nでの2次ポンプ運転における目標圧力Pm(Ps1〜Ps3)に調整できるようにしてある。 That is, in the output control in which the output of the operation secondary pump JB is adjusted in accordance with the change in the load flow rate Q in the secondary pump operation with each operation number N, the output of the operation secondary pump JB reaches the lower limit of the adjustment range, Even if the output of the operating secondary pump JB cannot be adjusted to a lower side beyond that, the chilled water supply pressure P to the load device U is controlled by the number N of operating units by controlling the opening degree of the short-circuit flow rate adjusting valve Vs. The target pressure Pm (Ps1 to Ps3) in the secondary pump operation can be adjusted.
〔第2実施形態〕
前述の第1実施形態では、2次ポンプJBの出力制御における送給圧力制御の目標圧力Pmについて、目標変更制御により送給圧力制御の目標圧力Pmを2次ポンプ運転台数Nの変更毎に段階的に変更する例を示したが、これに代え、この第2実施形態では、送給圧力制御の目標圧力Pmを負荷流量Qの変化に伴い連続的に変更する。
[Second Embodiment]
In the first embodiment described above, for the target pressure Pm of the feed pressure control in the output control of the secondary pump JB, the target pressure Pm of the feed pressure control is changed by the target change control every time the number of secondary pumps N is changed. However, instead of this, in the second embodiment, the target pressure Pm of the feed pressure control is continuously changed as the load flow rate Q changes.
つまり、この第2実施形態では、目標圧力制御を次の(D′)の如き制御形態でシステム制御器5に実行させる(図4参照)。
That is, in the second embodiment, the target pressure control is executed by the
(D′)流量センサFSの検出情報に基づき、各時点の負荷流量Q(現状流量)に対してポンプ制御線M上で対応する圧力値Pを送給圧力制御の目標圧力Pmとする形態で、送給圧力制御の目標圧力Pmを負荷流量Qの変化に伴い連続的に変更する。 (D ') Based on the detection information of the flow sensor FS, the pressure value P corresponding to the load flow Q (current flow) at each time point on the pump control line M is used as the target pressure Pm of the feed pressure control. The target pressure Pm for the feed pressure control is continuously changed as the load flow rate Q changes.
即ち、この目標変更制御の下で前記送給圧力制御を行なう2次ポンプJBの出力制御では、負荷流量Qの変化に対し負荷装置Uへの冷水送給圧力Pは図4における圧力変化線PLmに沿って変化する。 That is, in the output control of the secondary pump JB that performs the supply pressure control under the target change control, the chilled water supply pressure P to the load device U with respect to the change of the load flow rate Q is the pressure change line PLm in FIG. Varies along.
そして、各運転台数Nでの2次ポンプ運転において負荷流量Qが上限側の閾値流量Qsよりも減少した状態では、その流量減少分とその流量減少に対応する圧力減少分とについて運転2次ポンプ全体としての出力が低下するように運転2次ポンプJB夫々の出力が最大出力よりも低下側に調整されることで、上記運転台数制御による2次ポンプ運転台数Nの最小化と相まって2次ポンプ運転の消費エネルギがさらに効果的に低減される。 In the state where the load flow rate Q is reduced below the upper limit threshold flow rate Qs in the secondary pump operation with each operation number N, the operation secondary pump is operated with respect to the flow rate decrease and the pressure decrease corresponding to the flow rate decrease. The output of each of the operating secondary pumps JB is adjusted to be lower than the maximum output so that the output as a whole is reduced, and the secondary pumps are coupled with the minimization of the number N of secondary pumps operated by the above operation number control. The energy consumption of driving is further effectively reduced.
なお、この第2実施形態においても、前述第1実施形態の場合と同様、前記運転台数制御により2次ポンプJBの運転台数Nを変更するのに、各運転台数Nでの2次ポンプ運転で圧力センサPSにより検出される冷水送給圧力Pが上記送給圧力制御の各時点における目標圧力Pmの設定許容範囲内にある状態でのみ、負荷流量Qが閾値流量Qsよりも減少(又は増加)すると2次ポンプJBの運転台数Nを一台減少(又は増加)させるのが望ましい。 In the second embodiment, as in the case of the first embodiment, the number N of secondary pumps JB is changed by the operation number control. The load flow rate Q decreases (or increases) from the threshold flow rate Qs only when the cold water supply pressure P detected by the pressure sensor PS is within the set allowable range of the target pressure Pm at each time point of the supply pressure control. Then, it is desirable to decrease (or increase) the number N of operating secondary pumps JB.
そしてまた、前述の第1実施形態と同様、圧力センサPSの検出情報に基づき短絡流量調整弁Vsすることによっても、負荷装置Uへの冷水送給圧力Pを送給圧力制御における各時点の目標圧力Pm(即ち、上記の目標変更制御により負荷流量Qの変化に伴い連続的に変更する目標圧力)に調整するのが望ましい。 Further, similarly to the first embodiment described above, the chilled water supply pressure P to the load device U is set to the target at each time point in the supply pressure control by performing the short-circuit flow rate adjustment valve Vs based on the detection information of the pressure sensor PS. It is desirable to adjust to the pressure Pm (that is, the target pressure continuously changed with the change of the load flow rate Q by the target change control).
その他については、第1実施形態と同じである。 About others, it is the same as 1st Embodiment.
〔第3実施形態〕
前述の第1及び第2実施形態ではいずれも負荷流量Qの変化に応じて運転2次ポンプJBの出力をインバータ装置INVにより調整する例を示したが、この第3実施形態では、この2次ポンプJBの出力制御を行なわない例を示す。
[Third Embodiment]
In both the first and second embodiments described above, an example in which the output of the operating secondary pump JB is adjusted by the inverter device INV in accordance with the change in the load flow rate Q has been shown. An example in which the output control of the pump JB is not performed will be shown.
つまり、この第3実施形態では、各2次ポンプJBに出力固定型のポンプを使用している。そして、2次ポンプJBの出力制御に代え、システム制御器5は、前述の第1実施形態で示した短絡流量調整弁Vsの開度制御と実質的に同じ制御である短絡還流量制御を実行する構成にしてある。
That is, in the third embodiment, a fixed output type pump is used for each secondary pump JB. Then, instead of the output control of the secondary pump JB, the
具体的には、短絡還流量制御として短絡式の送給圧力制御とその送給圧力制御の目標圧力Pmを負荷流量Qの変化に応じて変更する目標変更制御とを実行し、短絡式の送給圧力制御では、負荷装置Uへの冷水送給圧力Pを検出する圧力センサPSの検出情報に基づき短絡流量調整弁Vsの開度を調整して負荷装置Uへの冷水送給圧力Pを目標圧力Pmに調整する。 Specifically, as short-circuit recirculation amount control, short-circuit type supply pressure control and target change control for changing the target pressure Pm of the supply pressure control according to the change of the load flow rate Q are executed. In the supply pressure control, the opening degree of the short-circuit flow rate adjustment valve Vs is adjusted based on the detection information of the pressure sensor PS that detects the chilled water supply pressure P to the load device U to target the chilled water supply pressure P to the load device U. Adjust to pressure Pm.
一方、目標変更制御では、前記運転台数制御で2次ポンプJBの運転台数Nを一台減少させたときには、短絡式の送給圧力制御における目標圧力Pmを、そのときの運転台数減少の指標となった閾値流量Qsに対してポンプ制御線M上で対応する圧力値Ps(Ps1〜Ps3)に変更する。 On the other hand, in the target change control, when the operation number N of the secondary pumps JB is decreased by one in the operation number control, the target pressure Pm in the short-circuit type supply pressure control is set as an index for the decrease in the operation number at that time. The pressure value Ps (Ps1 to Ps3) corresponding to the threshold flow rate Qs on the pump control line M is changed.
また、前記運転台数制御で2次ポンプJBの運転台数Nを一台増加させたときには、短絡式の送給圧力制御における目標圧力Pmを、そのときの運転台数増加の指標となった閾値流量Qsよりも一段階だけ大流量側の閾値流量Qsに対してポンプ制御線M上で対応する圧力値圧力値Ps(Ps1〜Ps3)に変更する。 Further, when the number N of secondary pumps JB is increased by one in the operation number control, the target pressure Pm in the short-circuit type supply pressure control is set to the threshold flow rate Qs that is an index of the increase in the number of operations at that time. The pressure value Ps (Ps1 to Ps3) corresponding to the threshold flow rate Qs on the large flow rate side on the pump control line M is changed by one step.
換言すれば、各運転台数Nでの2次ポンプ運転における上限側の閾値流量Qs(現状の運転台数Nよりも2次ポンプJBの運転台数を一台増加させる側の台数変更指標となる閾値流量Qs)に対してポンプ制御線M上で対応する圧力値Ps(Ps1〜Ps3)を短絡式の送給圧力制御における目標圧力Pmとする形態で、短絡式送給圧力制御の目標圧力Pmを2次ポンプ運転台数Nの変更毎に段階的に変更する。 In other words, the threshold flow rate Qs on the upper limit side in the secondary pump operation with each operation number N (the threshold flow rate serving as the number change index on the side where the number of operation of the secondary pump JB is increased by one from the current operation number N) Qs) is set so that the pressure value Ps (Ps1 to Ps3) corresponding to the pump control line M on the pump control line M is the target pressure Pm in the short-circuit type supply pressure control, and the target pressure Pm of the short-circuit type supply pressure control is 2 Each time the next pump operation number N is changed, it is changed in stages.
即ち、2次ポンプJBに出力固定型のポンプを用いながらも、上記目標変更制御の下で短絡式の送給圧力制御を行なうことにより、負荷流量Qの変化に対し負荷装置Uへの冷水送給圧力Pは第1実施形態の場合と同様、図2における圧力変化線PLmに沿って変化する。 That is, while using a fixed output pump as the secondary pump JB, by performing short-circuit feed pressure control under the above target change control, chilled water feed to the load device U in response to changes in the load flow rate Q The supply pressure P changes along the pressure change line PLm in FIG. 2 as in the case of the first embodiment.
つまり、各運転台数Nでの2次ポンプ運転において負荷流量Qが上限側の閾値流量Qsより減少した状態では、その負荷流量Qの減少で生じる出力固定型の運転2次ポンプ全体としての熱媒送給流量うちの余剰分を短絡式の送給圧力制御による短絡流量調整弁Vsの開度調整により短絡還流路3fを通じ逃がし、これにより各運転台数Nでの2次ポンプ運転の夫々につき負荷装置Uへの冷水送給圧力Pを2次ポンプ運転台数N毎の目標圧力Pm(Ps1〜Ps3)に安定的に維持する。
That is, in the state where the load flow rate Q is decreased from the upper limit side threshold flow rate Qs in the secondary pump operation with each operation number N, the heat medium as the entire fixed output operation secondary pump generated by the decrease of the load flow rate Q is obtained. The surplus portion of the feed flow rate is released through the short-
なお、この第3実施形態においても、前述第1実施形態の場合と同様、前記運転台数制御により2次ポンプJBの運転台数Nを変更するのに、各運転台数Nでの2次ポンプ運転で圧力センサPSにより検出される冷水送給圧力Pが短絡式の送給圧力制御における目標圧力Pmの設定許容範囲内にある状態でのみ、負荷流量Qが閾値流量Qsよりも減少(又は増加)すると2次ポンプJBの運転台数Nを一台減少(又は増加)させるようにするのが望ましい。 In the third embodiment, as in the case of the first embodiment, the operation number N of the secondary pumps JB is changed by the operation number control. When the load flow rate Q decreases (or increases) from the threshold flow rate Qs only in a state where the cold water supply pressure P detected by the pressure sensor PS is within the set allowable range of the target pressure Pm in the short-circuit type supply pressure control. It is desirable to decrease (or increase) the number N of operating secondary pumps JB.
その他については第1実施形態と同じである。 Others are the same as in the first embodiment.
〔別実施形態〕
前述の第1及び第2実施形態では、複数の熱媒ポンプ(2次ポンプJB)の全てが出力可変型のポンプである場合を示し、また、前述の第3実施形態では複数の熱媒ポンプ(2次ポンプJB)の全てが出力固定型のポンプである場合を示したが、本発明は複数の熱媒ポンプにおける一部が出力可変型のポンプで他のものが出力固定型のポンプである場合にも適用できる。
[Another embodiment]
The first and second embodiments described above show a case where all of the plurality of heat medium pumps (secondary pumps JB) are variable output pumps, and the third embodiment described above includes a plurality of heat medium pumps. Although all the (secondary pumps JB) are fixed output type pumps, the present invention is that some of the plurality of heat medium pumps are variable output type pumps and others are fixed output type pumps. It can also be applied in some cases.
そして、この場合にはポンプ運転台数制御による各運転台数Nでの熱媒ポンプ運転において運転熱媒ポンプのうちに出力可変型のポンプが存在する場合に、その出力可変型の運転ポンプにつき前述のポンプ出力制御を実施し、運転台数Nの変更で運転熱媒ポンプの全てが出力固定型のポンプとなった場合には、前述短絡式の送出圧力制御を行なうようにすればよい。 In this case, when there is a variable output type pump among the operation heat medium pumps in the heat medium pump operation in each operation number N by the pump operation number control, the variable output type operation pump is described above. When the pump output control is performed and all of the operating heat medium pumps become fixed output type pumps by changing the number N of operation, the above-described short-circuit delivery pressure control may be performed.
前述の各実施形態では、冷凍機Rにより冷却する冷水Cを熱媒とする例を示したが、熱媒は冷水Cに限らずブラインや温水などであってもよく、また、熱媒を冷却又は加熱する熱源機も冷凍機に限らず冷温水発生機やボイラあるいは熱交換器など、どのようなものであってもよい。 In each of the above-described embodiments, an example in which the cold water C cooled by the refrigerator R is used as the heat medium is shown. However, the heat medium is not limited to the cold water C, and may be brine, hot water, or the like. Alternatively, the heat source device to be heated is not limited to a refrigerator, and may be any device such as a cold / hot water generator, a boiler, or a heat exchanger.
前述の各実施形態では、1次ポンプJAと2次ポンプJBを備える熱媒循環系において2次ポンプを本発明実施対象の熱媒ポンプとする例を示したが、1次ポンプと2次ポンプとを兼ねる熱媒ポンプを備える熱媒循環系において、その熱媒ポンプにつき本発明を適用してもよく、また、熱媒循環系以外で複数の熱媒ポンプにより負荷装置に熱媒を供給する場合にも本発明を適用することができる。 In each of the above-described embodiments, the example in which the secondary pump is the heat medium pump of the present invention in the heat medium circulation system including the primary pump JA and the secondary pump JB has been described. In the heat medium circulation system including the heat medium pump that also serves as the heat medium pump, the present invention may be applied to the heat medium pump, and the heat medium is supplied to the load device by a plurality of heat medium pumps other than the heat medium circulation system. The present invention can also be applied to cases.
本発明は空調設備の熱源システムに限らず、負荷装置に熱媒を供給する複数の熱媒ポンプを備える熱源システムであれば、各種分野における種々の目的の熱源システムに適用することができる。 The present invention is not limited to a heat source system of an air conditioner, and can be applied to a heat source system for various purposes in various fields as long as the heat source system includes a plurality of heat medium pumps that supply a heat medium to a load device.
R 熱源機
C 熱媒
U 負荷装置
3b 熱媒送給路
JB 熱媒ポンプ
Q 負荷流量
N 運転台数
5 ポンプ制御手段
P 圧力
L1〜L3 運転台数毎のポンプ性能曲線
M ポンプ制御線
X1〜X3 交点
Qs1〜Qs3 閾値流量(Qs)
FS 流量検出手段
PS 圧力検出手段
Pm 目標圧力
3f 短絡還流路
Vs 短絡流量調整弁
R Heat source machine C Heat medium
FS Flow rate detection means PS Pressure detection means
Claims (7)
前記負荷装置が必要とする熱媒流量である負荷流量の変化に応じて前記熱媒ポンプの運転台数を変更するポンプ制御手段を装備した熱源システムであって、
各運転台数での熱媒ポンプ運転において運転熱媒ポンプの夫々を最大出力で運転した場合における熱媒送給流量と熱媒送給圧力との相関を示す運転台数毎のポンプ性能曲線を設定するとともに、
前記負荷流量とその負荷流量の熱媒を前記負荷装置に供給するのに必要な送給圧力との相関を示すポンプ制御線を設定して、
これら運転台数毎のポンプ性能曲線とポンプ制御線との各交点における流量値又はその近傍流量値の夫々を閾値流量として設定し、
これらの設定に対して前記ポンプ制御手段は、ポンプ運転台数制御として、負荷流量を検出する流量検出手段の検出情報に基づき、
前記閾値流量の各々について、負荷流量が閾値流量よりも減少すると前記熱媒ポンプの運転台数を一台減少させ、かつ、負荷流量が閾値流量よりも増加すると前記熱媒ポンプの運転台数を一台増加させる構成にしてある熱源システム。 While interposing a plurality of heat medium pumps in parallel arrangement in the heat medium feed path for supplying the heat medium cooled or heated by the heat source machine to the load device,
A heat source system equipped with pump control means for changing the number of operating heat medium pumps according to a change in load flow rate that is a heat medium flow rate required by the load device,
Set the pump performance curve for each number of operating units that shows the correlation between the heat medium supply flow rate and the heat medium supply pressure when each of the operating heat medium pumps is operated at the maximum output in the operation of the heat medium pump with each operating number. With
Setting a pump control line indicating the correlation between the load flow rate and the supply pressure required to supply the load medium with the heat medium of the load flow rate,
Each of the flow rate value at each intersection of the pump performance curve and the pump control line for each number of operating units or its neighboring flow rate value is set as the threshold flow rate,
With respect to these settings, the pump control means, based on the detection information of the flow rate detection means for detecting the load flow rate, as the pump operation number control,
For each of the threshold flow rates, when the load flow rate decreases below the threshold flow rate, the number of operating heat medium pumps decreases by one, and when the load flow rate increases above the threshold flow rate, the number of operating heat medium pumps decreases by one. Heat source system configured to increase.
前記負荷装置への熱媒送給圧力を検出する圧力検出手段の検出情報に基づき運転熱媒ポンプのうちの少なくとも1台の熱媒ポンプの出力を調整して、前記負荷装置への熱媒送給圧力を目標圧力に調整する送給圧力制御と、
前記流量検出手段の検出情報に基づき前記送給圧力制御の目標圧力を負荷流量の変化に応じて変更する目標変更制御とを実行する構成にしてある請求項2記載の熱源システム。 The pump control means, as the pump output control,
Based on the detection information of the pressure detection means for detecting the heat medium supply pressure to the load device, the output of at least one heat medium pump of the operation heat medium pumps is adjusted to supply the heat medium to the load device. Feed pressure control that adjusts the feed pressure to the target pressure;
The heat source system according to claim 2, wherein target change control is executed to change a target pressure of the supply pressure control according to a change in load flow rate based on detection information of the flow rate detection means.
前記ポンプ運転台数制御で熱媒ポンプの運転台数を一台減少させたときには、前記送給圧力制御の目標圧力を、そのときの運転台数減少の指標となった前記閾値流量に対して前記ポンプ制御線上で対応する圧力値又はその近傍圧力値に変更し、
かつ、前記ポンプ運転台数制御で熱媒ポンプの運転台数を一台増加させたときには、前記送給圧力制御の目標圧力を、そのときの運転台数増加の指標となった前記閾値流量よりも一段階だけ大流量側の前記閾値流量に対して前記ポンプ制御線上で対応する圧力値又はその近傍圧力値に変更する形態で、
前記送給圧力制御の目標圧力を熱媒ポンプ運転台数の変更毎に段階的に変更する構成にしてある請求項3記載の熱源システム。 The pump control means, as the target change control,
When the number of operating heat medium pumps is decreased by one in the pump operation number control, the pump control is performed with respect to the target flow rate of the supply pressure control with respect to the threshold flow rate that is an index of the decrease in the number of operation at that time. Change to the corresponding pressure value on or near the line,
In addition, when the number of operating heat medium pumps is increased by one in the control of the number of operating pumps, the target pressure of the supply pressure control is one step higher than the threshold flow rate that is an index of the increase in the operating number at that time. In the form of changing to the pressure value corresponding to the pump control line or the pressure value in the vicinity thereof with respect to the threshold flow rate on the large flow rate side only,
The heat source system according to claim 3, wherein the target pressure of the supply pressure control is changed step by step every time the number of operating heat medium pumps is changed.
前記流量検出手段の検出情報に基づき、各時点の負荷流量に対して前記ポンプ制御線上で対応する圧力値又はその近傍圧力値を前記送給圧力制御の目標圧力とする形態で、
前記送給圧力制御の目標圧力を負荷流量の変化に伴い連続的に変更する構成にしてある請求項3記載の熱源システム。 The pump control means, as the target change control,
Based on the detection information of the flow rate detecting means, the pressure value corresponding to the load flow rate at each time point on the pump control line or a pressure value in the vicinity thereof is set as the target pressure of the supply pressure control,
The heat source system according to claim 3, wherein the target pressure of the supply pressure control is continuously changed as the load flow rate changes.
前記圧力検出手段により検出される熱媒送給圧力が前記送給圧力制御における目標圧力の設定許容範囲内にある状態において、負荷流量が閾値流量よりも減少すると前記熱媒ポンプの運転台数を一台減少させ、かつ、負荷流量が閾値流量よりも増加すると前記熱媒ポンプの運転台数を一台増加させる構成にしてある請求項3〜5のいずれか1項に記載の熱源システム。 The pump control means, as the pump operation number control,
In the state where the heat medium supply pressure detected by the pressure detection means is within the target pressure setting allowable range in the supply pressure control, when the load flow rate decreases below the threshold flow rate, the number of operating heat medium pumps is reduced. The heat source system according to any one of claims 3 to 5, wherein the number of operating heat medium pumps is increased by one when the load is reduced and the load flow rate is higher than a threshold flow rate.
前記ポンプ制御手段は、前記ポンプ運転台数制御とともに、短絡還流量制御として、
前記負荷装置への熱媒送給圧力を検出する圧力検出手段の検出情報に基づき前記短絡流量調整弁の開度を調整して前記負荷装置への熱媒送給圧力を目標圧力に調整する短絡式の送給圧力制御と、
前記ポンプ運転台数制御で熱媒ポンプの運転台数を一台減少させたときには、前記送給圧力制御の目標圧力を、そのときの運転台数減少の指標となった前記閾値流量に対して前記ポンプ制御線上で対応する圧力値又はその近傍圧力値に変更し、
かつ、前記ポンプ運転台数制御で熱媒ポンプの運転台数を一台増加させたときには、前記送給圧力制御の目標圧力を、そのときの運転台数増加の指標となった前記閾値流量よりも一段階だけ大流量側の前記閾値流量に対して前記ポンプ制御線上で対応する圧力値又はその近傍圧力値に変更する形態で、
前記送給圧力制御の目標圧力を熱媒ポンプ運転台数の変更毎に段階的に変更する目標変更制御とを実行する構成にしてある請求項1記載の熱源システム。 Provide a short circuit reflux path that short-circuits the downstream part and the upstream part of the heat medium pump parallel arrangement group in the heat medium supply path, and a short circuit flow rate adjustment valve is interposed in the short circuit reflux path,
The pump control means, together with the pump operation number control, as a short circuit reflux amount control,
A short circuit that adjusts the opening of the short-circuit flow rate adjustment valve based on detection information of pressure detection means for detecting the heat medium supply pressure to the load device to adjust the heat medium supply pressure to the load device to a target pressure. Supply pressure control of the type,
When the number of operating heat medium pumps is decreased by one in the pump operation number control, the pump control is performed with respect to the target flow rate of the supply pressure control with respect to the threshold flow rate that is an index of the decrease in the number of operation at that time. Change to the corresponding pressure value on or near the line,
In addition, when the number of operating heat medium pumps is increased by one in the control of the number of operating pumps, the target pressure of the supply pressure control is one step higher than the threshold flow rate that is an index of the increase in the operating number at that time. In the form of changing to the pressure value corresponding to the pump control line or the pressure value in the vicinity thereof with respect to the threshold flow rate on the large flow rate side only,
The heat source system according to claim 1, wherein the target pressure of the supply pressure control is configured to execute target change control that changes step by step every time the number of operating heat medium pumps is changed.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008304122A JP5261153B2 (en) | 2008-11-28 | 2008-11-28 | Heat source system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008304122A JP5261153B2 (en) | 2008-11-28 | 2008-11-28 | Heat source system |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010127564A true JP2010127564A (en) | 2010-06-10 |
JP5261153B2 JP5261153B2 (en) | 2013-08-14 |
Family
ID=42328094
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008304122A Active JP5261153B2 (en) | 2008-11-28 | 2008-11-28 | Heat source system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5261153B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015114847A1 (en) * | 2014-01-31 | 2015-08-06 | 三菱重工業株式会社 | Method for controlling number of pumps, device for controlling number of pumps, pump system, heat source system, and program |
CN105805906A (en) * | 2016-04-28 | 2016-07-27 | 深圳市海吉源科技有限公司 | Multi-stage pump long-distance delivery system for centralized cooling and heating plant |
JP2018096553A (en) * | 2016-12-08 | 2018-06-21 | 株式会社Nttファシリティーズ | Cold water circulation system |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101852187B1 (en) * | 2015-12-24 | 2018-06-11 | 김선조 | Coolant flow rate control method for the optimum operation of the vacuum condenser |
TWI645137B (en) * | 2017-02-21 | 2018-12-21 | 群光電能科技股份有限公司 | Method of controlling pump of air conditioning system |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04198646A (en) * | 1990-11-29 | 1992-07-20 | Toho Gas Co Ltd | Flow rate sensing device for air conditioning device |
JPH09178248A (en) * | 1995-12-25 | 1997-07-11 | Matsushita Electric Works Ltd | Air conditioning system |
JPH10213338A (en) * | 1997-01-29 | 1998-08-11 | Toko Electric Co Ltd | Controlling equipment of pump |
JP2002031376A (en) * | 2000-07-19 | 2002-01-31 | Aisin Seiki Co Ltd | Air-conditioning system |
JP2004101104A (en) * | 2002-09-11 | 2004-04-02 | Yamatake Corp | Secondary pump system heating source flow variable control method and secondary pump system heating source system |
JP2006009805A (en) * | 1996-01-31 | 2006-01-12 | Hitachi Industrial Equipment Systems Co Ltd | Turbomachinery driving device and its control method |
JP2008180504A (en) * | 2008-04-16 | 2008-08-07 | Hitachi Cable Ltd | Cold water circulating system |
-
2008
- 2008-11-28 JP JP2008304122A patent/JP5261153B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04198646A (en) * | 1990-11-29 | 1992-07-20 | Toho Gas Co Ltd | Flow rate sensing device for air conditioning device |
JPH09178248A (en) * | 1995-12-25 | 1997-07-11 | Matsushita Electric Works Ltd | Air conditioning system |
JP2006009805A (en) * | 1996-01-31 | 2006-01-12 | Hitachi Industrial Equipment Systems Co Ltd | Turbomachinery driving device and its control method |
JPH10213338A (en) * | 1997-01-29 | 1998-08-11 | Toko Electric Co Ltd | Controlling equipment of pump |
JP2002031376A (en) * | 2000-07-19 | 2002-01-31 | Aisin Seiki Co Ltd | Air-conditioning system |
JP2004101104A (en) * | 2002-09-11 | 2004-04-02 | Yamatake Corp | Secondary pump system heating source flow variable control method and secondary pump system heating source system |
JP2008180504A (en) * | 2008-04-16 | 2008-08-07 | Hitachi Cable Ltd | Cold water circulating system |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015114847A1 (en) * | 2014-01-31 | 2015-08-06 | 三菱重工業株式会社 | Method for controlling number of pumps, device for controlling number of pumps, pump system, heat source system, and program |
JP2015143591A (en) * | 2014-01-31 | 2015-08-06 | 三菱重工業株式会社 | Method and apparatus for controlling number of pumps, pump system, heat source system, and program |
CN105899886A (en) * | 2014-01-31 | 2016-08-24 | 三菱重工业株式会社 | Method for controlling number of pumps, device for controlling number of pumps, pump system, heat source system, and program |
CN105899886B (en) * | 2014-01-31 | 2018-11-13 | 三菱重工制冷空调系统株式会社 | Pump unit number control method, pump number control device, pumping system, heat source system and recording medium |
CN105805906A (en) * | 2016-04-28 | 2016-07-27 | 深圳市海吉源科技有限公司 | Multi-stage pump long-distance delivery system for centralized cooling and heating plant |
JP2018096553A (en) * | 2016-12-08 | 2018-06-21 | 株式会社Nttファシリティーズ | Cold water circulation system |
Also Published As
Publication number | Publication date |
---|---|
JP5261153B2 (en) | 2013-08-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5261170B2 (en) | Thermal load processing system and heat source system | |
US10612794B2 (en) | Controlled hydronic distribution system | |
EP2837898B1 (en) | Air-conditioning system | |
JP4594276B2 (en) | Cold / hot water control method for cold / hot heat source machine and air conditioning system used therefor | |
EP2372127A1 (en) | Control device for waste heat recovery system | |
EP2239438B1 (en) | Systems and Methods for Controlling Compressor Extraction Cooling | |
JP5515166B2 (en) | Heat source system | |
JP5261153B2 (en) | Heat source system | |
JP5227247B2 (en) | Heat source system operating method and heat source system | |
JP2007240131A (en) | Optimization control of heat source unit and accessory | |
JP3652974B2 (en) | Primary pump heat source variable flow rate system | |
CN109681416A (en) | The control method of cooling pump | |
JP6183840B2 (en) | Hot water supply system and control method thereof | |
JP4249591B2 (en) | Primary pump type heat source variable flow rate control system and primary pump minimum flow rate securing method | |
JP2010236816A (en) | Heat pump type air conditioner and method of controlling heat pump type air conditioner | |
JP5379650B2 (en) | Primary pump type heat source variable flow rate control system and method | |
JP2009019842A (en) | Water delivery control system and water delivery control method | |
JP5572116B2 (en) | Heat source system | |
JP6832732B2 (en) | Refrigeration system | |
JP5313848B2 (en) | Water supply pressure control system and method | |
JP5768151B2 (en) | Heat pump type air conditioner and control method of heat pump type air conditioner | |
JP7332274B2 (en) | heat source system | |
EP3525060B1 (en) | Flow control module and method for controlling the flow in a hydronic system | |
JP2010276006A (en) | Pump number control by pump shaft power | |
JPH08261665A (en) | Operating method for cooling water pump of condenser |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110113 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120416 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120426 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120619 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20121011 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130418 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130426 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160502 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5261153 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |