WO2015114847A1 - Method for controlling number of pumps, device for controlling number of pumps, pump system, heat source system, and program - Google Patents

Method for controlling number of pumps, device for controlling number of pumps, pump system, heat source system, and program Download PDF

Info

Publication number
WO2015114847A1
WO2015114847A1 PCT/JP2014/066141 JP2014066141W WO2015114847A1 WO 2015114847 A1 WO2015114847 A1 WO 2015114847A1 JP 2014066141 W JP2014066141 W JP 2014066141W WO 2015114847 A1 WO2015114847 A1 WO 2015114847A1
Authority
WO
WIPO (PCT)
Prior art keywords
pump
pumps
operating
flow rate
frequency
Prior art date
Application number
PCT/JP2014/066141
Other languages
French (fr)
Japanese (ja)
Inventor
敏昭 大内
智 二階堂
松尾 実
浩毅 立石
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to CN201480072766.9A priority Critical patent/CN105899886B/en
Priority to US15/111,025 priority patent/US20160341440A1/en
Priority to KR1020167018412A priority patent/KR101802105B1/en
Publication of WO2015114847A1 publication Critical patent/WO2015114847A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B41/00Pumping installations or systems specially adapted for elastic fluids
    • F04B41/06Combinations of two or more pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/85Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using variable-flow pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/02Stopping, starting, unloading or idling control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/06Control using electricity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/06Control using electricity
    • F04B49/065Control using electricity and making use of computers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2207/00External parameters
    • F04B2207/04Settings
    • F04B2207/041Settings of flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/13Pump speed control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to a pump number control method, a pump number control device, a pump system, a heat source system, and a program.
  • a heat source system that supplies a heat medium such as cold water or hot water (hereinafter referred to as cold / hot water) to a load device such as an air conditioner, in addition to the primary pump that pumps cold / warm water to the heat source machine, air conditioning separated from the heat source machine
  • a plurality of secondary pumps connected in parallel are provided between the heat source machine and the air conditioner for the purpose of re-pressure feeding the heat medium to the machine.
  • a threshold value is set as a reference for increasing / decreasing the pump, and the pump is added when the flow rate of the heat medium measured by a measuring instrument provided in the middle of the supply path exceeds the threshold value.
  • control is performed such that the system is started and stopped when it falls below a threshold value.
  • the pump capacity is still sufficient, that is, the pump is started even though the pump frequency is more than the rated frequency. There is a possibility that.
  • Patent Document 1 a curve showing the relationship between the pump discharge pressure and the pump discharge flow rate determined for each number of operating secondary pumps, the flow rate of the heat medium supplied to the load device, and the pumps required for the curve.
  • Piping pressure loss is a loss of pump discharge pressure due to friction generated when a heat medium flows in the pipe, bending of the pipe, resistance by a valve, etc.
  • Pressure loss characteristics are changes in pressure loss with respect to the flow rate of the heat medium. It is a characteristic.
  • the load device is an air conditioner
  • the pressure loss of the system changes due to the control valve provided in the air conditioner. Therefore, unless the above control line is also changed, the threshold used for controlling the number of operating pumps is There is a possibility of shifting. If the number of pumps to be operated cannot be changed at an appropriate timing, the flow rate and pressure of the heat medium will fluctuate due to an extra change in the number of pumps, making it impossible to operate the heat source system stably.
  • the present invention provides a pump number control method, a pump number control device, a pump system, a heat source system, and a program.
  • the method for controlling the number of pumps includes a flow rate of a heat medium pumped by a plurality of pumps connected in parallel to a load or a heat load required by the load, and a plurality of pumps. Of these, there is a step of increasing or decreasing the number of operating pumps based on the frequency command value commanded to each pump in operation.
  • the flow rate of the heat medium pumped to the load from the measured value of the discharge flow rate by the operating pump among the plurality of pumps.
  • a step of increasing or decreasing the number of operating pumps is a step in which the number determination flow rate value is greater than or equal to a predetermined threshold value G ⁇ and the frequency command value commanded to each pump is previously determined.
  • the number of pumps to be operated is increased when a predetermined threshold value F ⁇ is exceeded, the number determination flow value is equal to or less than a predetermined threshold value G ⁇ , and a frequency command value commanded to each pump is determined in advance.
  • the number of operating pumps is decreased when the threshold value F ⁇ or less is reached.
  • the method includes a step of calculating a thermal load required by the load, and the step of increasing or decreasing the number of operating pumps includes the step of When the thermal load is equal to or greater than a predetermined threshold value L ⁇ and the frequency command value commanded to each pump is equal to or greater than a predetermined threshold value F ⁇ , the number of operating pumps is increased. When the frequency command value commanded to each pump is equal to or less than a predetermined threshold value L ⁇ , the number of pumps to be operated is decreased.
  • the step of increasing or decreasing the number of operating pumps further includes a pump head of the pump and an additional number of pumps.
  • the number of operating pumps is increased only when the additional-permitted pump head is smaller than the pump head.
  • the number of pumps to be operated is reduced only when the reduction head permitting pump head is larger than the pump head.
  • the pump discharge flow rate after the increase in the number of pumps operated and a predetermined correlation of the pump head with respect to the pump discharge flow rate Based on the pump head calculated based on the above, the pump head when the frequency of the pump is operated at a predetermined threshold F ⁇ is calculated to obtain the additional pump permitting pump head, and the pump after the decrease in the number of pumps operated From the pump head calculated based on the discharge flow rate and the predetermined correlation, the pump head when the pump frequency is operated at a predetermined threshold value F ⁇ is calculated, and the reduction permission pump head is A step of obtaining.
  • the operation is performed on the condition that the pump head after the increase / decrease in the number of operating pumps is equal to the current pump head.
  • the step of increasing / decreasing the number of operating pumps further increases the number of operating pumps only when the frequency command value after increasing the operating number is greater than the threshold F ⁇ , and the frequency command after decreasing the operating number Only when the value is smaller than the threshold value F ⁇ , the number of operating pumps is decreased.
  • the discharge flow rate and the pump efficiency at a predetermined frequency of the pump in operation are preliminarily determined.
  • Obtaining the pump efficiency after the increase in the number of operating pumps, the pump efficiency after the decrease in the operating number and the current pump efficiency based on the determined correlation, and the step of increasing or decreasing the number of operating pumps further includes The number of operating pumps is increased only when the pump efficiency after the increase in the operating number is equal to or higher than the current pump efficiency, and the operating number of pumps is increased only when the pump efficiency after the decrease in the operating number is higher than the current pump efficiency. Decrease.
  • the number-of-pumps control device includes the number of operating pumps connected in parallel for pumping the heat medium to the load, the flow rate of the heat medium for pumping the load, or the load. And a pump number control unit that increases or decreases based on a thermal load required by the motor and a frequency command value commanded to each operating pump among the plurality of pumps.
  • a pump system includes a plurality of pumps connected in parallel and a pump number control device according to the eighth aspect, and the pump head and flow rate per one pump. The number of operating pumps is changed so as not to change the measured value.
  • the heat source system includes a load, a heat source unit that pumps a plurality of heat media connected in parallel, and a heat medium pumped from the plurality of heat source units connected in parallel. Is further provided with a secondary pump for pumping the pressure to the load, and a pump number control device according to the eighth aspect.
  • the program stores the computer of the pump number control device, the flow rate of the heat medium pumped to the load by a plurality of pumps connected in parallel, or the heat load required by the load. And a function of increasing or decreasing the number of operating pumps based on a frequency command value commanded to each operating pump among the plurality of pumps.
  • the pump number control method the pump number control device, the pump system, the heat source system, and the program described above, it is possible to appropriately control the number of operating pumps at an appropriate timing without knowing the characteristics of the equipment such as pressure loss characteristics.
  • FIG. 1 is a schematic view of a heat source system according to a first embodiment of the present invention. It is a functional block diagram of the pump number control apparatus by 1st embodiment of this invention. It is a figure which shows the processing flow of the pump number control apparatus by 1st embodiment of this invention. It is the schematic of the heat source system by the modification of 1st embodiment of this invention. It is a functional block diagram of the pump number control apparatus by the modification of 1st embodiment of this invention. It is a functional block diagram of the pump number control apparatus by 2nd embodiment of this invention. It is a figure which shows an example of the QH characteristic showing the characteristic of a pump. It is a figure which shows a change when the operation number of secondary pumps is increased from one to two.
  • FIG. 1 is a schematic view of a heat source system according to a first embodiment of the present invention.
  • the heat source system of the present embodiment includes a heat source device 30, a primary pump 10, a secondary pump 20, a load 40, a flow meter 21, and a pump number control device 50.
  • the heat source unit 30 is a device that supplies a cooling or heating heat medium such as water to a load.
  • the primary pump 10 pumps the heat medium to the heat source unit 30.
  • the heat source unit 30 is a device that supplies a cooling or heating heat medium such as water to a load.
  • a plurality of combinations of the heat source device 30 and the primary pump 10 may be installed in parallel.
  • the figure shows a state where a plurality of primary pumps 10 are installed in parallel.
  • the secondary pump 20 pumps the heat medium sent from the heat source device 30 to the load 40.
  • the secondary pumps 20 are connected in parallel to each other, and control the flow rate of the heat medium supplied to the load 40 in response to a request from the load 40.
  • the flow meter 21 is a flow meter that measures the flow rate per unit time of the heat medium pumped from the pump.
  • the load 40 is, for example, an air conditioner.
  • the load 40 radiates or absorbs heat from the heat medium, and then causes the heat medium to return to the heat source unit 30.
  • the pump number control device 50 is a device having a function of increasing / decreasing the number of operating secondary pumps 20 according to the required load required by the load 40.
  • two heat source units 30, a primary pump 10, and a secondary pump 20 are installed, but the number is not limited to these numbers.
  • six heat source devices 30 and six primary pumps 10 may be installed, and nine secondary pumps 20 may be installed.
  • the heat source system may be provided with a device (not shown) that controls the number of operating heat source units 30 in order to adjust the supply amount of the heat medium according to the required load of the load 40.
  • FIG. 2 is a functional block diagram of the pump number control device according to the first embodiment of the present invention.
  • the pump number control apparatus 50 in this embodiment is demonstrated using FIG.
  • the pump number control device 50 includes a number determination flow value acquisition unit 101, a number determination frequency value acquisition unit 102, a pump frequency setting unit 103, a flow rate acquisition unit 104, a pump number control unit 105, and a storage unit 200. I have.
  • the number determination flow value acquisition unit 101 reads out and acquires the flow rate increase threshold value G ⁇ and the flow rate decrease threshold value G ⁇ , which are threshold values used when increasing or decreasing the number of operating secondary pumps 20 according to the flow rate. Further, the number determination flow value acquisition unit 101 calculates the number determination flow value by the following equation (1), for example.
  • Gload is a measured value of the flow rate of the heat medium such as water pumped from all the operating secondary pumps 20.
  • G0i is the rated flow rate of the currently operating secondary pump.
  • the number determination flow rate value is a ratio of the measured value of the discharge flow rate of all the operating pumps to the sum of the rated flow rates of the operating secondary pumps.
  • the number determination frequency value acquisition unit 102 reads out and acquires the frequency increase threshold value F ⁇ and the frequency decrease threshold value F ⁇ , which are threshold values used when increasing or decreasing the number of operating secondary pumps 20 according to the frequency, from the storage unit 200. Further, the number determination frequency value acquisition unit 102 acquires the frequency command value output from the pump frequency setting unit 103 to each secondary pump 20 from the pump frequency setting unit 103 and sets it as the number determination frequency value.
  • the pump frequency setting unit 103 instructs the secondary pump 20 to operate the pump.
  • the frequency is a frequency of electric power for rotating the motor that drives the secondary pump 20, and the pump frequency setting unit 103 controls the pump output by specifying the frequency and changing the number of rotations of the pump. To do.
  • the pump frequency setting part 103 shall output the same frequency command value with respect to the some secondary pump 20 in a driving
  • the flow rate acquisition unit 104 acquires the flow rate of the heat medium measured by the flow meter 21.
  • the number-of-pumps control unit 105 increases the number of operating pumps when the flow rate of the heat medium pumped by the pump and the pump frequency satisfy predetermined conditions.
  • the number of operating pumps is increased when the following two conditions are satisfied.
  • ⁇ Additional condition 1 Judgment by flow rate> Number of units judgment flow rate ⁇ G ⁇ (2)
  • ⁇ Additional condition 2 Judgment by frequency> Unit judgment frequency value ⁇ F ⁇ (3)
  • the number determination frequency value is the same value as the frequency command value Fset output to the secondary pump 20 by the pump frequency setting unit 103.
  • F ⁇ is a threshold acquired by the number determination frequency value acquisition unit 102.
  • the ratio of the flow rate pumped by all of the currently operating secondary pumps 20 to the sum of the water feeding capacities of the operating secondary pumps 20 is equal to or greater than the threshold value G ⁇ (formula (2)), and
  • the frequency command value output to each secondary pump 20 is equal to or greater than the threshold value F ⁇ (formula (3))
  • the pump number control unit 105 increases the number of operating secondary pumps 20.
  • the pump number control unit 105 reduces the number of operating pumps when the flow rate of the heat medium pumped by the pump and the pump frequency satisfy a predetermined condition.
  • the number of operating pumps is reduced when the following two conditions are satisfied.
  • ⁇ Decrease condition 1 Judgment by flow rate> Number of units judgment flow rate ⁇ G ⁇ (4)
  • G ⁇ is a threshold acquired by the number determination flow value acquisition unit 101.
  • ⁇ Decrease condition 2 Judgment by frequency> Unit judgment frequency value ⁇ F ⁇ (5)
  • F ⁇ is a threshold acquired by the number determination frequency value acquisition unit 102.
  • the number determination frequency value is a frequency command value specified by the pump frequency setting unit 103 to the secondary pump 20, for example.
  • the ratio of the flow rate pumped by all of the currently operating secondary pumps 20 to the sum of the water supply capacities of the currently operating secondary pumps 20 is less than or equal to the threshold G ⁇ (formula (4)).
  • the pump number control unit 105 decreases the number of operating secondary pumps 20.
  • the storage unit 200 holds threshold values such as G ⁇ and F ⁇ used for determining increase / decrease in the number of pumps, information representing the characteristics of the secondary pump 20, and the like.
  • the characteristic information is, for example, a QH characteristic, a graph showing the correlation between the pump discharge flow rate and the pump efficiency.
  • FIG. 3 is a diagram showing a processing flow of the pump number control device according to the present embodiment.
  • a process of increasing or decreasing the number of operating secondary pumps 20 by the pump number control device 50 will be described using the processing flow of FIG.
  • the heat source system shown in FIG. 1 is operating.
  • the load 40 is an air conditioner and the user raises or lowers the temperature setting, the required load increases or decreases.
  • the number of operating units shall be controlled. Further, it is assumed that the total flow rate of the secondary pump 20 immediately after the increase / decrease table of the pump does not change from that before the increase / decrease table, and the pump head (pump head) per one of the secondary pumps 20 does not change.
  • the flow rate acquisition unit 104 acquires the flow rate per unit time measured by the flow meter 21 (step S1).
  • the flow rate measured by the flow meter 21 is the total flow rate of the heat medium pumped by one or a plurality of secondary pumps 20. Since this measured value is a value obtained by measuring the flow rate actually flowing through the pipe, it can be considered that the pressure loss characteristic of the pipe is reflected.
  • the number determination flow value acquisition unit 101 reads out and acquires the threshold values G ⁇ and G ⁇ stored in the storage unit 200. Further, the number determination flow value acquisition unit 101 calculates the number determination flow value by the equation (1) (step S2). The number determination flow value acquisition unit 101 outputs these values to the pump number control unit 105.
  • the number determination frequency value acquisition unit 102 reads and acquires the threshold values F ⁇ and F ⁇ stored in the storage unit 200. Further, the number determination frequency value acquisition unit 102 acquires the pump frequency command value commanded from the pump frequency setting unit 103 to the secondary pump 20 as the number determination frequency value (step S3). The number determination frequency value acquisition unit 102 outputs these values to the pump number control unit 105.
  • step S6 Yes
  • step S7 the number of secondary pumps 20 is decreased
  • the secondary pump 20 in the conventional method in which only the flow rate is used to determine the increase / decrease table, the secondary pump is increased.
  • the increase in the number of pumps causes a large change in the pressure and flow rate of the heat medium flowing through the system.
  • the secondary pump 20 can be increased or decreased without having to know the details of the equipment such as pressure loss by making a determination based on the frequency command value in addition to the actual flow rate measurement value including the system pressure loss information. become.
  • the increase / decrease table using the pump frequency command value it is possible to increase / decrease the secondary pump 20 in consideration of the remaining capacity of the pump. Therefore, it becomes difficult to increase or decrease the number of pumps, and the heat source system can be operated more stably than the conventional method.
  • the pump when the pump is reduced, it is possible to prevent the pump from being reduced even though the pump capacity can be further reduced by reducing the frequency.
  • FIG. 4 is a schematic view of a heat source system according to a modification of the present embodiment.
  • the heat source system of this modification includes a thermometer 22 and a thermometer 23. Other configurations are the same as those of the first embodiment.
  • the thermometer 22 is provided near the entrance of the load 40.
  • the thermometer 22 measures the temperature of the heat medium supplied to the load 40.
  • the thermometer 23 is provided near the outlet of the load 40.
  • the thermometer 23 measures the temperature of the heat medium returning from the load 40 to the heat source unit 30.
  • FIG. 5 is a functional block diagram of a pump number control device according to a modification of the present embodiment.
  • the pump number control device 50 of this modification is different from the first embodiment in that it includes a temperature acquisition unit 110 and a number determination thermal load acquisition unit 111 instead of the number determination flow value acquisition unit 101.
  • Other configurations of the present embodiment are the same as those of the first embodiment.
  • the temperature acquisition unit 110 acquires the temperature of the heat medium measured by the thermometer 22 and the thermometer 23.
  • the number determination thermal load acquisition unit 111 reads a thermal load increase threshold value L ⁇ and a thermal load decrease threshold value L ⁇ , which are predetermined threshold values, from the storage unit 200.
  • the number determination thermal load acquisition unit 111 needs the load 40 by acquiring the flow rate of the heat medium from the flow rate acquisition unit 104 and the temperature of the heat medium measured by the thermometer 22 and the thermometer 23 from the temperature acquisition unit 110.
  • the load (thermal load) is calculated.
  • the heat load can be calculated using, for example, the following equation.
  • Heat load Flow rate of heat medium x (
  • the flow rate of the heat medium is a value measured by the flow meter 21, and is a value acquired from the flow rate acquisition unit 104 by the number determination thermal load acquisition unit 111.
  • the “temperature of the recirculating heat medium” is a temperature measured by the thermometer 23 and a value acquired from the temperature acquisition unit 110 by the number determination thermal load acquisition unit 111.
  • the temperature of the supplied heat medium is the temperature measured by the thermometer 22, and is the value acquired by the number determination thermal load acquisition unit 111 from the temperature acquisition unit 110.
  • the specific heat of the heat medium and the specific gravity of the heat medium are recorded in advance in the storage unit 200, and the number determination thermal load acquisition unit 111 reads these values from the storage unit 200.
  • the pump number control unit 105 determines the number of pumps to be operated when the thermal load calculated by the number determination thermal load acquisition unit 111 or the pump frequency acquired by the number determination frequency value acquisition unit 102 satisfies a predetermined condition. increase. Specifically, the number of operating pumps is increased when the following two conditions are satisfied. ⁇ Additional condition 1-1: Judgment by heat load> Thermal load ⁇ L ⁇ (7) ⁇ Additional condition 2: Judgment by frequency> Unit judgment frequency value ⁇ F ⁇ (8)
  • the pump number control unit 105 reduces the number of operating pumps when the heat load or the pump frequency satisfies a predetermined condition. Specifically, the number of operating pumps is reduced when the following two conditions are satisfied. ⁇ Decrease condition 1-1: Judgment by heat load> Thermal load ⁇ L ⁇ (9) ⁇ Decrease condition 2: Judgment by frequency> Number-of-units judgment frequency value ⁇ F ⁇ (10)
  • the increase condition 1-1 and the decrease condition 1-1 are different from the first embodiment.
  • the increase base condition 2 and the decrease base condition 2 are the same as in the first embodiment.
  • the temperature acquisition unit 110 measures the temperature of the heat medium measured by the thermometer 22 and the thermometer 23.
  • the number determination thermal load acquisition unit 111 reads the threshold values L ⁇ and L ⁇ stored in the storage unit 200.
  • the number determination thermal load acquisition unit 111 acquires the flow rate of the heat medium from the flow rate acquisition unit 104, the temperature of the heat medium supplied from the temperature acquisition unit 110 to the load 40, and the heat recirculated from the load 40 to the heat source unit 30. Get the temperature of the medium.
  • the number determination thermal load acquisition part 111 calculates a thermal load by Formula (6). Further, in step S4, the pump number control unit 105 determines the above “addition condition 1-1” and “addition condition 2”. In step S6, the pump number control unit 105 performs the determination of the “reduction table condition 1-1” and the “reduction condition 2”. Other processing steps in this modification are the same as those in the first embodiment.
  • the threshold values of G ⁇ , G ⁇ , F ⁇ , F ⁇ , L ⁇ , and L ⁇ used in the present embodiment and the modified examples are values determined in advance through experiments, simulations, and the like.
  • FIG. 6 is a functional block diagram of the pump number control device according to the present embodiment.
  • the pump number control device 50 according to the present embodiment is different from the first embodiment in that a pump head acquisition unit 107 is provided.
  • Other configurations of the present embodiment are the same as those of the first embodiment.
  • the pump head acquisition unit 107 acquires the pump head of the secondary pump 20 that is currently in operation of the secondary pump 20 and the pump head after the increase / decrease of the secondary pump based on the QH characteristics possessed by the storage unit 200.
  • the pump head is the head of the pump.
  • the QH characteristic is a pump performance curve showing the relationship between the discharge flow rate and the pump head when the pump is operated at the maximum frequency. An example of the QH characteristic is shown in FIG.
  • the pump discharge flow rate (Q) and the pump head (H) have a relationship in which the pump head decreases as the discharge flow rate is increased.
  • the QH characteristics have different trajectories depending on the type of pump.
  • the storage unit 200 stores a QH characteristic indicating the QH correlation of the secondary pump 20 used in the heat source system, and the pump head acquisition unit 107 increases or decreases using the QH characteristic.
  • a pump head corresponding to the discharge flow rate of the secondary pump 20 per unit before and after the unit is acquired.
  • FIG. 8A and 8B are diagrams showing changes when the number of operating secondary pumps 20 is increased from one to two.
  • the secondary pump 20 that has been in operation from the beginning is referred to as a pump 20-1
  • the second secondary pump 20 to be added is referred to as a pump 20-2.
  • FIG. 8A is a diagram of a single-unit operating state.
  • the flow rate per unit time pumped by one pump 20-1 is GA
  • the total flow rate per unit time pumped by all pumps 20-1 is GinA.
  • GinA GA.
  • FIG. 8B is a diagram of a two-unit operating state.
  • the flow rate per unit time by the pump per unit pumped by each of the pump 20-1 and the pump 20-2 is GB, and the total flow rate per unit time pumped by the two pumps 20-1 and 20-2. Is GinB.
  • GinB GB ⁇ 2.
  • the frequency of the pump 20-1 and the pump 20-2 is fB, and the heads of the pump 20-1 and the pump 20-2 are HB. That is, in FIG. 8B, the pump number control device 50 controls the secondary pumps 20 in the operating state so that they have the same frequency regardless of the operating number.
  • the pump number control device 50 performs control so that the total flow rate (GinA) and the pump head (HA) do not change before and after that. These conditions are preconditions common to the first to fourth embodiments.
  • each value after increasing from n to n + m can be expressed as follows.
  • the secondary pump 20 is operated at a frequency 1 and a discharge flow rate 1 is obtained.
  • the discharge flow rate when the pump is operated at the maximum frequency can be obtained by multiplying the discharge flow rate 1 by the value obtained by dividing the maximum frequency by the frequency 1.
  • the QH characteristic is read using the discharge flow rate at the maximum frequency obtained, and a pump head corresponding to the discharge flow rate when the pump is operated at the maximum frequency is obtained.
  • the determined pump head is multiplied by the square of the ratio of the current frequency 1 to the pump maximum frequency. The value obtained in this way is the pump head.
  • the additional head permission pump head (HB ′) is obtained by the following equation (11).
  • the first term F (x) on the right side represents a function for obtaining the pump head from the discharge flow rate indicated by the QH characteristic.
  • F ⁇ is the frequency reduction threshold described in the first embodiment.
  • fmax is the maximum frequency (pump maximum frequency) of each secondary pump 20. This pump head obtained using the frequency reduction threshold F ⁇ means a pump head (addition permission pump head) when one secondary pump 20 is reduced from a state where one secondary pump 20 is increased.
  • the pump head acquisition unit 107 similarly obtains the pump head (HB) in the state after increasing the pump by the following equation (12).
  • using the frequency and flow rate before the increase increases the secondary pump 20 so as not to change the pump head as described above, so that the pump head after the increase is equal to the current (before the increase) pump head. Because.
  • the number-of-pumps control unit 105 uses these values to determine the next condition in addition to the two additional conditions in the first embodiment.
  • ⁇ Additional condition 3 Judgment by pump head> Additional head permitting pump head ⁇ Pump head after additional base (13) That is, in addition to “addition condition 1” and “addition condition 2”, the number-of-pumps control unit 105 increases the number of secondary pumps 20 to be operated if the number of pumps is greater than the permitted number of pumps.
  • the additional head permission pump head is a value obtained using the frequency lowering threshold, and is a reference value for lowering the pump after the number of operating pumps is increased. In order to eliminate such waste in consideration of the possibility that the pump head after the increase seems to fall below this value even if the number of operating units is increased, the pump may be reduced again. Let's add such a condition.
  • the reduction-permitted pump head is a reference value for increasing the number of pumps after the number of operating pumps has decreased.
  • Each amount after the secondary pump 20 is reduced from n units to nm units in the same manner as when the number of units is increased can be expressed as follows.
  • the reduction base permission pump head can be obtained by the following equation (14).
  • F ⁇ is the frequency increase threshold described in the first embodiment.
  • the pump head acquisition part 107 calculates
  • the pump number control unit 105 uses these values to determine the following conditions in addition to the two reduction conditions in the first embodiment. ⁇ Decrease condition 3: Judgment by pump head> Reduction head permission pump head> Pump head after reduction ... (15) That is, the number-of-pumps control unit 105 reduces the number of operating secondary pumps 20 if the number of pumps is equal to or less than the reduction-permitted pump head in addition to “reduction conditions 1” and “reduction conditions 2”. This condition takes into consideration that the number of pumps may be increased again after a decrease in the number of operating pumps as in the case of increasing the number of pumps.
  • FIG. 9 is a diagram showing a processing flow of the pump number control apparatus according to the present embodiment.
  • a process of increasing or decreasing the number of operating secondary pumps 20 by the pump number control device 50 will be described using the processing flow of FIG.
  • the same processes as those in FIG. 3 will be described with the same reference numerals.
  • Step S1 to Step S3 are the same as in the first embodiment. That is, the flow rate acquisition unit 104 measures the flow rate measured by the flow meter 21, the unit determination flow value acquisition unit 101 uses the threshold values G ⁇ and G ⁇ , the unit determination flow rate value, and the unit determination frequency value acquisition unit 102 uses the threshold values F ⁇ and F ⁇ Get the frequency value.
  • the pump head acquisition unit 107 obtains the pump head after the pump increase / decrease table by Expression (12), the increase permission pump head by Expression (11), and the decrease permission pump head by Expression (14) (Step S10).
  • step S12 determines “reduction condition 1”, “reduction condition 2”, and “reduction condition 3” (step S12).
  • step S12 Yes
  • step S7 the number-of-pumps control unit 105 decreases the number of operating secondary pumps by one.
  • step S8 the process in step S8 is the same as that in FIG. That is, the processing from step S1 is repeated until the heat source system stops.
  • the criteria for determining whether to increase or decrease the secondary pump 20 using the measured flow rate and pump frequency are shown.
  • the method according to the first embodiment alone does not take into account the state after the pump is added or reduced, so the determination of the addition or reduction is performed again, and the addition and reduction may be repeated.
  • the pump operation state after the increase (decrease) is estimated from the QH characteristics. Increasing the number of units can be prevented by increasing or decreasing the number of units after comparing with the threshold pump head. This embodiment can be combined with a modification of the first embodiment.
  • FIG. 10 is a functional block diagram of the pump number control device 50 according to the present embodiment.
  • the pump number control device 50 according to the present embodiment is different from the first embodiment in that a pump frequency estimated value acquisition unit 108 is provided.
  • Other configurations of the present embodiment are the same as those of the first embodiment.
  • the pump frequency estimated value acquisition unit 108 acquires the post-increase pump frequency estimated value and the post-decrease pump frequency estimated value, which are estimated values of the frequency after the secondary pump 20 is increased or decreased. Specifically, the pump head after the number of units can be obtained by Expression (16).
  • the required discharge flow rate ((n / n + m) ⁇ GA) per pump after the increase is obtained at the pump frequency (fB) after the increase, based on the discharge flow rate at the maximum pump frequency in that case.
  • the pump head (HB) after the addition is obtained by multiplying the pump head obtained from the QH characteristic by the square of the ratio of the pump frequency (fB) after the addition to the pump maximum frequency (fmax).
  • FB is the estimated pump frequency after the increase.
  • the number-of-pumps control unit 105 determines whether or not to allow the number of pumps to be increased after the number of stations is increased by frequency in addition to the “number of conditions 1” and “number of conditions 2” (“number of conditions 4”). )I do.
  • ⁇ Additional condition 4 Judgment by frequency> fB> F ⁇ (17)
  • fB is the post-increase pump frequency estimated value obtained by the pump frequency estimated value acquisition unit 108
  • F ⁇ is the frequency decrease threshold described in the first embodiment.
  • the pump may be reduced. In order to prevent this, this condition is added to the pump addition determination.
  • the pump frequency estimated value acquisition unit 108 substitutes the flow rate per pump and the pump maximum frequency after reduction in the formula (18), and uses the fact that the value of the formula (18) is equal to the above HA,
  • the post-reduction pump frequency estimated value fB is obtained from a map or inverse function.
  • the number-of-pumps control unit 105 determines that the number of pumps is not allowed to enter again after the reduction according to the frequency (“reduction condition 4”). )I do.
  • ⁇ Decrease condition 4 Judgment by frequency> fB ⁇ F ⁇ (19)
  • fB is the post-reduction pump frequency estimated value obtained by the pump frequency estimated value acquisition unit 108
  • F ⁇ is the frequency increase threshold described in the first embodiment. That is, in this embodiment, in addition to the “reduction condition 1” and “reduction condition 2”, if the frequency after the decrease is not less than the frequency increase threshold value, the number of pumps may be increased. In order to prevent this, this condition is added to the pump reduction judgment.
  • FIG. 11 is a diagram showing a processing flow of the pump number control device according to the present embodiment.
  • a process of increasing or decreasing the number of operating secondary pumps 20 by the pump number control device 50 will be described using the processing flow of FIG. The same processes as those in FIG. 3 will be described with the same reference numerals.
  • Steps S1 to S3 are the same as in the first embodiment.
  • the pump frequency estimated value acquisition unit 108 obtains an estimated value fB of the pump frequency after the pump increase / decrease table using a map or an inverse function (step S13).
  • the number-of-pumps control unit 105 determines “addition condition 1”, “addition condition 2”, and “addition condition 4” (step S14).
  • step S14 Yes
  • step S5 the pump number control unit 105 increases the number of operating secondary pumps 20 by one.
  • step S15 the process proceeds to step S15.
  • the process in step S8 is the same as that in FIG. That is, the processing from step S1 is repeated until the heat source system stops.
  • the pump frequency after the increase (decrease) is estimated, and the value is compared with the frequency decrease (addition) threshold.
  • the secondary pump 20 is increased if the estimated pump frequency after the increase exceeds the frequency decrease threshold.
  • the secondary pump 20 is reduced if the estimated pump frequency after reduction is below the frequency increase threshold.
  • FIG. 12 is a functional block diagram of the pump number control apparatus according to the present embodiment.
  • the pump number control device 50 of this embodiment is different from that of the first embodiment in that a pump frequency estimated value acquisition unit 108 and a pump efficiency acquisition unit 109 are provided.
  • Other configurations of the present embodiment are the same as those of the first embodiment.
  • the pump frequency estimated value acquisition unit 108 acquires the post-increased pump frequency estimated value and the post-decreasing pump frequency estimated value using a map or an inverse function.
  • the pump efficiency acquisition unit 109 obtains an estimated value of the pump efficiency after the increase / decrease of the secondary pump 20 using a graph or the like indicating the correlation between the pump discharge flow rate and the pump efficiency held by the storage unit 200.
  • FIG. 13 shows an example of the correlation between the discharge flow rate and the pump efficiency when the pump is operated at the maximum frequency.
  • FIG. 13 shows that the pump efficiency changes according to the pump discharge flow rate. It can be understood that when the number of operating secondary pumps 20 is increased or decreased, the discharge flow rate per unit changes, and the pump efficiency changes accordingly.
  • ⁇ (x) is a function indicating the relationship between the pump discharge flow rate and the pump efficiency.
  • ⁇ B per unit is obtained by the following equation (21).
  • f B is the pump frequency estimated value after the increase calculated by the pump frequency estimated value acquiring unit 108.
  • addition condition 5 Judgment by pump efficiency> ⁇ B ⁇ ⁇ A (22) That is, the number-of-pumps control unit 105 does not increase unless the pump efficiency after the increase is equal to or higher than the pump efficiency before the increase in addition to “addition condition 1” and “addition condition 2”.
  • the pump efficiency acquisition unit 109 obtains the pump efficiency after the reduction per unit by the following equation (23).
  • the number-of-pumps control unit 105 performs a reduction permission determination based on pump efficiency (“reduction condition 5”) in addition to “reduction condition 1” and “reduction condition 2”.
  • ⁇ Decrease condition 5 Judgment by pump efficiency> ⁇ B ⁇ ⁇ A (24) That is, the number-of-pumps control unit 105 does not decrease unless the pump efficiency after the reduction is equal to or higher than the pump efficiency before the reduction, in addition to the “reduction condition 1” and “reduction condition 2”.
  • the pump efficiency is not considered in the first to third embodiments, there is a possibility that the number of pumps may be increased or decreased to operate at an inefficient operating point. According to this embodiment, it is possible to increase or decrease the number of pumps while suppressing power consumption by considering pump efficiency.
  • FIG. 14 is a diagram showing a processing flow of the pump number control device according to the present embodiment.
  • a process of increasing or decreasing the number of operating secondary pumps 20 by the pump number control device 50 will be described using the processing flow of FIG.
  • the same processes as those in FIG. 11 will be described with the same reference numerals.
  • Steps S1 to S3 are the same as those in the first to third embodiments.
  • the next step S13 is the same as in the third embodiment (FIG. 11).
  • the pump efficiency acquisition part 109 calculates
  • the number-of-pumps control unit 105 determines “addition condition 1”, “addition condition 2”, and “addition condition 5” (step S18).
  • step S18 Yes
  • step S5 the pump number control unit 105 increases the number of operating secondary pumps by one.
  • the process in step S8 is the same as that in FIG. That is, the processing from step S1 is repeated until the heat source system stops.
  • This embodiment can be combined with the second and third embodiments as well as the first embodiment and its modifications.
  • the above-mentioned pump number control device has a computer inside.
  • Each process of the above-described number-of-pumps control apparatus is stored in a computer-readable recording medium in the form of a program, and the above process is performed by the computer reading and executing this program.
  • the computer-readable recording medium means a magnetic disk, a magneto-optical disk, a CD-ROM, a DVD-ROM, a semiconductor memory, or the like.
  • the computer program may be distributed to the computer via a communication line, and the computer that has received the distribution may execute the program.
  • the program may be for realizing a part of the functions described above. Furthermore, what can implement
  • the pump number control method the pump number control device, the pump system, the heat source system, and the program described above, it is possible to appropriately control the number of operating pumps at an appropriate timing without knowing the characteristics of the equipment such as the pressure loss characteristics.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Air Conditioning Control Device (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Abstract

This method for controlling the number of pumps has a step of increasing/decreasing the number of operating pumps on the basis of the flow rate of a heating medium that is pumped to a load (40) by a plurality of pumps connected in parallel or the thermal load required by the load, and a frequency command value sent to the pumps of the plurality of pumps that are operating.

Description

ポンプ台数制御方法、ポンプ台数制御装置、ポンプシステム、熱源システム及びプログラムPump number control method, pump number control device, pump system, heat source system, and program
 本発明は、ポンプ台数制御方法、ポンプ台数制御装置、ポンプシステム、熱源システム及びプログラムに関する。
 本願は、2014年1月31日に、日本に出願された特願2014-017187号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a pump number control method, a pump number control device, a pump system, a heat source system, and a program.
This application claims priority based on Japanese Patent Application No. 2014-018187 filed in Japan on January 31, 2014, the contents of which are incorporated herein by reference.
 空調機などの負荷装置に熱源機から冷水や温水(以下、冷温水)などの熱媒体を供給する熱源システムにおいて熱源機に冷温水を圧送する1次ポンプの他に、熱源機から離れた空調機に熱媒体を再圧送する目的で熱源機と空調機の間に並列に接続した複数台の2次ポンプを設けることも多い。そのような2次ポンプを有する熱源システムにおいて,負荷装置への吐出流量を満足させられるように2次ポンプの運転台数を決定する手法が存在する。このような手法においては一般的に、ポンプの増減台を行う基準となる閾値を設定し、供給経路の途中に備えられた計測器で測定した熱媒体の流量がその閾値を超えるとポンプを追起動し,逆に閾値以下になると停止させるといった制御を行うことが多い。しかし、このように測定した流量のみでポンプ運転台数の増減の判断を行うとポンプの能力にまだ余裕がある、つまりポンプの周波数が定格周波数に比べて余裕があるにも関わらずポンプを追起動してしまう可能性がある。
 例えば特許文献1では、2次ポンプの運転台数ごとに定められたポンプの吐出圧力とポンプの吐出流量との関係を示した曲線と、負荷装置へ供給する熱媒体の流量とそれに必要なポンプの吐出圧力との相関を示す制御線の交点で決定した流量を閾値としてポンプ運転台数を変化させることで、台数変化後も吐出圧力を維持できる流量の閾値を設定している。
In a heat source system that supplies a heat medium such as cold water or hot water (hereinafter referred to as cold / hot water) to a load device such as an air conditioner, in addition to the primary pump that pumps cold / warm water to the heat source machine, air conditioning separated from the heat source machine In many cases, a plurality of secondary pumps connected in parallel are provided between the heat source machine and the air conditioner for the purpose of re-pressure feeding the heat medium to the machine. In such a heat source system having a secondary pump, there is a method of determining the number of secondary pumps to be operated so as to satisfy the discharge flow rate to the load device. In such a method, generally, a threshold value is set as a reference for increasing / decreasing the pump, and the pump is added when the flow rate of the heat medium measured by a measuring instrument provided in the middle of the supply path exceeds the threshold value. In many cases, control is performed such that the system is started and stopped when it falls below a threshold value. However, if it is determined whether the number of pumps to be operated is increased or decreased based only on the measured flow rate in this way, the pump capacity is still sufficient, that is, the pump is started even though the pump frequency is more than the rated frequency. There is a possibility that.
For example, in Patent Document 1, a curve showing the relationship between the pump discharge pressure and the pump discharge flow rate determined for each number of operating secondary pumps, the flow rate of the heat medium supplied to the load device, and the pumps required for the curve. By changing the number of pumps operated with the flow rate determined at the intersection of the control lines indicating the correlation with the discharge pressure as a threshold value, a threshold value for the flow rate at which the discharge pressure can be maintained even after the number of units is changed is set.
日本国特許第5261153号公報Japanese Patent No. 5261153
 特許文献1の手法の場合、配管の圧損特性を正確に把握し、それを反映した制御線が得られなければ有意な閾値を得ることは難しい。配管の圧損とは、配管中に熱媒体が流れるときに生じる摩擦や、配管の曲がり、バルブによる抵抗などによるポンプ吐出圧力の損失のことであり、圧損特性とは熱媒体の流量に対する圧損の変化特性のことである。特に負荷装置が空調機である場合、空調機に備えられた制御弁により系統の圧損が変化するため、上述の制御線も変化することを考慮しなければ、ポンプの運転台数制御に用いる閾値がずれてしまう可能性がある。適切なタイミングでポンプの運転台数を変化させられないと、余計な台数変化によって熱媒体の流量や圧力等が変動してしまい、熱源システムを安定して運転できなくなる。 In the case of the method of Patent Document 1, it is difficult to obtain a significant threshold value unless the pressure loss characteristic of the pipe is accurately grasped and a control line reflecting it is not obtained. Piping pressure loss is a loss of pump discharge pressure due to friction generated when a heat medium flows in the pipe, bending of the pipe, resistance by a valve, etc. Pressure loss characteristics are changes in pressure loss with respect to the flow rate of the heat medium. It is a characteristic. Especially when the load device is an air conditioner, the pressure loss of the system changes due to the control valve provided in the air conditioner. Therefore, unless the above control line is also changed, the threshold used for controlling the number of operating pumps is There is a possibility of shifting. If the number of pumps to be operated cannot be changed at an appropriate timing, the flow rate and pressure of the heat medium will fluctuate due to an extra change in the number of pumps, making it impossible to operate the heat source system stably.
 本発明は、ポンプ台数制御方法、ポンプ台数制御装置、ポンプシステム、熱源システム及びプログラムを提供する。 The present invention provides a pump number control method, a pump number control device, a pump system, a heat source system, and a program.
 本発明の第一の態様によれば、ポンプ台数制御方法は、並列に接続された複数のポンプが負荷に圧送する熱媒体の流量若しくは前記負荷が必要とする熱負荷と、前記複数のポンプのうち運転中の各ポンプに指令した周波数指令値と、に基づいて前記ポンプの運転台数を増減させる工程を有する。 According to the first aspect of the present invention, the method for controlling the number of pumps includes a flow rate of a heat medium pumped by a plurality of pumps connected in parallel to a load or a heat load required by the load, and a plurality of pumps. Of these, there is a step of increasing or decreasing the number of operating pumps based on the frequency command value commanded to each pump in operation.
 本発明の第二の態様によれば、第一の態様に係るポンプ台数制御方法において、前記複数のポンプのうち運転中のポンプによる吐出流量の測定値から前記負荷に圧送する熱媒体の流量を示す台数判断流量値を取得する工程を有し、前記ポンプの運転台数を増減させる工程は、前記台数判断流量値が予め定められた閾値Gα以上、かつ、各ポンプに指令した周波数指令値が予め定められた閾値Fα以上となった場合に前記ポンプの運転台数を増加させ、また、前記台数判断流量値が予め定められた閾値Gβ以下、かつ、各ポンプに指令した周波数指令値が予め定められた閾値Fβ以下となった場合に前記ポンプの運転台数を減少させる。 According to the second aspect of the present invention, in the pump number control method according to the first aspect, the flow rate of the heat medium pumped to the load from the measured value of the discharge flow rate by the operating pump among the plurality of pumps. And a step of increasing or decreasing the number of operating pumps is a step in which the number determination flow rate value is greater than or equal to a predetermined threshold value Gα and the frequency command value commanded to each pump is previously determined. The number of pumps to be operated is increased when a predetermined threshold value Fα is exceeded, the number determination flow value is equal to or less than a predetermined threshold value Gβ, and a frequency command value commanded to each pump is determined in advance. The number of operating pumps is decreased when the threshold value Fβ or less is reached.
 本発明の第三の態様によれば、第一の態様に係るポンプ台数制御方法において、前記負荷が要求する熱負荷を算出する工程を有し、前記ポンプの運転台数を増減させる工程は、前記熱負荷が予め定められた閾値Lα以上、かつ、各ポンプに指令した周波数指令値が予め定められた閾値Fα以上となった場合に前記ポンプの運転台数を増加させ、また、前記熱負荷が予め定められた閾値Lβ以下、かつ、各ポンプに指令した周波数指令値が予め定められた閾値Fβ以下となった場合に前記ポンプの運転台数を減少させる。 According to a third aspect of the present invention, in the pump number control method according to the first aspect, the method includes a step of calculating a thermal load required by the load, and the step of increasing or decreasing the number of operating pumps includes the step of When the thermal load is equal to or greater than a predetermined threshold value Lα and the frequency command value commanded to each pump is equal to or greater than a predetermined threshold value Fα, the number of operating pumps is increased. When the frequency command value commanded to each pump is equal to or less than a predetermined threshold value Lβ, the number of pumps to be operated is decreased.
 本発明の第四の態様によれば、第二または第三の態様に係るポンプ台数制御方法において、前記ポンプの運転台数を増減させる工程は、さらに前記ポンプのポンプヘッドと、前記ポンプを増台する閾値である増台許可ポンプヘッド又は前記ポンプを減台する閾値である減台許可ポンプヘッドと、を比較し、前記増台許可ポンプヘッドが前記ポンプヘッドより小さい場合のみポンプの運転台数を増加し、前記減台許可ポンプヘッドが前記ポンプヘッドより大きい場合のみポンプの運転台数を減少させる。 According to the fourth aspect of the present invention, in the pump number control method according to the second or third aspect, the step of increasing or decreasing the number of operating pumps further includes a pump head of the pump and an additional number of pumps. Compared to the increase-permitted pump head that is the threshold to reduce or the decrease-permitted pump head that is the threshold to decrease the pump, the number of operating pumps is increased only when the additional-permitted pump head is smaller than the pump head. The number of pumps to be operated is reduced only when the reduction head permitting pump head is larger than the pump head.
 本発明の第五の態様によれば、第四の態様に係るポンプ台数制御方法において、前記ポンプ運転台数増加後のポンプの吐出流量とポンプの吐出流量に対するポンプヘッドの予め定められた相関とに基づいて算出したポンプヘッドから、前記ポンプの周波数を予め定められた閾値Fβで動作させたときのポンプヘッドを算出して前記増台許可ポンプヘッドを求め、また、前記ポンプ運転台数減少後のポンプの吐出流量と前記予め定められた相関とに基づいて算出したポンプヘッドから、前記ポンプの周波数を予め定められた閾値Fαで動作させたときのポンプヘッドを算出して前記減台許可ポンプヘッドを求める工程を有する。 According to a fifth aspect of the present invention, in the pump number control method according to the fourth aspect, the pump discharge flow rate after the increase in the number of pumps operated and a predetermined correlation of the pump head with respect to the pump discharge flow rate Based on the pump head calculated based on the above, the pump head when the frequency of the pump is operated at a predetermined threshold Fβ is calculated to obtain the additional pump permitting pump head, and the pump after the decrease in the number of pumps operated From the pump head calculated based on the discharge flow rate and the predetermined correlation, the pump head when the pump frequency is operated at a predetermined threshold value Fα is calculated, and the reduction permission pump head is A step of obtaining.
 本発明の第六の態様によれば、第二または第三の態様に係るポンプ台数制御方法において、ポンプの運転台数の増減後におけるポンプヘッドと現在のポンプヘッドとが等しいことを条件に前記運転中のポンプの所定の周波数におけるポンプヘッドとポンプの吐出流量との予め定められた相関に基づいてポンプの運転台数増加後の周波数指令値と運転台数減少後の周波数指令値とを取得する工程を有し、前記ポンプの運転台数を増減させる工程は、さらに前記運転台数増加後の周波数指令値が前記閾値Fβより大きいときのみポンプの運転台数を増加し、また、前記運転台数減少後の周波数指令値が前記閾値Fαより小さいときのみポンプの運転台数を減少させる。 According to the sixth aspect of the present invention, in the method for controlling the number of pumps according to the second or third aspect, the operation is performed on the condition that the pump head after the increase / decrease in the number of operating pumps is equal to the current pump head. Obtaining a frequency command value after an increase in the number of operating pumps and a frequency command value after a decrease in the number of operating pumps based on a predetermined correlation between a pump head and a pump discharge flow rate at a predetermined frequency of the pump And the step of increasing / decreasing the number of operating pumps further increases the number of operating pumps only when the frequency command value after increasing the operating number is greater than the threshold Fβ, and the frequency command after decreasing the operating number Only when the value is smaller than the threshold value Fα, the number of operating pumps is decreased.
 本発明の第七の態様によれば、第二から第六の態様のいずれか1つの態様に係るポンプ台数制御方法において、前記運転中のポンプの所定の周波数における吐出流量とポンプ効率との予め定められた相関に基づいてポンプの運転台数増加後のポンプ効率と運転台数減少後のポンプ効率と現在のポンプ効率とを取得する工程を有し、前記ポンプの運転台数を増減させる工程は、さらに前記運転台数増加後のポンプ効率が前記現在のポンプ効率以上の場合のみポンプの運転台数を増加し、また、前記運転台数減少後のポンプ効率が前記現在のポンプ効率以上の場合のみポンプの運転台数を減少させる。 According to the seventh aspect of the present invention, in the pump number control method according to any one of the second to sixth aspects, the discharge flow rate and the pump efficiency at a predetermined frequency of the pump in operation are preliminarily determined. Obtaining the pump efficiency after the increase in the number of operating pumps, the pump efficiency after the decrease in the operating number and the current pump efficiency based on the determined correlation, and the step of increasing or decreasing the number of operating pumps further includes The number of operating pumps is increased only when the pump efficiency after the increase in the operating number is equal to or higher than the current pump efficiency, and the operating number of pumps is increased only when the pump efficiency after the decrease in the operating number is higher than the current pump efficiency. Decrease.
 また本発明の第八の態様によれば、ポンプ台数制御装置は、負荷に熱媒体を圧送する並列に接続された複数のポンプの運転台数を、前記負荷に圧送する熱媒体の流量若しくは前記負荷が必要とする熱負荷と前記複数のポンプのうち運転中の各ポンプに指令した周波数指令値とに基づいて増減させるポンプ台数制御部を備える。 According to the eighth aspect of the present invention, the number-of-pumps control device includes the number of operating pumps connected in parallel for pumping the heat medium to the load, the flow rate of the heat medium for pumping the load, or the load. And a pump number control unit that increases or decreases based on a thermal load required by the motor and a frequency command value commanded to each operating pump among the plurality of pumps.
 また本発明の第九の態様によれば、ポンプシステムは、並列に接続された複数のポンプと、第八の態様に係るポンプ台数制御装置を備え、前記ポンプの1台あたりのポンプヘッドと流量測定値とを変化させないように前記ポンプの運転台数を変化させる。 According to a ninth aspect of the present invention, a pump system includes a plurality of pumps connected in parallel and a pump number control device according to the eighth aspect, and the pump head and flow rate per one pump. The number of operating pumps is changed so as not to change the measured value.
 また本発明の第十の態様によれば、熱源システムは、負荷と、並列に接続された複数の熱媒体を圧送する熱源機と、並列に接続された複数の熱源機から圧送された熱媒体をさらに負荷に圧送する2次ポンプと、第八の態様に係るポンプ台数制御装置と、を備える。 According to the tenth aspect of the present invention, the heat source system includes a load, a heat source unit that pumps a plurality of heat media connected in parallel, and a heat medium pumped from the plurality of heat source units connected in parallel. Is further provided with a secondary pump for pumping the pressure to the load, and a pump number control device according to the eighth aspect.
 また本発明の第十一の態様によれば、プログラムは、ポンプ台数制御装置のコンピュータを、並列に接続された複数のポンプが負荷に圧送する熱媒体の流量若しくは前記負荷が必要とする熱負荷と、前記複数のポンプのうち運転中の各ポンプに指令した周波数指令値と、に基づいて前記ポンプの運転台数を増減させる手段として機能させる。 According to the eleventh aspect of the present invention, the program stores the computer of the pump number control device, the flow rate of the heat medium pumped to the load by a plurality of pumps connected in parallel, or the heat load required by the load. And a function of increasing or decreasing the number of operating pumps based on a frequency command value commanded to each operating pump among the plurality of pumps.
 上述したポンプ台数制御方法、ポンプ台数制御装置、ポンプシステム、熱源システム及びプログラムによれば、圧損特性など設備の特性を知ることなく適切なタイミングでポンプの運転台数を適切に制御することができる。 According to the pump number control method, the pump number control device, the pump system, the heat source system, and the program described above, it is possible to appropriately control the number of operating pumps at an appropriate timing without knowing the characteristics of the equipment such as pressure loss characteristics.
本発明の第一の実施形態による熱源システムの概略図である。1 is a schematic view of a heat source system according to a first embodiment of the present invention. 本発明の第一の実施形態によるポンプ台数制御装置の機能ブロック図である。It is a functional block diagram of the pump number control apparatus by 1st embodiment of this invention. 本発明の第一の実施形態によるポンプ台数制御装置の処理フローを示す図である。It is a figure which shows the processing flow of the pump number control apparatus by 1st embodiment of this invention. 本発明の第一の実施形態の変形例による熱源システムの概略図である。It is the schematic of the heat source system by the modification of 1st embodiment of this invention. 本発明の第一の実施形態の変形例によるポンプ台数制御装置の機能ブロック図である。It is a functional block diagram of the pump number control apparatus by the modification of 1st embodiment of this invention. 本発明の第二の実施形態によるポンプ台数制御装置の機能ブロック図である。It is a functional block diagram of the pump number control apparatus by 2nd embodiment of this invention. ポンプの特性を表すQ-H特性の一例を示す図である。It is a figure which shows an example of the QH characteristic showing the characteristic of a pump. 2次ポンプの運転台数を1台から2台へ増台させたときの変化を示す図である。It is a figure which shows a change when the operation number of secondary pumps is increased from one to two. 2次ポンプの運転台数を1台から2台へ増台させたときの変化を示す図である。It is a figure which shows a change when the operation number of secondary pumps is increased from one to two. 本発明の第二の実施形態によるポンプ台数制御装置の処理フローを示す図である。It is a figure which shows the processing flow of the pump number control apparatus by 2nd embodiment of this invention. 本発明の第三の実施形態によるポンプ台数制御装置の機能ブロック図である。It is a functional block diagram of the pump number control apparatus by 3rd embodiment of this invention. 本発明の第三の実施形態によるポンプ台数制御装置の処理フローを示す図である。It is a figure which shows the processing flow of the pump number control apparatus by 3rd embodiment of this invention. 本発明の第四の実施形態によるポンプ台数制御装置の機能ブロック図である。It is a functional block diagram of the pump number control apparatus by 4th embodiment of this invention. ポンプの吐出流量とポンプ効率との相関の一例を示す図である。It is a figure which shows an example of the correlation with the discharge flow rate of a pump, and pump efficiency. 本発明の第四の実施形態によるポンプ台数制御装置の処理フローを示す図である。It is a figure which shows the processing flow of the pump number control apparatus by 4th embodiment of this invention.
<第一の実施形態>
 以下、本発明の第一の実施形態による熱源システムを図1~図3を参照して説明する。
 図1は本発明の第一の実施形態による熱源システムの概略図である。
 図1に示すように本実施形態の熱源システムは、熱源機30と、1次ポンプ10と、2次ポンプ20と、負荷40と、流量計21と、ポンプ台数制御装置50と、を備えている。
 熱源機30は、負荷に対して水などの冷却用又は加熱用の熱媒体を供給する装置である。1次ポンプ10は、熱源機30へ熱媒体を圧送する。熱源機30は、負荷に対して水などの冷却用又は加熱用の熱媒体を供給する装置である。本実施形態による熱源システムでは熱源機30及び1次ポンプ10の組み合わせは並列に複数設置されていてもよい。図には1次ポンプ10を並列に複数設置されている状態を示している。
 2次ポンプ20は、熱源機30から送られてくる熱媒体を負荷40へ圧送する。2次ポンプ20は、互いに並列に接続されて設置されており、負荷40からの要求に応じて負荷40に供給する熱媒体の流量を制御する。
<First embodiment>
Hereinafter, a heat source system according to a first embodiment of the present invention will be described with reference to FIGS.
FIG. 1 is a schematic view of a heat source system according to a first embodiment of the present invention.
As shown in FIG. 1, the heat source system of the present embodiment includes a heat source device 30, a primary pump 10, a secondary pump 20, a load 40, a flow meter 21, and a pump number control device 50. Yes.
The heat source unit 30 is a device that supplies a cooling or heating heat medium such as water to a load. The primary pump 10 pumps the heat medium to the heat source unit 30. The heat source unit 30 is a device that supplies a cooling or heating heat medium such as water to a load. In the heat source system according to the present embodiment, a plurality of combinations of the heat source device 30 and the primary pump 10 may be installed in parallel. The figure shows a state where a plurality of primary pumps 10 are installed in parallel.
The secondary pump 20 pumps the heat medium sent from the heat source device 30 to the load 40. The secondary pumps 20 are connected in parallel to each other, and control the flow rate of the heat medium supplied to the load 40 in response to a request from the load 40.
 流量計21は、ポンプから圧送された熱媒体の単位時間当たりの流量を測定する流量計である。
 負荷40は、例えば空調機である。負荷40は、熱媒体に対して放熱又は吸熱を行い、その後の熱媒体を熱源機30へ還流させる。
 ポンプ台数制御装置50は、2次ポンプ20の運転台数を負荷40が必要とする要求負荷に応じて増減台させる機能を有する装置である。
 図1において熱源機30、1次ポンプ10、2次ポンプ20は2台ずつ設置されているが、これらの台数に限定されない。例えば熱源機30及び1次ポンプ10が6台ずつ設置され、2次ポンプ20は9台設置されていてもよい。
 また、この熱源システムには、負荷40の要求負荷に応じて熱媒体の供給量を調整するために熱源機30の運転台数を制御する装置(図示せず)が備えられていてもよい。
The flow meter 21 is a flow meter that measures the flow rate per unit time of the heat medium pumped from the pump.
The load 40 is, for example, an air conditioner. The load 40 radiates or absorbs heat from the heat medium, and then causes the heat medium to return to the heat source unit 30.
The pump number control device 50 is a device having a function of increasing / decreasing the number of operating secondary pumps 20 according to the required load required by the load 40.
In FIG. 1, two heat source units 30, a primary pump 10, and a secondary pump 20 are installed, but the number is not limited to these numbers. For example, six heat source devices 30 and six primary pumps 10 may be installed, and nine secondary pumps 20 may be installed.
In addition, the heat source system may be provided with a device (not shown) that controls the number of operating heat source units 30 in order to adjust the supply amount of the heat medium according to the required load of the load 40.
 図2は、本発明の第一の実施形態によるポンプ台数制御装置の機能ブロック図である。
 図2を用いて本実施形態におけるポンプ台数制御装置50について説明する。
 図2に示す通り、ポンプ台数制御装置50は、台数判断流量値取得部101、台数判断周波数値取得部102、ポンプ周波数設定部103、流量取得部104、ポンプ台数制御部105、記憶部200を備えている。
FIG. 2 is a functional block diagram of the pump number control device according to the first embodiment of the present invention.
The pump number control apparatus 50 in this embodiment is demonstrated using FIG.
As shown in FIG. 2, the pump number control device 50 includes a number determination flow value acquisition unit 101, a number determination frequency value acquisition unit 102, a pump frequency setting unit 103, a flow rate acquisition unit 104, a pump number control unit 105, and a storage unit 200. I have.
 台数判断流量値取得部101は、流量によって2次ポンプ20の運転台数を増減させる場合に用いる閾値である流量増台閾値Gα、流量減台閾値Gβを記憶部200から読み出して取得する。また、台数判断流量値取得部101は、例えば以下の式(1)によって台数判断流量値を算出する。 The number determination flow value acquisition unit 101 reads out and acquires the flow rate increase threshold value Gα and the flow rate decrease threshold value Gβ, which are threshold values used when increasing or decreasing the number of operating secondary pumps 20 according to the flow rate. Further, the number determination flow value acquisition unit 101 calculates the number determination flow value by the following equation (1), for example.
Figure JPOXMLDOC01-appb-M000001
 
Figure JPOXMLDOC01-appb-M000001
 
 ここで、Gloadは運転中の全2次ポンプ20から圧送された水など熱媒体の流量の測定値である。G0iは、現在運転している2次ポンプの定格流量である。台数判断流量値は、運転中の2次ポンプの定格流量の和に対する運転中の全ポンプによる吐出流量の測定値の割合である。
 台数判断周波数値取得部102は、周波数によって2次ポンプ20の運転台数を増減させる場合に用いる閾値である周波数増台閾値Fα、周波数減台閾値Fβを記憶部200から読み出して取得する。また、台数判断周波数値取得部102は、ポンプ周波数設定部103が各2次ポンプ20に対して出力した周波数指令値をポンプ周波数設定部103から取得し、台数判断周波数値とする。
 ポンプ周波数設定部103は、2次ポンプ20に対してポンプを運転する周波数を指令する。周波数とは、2次ポンプ20を駆動するモータを回転させるための電力の周波数であって、ポンプ周波数設定部103は、周波数を指定しポンプの回転数を変更数することでポンプの出力を制御する。ポンプ周波数設定部103は、運転状態にある複数の2次ポンプ20に対しては同じ周波数指令値を出力するものとする。
 流量取得部104は、流量計21が測定した熱媒体の流量を取得する。
Here, Gload is a measured value of the flow rate of the heat medium such as water pumped from all the operating secondary pumps 20. G0i is the rated flow rate of the currently operating secondary pump. The number determination flow rate value is a ratio of the measured value of the discharge flow rate of all the operating pumps to the sum of the rated flow rates of the operating secondary pumps.
The number determination frequency value acquisition unit 102 reads out and acquires the frequency increase threshold value Fα and the frequency decrease threshold value Fβ, which are threshold values used when increasing or decreasing the number of operating secondary pumps 20 according to the frequency, from the storage unit 200. Further, the number determination frequency value acquisition unit 102 acquires the frequency command value output from the pump frequency setting unit 103 to each secondary pump 20 from the pump frequency setting unit 103 and sets it as the number determination frequency value.
The pump frequency setting unit 103 instructs the secondary pump 20 to operate the pump. The frequency is a frequency of electric power for rotating the motor that drives the secondary pump 20, and the pump frequency setting unit 103 controls the pump output by specifying the frequency and changing the number of rotations of the pump. To do. The pump frequency setting part 103 shall output the same frequency command value with respect to the some secondary pump 20 in a driving | running state.
The flow rate acquisition unit 104 acquires the flow rate of the heat medium measured by the flow meter 21.
 ポンプ台数制御部105は、ポンプによって圧送された熱媒体の流量やポンプの周波数が所定の条件を満たすときにポンプの運転台数を増加させる。本実施形態では、以下の2つ条件を満たした場合にポンプの運転台数を増加させる。
 <増台条件1:流量による判断>
  台数判断流量値 ≧ Gα       ・・・ (2)
 <増台条件2:周波数による判断>
  台数判断周波数値 ≧ Fα      ・・・ (3)
 ここで、台数判断周波数値はポンプ周波数設定部103が2次ポンプ20へ出力した周波数指令値Fsetと同じ値である。Fαは台数判断周波数値取得部102が取得した閾値である。
 つまり、現在運転している2次ポンプ20の全てによって圧送されている流量の、運転中の2次ポンプ20が持つ送水能力の総和に対する割合が閾値Gα以上(式(2))であり、且つ、各2次ポンプ20へ出力した周波数指令値が閾値Fα以上(式(3))であるときにポンプ台数制御部105は、2次ポンプ20の運転台数を増加させる。
The number-of-pumps control unit 105 increases the number of operating pumps when the flow rate of the heat medium pumped by the pump and the pump frequency satisfy predetermined conditions. In the present embodiment, the number of operating pumps is increased when the following two conditions are satisfied.
<Additional condition 1: Judgment by flow rate>
Number of units judgment flow rate ≧ Gα (2)
<Additional condition 2: Judgment by frequency>
Unit judgment frequency value ≧ Fα (3)
Here, the number determination frequency value is the same value as the frequency command value Fset output to the secondary pump 20 by the pump frequency setting unit 103. Fα is a threshold acquired by the number determination frequency value acquisition unit 102.
That is, the ratio of the flow rate pumped by all of the currently operating secondary pumps 20 to the sum of the water feeding capacities of the operating secondary pumps 20 is equal to or greater than the threshold value Gα (formula (2)), and When the frequency command value output to each secondary pump 20 is equal to or greater than the threshold value Fα (formula (3)), the pump number control unit 105 increases the number of operating secondary pumps 20.
 また、ポンプ台数制御部105は、ポンプによって圧送された熱媒体の流量やポンプの周波数が所定の条件を満たすときにポンプの運転台数を減少させる。本実施形態では、以下の2つ条件を満たした場合にポンプの運転台数を減少させる。
 <減台条件1:流量による判断>
  台数判断流量値 ≦ Gβ        ・・・ (4)
 ここで、Gβは台数判断流量値取得部101が取得した閾値である。
 <減台条件2:周波数による判断>
  台数判断周波数値 ≦ Fβ       ・・・ (5)
 ここで、Fβは台数判断周波数値取得部102が取得した閾値である。また、台数判断周波数値とは、例えばポンプ周波数設定部103が2次ポンプ20に対して指定する周波数指令値である。
 つまり、現在運転している2次ポンプ20の全てによって圧送されている流量の現在運転している2次ポンプ20の持つ送水能力の総和に対する割合が閾値Gβ以下(式(4))であり、且つ、各2次ポンプ20へ出力した周波数指令値が閾値Fβ以下(式(5))であるときにポンプ台数制御部105は、2次ポンプ20の運転台数を減少させる。
The pump number control unit 105 reduces the number of operating pumps when the flow rate of the heat medium pumped by the pump and the pump frequency satisfy a predetermined condition. In the present embodiment, the number of operating pumps is reduced when the following two conditions are satisfied.
<Decrease condition 1: Judgment by flow rate>
Number of units judgment flow rate ≦ Gβ (4)
Here, Gβ is a threshold acquired by the number determination flow value acquisition unit 101.
<Decrease condition 2: Judgment by frequency>
Unit judgment frequency value ≤ Fβ (5)
Here, Fβ is a threshold acquired by the number determination frequency value acquisition unit 102. The number determination frequency value is a frequency command value specified by the pump frequency setting unit 103 to the secondary pump 20, for example.
That is, the ratio of the flow rate pumped by all of the currently operating secondary pumps 20 to the sum of the water supply capacities of the currently operating secondary pumps 20 is less than or equal to the threshold Gβ (formula (4)). In addition, when the frequency command value output to each secondary pump 20 is equal to or less than the threshold value Fβ (formula (5)), the pump number control unit 105 decreases the number of operating secondary pumps 20.
 記憶部200は、ポンプ台数の増減を判定するのに用いるGα、Fα等の閾値や2次ポンプ20の特性を表した情報などを保持している。特性情報とは例えば、Q-H特性、ポンプの吐出流量とポンプ効率との相関を示すグラフなどである。 The storage unit 200 holds threshold values such as Gα and Fα used for determining increase / decrease in the number of pumps, information representing the characteristics of the secondary pump 20, and the like. The characteristic information is, for example, a QH characteristic, a graph showing the correlation between the pump discharge flow rate and the pump efficiency.
 図3は本実施形態によるポンプ台数制御装置の処理フローを示す図である。
 図3の処理フローを用いてポンプ台数制御装置50が2次ポンプ20の運転台数を増減台させる処理について説明する。
 前提として図1に示す熱源システムが稼働しており、例えば負荷40が空調機で、利用者が温度設定を上下させると要求負荷は増減し、それに伴いポンプ台数制御装置50が2次ポンプ20の運転台数を制御するものとする。また、ポンプの増減台直後における2次ポンプ20の流量の総和は増減台前と変化せず、また2次ポンプ20の1台あたりのポンプヘッド(ポンプの揚程)も変化しないものとする。
 まず、流量取得部104が流量計21の測定した単位時間当たりの流量を取得する(ステップS1)。流量計21の測定した流量は1台又は複数台の2次ポンプ20によって圧送された熱媒体の総流量である。この測定値は、実際に配管を流れている流量を測定した値であるから配管の圧損特性が反映された値であると考えることができる。
 次に台数判断流量値取得部101が記憶部200に格納された上記の閾値Gα、Gβを読み出して取得する。また、台数判断流量値取得部101が、式(1)により台数判断流量値を算出する(ステップS2)。台数判断流量値取得部101は、これらの値をポンプ台数制御部105に出力する。
 次に台数判断周波数値取得部102が記憶部200に格納された上記の閾値Fα、Fβを読み出して取得する。また、台数判断周波数値取得部102が、ポンプ周波数設定部103から2次ポンプ20に対して指令したポンプ周波数指令値を台数判断周波数値として取得する(ステップS3)。台数判断周波数値取得部102は、これらの値をポンプ台数制御部105に出力する。
FIG. 3 is a diagram showing a processing flow of the pump number control device according to the present embodiment.
A process of increasing or decreasing the number of operating secondary pumps 20 by the pump number control device 50 will be described using the processing flow of FIG.
As a premise, the heat source system shown in FIG. 1 is operating. For example, when the load 40 is an air conditioner and the user raises or lowers the temperature setting, the required load increases or decreases. The number of operating units shall be controlled. Further, it is assumed that the total flow rate of the secondary pump 20 immediately after the increase / decrease table of the pump does not change from that before the increase / decrease table, and the pump head (pump head) per one of the secondary pumps 20 does not change.
First, the flow rate acquisition unit 104 acquires the flow rate per unit time measured by the flow meter 21 (step S1). The flow rate measured by the flow meter 21 is the total flow rate of the heat medium pumped by one or a plurality of secondary pumps 20. Since this measured value is a value obtained by measuring the flow rate actually flowing through the pipe, it can be considered that the pressure loss characteristic of the pipe is reflected.
Next, the number determination flow value acquisition unit 101 reads out and acquires the threshold values Gα and Gβ stored in the storage unit 200. Further, the number determination flow value acquisition unit 101 calculates the number determination flow value by the equation (1) (step S2). The number determination flow value acquisition unit 101 outputs these values to the pump number control unit 105.
Next, the number determination frequency value acquisition unit 102 reads and acquires the threshold values Fα and Fβ stored in the storage unit 200. Further, the number determination frequency value acquisition unit 102 acquires the pump frequency command value commanded from the pump frequency setting unit 103 to the secondary pump 20 as the number determination frequency value (step S3). The number determination frequency value acquisition unit 102 outputs these values to the pump number control unit 105.
 次に、ポンプ台数制御部105は、式(2)及び式(3)を評価して「増台条件1」及び「増台条件2」の判定を行う(ステップS4)。そして、ポンプ台数制御部105は両方の条件を満たすとき(ステップS4=Yes)、現在停止している2次ポンプ20のうちの1台を起動し、2次ポンプ20を増台する(ステップS5)。
 比較の結果、「増台条件1」及び「増台条件2」のうち何れか一つの条件でも満たさない場合(ステップS4=No)、ステップS6の処理へ進む。
Next, the number-of-pumps control unit 105 evaluates the expressions (2) and (3) and determines “addition condition 1” and “addition condition 2” (step S4). Then, when the pump number control unit 105 satisfies both conditions (step S4 = Yes), one of the currently stopped secondary pumps 20 is started and the number of secondary pumps 20 is increased (step S5). ).
As a result of the comparison, if any one of “addition condition 1” and “addition condition 2” is not satisfied (step S4 = No), the process proceeds to step S6.
 次にポンプ台数制御部105は、式(4)及び式(5)を評価して「減台条件1」及び「減台条件2」の判定を行う(ステップS6)。そして、ポンプ台数制御部105は両方の条件を満たすとき(ステップS6=Yes)、現在起動している2次ポンプ20のうちの1台を停止し、2次ポンプ20を減台する(ステップS7)。
 比較の結果、「減台条件1」及び「減台条件2」のうち何れか一つの条件でも満たさない場合(ステップS6=No)、ステップS8の処理へ進む。
 最後にポンプ台数制御装置50は、熱源システムが利用者等の操作により停止さえられたかどうかを所定の方法で判定する。熱源システムの運転が停止した場合(ステップS8=Yes)、本処理フローは終了する。運転が継続する場合(ステップS8=No)、ステップS1からの処理を繰り返す。
Next, the number-of-pumps control unit 105 evaluates the expressions (4) and (5) and determines “reduction table condition 1” and “reduction table condition 2” (step S6). When the pump number control unit 105 satisfies both conditions (step S6 = Yes), one of the currently activated secondary pumps 20 is stopped and the number of secondary pumps 20 is decreased (step S7). ).
As a result of the comparison, if any one of “reduction condition 1” and “reduction condition 2” is not satisfied (step S6 = No), the process proceeds to step S8.
Finally, the number-of-pumps control device 50 determines whether or not the heat source system has been stopped by an operation of a user or the like by a predetermined method. When the operation of the heat source system is stopped (step S8 = Yes), this processing flow ends. When the operation continues (step S8 = No), the processing from step S1 is repeated.
 本実施形態による効果について説明する。例えば、負荷の低下によって空調機の弁が絞られ,系統の圧損が大きい「熱源システム状態1」において、1台の2次ポンプ20が運転中であって、そのときの吐出流量の測定値が100m/hである。また逆に負荷の上昇によって圧損が小さくなった「熱源システム状態2」において、1台の2次ポンプ20が運転中であって、やはり吐出流量の測定値が100m/hである。そして、2次ポンプ20の運転台数を1台から2台に増台する閾値は100m/hである。
 このとき「熱源システム状態1」においては圧損が大きいため、2次ポンプ20を最大に近い値の周波数で稼働しているにもかかわらず吐出流量の測定値が100m/hであるとすると、予め設定された閾値に従って2次ポンプ20の運転台数を2台にするのは適切な制御であると考えられる。一方、「熱源システム状態2」においては、圧損が小さいため、例えば最大周波数の半分程度の周波数で2次ポンプ20を稼働して100m/hの流量が得られている。この場合、2次ポンプ20の運転台数を増加することは必ずしも適切ではなく、現在稼働している2次ポンプ20の周波数を増加させれば負荷装置が要求する流量を供給できる可能性もある。このような場合,流量のみを増減台の判断に用いる従来の手法では,2次ポンプを増台させる。ポンプの増台はシステムに流れる熱媒体の圧力,流量に大きな変化をもたらす。
 本実施形態によれば、システムの圧損情報を包含した実際の流量の測定値に加え、周波数指令値による判断を行うことで圧損など設備の詳細を知る必要なく2次ポンプ20の増減台が可能になる。また、ポンプ周波数指令値を用いて増減台を判断をすることでポンプの余力を考慮した2次ポンプ20の増減が可能となり、例えば、ポンプの能力に余裕があるのに増台してしまうような制御を防止することができるようになるため、ポンプの増減台が発生しにくくなり,従来手法より更に安定した熱源システムの運転が可能になる。同様に,ポンプを減台する時も、周波数を低下させることでポンプの能力を更に落とすことができるのに減台してしまうことを防ぐことができる。
The effect by this embodiment is demonstrated. For example, in the “heat source system state 1” where the valve of the air conditioner is throttled due to a decrease in load and the pressure loss of the system is large, one secondary pump 20 is in operation, and the measured value of the discharge flow rate at that time is 100 m 3 / h. Conversely, in “heat source system state 2” in which the pressure loss is reduced due to the increase in load, one secondary pump 20 is in operation, and the measured value of the discharge flow rate is 100 m 3 / h. The threshold value for increasing the number of operating secondary pumps 20 from one to two is 100 m 3 / h.
At this time, since the pressure loss is large in “heat source system state 1”, if the measured value of the discharge flow rate is 100 m 3 / h even though the secondary pump 20 is operated at a frequency close to the maximum value, It is considered that it is appropriate control to set the number of secondary pumps 20 to operate in accordance with a preset threshold value. On the other hand, in the “heat source system state 2”, since the pressure loss is small, for example, the secondary pump 20 is operated at a frequency about half the maximum frequency, and a flow rate of 100 m 3 / h is obtained. In this case, it is not always appropriate to increase the number of operating secondary pumps 20, and if the frequency of the currently operating secondary pump 20 is increased, the flow rate required by the load device may be supplied. In such a case, in the conventional method in which only the flow rate is used to determine the increase / decrease table, the secondary pump is increased. The increase in the number of pumps causes a large change in the pressure and flow rate of the heat medium flowing through the system.
According to this embodiment, the secondary pump 20 can be increased or decreased without having to know the details of the equipment such as pressure loss by making a determination based on the frequency command value in addition to the actual flow rate measurement value including the system pressure loss information. become. Further, by determining the increase / decrease table using the pump frequency command value, it is possible to increase / decrease the secondary pump 20 in consideration of the remaining capacity of the pump. Therefore, it becomes difficult to increase or decrease the number of pumps, and the heat source system can be operated more stably than the conventional method. Similarly, when the pump is reduced, it is possible to prevent the pump from being reduced even though the pump capacity can be further reduced by reducing the frequency.
 <変形例>
 本実施形態の変形例として熱媒体の流量の代わりに負荷40が必要とする熱負荷を用いることも可能である。以下、変形例について図4~5を参照して説明する。
 図4は本実施形態の変形例による熱源システムの概略図である。
 この変形例の熱源システムは、温度計22、温度計23を備えている。その他の構成は第一の実施形態と同じである。
 温度計22は、負荷40の入口付近に設けられている。温度計22は、負荷40へ供給される熱媒体の温度を測定する。
 温度計23は、負荷40の出口付近に設けられている。温度計23は、負荷40から熱源機30へ還流する熱媒体の温度を測定する。
<Modification>
As a modification of the present embodiment, a heat load required by the load 40 can be used instead of the flow rate of the heat medium. Hereinafter, modified examples will be described with reference to FIGS.
FIG. 4 is a schematic view of a heat source system according to a modification of the present embodiment.
The heat source system of this modification includes a thermometer 22 and a thermometer 23. Other configurations are the same as those of the first embodiment.
The thermometer 22 is provided near the entrance of the load 40. The thermometer 22 measures the temperature of the heat medium supplied to the load 40.
The thermometer 23 is provided near the outlet of the load 40. The thermometer 23 measures the temperature of the heat medium returning from the load 40 to the heat source unit 30.
 図5は本実施形態の変形例によるポンプ台数制御装置の機能ブロック図である。
 この変形例のポンプ台数制御装置50は、温度取得部110を備え、台数判断流量値取得部101の代わりに台数判断熱負荷取得部111を備える点で第一の実施形態と異なる。本実施形態のその他の構成は第一の実施形態と同じである。
 温度取得部110は、温度計22、温度計23が測定した熱媒体の温度を取得する。
FIG. 5 is a functional block diagram of a pump number control device according to a modification of the present embodiment.
The pump number control device 50 of this modification is different from the first embodiment in that it includes a temperature acquisition unit 110 and a number determination thermal load acquisition unit 111 instead of the number determination flow value acquisition unit 101. Other configurations of the present embodiment are the same as those of the first embodiment.
The temperature acquisition unit 110 acquires the temperature of the heat medium measured by the thermometer 22 and the thermometer 23.
 台数判断熱負荷取得部111は、予め定められた閾値である熱負荷増台閾値Lα、熱負荷減台閾値Lβを記憶部200から読み出す。また、台数判断熱負荷取得部111は、流量取得部104から熱媒体の流量を、温度取得部110からは温度計22、温度計23が測定した熱媒体の温度を取得して負荷40が必要とする負荷(熱負荷)を算出する。熱負荷は、例えば以下の式を用いて算出することができる。
 熱負荷 = 熱媒体の流量×(|還流する熱媒体の温度-供給される熱媒体の温度|)× 熱媒体の比熱 × 熱媒体の比重 ・・・(6)
 ここで、「熱媒体の流量」は流量計21が測定した値であり、台数判断熱負荷取得部111が流量取得部104から取得した値である。「還流する熱媒体の温度」は、温度計23が測定した温度であり、台数判断熱負荷取得部111が温度取得部110から取得した値である。「供給される熱媒体の温度」は、温度計22が測定した温度であり、台数判断熱負荷取得部111が温度取得部110から取得した値である。熱媒体の比熱及び熱媒体の比重については、記憶部200に予め記録されており、台数判断熱負荷取得部111はこれらの値を記憶部200から読み出す。
The number determination thermal load acquisition unit 111 reads a thermal load increase threshold value Lα and a thermal load decrease threshold value Lβ, which are predetermined threshold values, from the storage unit 200. The number determination thermal load acquisition unit 111 needs the load 40 by acquiring the flow rate of the heat medium from the flow rate acquisition unit 104 and the temperature of the heat medium measured by the thermometer 22 and the thermometer 23 from the temperature acquisition unit 110. The load (thermal load) is calculated. The heat load can be calculated using, for example, the following equation.
Heat load = Flow rate of heat medium x (| Temperature of recirculating heat medium-Temperature of heat medium to be supplied |) x Specific heat of heat medium x Specific gravity of heat medium (6)
Here, “the flow rate of the heat medium” is a value measured by the flow meter 21, and is a value acquired from the flow rate acquisition unit 104 by the number determination thermal load acquisition unit 111. The “temperature of the recirculating heat medium” is a temperature measured by the thermometer 23 and a value acquired from the temperature acquisition unit 110 by the number determination thermal load acquisition unit 111. “The temperature of the supplied heat medium” is the temperature measured by the thermometer 22, and is the value acquired by the number determination thermal load acquisition unit 111 from the temperature acquisition unit 110. The specific heat of the heat medium and the specific gravity of the heat medium are recorded in advance in the storage unit 200, and the number determination thermal load acquisition unit 111 reads these values from the storage unit 200.
 本実施形態においてポンプ台数制御部105は、台数判断熱負荷取得部111が算出した熱負荷や台数判断周波数値取得部102が取得したポンプの周波数が所定の条件を満たすときにポンプの運転台数を増加させる。具体的には以下の2つの条件を満たした場合にポンプの運転台数を増加させる。
 <増台条件1-1:熱負荷による判断>
  熱負荷 ≧ Lα       ・・・ (7)
 <増台条件2:周波数による判断>
  台数判断周波数値 ≧ Fα      ・・・ (8)
In this embodiment, the pump number control unit 105 determines the number of pumps to be operated when the thermal load calculated by the number determination thermal load acquisition unit 111 or the pump frequency acquired by the number determination frequency value acquisition unit 102 satisfies a predetermined condition. increase. Specifically, the number of operating pumps is increased when the following two conditions are satisfied.
<Additional condition 1-1: Judgment by heat load>
Thermal load ≧ Lα (7)
<Additional condition 2: Judgment by frequency>
Unit judgment frequency value ≧ Fα (8)
 また、ポンプ台数制御部105は、熱負荷やポンプの周波数が所定の条件を満たすときにポンプの運転台数を減少させる。具体的には以下の2つ条件を満たした場合にポンプの運転台数を減少させる。
 <減台条件1-1:熱負荷による判断>
  熱負荷 ≦ Lβ        ・・・ (9)
 <減台条件2:周波数による判断>
  台数判断周波数値 ≦ Fβ       ・・・ (10)
 この変形例では、増台条件1-1及び減台条件1-1が第一の実施形態と異なる。増台条件2及び減台条件2については、第一の実施形態と同じである。
In addition, the pump number control unit 105 reduces the number of operating pumps when the heat load or the pump frequency satisfies a predetermined condition. Specifically, the number of operating pumps is reduced when the following two conditions are satisfied.
<Decrease condition 1-1: Judgment by heat load>
Thermal load ≦ Lβ (9)
<Decrease condition 2: Judgment by frequency>
Number-of-units judgment frequency value ≤ Fβ (10)
In this modification, the increase condition 1-1 and the decrease condition 1-1 are different from the first embodiment. The increase base condition 2 and the decrease base condition 2 are the same as in the first embodiment.
 処理フローについて説明する。この変形例では、図3のステップS1において、流量取得部104が流量計21の測定した流量を取得するのに加え、温度取得部110が温度計22、温度計23が測定した熱媒体の温度を取得する。また、ステップS2では、台数判断熱負荷取得部111が、記憶部200に格納された閾値Lα、Lβを読み出す。また、台数判断熱負荷取得部111は、流量取得部104から熱媒体の流量を取得し、温度取得部110から負荷40に供給される熱媒体の温度と負荷40から熱源機30へ還流する熱媒体の温度とを取得する。そして台数判断熱負荷取得部111は、式(6)により熱負荷を算出する。また、ステップS4では、ポンプ台数制御部105は、上記の「増台条件1-1」及び「増台条件2」の判定を行う。また、ステップS6では、ポンプ台数制御部105は、上記の「減台条件1-1」及び「減台条件2」の判定を行う。本変形例における他の処理ステップについては第一の実施形態と同じである。
 本実施形態及び変形例で用いたGα、Gβ、Fα、Fβ、Lα、Lβの各閾値は、実験やシミュレーションなどで予め定めた値である。
A processing flow will be described. In this modification, in addition to the flow rate acquisition unit 104 acquiring the flow rate measured by the flow meter 21 in step S1 of FIG. 3, the temperature acquisition unit 110 measures the temperature of the heat medium measured by the thermometer 22 and the thermometer 23. To get. In step S <b> 2, the number determination thermal load acquisition unit 111 reads the threshold values Lα and Lβ stored in the storage unit 200. The number determination thermal load acquisition unit 111 acquires the flow rate of the heat medium from the flow rate acquisition unit 104, the temperature of the heat medium supplied from the temperature acquisition unit 110 to the load 40, and the heat recirculated from the load 40 to the heat source unit 30. Get the temperature of the medium. And the number determination thermal load acquisition part 111 calculates a thermal load by Formula (6). Further, in step S4, the pump number control unit 105 determines the above “addition condition 1-1” and “addition condition 2”. In step S6, the pump number control unit 105 performs the determination of the “reduction table condition 1-1” and the “reduction condition 2”. Other processing steps in this modification are the same as those in the first embodiment.
The threshold values of Gα, Gβ, Fα, Fβ, Lα, and Lβ used in the present embodiment and the modified examples are values determined in advance through experiments, simulations, and the like.
<第二の実施形態>
 以下、本発明の第二の実施形態による熱源システムを図6~9を参照して説明する。
 第二の実施形態は、第一の実施形態に加えてポンプの増減台の繰り返しを防止し、より安定したポンプの運転を行うための実施形態に関する。
 図6は本実施形態によるポンプ台数制御装置の機能ブロック図である。
 本実施形態のポンプ台数制御装置50は、ポンプヘッド取得部107を備えている点で第一の実施形態と異なる。本実施形態のその他の構成は第一の実施形態と同じである。
 ポンプヘッド取得部107は、2次ポンプ20の現在運転中の2次ポンプ20のポンプヘッドや、2次ポンプ増減後のポンプヘッドを記憶部200が保有するQ-H特性に基づいて取得する。ここでポンプヘッドとは、ポンプの揚程のことである。また、Q-H特性とはポンプを最大周波数で動作させたときの吐出流量とポンプヘッドとの関係を表したポンプの性能曲線である。Q-H特性の一例を図7に示す。一般的にポンプの吐出流量(Q)とポンプヘッド(H)は、吐出流量を増加させればポンプヘッドが減少する関係にあり、ポンプの種類によりこのQ-H特性は異なる軌道を描く。記憶部200には熱源システムで使用している2次ポンプ20のQ-H相関を示すQ-H特性が格納されており、ポンプヘッド取得部107は、このQ-H特性を使用して増減台前後における1台あたりの2次ポンプ20の吐出流量に対応するポンプヘッドを取得する。
<Second Embodiment>
Hereinafter, a heat source system according to a second embodiment of the present invention will be described with reference to FIGS.
In addition to the first embodiment, the second embodiment relates to an embodiment for preventing the repetition of pump increase / decrease units and performing more stable pump operation.
FIG. 6 is a functional block diagram of the pump number control device according to the present embodiment.
The pump number control device 50 according to the present embodiment is different from the first embodiment in that a pump head acquisition unit 107 is provided. Other configurations of the present embodiment are the same as those of the first embodiment.
The pump head acquisition unit 107 acquires the pump head of the secondary pump 20 that is currently in operation of the secondary pump 20 and the pump head after the increase / decrease of the secondary pump based on the QH characteristics possessed by the storage unit 200. Here, the pump head is the head of the pump. The QH characteristic is a pump performance curve showing the relationship between the discharge flow rate and the pump head when the pump is operated at the maximum frequency. An example of the QH characteristic is shown in FIG. In general, the pump discharge flow rate (Q) and the pump head (H) have a relationship in which the pump head decreases as the discharge flow rate is increased. The QH characteristics have different trajectories depending on the type of pump. The storage unit 200 stores a QH characteristic indicating the QH correlation of the secondary pump 20 used in the heat source system, and the pump head acquisition unit 107 increases or decreases using the QH characteristic. A pump head corresponding to the discharge flow rate of the secondary pump 20 per unit before and after the unit is acquired.
 次により具体的にポンプヘッドの求め方について説明する。まず、ポンプの増台を例にポンプヘッドを求めるのに用いる各記号等について説明を行う。
 図8Aおよび図8Bは、2次ポンプ20の運転台数を1台から2台へ増台させたときの変化を示す図である。以下、最初から運転状態にある2次ポンプ20をポンプ20-1、増台する2台目の2次ポンプ20をポンプ20-2と記載する。
 図8Aは、1台運転状態の図である。1台のポンプ20-1が圧送した単位時間あたりの流量をGA、全てのポンプ20-1によって圧送された単位時間あたりの総流量をGinAとする。この図において運転台数は1台であるからGinA=GAである。また、ポンプ1の周波数をfAとし、ポンプ20-1のヘッドをHAとする。
 図8Bは、2台運転状態の図である。ポンプ20-1及びポンプ20-2のそれぞれが圧送した1台あたりのポンプによる単位時間あたりの流量をGB、2台のポンプ20-1及びポンプ20-2によって圧送された単位時間あたりの総流量をGinBとする。
 この図において運転台数は2台であるからGinB=GB×2である。また、ポンプ20-1及びポンプ20-2の周波数をfBとし、ポンプ20-1及びポンプ20-2のヘッドをHBとする。つまり図8Bにおいてポンプ台数制御装置50は運転台数にかかわらず運転状態にある2次ポンプ20のそれぞれが互いに同じ周波数となるように制御する。また、ポンプ台数制御装置50は2次ポンプ20を増減台する場合、その前後で総流量(GinA)とポンプヘッド(HA)が変わらないように制御を行う。これらの条件は、第一~第四の実施形態において共通した前提条件である。
Next, how to obtain the pump head will be described more specifically. First, each symbol used to obtain a pump head will be described using an example of an additional pump.
8A and 8B are diagrams showing changes when the number of operating secondary pumps 20 is increased from one to two. Hereinafter, the secondary pump 20 that has been in operation from the beginning is referred to as a pump 20-1, and the second secondary pump 20 to be added is referred to as a pump 20-2.
FIG. 8A is a diagram of a single-unit operating state. The flow rate per unit time pumped by one pump 20-1 is GA, and the total flow rate per unit time pumped by all pumps 20-1 is GinA. In this figure, since the number of operating units is one, GinA = GA. The frequency of the pump 1 is fA, and the head of the pump 20-1 is HA.
FIG. 8B is a diagram of a two-unit operating state. The flow rate per unit time by the pump per unit pumped by each of the pump 20-1 and the pump 20-2 is GB, and the total flow rate per unit time pumped by the two pumps 20-1 and 20-2. Is GinB.
In this figure, since the number of operating units is 2, GinB = GB × 2. The frequency of the pump 20-1 and the pump 20-2 is fB, and the heads of the pump 20-1 and the pump 20-2 are HB. That is, in FIG. 8B, the pump number control device 50 controls the secondary pumps 20 in the operating state so that they have the same frequency regardless of the operating number. In addition, when the number of secondary pumps 20 is increased or decreased, the pump number control device 50 performs control so that the total flow rate (GinA) and the pump head (HA) do not change before and after that. These conditions are preconditions common to the first to fourth embodiments.
 これらのことをまとめるとn台からn+m台に増台した後の各値は以下のように表すことができる。
 総流量 : GinB = GinA 1台当たりの吐出流量 : GB = (n/(n+m))GA
 1台当たりのポンプヘッド : HB = HA
 ポンプ周波数 : fB  (全ての運転中のポンプで同じ)
In summary, each value after increasing from n to n + m can be expressed as follows.
Total flow rate: GinB = GinA Discharge flow rate per unit: GB = (n / (n + m)) GA
Pump head per unit: HB = HA
Pump frequency: fB (same for all operating pumps)
 次にポンプヘッドを求める方法について説明する。2次ポンプ20を周波数1で運転し吐出流量1を得ているとする。まず、ポンプを最大周波数で運転したときの吐出流量は、吐出流量1に最大周波数を周波数1で割った値を乗じて求めることができる。次に求めた最大周波数の吐出流量を用いてQ-H特性を読み、ポンプを最大周波数で運転したときの吐出流量に対応するポンプヘッドを求める。次に求めたポンプヘッドに、現在の周波数1のポンプ最大周波数に対する割合の2乗を乗算する。このようにして求めた値がポンプヘッドである。
 まず増台許可ポンプヘッド(HB´)を以下の式(11)で求める。
Next, a method for obtaining the pump head will be described. It is assumed that the secondary pump 20 is operated at a frequency 1 and a discharge flow rate 1 is obtained. First, the discharge flow rate when the pump is operated at the maximum frequency can be obtained by multiplying the discharge flow rate 1 by the value obtained by dividing the maximum frequency by the frequency 1. Next, the QH characteristic is read using the discharge flow rate at the maximum frequency obtained, and a pump head corresponding to the discharge flow rate when the pump is operated at the maximum frequency is obtained. Next, the determined pump head is multiplied by the square of the ratio of the current frequency 1 to the pump maximum frequency. The value obtained in this way is the pump head.
First, the additional head permission pump head (HB ′) is obtained by the following equation (11).
Figure JPOXMLDOC01-appb-M000002
 
Figure JPOXMLDOC01-appb-M000002
 
 ここで右辺の第1項F(x)は、Q-H特性が示す吐出流量からポンプヘッドを求める関数を示している。また、Fβは第一の実施形態で説明した周波数減台閾値である。また、fmaxは各2次ポンプ20の最大周波数(ポンプ最大周波数)である。周波数減台閾値Fβを用いて求めたこのポンプヘッドは2次ポンプ20を1台増加させた状態から1台減台するときのポンプヘッド(増台許可ポンプヘッド)を意味する。 Here, the first term F (x) on the right side represents a function for obtaining the pump head from the discharge flow rate indicated by the QH characteristic. Fβ is the frequency reduction threshold described in the first embodiment. Further, fmax is the maximum frequency (pump maximum frequency) of each secondary pump 20. This pump head obtained using the frequency reduction threshold Fβ means a pump head (addition permission pump head) when one secondary pump 20 is reduced from a state where one secondary pump 20 is increased.
 また、ポンプヘッド取得部107は、同様にしてポンプ増加後の状態におけるポンプヘッド(HB)を次の式(12)によって求める。ここで増加前の周波数や流量を用いるのは上述のとおりポンプヘッドを変えないように2次ポンプ20を増加させるので、この増加後のポンプヘッドは、現在(増台前)のポンプヘッドに等しいからである。 Also, the pump head acquisition unit 107 similarly obtains the pump head (HB) in the state after increasing the pump by the following equation (12). Here, using the frequency and flow rate before the increase increases the secondary pump 20 so as not to change the pump head as described above, so that the pump head after the increase is equal to the current (before the increase) pump head. Because.
Figure JPOXMLDOC01-appb-M000003
 
Figure JPOXMLDOC01-appb-M000003
 
 そしてポンプ台数制御部105は、これらの値を用いて第一の実施形態における2つの増台条件に加えて次の条件の判定を行う。
 <増台条件3:ポンプヘッドによる判断>
  増台許可ポンプヘッド < 増台後のポンプヘッド    ・・・(13)
 つまり、ポンプ台数制御部105は、「増台条件1」、「増台条件2」に加えて増台許可ポンプヘッド以上であれば2次ポンプ20の運転台数を増台する。増台許可ポンプヘッドは、周波数減台閾値を用いて求めた値であり、ポンプの運転台数増加後においてポンプを減台する基準となる値である。運転台数を増加したとしても増台後のポンプヘッドがこの値を下回るようだと再度ポンプを減台することになる可能性があることを考慮してそのような無駄を省くために本実施形態ではこのような条件を追加する。
The number-of-pumps control unit 105 uses these values to determine the next condition in addition to the two additional conditions in the first embodiment.
<Additional condition 3: Judgment by pump head>
Additional head permitting pump head <Pump head after additional base (13)
That is, in addition to “addition condition 1” and “addition condition 2”, the number-of-pumps control unit 105 increases the number of secondary pumps 20 to be operated if the number of pumps is greater than the permitted number of pumps. The additional head permission pump head is a value obtained using the frequency lowering threshold, and is a reference value for lowering the pump after the number of operating pumps is increased. In order to eliminate such waste in consideration of the possibility that the pump head after the increase seems to fall below this value even if the number of operating units is increased, the pump may be reduced again. Let's add such a condition.
 次にポンプヘッド取得部107が、減台許可ポンプヘッドを求める方法について説明する。減台許可ポンプヘッドは、ポンプの運転台数減少後においてポンプを増台する基準となる値である。
 増台時と同様にして2次ポンプ20をn台からn-m台に減台した後の各量は以下のように表すことができる。
 送水流量 : GinB = GinA 1台当たりの送水流量 : GB = (n/(n-m))GA
 1台当たりのポンプヘッド : HB = HA
 ポンプ周波数 : fB  (全ての運転中のポンプで同じ)
 減台許可ポンプヘッドは、以下の式(14)で求めることができる。
Next, a description will be given of a method in which the pump head acquisition unit 107 obtains the reduction permission pump head. The reduction-permitted pump head is a reference value for increasing the number of pumps after the number of operating pumps has decreased.
Each amount after the secondary pump 20 is reduced from n units to nm units in the same manner as when the number of units is increased can be expressed as follows.
Water flow rate: GinB = GinA Water flow rate per vehicle: GB = (n / (nm)) GA
Pump head per unit: HB = HA
Pump frequency: fB (same for all operating pumps)
The reduction base permission pump head can be obtained by the following equation (14).
Figure JPOXMLDOC01-appb-M000004
 
Figure JPOXMLDOC01-appb-M000004
 
 Fαは第一の実施形態で説明した周波数増台閾値である。また、ポンプヘッド取得部107は、式(12)によってポンプ減台後の状態におけるポンプヘッド(HB)を求める。減台後のポンプヘッドは、ポンプ減台前のポンプヘッドと変わらないため式(12)によって求めることができる。
 そしてポンプ台数制御部105は、これらの値を用いて第一の実施形態における2つの減台条件に加えて次の条件の判定を行う。
 <減台条件3:ポンプヘッドによる判断>
  減台許可ポンプヘッド >  減台後のポンプヘッド    ・・・(15)
 つまり、ポンプ台数制御部105は、「減台条件1」、「減台条件2」に加えて減台許可ポンプヘッド以下であれば2次ポンプ20の運転台数を減台する。この条件は、増台の場合と同様に、ポンプの運転台数減少後において再度ポンプを増台することになる可能性があることを考慮したものである。
Fα is the frequency increase threshold described in the first embodiment. Moreover, the pump head acquisition part 107 calculates | requires the pump head (HB) in the state after a pump reduction | decrease stand by Formula (12). Since the pump head after the reduction is not different from the pump head before the reduction, it can be obtained by Expression (12).
The pump number control unit 105 uses these values to determine the following conditions in addition to the two reduction conditions in the first embodiment.
<Decrease condition 3: Judgment by pump head>
Reduction head permission pump head> Pump head after reduction ... (15)
That is, the number-of-pumps control unit 105 reduces the number of operating secondary pumps 20 if the number of pumps is equal to or less than the reduction-permitted pump head in addition to “reduction conditions 1” and “reduction conditions 2”. This condition takes into consideration that the number of pumps may be increased again after a decrease in the number of operating pumps as in the case of increasing the number of pumps.
 図9は本実施形態によるポンプ台数制御装置の処理フローを示す図である。
 図9の処理フローを用いてポンプ台数制御装置50が2次ポンプ20の運転台数を増減する処理について説明する。図3と同じ処理については同じ符号を付して説明する。
 まず、ステップS1からステップS3は、第一の実施形態と同じである。つまり、流量取得部104が流量計21の測定した流量を、台数判断流量値取得部101が閾値Gα、Gβ、台数判断流量値を、台数判断周波数値取得部102が閾値Fα、Fβ、台数判断周波数値を取得する。
 次に、ポンプヘッド取得部107が式(12)によってポンプ増減台後のポンプヘッド、式(11)によって増台許可ポンプヘッド、式(14)によって減台許可ポンプヘッドを求める(ステップS10)。
 次にポンプ台数制御部105は、「増台条件1」と「増台条件2」と「増台条件3」の判定を行う(ステップS11)。そして、ポンプ台数制御部105は3つの条件を全て満たすとき(ステップS11=Yes)、2次ポンプ20の運転台数を1台増台する(ステップS5)。
 比較の結果、「増台条件1」と「増台条件2」と「増台条件3」とのうち何れか一つの条件でも満たさない場合(ステップS11=No)、ステップS12の処理へ進む。
FIG. 9 is a diagram showing a processing flow of the pump number control apparatus according to the present embodiment.
A process of increasing or decreasing the number of operating secondary pumps 20 by the pump number control device 50 will be described using the processing flow of FIG. The same processes as those in FIG. 3 will be described with the same reference numerals.
First, Step S1 to Step S3 are the same as in the first embodiment. That is, the flow rate acquisition unit 104 measures the flow rate measured by the flow meter 21, the unit determination flow value acquisition unit 101 uses the threshold values Gα and Gβ, the unit determination flow rate value, and the unit determination frequency value acquisition unit 102 uses the threshold values Fα and Fβ Get the frequency value.
Next, the pump head acquisition unit 107 obtains the pump head after the pump increase / decrease table by Expression (12), the increase permission pump head by Expression (11), and the decrease permission pump head by Expression (14) (Step S10).
Next, the number-of-pumps control unit 105 determines “addition condition 1”, “addition condition 2”, and “addition condition 3” (step S11). Then, when all three conditions are satisfied (step S11 = Yes), the pump number control unit 105 increases the number of operating secondary pumps 20 by one (step S5).
As a result of the comparison, if any one of “addition condition 1”, “addition condition 2”, and “addition condition 3” is not satisfied (step S11 = No), the process proceeds to step S12.
 次にポンプ台数制御部105は、「減台条件1」と「減台条件2」と「減台条件3」の判定を行う(ステップS12)。そして、ポンプ台数制御部105は3つの条件を全て満たすとき(ステップS12=Yes)、2次ポンプ20の運転台数を1台減台する(ステップS7)。
 比較の結果、「減台条件1」と「減台条件2」と「減台条件3」のうち何れか一つの条件でも満たさない場合(ステップS12=No)、ステップS8の処理へ進む。ステップS8の処理は図3と同じである。つまり熱源システムが停止するまでステップS1からの処理を繰り返す。
Next, the number-of-pumps controller 105 determines “reduction condition 1”, “reduction condition 2”, and “reduction condition 3” (step S12). When all three conditions are satisfied (step S12 = Yes), the number-of-pumps control unit 105 decreases the number of operating secondary pumps by one (step S7).
As a result of the comparison, if any one of “reduction condition 1”, “reduction condition 2”, and “reduction condition 3” is not satisfied (step S12 = No), the process proceeds to step S8. The process in step S8 is the same as that in FIG. That is, the processing from step S1 is repeated until the heat source system stops.
 第一の実施形態では,測定した流量及びポンプ周波数を使った2次ポンプ20の増台及び減台の判断基準を示した。しかし,第一の実施形態の方法のみでは,ポンプ増台又は減台後の状態を考慮していないため再び増台及び減台の判定を行ってしまい、増台と減台を繰り返してしまう可能性がある。
 本実施形態によれば増台及び減台の判断時に,増減台後の流量測定値とポンプ周波数に加え、増台(減台)後のポンプ運転状態をQ-H特性から推定した減台(増台)閾値のポンプヘッドと比較した上で増減台することで増台と減台の繰り返しを防ぐことができる。
 本実施形態は第一の実施形態の変形例と組み合わせることも可能である。
In the first embodiment, the criteria for determining whether to increase or decrease the secondary pump 20 using the measured flow rate and pump frequency are shown. However, the method according to the first embodiment alone does not take into account the state after the pump is added or reduced, so the determination of the addition or reduction is performed again, and the addition and reduction may be repeated. There is sex.
According to the present embodiment, when determining whether to increase or decrease the number of stations, in addition to the flow rate measurement value and pump frequency after the increase / decrease, the pump operation state after the increase (decrease) is estimated from the QH characteristics. Increasing the number of units can be prevented by increasing or decreasing the number of units after comparing with the threshold pump head.
This embodiment can be combined with a modification of the first embodiment.
<第三の実施形態>
 以下、本発明の第三の実施形態による熱源システムを図10~11を参照して説明する。
 第三の実施形態は、第二の実施形態と同様に第一の実施形態に加えポンプの増減台の繰り返しを防止し、より安定したポンプの運転を行うための実施形態に関する。
 図10は本実施形態によるポンプ台数制御装置50の機能ブロック図である。
 本実施形態のポンプ台数制御装置50は、ポンプ周波数推定値取得部108を備えている点で第一の実施形態と異なる。本実施形態のその他の構成は第一の実施形態と同じである。
 ポンプ周波数推定値取得部108は、2次ポンプ20の増減台後の周波数の推定値である増台後ポンプ周波数推定値及び減台後ポンプ周波数推定値を取得する。
 具体的には、増台後のポンプヘッドは式(16)で求めることができる。
<Third embodiment>
Hereinafter, a heat source system according to a third embodiment of the present invention will be described with reference to FIGS.
As in the second embodiment, the third embodiment relates to an embodiment for preventing the repetition of pump increase / decrease units and performing more stable pump operation in addition to the first embodiment.
FIG. 10 is a functional block diagram of the pump number control device 50 according to the present embodiment.
The pump number control device 50 according to the present embodiment is different from the first embodiment in that a pump frequency estimated value acquisition unit 108 is provided. Other configurations of the present embodiment are the same as those of the first embodiment.
The pump frequency estimated value acquisition unit 108 acquires the post-increase pump frequency estimated value and the post-decrease pump frequency estimated value, which are estimated values of the frequency after the secondary pump 20 is increased or decreased.
Specifically, the pump head after the number of units can be obtained by Expression (16).
Figure JPOXMLDOC01-appb-M000005
 
Figure JPOXMLDOC01-appb-M000005
 
 つまり増台後のポンプ周波数(fB)において増台後におけるポンプ1台当たりに必要な吐出流量((n/n+m)×GA)が得られたとして、その場合のポンプ最大周波数における吐出流量に基づいて、Q-H特性から取得したポンプヘッドに増台後のポンプ周波数(fB)のポンプ最大周波数(fmax)に対する割合の2乗を乗じて増台後におけるポンプヘッド(HB)を得る。
 一方、式(16)で求めたHBは、HAと同じであり(HB=HAとなるように増減台する)、HAは現在のポンプ周波数、流量測定値、Q-H特性を用いて求めることができる(式(12))。ポンプ周波数推定値取得部108は、この関係を利用してHB=HAになるような周波数fBを,予め用意しておいた周波数とポンプヘッドとの相関を示したマップ、或いは逆関数から導出し、そのfBを増台後ポンプ周波数推定値とする。
In other words, assuming that the required discharge flow rate ((n / n + m) × GA) per pump after the increase is obtained at the pump frequency (fB) after the increase, based on the discharge flow rate at the maximum pump frequency in that case. Then, the pump head (HB) after the addition is obtained by multiplying the pump head obtained from the QH characteristic by the square of the ratio of the pump frequency (fB) after the addition to the pump maximum frequency (fmax).
On the other hand, HB obtained by equation (16) is the same as HA (increase / decrease so that HB = HA), and HA should be obtained using the current pump frequency, measured flow rate, and QH characteristics. (Formula (12)). Using this relationship, the pump frequency estimated value acquisition unit 108 derives a frequency fB such that HB = HA from a map showing the correlation between the frequency prepared in advance and the pump head or an inverse function. , FB is the estimated pump frequency after the increase.
 そして、ポンプ台数制御部105は、「増台条件1」と「増台条件2」に加えて周波数による増台後に再び減台条件に入らないための増台許可判定(「増台条件4」)を行う。
 <増台条件4:周波数による判断>
  fB > Fβ      ・・・ (17)
 ここで、fBはポンプ周波数推定値取得部108の求めた増台後ポンプ周波数推定値、Fβは第一の実施形態で説明した周波数減台閾値である。本実施形態では、「増台条件1」、「増台条件2」に加えて増台後の周波数が周波数減台閾値を上回らなければ、またポンプを減台することになる可能性があるのでそれを防止するためにこの条件をポンプの増台判断に追加する。
Then, the number-of-pumps control unit 105 determines whether or not to allow the number of pumps to be increased after the number of stations is increased by frequency in addition to the “number of conditions 1” and “number of conditions 2” (“number of conditions 4”). )I do.
<Additional condition 4: Judgment by frequency>
fB> Fβ (17)
Here, fB is the post-increase pump frequency estimated value obtained by the pump frequency estimated value acquisition unit 108, and Fβ is the frequency decrease threshold described in the first embodiment. In this embodiment, in addition to “addition condition 1” and “addition condition 2”, if the frequency after the addition does not exceed the frequency reduction threshold, the pump may be reduced. In order to prevent this, this condition is added to the pump addition determination.
 同様にして減台後の判定を行う。ポンプ周波数推定値取得部108は、減台後におけるポンプ1台当たりの流量やポンプ最大周波数を式(18)に代入し、式(18)の値が上記のHAと等しいことを利用して、マップや逆関数などから減台後ポンプ周波数推定値fBを求める。 In the same way, perform the judgment after the number of units is reduced. The pump frequency estimated value acquisition unit 108 substitutes the flow rate per pump and the pump maximum frequency after reduction in the formula (18), and uses the fact that the value of the formula (18) is equal to the above HA, The post-reduction pump frequency estimated value fB is obtained from a map or inverse function.
Figure JPOXMLDOC01-appb-M000006
 
Figure JPOXMLDOC01-appb-M000006
 
 そして、ポンプ台数制御部105は、「減台条件1」と「減台条件2」に加えて周波数による減台後に再び増台条件に入らないための減台許可判定(「減台条件4」)を行う。
 <減台条件4:周波数による判断>
  fB < Fα        ・・・(19)ここで、fBはポンプ周波数推定値取得部108の求めた減台後ポンプ周波数推定値、Fαは第一の実施形態で説明した周波数増台閾値である。つまり、本実施形態では、「減台条件1」、「減台条件2」に加えて減台後の周波数が周波数増台閾値以下とならなければ、またポンプを増台することになる可能性があるのでそれを防止するためにこの条件をポンプの減台判断に追加する。
In addition to the “reduction condition 1” and “reduction condition 2”, the number-of-pumps control unit 105 determines that the number of pumps is not allowed to enter again after the reduction according to the frequency (“reduction condition 4”). )I do.
<Decrease condition 4: Judgment by frequency>
fB <Fα (19) Here, fB is the post-reduction pump frequency estimated value obtained by the pump frequency estimated value acquisition unit 108, and Fα is the frequency increase threshold described in the first embodiment. That is, in this embodiment, in addition to the “reduction condition 1” and “reduction condition 2”, if the frequency after the decrease is not less than the frequency increase threshold value, the number of pumps may be increased. In order to prevent this, this condition is added to the pump reduction judgment.
 図11は本実施形態によるポンプ台数制御装置の処理フローを示す図である。
 図11の処理フローを用いてポンプ台数制御装置50が2次ポンプ20の運転台数を増減する処理について説明する。図3と同じ処理については同じ符号を付して説明する。
 ステップS1からステップS3は、第一の実施形態と同じである。
 次に、ポンプ周波数推定値取得部108がマップや逆関数によってポンプ増減台後のポンプ周波数の推定値fBを求める(ステップS13)。
 次にポンプ台数制御部105は、「増台条件1」と「増台条件2」と「増台条件4」の判定を行う(ステップS14)。そして、ポンプ台数制御部105は3つの条件を全て満たすとき(ステップS14=Yes)、2次ポンプ20の運転台数を1台増台する(ステップS5)。
 比較の結果、「増台条件1」と「増台条件2」と「増台条件4」とのうち何れか一つの条件でも満たさない場合(ステップS14=No)、ステップS15の処理へ進む。
FIG. 11 is a diagram showing a processing flow of the pump number control device according to the present embodiment.
A process of increasing or decreasing the number of operating secondary pumps 20 by the pump number control device 50 will be described using the processing flow of FIG. The same processes as those in FIG. 3 will be described with the same reference numerals.
Steps S1 to S3 are the same as in the first embodiment.
Next, the pump frequency estimated value acquisition unit 108 obtains an estimated value fB of the pump frequency after the pump increase / decrease table using a map or an inverse function (step S13).
Next, the number-of-pumps control unit 105 determines “addition condition 1”, “addition condition 2”, and “addition condition 4” (step S14). Then, when all three conditions are satisfied (step S14 = Yes), the pump number control unit 105 increases the number of operating secondary pumps 20 by one (step S5).
As a result of the comparison, if any one of “addition condition 1”, “addition condition 2”, and “addition condition 4” is not satisfied (step S14 = No), the process proceeds to step S15.
 次にポンプ台数制御部105は、「減台条件1」と「減台条件2」と「減台条件4」の判定を行う(ステップS15)。そして、ポンプ台数制御部105は3つの条件を全て満たすとき(ステップS15=Yes)、2次ポンプ20の運転台数を1台減台する(ステップS7)。
 比較の結果、「減台条件1」と「減台条件2」と「減台条件3」のうち何れか一つの条件でも満たさない場合(ステップS12=No)、ステップS8の処理へ進む。ステップS8の処理は図3と同じである。つまり熱源システムが停止するまでステップS1からの処理を繰り返す。
Next, the number-of-pumps controller 105 determines “reduction conditions 1”, “reduction conditions 2”, and “reduction conditions 4” (step S15). Then, when all three conditions are satisfied (step S15 = Yes), the number-of-pumps control unit 105 reduces the number of operating secondary pumps by one (step S7).
As a result of the comparison, if any one of “reduction condition 1”, “reduction condition 2”, and “reduction condition 3” is not satisfied (step S12 = No), the process proceeds to step S8. The process in step S8 is the same as that in FIG. That is, the processing from step S1 is repeated until the heat source system stops.
 本実施形態によれば、増台(減台)後のポンプ周波数を推定し、その値と周波数減台(増台)閾値と比較する。そして第一の実施形態の2つの条件に加え、増台後のポンプ周波数推定値が周波数減台閾値を上回れば2次ポンプ20の増台を行う。同様に第一の実施形態の2つの条件に加え、減台後のポンプ周波数推定値が周波数増台閾値を下回れば2次ポンプ20の減台を行う。2次ポンプ20の増減後の周波数を考慮することで増台と減台の繰り返しを防ぐことが出来る。
 本実施形態は第一の実施形態の変形例と組み合わせることも可能である。
According to the present embodiment, the pump frequency after the increase (decrease) is estimated, and the value is compared with the frequency decrease (addition) threshold. In addition to the two conditions of the first embodiment, the secondary pump 20 is increased if the estimated pump frequency after the increase exceeds the frequency decrease threshold. Similarly, in addition to the two conditions of the first embodiment, the secondary pump 20 is reduced if the estimated pump frequency after reduction is below the frequency increase threshold. By considering the frequency after the increase / decrease of the secondary pump 20, it is possible to prevent repeated increase and decrease.
This embodiment can be combined with a modification of the first embodiment.
<第四の実施形態>
 以下、本発明の第四の実施形態による熱源システムを図12~14を参照して説明する。
 第四の実施形態は、第一~三の実施形態に加えポンプ効率を考慮してポンプの運転台数を変更する実施形態に関する。
 図12は本実施形態によるポンプ台数制御装置の機能ブロック図である。
 本実施形態のポンプ台数制御装置50は、ポンプ周波数推定値取得部108とポンプ効率取得部109を備える点で第一の実施形態と異なる。本実施形態のその他の構成は第一の実施形態と同じである。
 ポンプ周波数推定値取得部108は、第三の実施形態で説明したとおり増台後ポンプ周波数推定値及び減台後ポンプ周波数推定値をマップや逆関数を用いて取得する。
 ポンプ効率取得部109は、記憶部200が保有するポンプの吐出流量とポンプ効率との相関を示すグラフ等を用いて、2次ポンプ20の増減台後のポンプ効率の推定値を求める。ポンプを最大周波数で動作させたときの吐出流量とポンプ効率との相関の一例を図13に示す。図13はポンプの吐出流量に応じて,ポンプ効率が変化することを示している。2次ポンプ20の運転台数を増減台させると1台当たりの吐出流量は変化するので、それに応じてポンプ効率も変化することが理解できる。
<Fourth embodiment>
Hereinafter, a heat source system according to a fourth embodiment of the present invention will be described with reference to FIGS.
The fourth embodiment relates to an embodiment in which the number of operating pumps is changed in consideration of pump efficiency in addition to the first to third embodiments.
FIG. 12 is a functional block diagram of the pump number control apparatus according to the present embodiment.
The pump number control device 50 of this embodiment is different from that of the first embodiment in that a pump frequency estimated value acquisition unit 108 and a pump efficiency acquisition unit 109 are provided. Other configurations of the present embodiment are the same as those of the first embodiment.
As described in the third embodiment, the pump frequency estimated value acquisition unit 108 acquires the post-increased pump frequency estimated value and the post-decreasing pump frequency estimated value using a map or an inverse function.
The pump efficiency acquisition unit 109 obtains an estimated value of the pump efficiency after the increase / decrease of the secondary pump 20 using a graph or the like indicating the correlation between the pump discharge flow rate and the pump efficiency held by the storage unit 200. FIG. 13 shows an example of the correlation between the discharge flow rate and the pump efficiency when the pump is operated at the maximum frequency. FIG. 13 shows that the pump efficiency changes according to the pump discharge flow rate. It can be understood that when the number of operating secondary pumps 20 is increased or decreased, the discharge flow rate per unit changes, and the pump efficiency changes accordingly.
 増台前の状態における1台あたりの現在ポンプ効率ηAは以下式(20)で求める。 The current pump efficiency η A per unit in the state before the increase is obtained by the following equation (20).
Figure JPOXMLDOC01-appb-M000007
 
Figure JPOXMLDOC01-appb-M000007
 
 ここで、η(x)はポンプの吐出流量とポンプ効率の関係を示す関数である。
 また、同様に1台あたりの増台後ポンプ効率ηは以下の式(21)で求められる。
Here, η (x) is a function indicating the relationship between the pump discharge flow rate and the pump efficiency.
Similarly, the post-increase pump efficiency η B per unit is obtained by the following equation (21).
Figure JPOXMLDOC01-appb-M000008
 
Figure JPOXMLDOC01-appb-M000008
 
 ここでfは、ポンプ周波数推定値取得部108が算出した増台後ポンプ周波数推定値である。 Here, f B is the pump frequency estimated value after the increase calculated by the pump frequency estimated value acquiring unit 108.
 そして、ポンプ台数制御部105は、「増台条件1」と「増台条件2」に加えてポンプ効率による増台許可判定(「増台条件5」)を行う。
 <増台条件5:ポンプ効率による判断>
  η ≧ η      ・・・(22)
 つまり、ポンプ台数制御部105は、「増台条件1」、「増台条件2」に加えて増台後のポンプ効率が増台前のポンプ効率以上とならなければ増台しない。
Then, in addition to “addition condition 1” and “addition condition 2”, the number-of-pumps control unit 105 performs an addition permission determination based on pump efficiency (“addition condition 5”).
<Additional condition 5: Judgment by pump efficiency>
η B ≧ η A (22)
That is, the number-of-pumps control unit 105 does not increase unless the pump efficiency after the increase is equal to or higher than the pump efficiency before the increase in addition to “addition condition 1” and “addition condition 2”.
 同様にポンプ効率取得部109は、1台あたりの減台後ポンプ効率を以下の式(23)によって求める。 Similarly, the pump efficiency acquisition unit 109 obtains the pump efficiency after the reduction per unit by the following equation (23).
Figure JPOXMLDOC01-appb-M000009
 
Figure JPOXMLDOC01-appb-M000009
 
 そして、ポンプ台数制御部105は、「減台条件1」と「減台条件2」に加えてポンプ効率による減台許可判定(「減台条件5」)を行う。
 <減台条件5:ポンプ効率による判断>
  η ≧ η     ・・・(24)
 つまり、ポンプ台数制御部105は、「減台条件1」、「減台条件2」に加えて減台後のポンプ効率が減台前のポンプ効率以上とならなければ減台しない。
The number-of-pumps control unit 105 performs a reduction permission determination based on pump efficiency (“reduction condition 5”) in addition to “reduction condition 1” and “reduction condition 2”.
<Decrease condition 5: Judgment by pump efficiency>
η B ≧ η A (24)
That is, the number-of-pumps control unit 105 does not decrease unless the pump efficiency after the reduction is equal to or higher than the pump efficiency before the reduction, in addition to the “reduction condition 1” and “reduction condition 2”.
 第一~三の実施形態ではポンプ効率について考慮していないため、効率の悪い運転点で運転するようポンプを増減台している可能性がある。
 本実施形態によれば、ポンプ効率を考慮することで消費電力を抑えつつもポンプを増減台することが可能である。
Since the pump efficiency is not considered in the first to third embodiments, there is a possibility that the number of pumps may be increased or decreased to operate at an inefficient operating point.
According to this embodiment, it is possible to increase or decrease the number of pumps while suppressing power consumption by considering pump efficiency.
 図14は本実施形態によるポンプ台数制御装置の処理フローを示す図である。
 図14の処理フローを用いてポンプ台数制御装置50が2次ポンプ20の運転台数を増減する処理について説明する。図11と同じ処理については同じ符号を付して説明する。
 ステップS1からステップS3は、第一~三の実施形態と同じである。次のステップS13は、第三の実施形態(図11)と同じである。
 次に、ポンプ効率取得部109がポンプ増減台前後のポンプ効率を求める(ステップS17)。
 次にポンプ台数制御部105は、「増台条件1」と「増台条件2」と「増台条件5」の判定を行う(ステップS18)。そして、ポンプ台数制御部105は3つの条件を全て満たすとき(ステップS18=Yes)、2次ポンプ20の運転台数を1台増台する(ステップS5)。
 比較の結果、「増台条件1」と「増台条件2」と「増台条件5」とのうち何れか一つの条件でも満たさない場合(ステップS18=No)、ステップS18の処理へ進む。
FIG. 14 is a diagram showing a processing flow of the pump number control device according to the present embodiment.
A process of increasing or decreasing the number of operating secondary pumps 20 by the pump number control device 50 will be described using the processing flow of FIG. The same processes as those in FIG. 11 will be described with the same reference numerals.
Steps S1 to S3 are the same as those in the first to third embodiments. The next step S13 is the same as in the third embodiment (FIG. 11).
Next, the pump efficiency acquisition part 109 calculates | requires the pump efficiency before and behind a pump increase / decrease stand (step S17).
Next, the number-of-pumps control unit 105 determines “addition condition 1”, “addition condition 2”, and “addition condition 5” (step S18). Then, when all three conditions are satisfied (step S18 = Yes), the pump number control unit 105 increases the number of operating secondary pumps by one (step S5).
As a result of the comparison, if any one of “addition condition 1”, “addition condition 2”, and “addition condition 5” is not satisfied (step S18 = No), the process proceeds to step S18.
 次にポンプ台数制御部105は、「減台条件1」と「減台条件2」と「減台条件5」の判定を行う(ステップS18)。そして、ポンプ台数制御部105は3つの条件を全て満たすとき(ステップS18=Yes)、2次ポンプ20の運転台数を1台減台する(ステップS7)。
 比較の結果、「減台条件1」と「減台条件2」と「減台条件5」のうち何れか一つの条件でも満たさない場合(ステップS18=No)、ステップS8の処理へ進む。ステップS8の処理は図3と同じである。つまり熱源システムが停止するまでステップS1からの処理を繰り返す。
Next, the number-of-pumps controller 105 determines “reduction condition 1”, “reduction condition 2”, and “reduction condition 5” (step S18). Then, when all three conditions are satisfied (step S18 = Yes), the number-of-pumps control unit 105 reduces the number of operating secondary pumps by one (step S7).
As a result of the comparison, if any one of “reduction conditions 1”, “reduction conditions 2”, and “reduction conditions 5” is not satisfied (step S18 = No), the process proceeds to step S8. The process in step S8 is the same as that in FIG. That is, the processing from step S1 is repeated until the heat source system stops.
 本実施形態は、第一の実施形態とその変形例だけでなく第二及び第三の実施形態と組み合わせることも可能である。第二又は第三の実施形態と組み合わせた場合は、2次ポンプ20の増減台の繰り返しを防ぎ、ポンプ効率の良い運転点を探しつつ負荷への流量測定値を満足させるようにポンプ運転台数を決定することが出来るため、省エネルギー効果を期待することができる。 This embodiment can be combined with the second and third embodiments as well as the first embodiment and its modifications. When combined with the second or third embodiment, it is possible to prevent the repetition of the increase / decrease units of the secondary pump 20 and to increase the number of pumps operated so as to satisfy the flow rate measurement value to the load while searching for an operating point with good pump efficiency. Since it can be determined, an energy saving effect can be expected.
 上述のポンプ台数制御装置は内部にコンピュータを有している。そして、上述したポンプ台数制御装置の各処理の過程は、プログラムの形式でコンピュータ読み取り可能な記録媒体に記憶されており、このプログラムをコンピュータが読み出して実行することによって、上記処理が行われる。ここでコンピュータ読み取り可能な記録媒体とは、磁気ディスク、光磁気ディスク、CD-ROM、DVD-ROM、半導体メモリ等をいう。また、このコンピュータプログラムを通信回線によってコンピュータに配信し、この配信を受けたコンピュータが当該プログラムを実行するようにしてもよい。 The above-mentioned pump number control device has a computer inside. Each process of the above-described number-of-pumps control apparatus is stored in a computer-readable recording medium in the form of a program, and the above process is performed by the computer reading and executing this program. Here, the computer-readable recording medium means a magnetic disk, a magneto-optical disk, a CD-ROM, a DVD-ROM, a semiconductor memory, or the like. Alternatively, the computer program may be distributed to the computer via a communication line, and the computer that has received the distribution may execute the program.
 また、上記プログラムは、前述した機能の一部を実現するためのものであってもよい。
 さらに、前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるもの、いわゆる差分ファイル(差分プログラム)であってもよい。
The program may be for realizing a part of the functions described above.
Furthermore, what can implement | achieve the function mentioned above in combination with the program already recorded on the computer system, what is called a difference file (difference program) may be sufficient.
 その他、本発明の趣旨を逸脱しない範囲で、上記した実施の形態における構成要素を周知の構成要素に置き換えることは適宜可能である。また、この発明の技術範囲は上記の実施形態に限られるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。 In addition, it is possible to appropriately replace the constituent elements in the above-described embodiments with known constituent elements without departing from the spirit of the present invention. The technical scope of the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention.
 上記したポンプ台数制御方法、ポンプ台数制御装置、ポンプシステム、熱源システム及びプログラムによれば、圧損特性など設備の特性を知ることなく適切なタイミングでポンプの運転台数を適切に制御することができる。 According to the pump number control method, the pump number control device, the pump system, the heat source system, and the program described above, it is possible to appropriately control the number of operating pumps at an appropriate timing without knowing the characteristics of the equipment such as the pressure loss characteristics.
 10  1次ポンプ
 20  2次ポンプ
 21  流量計
 22  温度計
 23  温度計
 30  熱源機
 40  負荷
 50  ポンプ台数制御装置
 101  台数判断流量値取得部
 102  台数判断周波数値取得部
 103  ポンプ周波数設定部
 104  流量取得部
 105  ポンプ台数制御部
 107  ポンプヘッド取得部
 108  ポンプ周波数推定値取得部
 109  ポンプ効率取得部
 110  温度取得部
 111  台数判断熱負荷取得部
 200  記憶部
DESCRIPTION OF SYMBOLS 10 Primary pump 20 Secondary pump 21 Flow meter 22 Thermometer 23 Thermometer 30 Heat source machine 40 Load 50 Pump number control device 101 Number determination flow value acquisition part 102 Number determination frequency value acquisition part 103 Pump frequency setting part 104 Flow rate acquisition part 105 Pump Number Control Unit 107 Pump Head Acquisition Unit 108 Pump Frequency Estimated Value Acquisition Unit 109 Pump Efficiency Acquisition Unit 110 Temperature Acquisition Unit 111 Number Determination Thermal Load Acquisition Unit 200 Storage Unit

Claims (11)

  1.  並列に接続された複数のポンプが負荷に圧送する熱媒体の流量若しくは前記負荷が必要とする熱負荷と、前記複数のポンプのうち運転中の各ポンプに指令した周波数指令値と、に基づいて前記ポンプの運転台数を増減させる工程
     を有するポンプ台数制御方法。
    Based on the flow rate of the heat medium pumped by a plurality of pumps connected in parallel or the heat load required by the load, and the frequency command value commanded to each operating pump among the plurality of pumps A pump number control method comprising a step of increasing or decreasing the number of operating pumps.
  2.  前記複数のポンプのうち運転中のポンプによる吐出流量の測定値から前記負荷に圧送する熱媒体の流量を示す台数判断流量値を取得する工程を有し、
     前記ポンプの運転台数を増減させる工程は、前記台数判断流量値が予め定められた閾値Gα以上、かつ、各ポンプに指令した周波数指令値が予め定められた閾値Fα以上となった場合に前記ポンプの運転台数を増加させ、また、前記台数判断流量値が予め定められた閾値Gβ以下、かつ、各ポンプに指令した周波数指令値が予め定められた閾値Fβ以下となった場合に前記ポンプの運転台数を減少させる、
     請求項1に記載のポンプ台数制御方法。
    Obtaining a number determination flow value indicating a flow rate of the heat medium pumped to the load from a measurement value of a discharge flow rate by an operating pump among the plurality of pumps;
    The step of increasing / decreasing the number of operating pumps is performed when the number-of-units determination flow value is not less than a predetermined threshold value Gα and the frequency command value commanded to each pump is not less than a predetermined threshold value Fα. The number of operating units is increased, and the pump operation is performed when the number determination flow rate value is equal to or less than a predetermined threshold Gβ and the frequency command value commanded to each pump is equal to or less than a predetermined threshold Fβ. Reduce the number of units,
    The method for controlling the number of pumps according to claim 1.
  3.  前記負荷が要求する熱負荷を算出する工程を有し、
     前記ポンプの運転台数を増減させる工程は、前記熱負荷が予め定められた閾値Lα以上、かつ、各ポンプに指令した周波数指令値が予め定められた閾値Fα以上となった場合に前記ポンプの運転台数を増加させ、また、前記熱負荷が予め定められた閾値Lβ以下、かつ、各ポンプに指令した周波数指令値が予め定められた閾値Fβ以下となった場合に前記ポンプの運転台数を減少させる、
     請求項1に記載のポンプ台数制御方法。
    Calculating a thermal load required by the load,
    The step of increasing or decreasing the number of operating pumps is the operation of the pump when the thermal load is equal to or greater than a predetermined threshold value Lα and the frequency command value commanded to each pump is equal to or greater than a predetermined threshold value Fα. The number of pumps is increased, and the number of operating pumps is decreased when the thermal load is not more than a predetermined threshold value Lβ and the frequency command value commanded to each pump is not more than a predetermined threshold value Fβ. ,
    The method for controlling the number of pumps according to claim 1.
  4.  前記ポンプの運転台数を増減させる工程は、さらに前記ポンプのポンプヘッドと、前記ポンプを増台する閾値である増台許可ポンプヘッド又は前記ポンプを減台する閾値である減台許可ポンプヘッドと、を比較し、前記増台許可ポンプヘッドが前記ポンプヘッドより小さい場合のみポンプの運転台数を増加し、前記減台許可ポンプヘッドが前記ポンプヘッドより大きい場合のみポンプの運転台数を減少させる
     請求項2または請求項3に記載のポンプ台数制御方法。
    The step of increasing / decreasing the number of operating pumps further includes a pump head of the pump, an increase permission pump head that is a threshold for increasing the pump, or a decrease permission pump head that is a threshold for decreasing the pump, The number of operating pumps is increased only when the increase-permission permission pump head is smaller than the pump head, and the number of pump operation is decreased only when the decrease permission pump head is larger than the pump head. Or the pump number control method of Claim 3.
  5.  前記ポンプ運転台数増加後のポンプの吐出流量とポンプの吐出流量に対するポンプヘッドの予め定められた相関とに基づいて算出したポンプヘッドから、前記ポンプの周波数を予め定められた閾値Fβで動作させたときのポンプヘッドを算出して前記増台許可ポンプヘッドを求め、また、前記ポンプ運転台数減少後のポンプの吐出流量と前記予め定められた相関とに基づいて算出したポンプヘッドから、前記ポンプの周波数を予め定められた閾値Fαで動作させたときのポンプヘッドを算出して前記減台許可ポンプヘッドを求める工程を有する
     請求項4に記載のポンプ台数制御方法。
    From the pump head calculated based on the pump discharge flow rate after the increase in the number of pumps operated and the pump head predetermined correlation with the pump discharge flow rate, the frequency of the pump was operated at a predetermined threshold value Fβ. The pump head is calculated by calculating the pump head when the pump is allowed, and the pump head calculated from the pump discharge flow rate after the decrease in the number of pumps operated and the predetermined correlation is used. The pump number control method according to claim 4, further comprising a step of calculating a pump head when the frequency is operated at a predetermined threshold value Fα to obtain the reduction base permission pump head.
  6.  ポンプの運転台数の増減後におけるポンプヘッドと現在のポンプヘッドとが等しいことを条件に前記運転中のポンプの所定の周波数におけるポンプヘッドとポンプの吐出流量との予め定められた相関に基づいてポンプの運転台数増加後の周波数指令値と運転台数減少後の周波数指令値とを取得する工程を有し、
     前記ポンプの運転台数を増減させる工程は、さらに前記運転台数増加後の周波数指令値が前記閾値Fβより大きいときのみポンプの運転台数を増加し、また、前記運転台数減少後の周波数指令値が前記閾値Fαより小さいときのみポンプの運転台数を減少させる
     請求項2又は請求項3に記載のポンプ台数制御方法。
    Pumps based on a predetermined correlation between the pump head and the pump discharge flow rate at a predetermined frequency of the pump being operated on condition that the pump head after the increase / decrease in the number of pumps operated is equal to the current pump head Having a step of acquiring a frequency command value after an increase in the number of operating units and a frequency command value after a decrease in the number of operating units,
    The step of increasing / decreasing the number of operating pumps further increases the number of operating pumps only when the frequency command value after increasing the operating number is greater than the threshold value Fβ, and the frequency command value after decreasing the operating number is The pump number control method according to claim 2 or 3, wherein the number of operating pumps is decreased only when the value is smaller than the threshold value Fα.
  7.  前記運転中のポンプの所定の周波数における吐出流量とポンプ効率との予め定められた相関に基づいてポンプの運転台数増加後のポンプ効率と運転台数減少後のポンプ効率と現在のポンプ効率とを取得する工程を有し、
     前記ポンプの運転台数を増減させる工程は、さらに前記運転台数増加後のポンプ効率が前記現在のポンプ効率以上の場合のみポンプの運転台数を増加し、また、前記運転台数減少後のポンプ効率が前記現在のポンプ効率以上の場合のみポンプの運転台数を減少させる
     請求項2から請求項6の何れか1項に記載のポンプ台数制御方法。
    Based on a predetermined correlation between the discharge flow rate at a predetermined frequency of the pump in operation and the pump efficiency, the pump efficiency after increasing the number of operating pumps, the pump efficiency after decreasing the operating number, and the current pump efficiency are acquired. And having a process of
    The step of increasing / decreasing the number of operating pumps further increases the number of operating pumps only when the pump efficiency after the increase in operating number is greater than or equal to the current pump efficiency, and the pump efficiency after decreasing the operating number is The method for controlling the number of pumps according to any one of claims 2 to 6, wherein the number of operating pumps is reduced only when the pump efficiency is equal to or higher than a current pump efficiency.
  8.  負荷に熱媒体を圧送する並列に接続された複数のポンプの運転台数を、前記負荷に圧送する熱媒体の流量若しくは前記負荷が必要とする熱負荷と前記複数のポンプのうち運転中の各ポンプに指令した周波数指令値とに基づいて増減させるポンプ台数制御部
     を備えるポンプ台数制御装置。
    The operation number of a plurality of pumps connected in parallel for pressure-feeding the heat medium to the load, the flow rate of the heat medium pressure-fed to the load or the heat load required by the load, and each pump being operated among the plurality of pumps A pump number control device comprising a pump number control unit that increases or decreases based on the frequency command value commanded to
  9.  並列に接続された複数のポンプと、
     請求項8に記載のポンプ台数制御装置を備え、
     前記ポンプの1台あたりのポンプヘッドと流量測定値とを変化させないように前記ポンプの運転台数を変化させるポンプシステム。
    A plurality of pumps connected in parallel;
    The apparatus for controlling the number of pumps according to claim 8,
    A pump system that changes the number of pumps operated so as not to change a pump head and a flow rate measurement value per pump.
  10.  負荷と、
     並列に接続された複数の熱媒体を圧送する熱源機と、
     並列に接続された複数の熱源機から圧送された熱媒体をさらに負荷に圧送する2次ポンプと、
     請求項8に記載のポンプ台数制御装置と、
     を備える熱源システム。
    Load,
    A heat source unit that pumps a plurality of heat media connected in parallel;
    A secondary pump for further pumping a heat medium pumped from a plurality of heat source devices connected in parallel to a load;
    A pump number control device according to claim 8;
    A heat source system comprising:
  11.  ポンプ台数制御装置のコンピュータを、
     並列に接続された複数のポンプが負荷に圧送する熱媒体の流量若しくは前記負荷が必要とする熱負荷と、前記複数のポンプのうち運転中の各ポンプに指令した周波数指令値と、に基づいて前記ポンプの運転台数を増減させる手段
     として機能させるためのプログラム。
    The computer of the pump number control device,
    Based on the flow rate of the heat medium pumped by a plurality of pumps connected in parallel or the heat load required by the load, and the frequency command value commanded to each operating pump among the plurality of pumps A program for functioning as a means for increasing or decreasing the number of operating pumps.
PCT/JP2014/066141 2014-01-31 2014-06-18 Method for controlling number of pumps, device for controlling number of pumps, pump system, heat source system, and program WO2015114847A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201480072766.9A CN105899886B (en) 2014-01-31 2014-06-18 Pump unit number control method, pump number control device, pumping system, heat source system and recording medium
US15/111,025 US20160341440A1 (en) 2014-01-31 2014-06-18 Method for controlling number of pumps, device for controlling number of pumps, pump system, heat source system, and program
KR1020167018412A KR101802105B1 (en) 2014-01-31 2014-06-18 Method for controlling number of pumps, device for controlling number of pumps, pump system, heat source system, and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-017187 2014-01-31
JP2014017187A JP6210219B2 (en) 2014-01-31 2014-01-31 Pump number control method, pump number control device, pump system, heat source system, and program

Publications (1)

Publication Number Publication Date
WO2015114847A1 true WO2015114847A1 (en) 2015-08-06

Family

ID=53756451

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/066141 WO2015114847A1 (en) 2014-01-31 2014-06-18 Method for controlling number of pumps, device for controlling number of pumps, pump system, heat source system, and program

Country Status (5)

Country Link
US (1) US20160341440A1 (en)
JP (1) JP6210219B2 (en)
KR (1) KR101802105B1 (en)
CN (1) CN105899886B (en)
WO (1) WO2015114847A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024100832A1 (en) * 2022-11-10 2024-05-16 三菱電機株式会社 Heat source system

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6361074B2 (en) * 2015-05-13 2018-07-25 三菱重工サーマルシステムズ株式会社 Number control device, energy supply system, number control method and program
JP7061923B2 (en) * 2018-05-01 2022-05-02 東芝キヤリア株式会社 Control device, heat source system
RU2684152C1 (en) * 2018-05-29 2019-04-04 Анатолий Александрович Рыбаков Method of air supply to external combustion chamber of two-stroke engine with external combustion chamber of several compressor above-piston cavities
JP7260770B2 (en) * 2019-04-26 2023-04-19 ダイキン工業株式会社 Pump number control device, pump number control method, pump number control program
KR102153313B1 (en) * 2020-01-23 2020-09-08 (주)한국펌프앤시스템즈 Method for changing pump-operation based on change-over learning in the booster pump system
CN112432307B (en) * 2020-11-17 2021-11-02 珠海格力电器股份有限公司 Water pump evaluation method and device, air conditioning system, storage medium and electronic equipment
CN112780539B (en) * 2020-12-31 2022-10-21 上海市政工程设计研究总院(集团)有限公司 Energy-saving operation optimization method for same-model speed regulating pump station
CN113679988B (en) * 2021-08-27 2023-02-28 广东瑞霖特种设备制造有限公司 Small-flow segmented control mechanical transmission pump set device of compressed air foam fire extinguishing system
CN114413360A (en) * 2021-12-31 2022-04-29 威乐(中国)水泵系统有限公司 Hydraulic module

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04198646A (en) * 1990-11-29 1992-07-20 Toho Gas Co Ltd Flow rate sensing device for air conditioning device
JP2004257707A (en) * 2003-02-27 2004-09-16 Hitachi Plant Eng & Constr Co Ltd Method and device for controlling proper capacity of heat source apparatus
JP2006153324A (en) * 2004-11-26 2006-06-15 Yamatake Corp Operating unit number control method and device
JP2010127564A (en) * 2008-11-28 2010-06-10 Taikisha Ltd Heat source system
JP2011064438A (en) * 2009-09-18 2011-03-31 Hitachi Cable Ltd Cold water circulating system
JP2011179755A (en) * 2010-03-01 2011-09-15 Hitachi Cable Ltd Cold-water circulating system
JP2014145493A (en) * 2013-01-28 2014-08-14 Shin Nippon Air Technol Co Ltd Pump operation unit number decision control method in two-pump type heat source equipment

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5279581A (en) 1990-05-09 1994-01-18 Firth John R Disposable self-shielding hypodermic syringe
JP2006009805A (en) 1996-01-31 2006-01-12 Hitachi Industrial Equipment Systems Co Ltd Turbomachinery driving device and its control method
JP3630283B2 (en) 1999-02-08 2005-03-16 東光電気株式会社 Number control device for cold / hot water pumps
JP3354891B2 (en) 1999-03-09 2002-12-09 ダイダン株式会社 Heat source number control device
CN102308155B (en) * 2009-02-13 2014-01-08 东芝开利株式会社 Secondary pump type heat source system and secondary pump type heat source control method
CN101832622B (en) * 2010-05-25 2011-12-07 西安工程大学 Method for realizing continuous regulation of primary pump variable flow system by using evaporative water cooling machine set
CN102094801A (en) * 2010-12-27 2011-06-15 贵州汇通华城楼宇科技有限公司 Method for optimizing pumping set based on minimum conveying energy consumption
JP5558400B2 (en) * 2011-03-30 2014-07-23 三菱重工業株式会社 Heat source system and number control method for heat source system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04198646A (en) * 1990-11-29 1992-07-20 Toho Gas Co Ltd Flow rate sensing device for air conditioning device
JP2004257707A (en) * 2003-02-27 2004-09-16 Hitachi Plant Eng & Constr Co Ltd Method and device for controlling proper capacity of heat source apparatus
JP2006153324A (en) * 2004-11-26 2006-06-15 Yamatake Corp Operating unit number control method and device
JP2010127564A (en) * 2008-11-28 2010-06-10 Taikisha Ltd Heat source system
JP2011064438A (en) * 2009-09-18 2011-03-31 Hitachi Cable Ltd Cold water circulating system
JP2011179755A (en) * 2010-03-01 2011-09-15 Hitachi Cable Ltd Cold-water circulating system
JP2014145493A (en) * 2013-01-28 2014-08-14 Shin Nippon Air Technol Co Ltd Pump operation unit number decision control method in two-pump type heat source equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024100832A1 (en) * 2022-11-10 2024-05-16 三菱電機株式会社 Heat source system

Also Published As

Publication number Publication date
JP2015143591A (en) 2015-08-06
CN105899886B (en) 2018-11-13
KR101802105B1 (en) 2017-11-27
US20160341440A1 (en) 2016-11-24
CN105899886A (en) 2016-08-24
KR20160093722A (en) 2016-08-08
JP6210219B2 (en) 2017-10-11

Similar Documents

Publication Publication Date Title
WO2015114847A1 (en) Method for controlling number of pumps, device for controlling number of pumps, pump system, heat source system, and program
KR101618487B1 (en) Number-of-machines control device for heat source system, method therefor, and heat source system
US9957970B2 (en) Device and method of controlling cooling towers, and heat source system
JP5201183B2 (en) Air conditioner and method of operating refrigerator
JP2007315695A (en) Cold and hot water control method for cold and heat source machine, and air conditioning system using it
JP4981530B2 (en) HEAT SOURCE SYSTEM FLOW CONTROL DEVICE AND HEAT SOURCE SYSTEM FLOW CONTROL METHOD
JP2006275397A (en) Cold/hot water control method for air conditioner
WO2015037434A1 (en) Air-conditioning apparatus
JP2007127321A (en) Cold water load factor controller for refrigerator
WO2014157347A1 (en) Cold water circulation system
JP5492712B2 (en) Water supply temperature control apparatus and method
JP2014149105A (en) Air conditioner
JP2007205605A (en) Air conditioning system
CN104807114A (en) Cooling system and air conditioning system
JP4563891B2 (en) Operation number control device and method
JP6422590B2 (en) Heat source system
JP2008292043A (en) Air conditioning system
JP5005578B2 (en) Air conditioning control system, air conditioning control program, and air conditioning control method
JP2012132583A (en) Heat-pump type heating water heater
JP6603627B2 (en) Air conditioning system and operation control method
JP2011226680A (en) Cooling water producing facility
CN204902045U (en) Cooling system and air conditioning system
JP6301784B2 (en) CONTROL DEVICE USED FOR HEAT SOURCE SYSTEM AND HEAT SOURCE SYSTEM HAVING THE CONTROL DEVICE
JP6832732B2 (en) Refrigeration system
JP5806555B2 (en) Heat source machine control device and heat source machine control method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14881143

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167018412

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15111025

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14881143

Country of ref document: EP

Kind code of ref document: A1