JP5201183B2 - Air conditioner and method of operating refrigerator - Google Patents

Air conditioner and method of operating refrigerator Download PDF

Info

Publication number
JP5201183B2
JP5201183B2 JP2010182906A JP2010182906A JP5201183B2 JP 5201183 B2 JP5201183 B2 JP 5201183B2 JP 2010182906 A JP2010182906 A JP 2010182906A JP 2010182906 A JP2010182906 A JP 2010182906A JP 5201183 B2 JP5201183 B2 JP 5201183B2
Authority
JP
Japan
Prior art keywords
refrigerator
coefficient
performance
flow rate
load factor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010182906A
Other languages
Japanese (ja)
Other versions
JP2012042098A (en
Inventor
久史 宮▲崎▼
敬一 北山
博司 本間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinryo Corp
Original Assignee
Shinryo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinryo Corp filed Critical Shinryo Corp
Priority to JP2010182906A priority Critical patent/JP5201183B2/en
Publication of JP2012042098A publication Critical patent/JP2012042098A/en
Application granted granted Critical
Publication of JP5201183B2 publication Critical patent/JP5201183B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、空調装置および冷凍機の運転方法に関し、具体的には熱源機特性に合わせた最高効率点での運転を可能とすることができる冷凍機の運転方法と、空調装置とに関する。   The present invention relates to an air conditioner and a method for operating a refrigerator, and more specifically, to an operation method for a refrigerator that can be operated at a maximum efficiency point that matches the characteristics of a heat source device, and an air conditioner.

冷凍機の性能を示す尺度である成績係数(以下、「COP」と略記する)は、低温側から汲んだ熱量と熱を運ぶために外部から行った仕事との比であり、消費電力1kW当たりの冷却・加熱能力を表した値である。COPは、冷房機器の定格条件の性能を示す指標として広く用いられる。   The coefficient of performance (hereinafter abbreviated as “COP”), which is a measure of the performance of a refrigerator, is the ratio between the amount of heat drawn from the low temperature side and the work done from the outside to carry the heat, and per 1 kW of power consumption It is the value showing the cooling and heating ability of COP is widely used as an index indicating the performance of the rated condition of the cooling device.

冷凍機の最高効率点は、必ずしも定格設計点と同じでなく、冷却水温度、外気温度、熱媒(冷水、ブライン等)温度、さらには負荷率により、変動する。また、変流量運転が可能な冷凍機では、部分負荷に応じて熱媒流量を変更することによって、熱媒ポンプの搬送動力が削減され、これにより、システム全体の最高効率点は冷凍機の特性に大きく影響される。   The maximum efficiency point of the refrigerator is not necessarily the same as the rated design point, but varies depending on the cooling water temperature, the outside air temperature, the heat medium (cold water, brine, etc.) temperature, and the load factor. In refrigerators capable of variable flow operation, the heat transfer rate of the heat medium pump is reduced by changing the heat medium flow rate according to the partial load. It is greatly influenced by.

冷凍機の各種の運転方法が特許文献1〜6に開示される。
通常の冷凍機は、定流量方式を採用しており、負荷の変動に追従した運転を行う。このため、冷凍機のCOPは、負荷の変動に応じてその時々により変動する。また、冷凍機を蓄熱槽に接続して運用する蓄熱槽方式の場合には、一般的に100%負荷となるように入口温度若しくは圧縮機出力(入力電流)を制御していた。このため、COPだけに着目して負荷率を低下すると、搬送動力が無駄となる。
Various operating methods of the refrigerator are disclosed in Patent Documents 1-6.
Ordinary refrigerators employ a constant flow rate method, and operate in accordance with load fluctuations. For this reason, the COP of the refrigerator varies depending on the load according to the load. Moreover, in the case of the heat storage tank system which connects and operates a refrigerator with a heat storage tank, generally inlet temperature or compressor output (input current) was controlled so that it might become 100% load. For this reason, if the load factor is reduced focusing only on the COP, the conveyance power is wasted.

また、一般的に、冷凍機は、密閉回路で運転されることが多い。このため、ブリードイン、変流量制御を二次側水量要求でなく、冷凍機効率のために制御すると、要求水量および差圧を確保することができなくなる。   In general, the refrigerator is often operated in a closed circuit. For this reason, if the bleed-in and variable flow rate control is controlled not for the secondary water amount request but for the refrigerator efficiency, the required water amount and the differential pressure cannot be ensured.

以上の理由により、これまでは冷凍機のCOPだけに着目して負荷率を下げることは、行われていなかった。   For the above reasons, it has not been done so far to reduce the load factor by focusing only on the COP of the refrigerator.

特開2002−22245号公報JP 2002-22245 A 特開2005−114205号公報JP-A-2005-114205 特開2005−214608号公報JP 2005-214608 A 特開2005−257116号公報JP-A-2005-257116 特開2006−242480号公報JP 2006-242480 A 特開2008−70004号公報JP 2008-70004 A

本発明は、熱源機特性に合わせた所望の成績係数で、例えば最高の成績係数での運転を可能とすることができる冷凍機の運転方法と、空調装置とを提供することを目的とする。   An object of the present invention is to provide a refrigerator operating method and an air conditioner that can be operated with a desired coefficient of performance that matches the characteristics of the heat source machine, for example, with the highest coefficient of performance.

本発明は、以下の知見(1)〜(4)に基づく。
(1)冷凍機に熱媒貯留槽を設置して熱媒貯留槽温度による定負荷運転を実現することにより、冷凍機の特性に左右されることなく、この運転条件における冷凍機の熱源機特性に合わせた所望の成績係数で、例えば最高の成績係数での運転が可能となり、省エネルギー運転が可能になること。
The present invention is based on the following findings (1) to (4).
(1) By installing a heat medium storage tank in the refrigerator and realizing a constant load operation based on the temperature of the heat medium storage tank, the heat source characteristics of the refrigerator under these operating conditions are not affected by the characteristics of the refrigerator. It is possible to operate with the desired coefficient of performance, for example, with the highest coefficient of performance, enabling energy-saving operation.

(2)冷水(温水)ポンプを変流量(インバーター付き)とすることによって、搬送動力を負荷に応じて低減できること。
(3)通常の水冷機など冷却水のある場合でも、近年は変流量対応が可能なので、冷却水ポンプの動力も負荷に応じて削減できること。
(2) By using a variable flow rate (with an inverter) for the cold water (hot water) pump, the conveyance power can be reduced according to the load.
(3) Even when there is cooling water such as a normal water cooler, it is possible to cope with variable flow rate in recent years, so that the power of the cooling water pump can be reduced according to the load.

(4)蓄熱槽方式(冷水・温水貯槽)では、貯槽というバッファーがあり、常に冷凍機入口温度を制御できるため、また搬送動力を効果的に使うため(一般的に定速)、夜間時間に蓄熱量を確保するため、冷凍機定格運転を行うのが一般的である。   (4) In the heat storage tank method (cold water / hot water storage tank), there is a buffer called a storage tank, and the inlet temperature of the refrigerator can be controlled at all times, and since the transfer power is used effectively (generally at a constant speed), In order to ensure the amount of heat storage, it is common to perform refrigerator rated operation.

本発明は、熱源設備と、この熱源設備によって空調される2次側設備とを備え、熱源設備が、冷凍機と、この冷凍機および2次側設備を循環する熱媒を貯留する熱媒貯留槽とを有し、この熱媒貯留槽から冷凍機へ供給される熱媒の冷凍機入口温度、および熱媒の流量が、それぞれ所定の値に制御されること
前記冷凍機は、負荷率と成績係数との間の下記特性を備えること、
[特性]
所定の臨界値未満の成績係数分布を与える低負荷率域と、該低負荷域率に連続するとともに、該所定の臨界値以上であってかつ最高値を有する成績係数分布を与える高負荷率域とを、該2次側設備の外気条件に応じて有すること、及び
前記熱媒の流量は、前記外気条件に応じた、前記冷凍機の成績係数を前記最高値とする負荷率に見合った流量であること
を特徴とする空調装置である。
The present invention includes a heat source facility and a secondary side facility that is air-conditioned by the heat source facility, and the heat source facility stores a refrigerator and a heat medium that circulates through the refrigerator and the secondary side facility. Having a tank, the refrigerator inlet temperature of the heating medium supplied to the refrigerator from the heating medium storage tank, and the flow rate of the heating medium are respectively controlled to predetermined values ,
The refrigerator has the following characteristics between the load factor and the coefficient of performance:
[Characteristic]
A low load factor region that gives a coefficient of performance distribution less than a predetermined critical value, and a high load factor region that is continuous to the low load region factor and gives a coefficient of performance distribution that is greater than or equal to the predetermined critical value and has the highest value And depending on the outside air conditions of the secondary equipment, and
The air conditioner is characterized in that the flow rate of the heat medium is a flow rate corresponding to a load factor with the coefficient of performance of the refrigerator as the maximum value according to the outside air condition .

別の観点からは、本発明は、冷凍機を備える熱源設備、この熱源設備によって空調される2次側設備、および熱源設備を構成する熱媒貯留槽の間で熱媒を循環させながら冷凍機を運転する際に、熱媒貯留槽から冷凍機へ供給する熱媒の冷凍機入口温度、およびこの熱媒の流量をそれぞれ所定の値に制御することによって所望の成績係数で冷凍機を運転すること、前記冷凍機は、負荷率と成績係数との間の下記特性を備えること、
[特性]
所定の臨界値未満の成績係数分布を与える低負荷率域と、該低負荷域率に連続するとともに、該所定の臨界値以上であってかつ最高値を有する成績係数分布を与える高負荷率域とを、該2次側設備の外気条件に応じて有すること、及び、前記熱媒の流量は、前記外気条件に応じた、前記冷凍機の成績係数を前記最高値とする負荷率に見合った流量であることを特徴とする冷凍機の運転方法である。
From another point of view, the present invention relates to a refrigerator that circulates a heat medium between a heat source facility including a refrigerator, a secondary-side facility that is air-conditioned by the heat source facility, and a heat medium storage tank that constitutes the heat source facility. When operating the refrigerator, the refrigerator inlet temperature of the heating medium supplied from the heating medium storage tank to the refrigerator and the flow rate of the heating medium are controlled to predetermined values, respectively, to operate the refrigerator with a desired coefficient of performance. The refrigerator has the following characteristics between the load factor and the coefficient of performance:
[Characteristic]
A low load factor region that gives a coefficient of performance distribution less than a predetermined critical value, and a high load factor region that is continuous to the low load region factor and gives a coefficient of performance distribution that is greater than or equal to the predetermined critical value and has the highest value And the flow rate of the heating medium commensurate with the load factor corresponding to the outside air condition and having the coefficient of performance of the refrigerator as the maximum value. It is the operating method of the refrigerator characterized by the flow rate .

れらの本発明では、冷凍機の発停は、熱媒貯留槽の温度条件により行い、冷凍機の運転点は熱媒ポンプの流量、および熱媒の冷凍機入口温度によって制御する。 In these invention, start-stop of the refrigerator is carried out by the temperature condition of the heat medium storage tank, the operating point of the refrigerator is controlled by the refrigerant pump flow rate, and by the refrigerator inlet temperature of the heating medium.

本発明によれば、熱源装置に熱媒貯留槽を設置するので、冷凍機の特性に左右されることなく、熱源機特性に合わせた所望の成績係数で、例えば最高の成績係数での冷凍機の運転を可能とすることができる。   According to the present invention, since the heat medium storage tank is installed in the heat source device, the refrigerator with a desired coefficient of performance, for example, the highest coefficient of performance, without depending on the characteristics of the refrigerator, for example, Can be operated.

図1は、実施の形態1の空調装置の冷水配管系統を模式的に示す説明図である。FIG. 1 is an explanatory diagram schematically showing a cold water piping system of the air conditioner according to the first embodiment. 図2は、冷凍機4の負荷率と成績係数との間の関係を示すグラフである。FIG. 2 is a graph showing the relationship between the load factor of the refrigerator 4 and the coefficient of performance. 図3は、実施の形態2の空調装置の冷水配管系統を模式的に示す説明図である。FIG. 3 is an explanatory diagram schematically showing a cold water piping system of the air conditioner according to the second embodiment. 図4は、実施例の空調装置1の冷水配管系統を模式的に示す説明図である。Drawing 4 is an explanatory view showing typically the cold water piping system of air-conditioner 1 of an example.

[実施の形態1]
以下、本発明を実施するための形態を、添付図面を参照しながら説明する。
図1は、本発明の空調装置1の冷水配管系統を模式的に示す説明図である。
[Embodiment 1]
DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments for carrying out the present invention will be described with reference to the accompanying drawings.
FIG. 1 is an explanatory view schematically showing a cold water piping system of an air conditioner 1 of the present invention.

同図に示すように、この空調装置1は、熱源設備(負荷)2と、2次側設備(負荷)3とを備える。なお、図1における符号10は空調機を示す。   As shown in the figure, the air conditioner 1 includes a heat source facility (load) 2 and a secondary side facility (load) 3. In addition, the code | symbol 10 in FIG. 1 shows an air conditioner.

[熱源設備2]
熱源設備2は、冷凍機4と、熱媒貯留槽5と、熱交換器6を有する。
[Heat source equipment 2]
The heat source facility 2 includes a refrigerator 4, a heat medium storage tank 5, and a heat exchanger 6.

図2は、冷凍機4の負荷率と成績係数との間の関係を示すグラフである。
図2に示すように、この特性は、2次側設備3の外気条件に応じた所定の臨界値未満の成績係数分布を与える低負荷率域(図2に示すグラフでは負荷率40%未満)と、この低負荷域率に連続するとともに、2次側設備3の外気条件に応じた所定の臨界値以上であってかつ最高値を有する成績係数分布を与える高負荷率域(図2に示すグラフでは負荷率40%以上)とを、有する特性であることが望ましい。この理由を説明する。
FIG. 2 is a graph showing the relationship between the load factor of the refrigerator 4 and the coefficient of performance.
As shown in FIG. 2, this characteristic is a low load factor region that gives a coefficient of performance distribution less than a predetermined critical value according to the outside air condition of the secondary side equipment 3 (load factor of less than 40% in the graph shown in FIG. 2). And a high load factor region (shown in FIG. 2) that is continuous with this low load factor and gives a coefficient of performance distribution that is equal to or higher than a predetermined critical value according to the outside air condition of the secondary equipment 3 and has the highest value. In the graph, it is desirable that the load factor is 40% or more. The reason for this will be explained.

定格から右片下がりで成績係数が悪化する特性を有する冷凍機の場合には、本発明の制御を行うメリットはないが、近年、COP特性がフラットになる傾向があるものの、図2に示すように、負荷率50%未満で急激に成績係数が低下する曲線の特性カーブを持っている冷凍機も多々見受けられる。このような場合も、熱媒貯留槽5の容量の設定次第であるが、実際の負荷は20%であるが、50%位のところで運転するなどバッファーとして利用して効率運転を図ることができ、熱源機特性に合わせた所望の成績係数での運転が可能になり、本発明の効果が明確になるからである。   In the case of a refrigerator having a characteristic that the coefficient of performance deteriorates when it falls to the right from the rating, there is no merit of performing the control of the present invention, but in recent years the COP characteristic tends to be flat as shown in FIG. In addition, many refrigerators have a characteristic curve in which the coefficient of performance rapidly decreases when the load factor is less than 50%. In such a case as well, depending on the setting of the capacity of the heat medium storage tank 5, the actual load is 20%, but it can be used as a buffer, such as operating at about 50%, and efficient operation can be achieved. This is because the operation with a desired coefficient of performance matched to the characteristics of the heat source machine is possible, and the effect of the present invention becomes clear.

熱媒貯留槽5は、この冷凍機4および後述する2次側設備3を循環する熱媒を貯留する。
本発明では、熱媒貯留槽5から冷凍機4へ供給される熱媒の冷凍機入口温度、および熱媒の流量が、それぞれ所定の値に制御される。これによって、所望の成績係数で冷凍機4が運転される。
The heat medium storage tank 5 stores a heat medium that circulates through the refrigerator 4 and the secondary side equipment 3 described later.
In the present invention, the refrigerator inlet temperature of the heating medium supplied from the heating medium storage tank 5 to the refrigerator 4 and the flow rate of the heating medium are controlled to predetermined values, respectively. Thus, the refrigerator 4 is operated with a desired coefficient of performance.

特に、熱媒の流量が、外気条件に応じた、冷凍機4の成績係数を最高値とする負荷率に見合った流量であることにより、最高の成績係数で冷凍機4が運転される。
冷凍機4の発停は、熱媒貯留槽5の温度条件により行い、冷凍機4の運転点は熱媒ポンプの流量、および熱媒の冷凍機入口温度によって制御する。
In particular, when the flow rate of the heat medium is a flow rate corresponding to the load factor with the highest coefficient of performance of the refrigerator 4 according to the outside air conditions, the refrigerator 4 is operated with the highest coefficient of performance.
The start and stop of the refrigerator 4 is performed according to the temperature condition of the heat medium storage tank 5, and the operating point of the refrigerator 4 is controlled by the flow rate of the heat medium pump and the temperature of the heat medium refrigerator.

熱源設備2において、冷凍機4は、空気調和用冷水製造のため、その種類を問わず、通常、入口温度te検出による出口温度t0一定制御(Δt=一定)での運転を行う。
本発明では、2次側負荷3と熱源負荷2の差を埋め合わせるために熱媒貯留槽5を設置するが、熱交換器6は、設置しなくともよい。
In the heat source facility 2, the refrigerator 4 is normally operated with the outlet temperature t 0 constant control (Δt = constant) by detecting the inlet temperature te, regardless of the type, for producing air-conditioning cold water.
In the present invention, the heat medium storage tank 5 is installed to make up for the difference between the secondary load 3 and the heat source load 2, but the heat exchanger 6 may not be installed.

[2次側設備3]
2次側設備3は、熱源設備によって空調される。2次側(需要側)設備3では、通常、各室内の負荷要求の合計(=2次側負荷)に合わせて、空調機の吹出温度一定の変流量制御で送風を行う。
[Secondary equipment 3]
The secondary side equipment 3 is air-conditioned by the heat source equipment. The secondary side (demand side) facility 3 normally blows air with variable flow rate control with a constant air temperature of the air conditioner in accordance with the total load demand in each room (= secondary side load).

一般的に蓄熱方式では、夜間の安価な深夜電力で、フルロード(100%負荷)にて蓄熱し、昼間に必要分を2次側へ送水する。これに対し、本発明では、基本的に、2次側負荷に関わらず、その外気温度条件での最高効率となる熱源負荷で冷凍機4を運転する。   In general, in the heat storage system, heat is stored at full load (100% load) with inexpensive late-night power at night, and necessary water is sent to the secondary side during the day. On the other hand, in the present invention, the refrigerator 4 is basically operated with the heat source load that provides the highest efficiency under the outside air temperature condition regardless of the secondary side load.

これに対し、本発明では、従来の運転方法に比較して以下に列記する効果を得られる。
(A)熱媒貯留槽5を配置することで、二次側負荷によらない最高効率点で冷凍機4の運転を行う。本発明では、熱媒貯留槽5を蓄熱槽としたシステム構築も可能である。一般に熱媒貯留槽5をクッションタンク的に考えたシステムでは、冷凍機0.5〜2時間運転程度の水量の貯留槽となり、熱媒貯留槽5を蓄熱槽としたシステムでは、冷凍機6〜10時間運転程度の水量の貯留槽となる。
On the other hand, in this invention, the effect listed below can be acquired compared with the conventional driving | running method.
(A) The refrigerator 4 is operated at the highest efficiency point not depending on the secondary load by arranging the heat medium storage tank 5. In the present invention, it is possible to construct a system in which the heat medium storage tank 5 is a heat storage tank. In general, in a system in which the heat medium storage tank 5 is considered as a cushion tank, the storage tank has a water amount of about 0.5 to 2 hours of operation of the refrigerator. It will be a storage tank with a volume of water that can be operated.

(B)熱媒ポンプを変流量(インバータ)とすることで、搬送動力も負荷に応じて低減することが可能になる。
(C)直近の具体例は、空冷HPであるので冷却水ポンプはないが、通常の水冷機でも、近年は冷却水変流量対応が可能なので、冷却水の動力を負荷なりに削減した運用、または負荷に応じた運用ができる。
(B) By setting the heat medium pump to a variable flow rate (inverter), the conveyance power can be reduced according to the load.
(C) The most recent specific example is an air-cooled HP, so there is no cooling water pump, but even a normal water-cooling machine can cope with a variable cooling water flow rate in recent years. Or it can be operated according to the load.

[実施の形態2]
実施の形態2を説明する。
図3は、実施の形態2の空調装置1−1の冷水配管系統を模式的に示す説明図である。
[Embodiment 2]
Embodiment 2 will be described.
FIG. 3 is an explanatory view schematically showing a cold water piping system of the air conditioner 1-1 of the second embodiment.

実施の形態1は、熱媒貯留槽5が地下等に設置される場合であるのに対し、本実施の形態は、熱媒貯留槽5が屋上等に設置される場合である。
本実施の形態では、実施の形態1における熱交換器6に替えて、ヘッダー7、8を配置している。ヘッダー7、8を設置することにより、熱媒貯留槽5が屋上等に設置される場合に、熱源設備側1と2次側設備(負荷側)を配管で直接つないだ空調配管システムとすることができる。
The first embodiment is a case where the heat medium storage tank 5 is installed in the underground or the like, whereas the present embodiment is a case where the heat medium storage tank 5 is installed on the roof or the like.
In the present embodiment, headers 7 and 8 are arranged in place of the heat exchanger 6 in the first embodiment. By installing the headers 7 and 8, when the heat medium storage tank 5 is installed on the rooftop, etc., the air-conditioning piping system that directly connects the heat source equipment side 1 and the secondary equipment (load side) with piping Can do.

本実施の形態によれば、熱媒貯留槽5が屋上等に設置される場合であっても、実施の形態1と同様の効果を得られる。   According to the present embodiment, even when the heat medium storage tank 5 is installed on the rooftop or the like, the same effect as in the first embodiment can be obtained.

図4は、実施例の空調装置1の冷水配管系統を模式的に示す説明図である。
同図における符号1は空調装置1であり、符号2は熱源設備(負荷)であり、符号3は2次側設備(負荷)であり、符号4は冷凍機であり、符号5は熱媒貯留槽である。
Drawing 4 is an explanatory view showing typically the cold water piping system of air-conditioner 1 of an example.
In the figure, reference numeral 1 is an air conditioner 1, reference numeral 2 is a heat source facility (load), reference numeral 3 is a secondary equipment (load), reference numeral 4 is a refrigerator, and reference numeral 5 is a heat medium storage. It is a tank.

また、符号INVはインバータであり、符号SCPは熱源ポンプであり、符号FCは流量調整弁であり、符号CP1は2次側への搬送ポンプである。さらに、図中の矢印は冷水の流れを示す。   Reference sign INV is an inverter, reference sign SCP is a heat source pump, reference sign FC is a flow rate adjusting valve, and reference sign CP1 is a transport pump to the secondary side. Furthermore, the arrows in the figure indicate the flow of cold water.

冷凍機4は、COPと負荷率との間に外気温を変数として、図2に示すような関係を有している。
図4では、冷凍機4の負荷率が最高効率点となるよう、冷凍機4の流量をインバータ及びFCVにより制御する。CP1の流量(二次側要求流量)<SCPの流量であれば、熱媒貯留槽5には熱媒水が蓄水される。CP1の流量(二次側要求流量)<SCPの流量であれば、熱媒貯留槽5に蓄水された熱媒水が放出される。
The refrigerator 4 has a relationship as shown in FIG. 2 with the outside air temperature as a variable between the COP and the load factor.
In FIG. 4, the flow rate of the refrigerator 4 is controlled by the inverter and the FCV so that the load factor of the refrigerator 4 becomes the highest efficiency point. If the flow rate of CP1 (secondary-side required flow rate) <the flow rate of SCP, the heat medium water is stored in the heat medium storage tank 5. If the flow rate of CP1 (secondary side required flow rate) <the flow rate of SCP, the heat transfer water stored in the heat transfer medium storage tank 5 is released.

このようにして、本発明により、冷凍機の特性に左右されることなく、熱源機特性に合わせた所望の成績係数で、例えば最高の成績係数での冷凍機の運転を可能とすることができる。   In this way, according to the present invention, the refrigerator can be operated with a desired coefficient of performance, for example, the highest coefficient of performance, without depending on the characteristics of the refrigerator. .

1、1−1 空調装置
2 熱源設備(負荷)
3 2次側設備(負荷)
4 冷凍機
5 熱媒貯留槽
6 熱交換器
7、8 ヘッダー
1, 1-1 Air conditioner 2 Heat source equipment (load)
3 Secondary equipment (load)
4 Refrigerator 5 Heat storage tank 6 Heat exchanger 7, 8 Header

Claims (2)

熱源設備と、該熱源設備によって空調される2次側設備とを備え、
前記熱源設備は、冷凍機と、該冷凍機および前記2次側設備を循環する熱媒を貯留する熱媒貯留槽とを有し、
該熱媒貯留槽から前記冷凍機へ供給される前記熱媒の冷凍機入口温度、および該熱媒の流量が、それぞれ所定の値に制御されること
前記冷凍機は、負荷率と成績係数との間の下記特性を備えること、
[特性]
所定の臨界値未満の成績係数分布を与える低負荷率域と、該低負荷域率に連続するとともに、該所定の臨界値以上であってかつ最高値を有する成績係数分布を与える高負荷率域とを、該2次側設備の外気条件に応じて有すること、及び
前記熱媒の流量は、前記外気条件に応じた、前記冷凍機の成績係数を前記最高値とする負荷率に見合った流量であること
を特徴とする空調装置。
A heat source facility and a secondary side air-conditioned by the heat source facility,
The heat source facility includes a refrigerator, and a heat medium storage tank that stores a heat medium circulating through the refrigerator and the secondary facility,
The refrigerator inlet temperature of the heating medium supplied from the heating medium storage tank to the refrigerator, and the flow rate of the heating medium are respectively controlled to predetermined values ;
The refrigerator has the following characteristics between the load factor and the coefficient of performance:
[Characteristic]
A low load factor region that gives a coefficient of performance distribution less than a predetermined critical value, and a high load factor region that is continuous to the low load region factor and gives a coefficient of performance distribution that is greater than or equal to the predetermined critical value and has the highest value And depending on the outside air conditions of the secondary equipment, and
The air conditioner according to claim 1, wherein the flow rate of the heat medium is a flow rate corresponding to a load factor with the coefficient of performance of the refrigerator as the maximum value according to the outside air condition .
冷凍機を備える熱源設備、該熱源設備によって空調される2次側設備、および前記熱源設備を構成する熱媒貯留槽の間で熱媒を循環させながら前記冷凍機を運転する際に、該熱媒貯留槽から前記冷凍機へ供給する前記熱媒の冷凍機入口温度、および該熱媒の流量をそれぞれ所定の値に制御することによって所望の成績係数で該冷凍機を運転すること、前記冷凍機は、負荷率と成績係数との間の下記特性を備えること、
[特性]
所定の臨界値未満の成績係数分布を与える低負荷率域と、該低負荷域率に連続するとともに、該所定の臨界値以上であってかつ最高値を有する成績係数分布を与える高負荷率域とを、該2次側設備の外気条件に応じて有すること、及び、前記熱媒の流量は、前記外気条件に応じた、前記冷凍機の成績係数を前記最高値とする負荷率に見合った流量であることを特徴とする冷凍機の運転方法。
When operating the refrigerator while circulating a heat medium between a heat source facility provided with a refrigerator, a secondary-side facility air-conditioned by the heat source facility, and a heat medium storage tank constituting the heat source facility, Operating the refrigerator with a desired coefficient of performance by controlling the refrigerator inlet temperature of the heating medium supplied from the medium storage tank to the refrigerator and the flow rate of the heating medium to predetermined values, respectively , The machine shall have the following characteristics between the load factor and the coefficient of performance:
[Characteristic]
A low load factor region that gives a coefficient of performance distribution less than a predetermined critical value, and a high load factor region that is continuous to the low load region factor and gives a coefficient of performance distribution that is greater than or equal to the predetermined critical value and has the highest value And the flow rate of the heating medium commensurate with the load factor corresponding to the outside air condition and having the coefficient of performance of the refrigerator as the maximum value. A method of operating a refrigerator characterized by a flow rate .
JP2010182906A 2010-08-18 2010-08-18 Air conditioner and method of operating refrigerator Active JP5201183B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010182906A JP5201183B2 (en) 2010-08-18 2010-08-18 Air conditioner and method of operating refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010182906A JP5201183B2 (en) 2010-08-18 2010-08-18 Air conditioner and method of operating refrigerator

Publications (2)

Publication Number Publication Date
JP2012042098A JP2012042098A (en) 2012-03-01
JP5201183B2 true JP5201183B2 (en) 2013-06-05

Family

ID=45898643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010182906A Active JP5201183B2 (en) 2010-08-18 2010-08-18 Air conditioner and method of operating refrigerator

Country Status (1)

Country Link
JP (1) JP5201183B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5888126B2 (en) * 2012-06-01 2016-03-16 株式会社デンソー Air conditioner for vehicles
JP6115134B2 (en) * 2012-12-28 2017-04-19 ダイキン工業株式会社 Air conditioner
JP6285690B2 (en) * 2013-05-15 2018-02-28 積水化学工業株式会社 Air conditioning system and building
JP6282071B2 (en) * 2013-09-24 2018-02-21 株式会社日立製作所 Air conditioning control system and air conditioning control method
JP6116097B2 (en) * 2013-12-20 2017-04-19 株式会社日立製作所 Thermal storage system and control method thereof
JP6345088B2 (en) * 2014-04-07 2018-06-20 積水化学工業株式会社 Air conditioning system and building
CN106016528A (en) * 2016-04-22 2016-10-12 广州汉正能源科技有限公司 Dynamic ice cool storage air cooling mechanism and variable-frequency low-temperature system thereof
KR102317602B1 (en) 2021-04-22 2021-10-25 에스케이이노베이션 주식회사 Cathode active material for lithium secondary battery and lithium secondary battery including the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63161340A (en) * 1986-12-23 1988-07-05 Mitsubishi Electric Corp Controller for cooling and heating system
JP2001165488A (en) * 1999-12-08 2001-06-22 Honda Motor Co Ltd Air conditioner
JP2001227780A (en) * 2000-02-15 2001-08-24 Sanken Setsubi Kogyo Co Ltd Air conditioning system
JP4865397B2 (en) * 2006-04-24 2012-02-01 株式会社山武 Heat source variable flow rate control device and method
JP2010085009A (en) * 2008-09-30 2010-04-15 Hitachi Plant Technologies Ltd Air conditioning method, air conditioning system and method of controlling air conditioning system

Also Published As

Publication number Publication date
JP2012042098A (en) 2012-03-01

Similar Documents

Publication Publication Date Title
JP5201183B2 (en) Air conditioner and method of operating refrigerator
JP5398395B2 (en) How to control the number of refrigerators
JP4865397B2 (en) Heat source variable flow rate control device and method
CN111716993A (en) Low-energy-consumption heat management system
EP3631340B1 (en) Systems with multi-circuited, phase-change composite heat exchangers
WO2017073433A1 (en) Heat pump
WO2015114847A1 (en) Method for controlling number of pumps, device for controlling number of pumps, pump system, heat source system, and program
JP2007127321A (en) Cold water load factor controller for refrigerator
JP2007303725A (en) Device and method of deciding number of operated heat source machine
WO2017094118A1 (en) Exhaust heat recovery system
JP2014149105A (en) Air conditioner
CN101487640B (en) Distributed cooling system for mobile communication base station equipment
JP4934413B2 (en) Air conditioner
JP5927670B2 (en) Air conditioner
CN108474593B (en) Hybrid vapor compression/thermoelectric heat transfer system
JP2007046895A (en) Operation control device and method for air conditioner equipped with plural compressors
JP2011226680A (en) Cooling water producing facility
JP6523798B2 (en) Heat source equipment and heat source equipment control method
JP2000337729A (en) Operation method for water-cooled air conditioner
JP6257993B2 (en) Refrigeration system and method for controlling the number of refrigeration systems
JP3854586B2 (en) Heat source system, control method of heat source system, heat source, and control method of heat source
JP2013167368A (en) Air conditioner
JP6002444B2 (en) Water-cooled air conditioning system
JP4555718B2 (en) Air conditioning and power generation system
JP7322219B1 (en) heat source system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130128

R150 Certificate of patent or registration of utility model

Ref document number: 5201183

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160222

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250