JP2010115640A - Recovery of soluble salt from aqueous solution - Google Patents

Recovery of soluble salt from aqueous solution Download PDF

Info

Publication number
JP2010115640A
JP2010115640A JP2009222839A JP2009222839A JP2010115640A JP 2010115640 A JP2010115640 A JP 2010115640A JP 2009222839 A JP2009222839 A JP 2009222839A JP 2009222839 A JP2009222839 A JP 2009222839A JP 2010115640 A JP2010115640 A JP 2010115640A
Authority
JP
Japan
Prior art keywords
reactor
electrodes
pair
electrode
providing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009222839A
Other languages
Japanese (ja)
Inventor
Guillermo Gomez
ゴメス ギレルモ
Victor Silva
シルバ ヴィクター
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WATERMIN SA
Original Assignee
WATERMIN SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by WATERMIN SA filed Critical WATERMIN SA
Publication of JP2010115640A publication Critical patent/JP2010115640A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/463Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrocoagulation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/48Treatment of water, waste water, or sewage with magnetic or electric fields
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/78Treatment of water, waste water, or sewage by oxidation with ozone
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/10Nature of the water, waste water, sewage or sludge to be treated from quarries or from mining activities
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/48Devices for applying magnetic or electric fields
    • C02F2201/483Devices for applying magnetic or electric fields using coils
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/138Water desalination using renewable energy
    • Y02A20/144Wave energy

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus equipped with a reactor for forming insoluble chemical compounds from a salt containing an aqueous solution to be treated. <P>SOLUTION: The apparatus includes the reactor which contains a pair of electrodes that are connected to a power supply and a magnetic induction source located outside the apparatus and one of which is inserted oppositely to the other in the vicinity of the side of the reactor, a second pair of electrodes that are connected to a frequency generator located outside the reactor and one of which is inserted within the reactor oppositely to the other and adjacently to the first pair of electrodes, a spiral-shaped conducting element that is located outside the reactor and is connected to the power supply and the magnetic induction source, injection of photonized air that is produced by a blowing pump and a photon emitter entering the reactor through a capillary located adjacently to the electrode connected to the negative pole of the power supply so that the capillary is located as close as possible to a reactor bottom, an electromagnetic field generator and an adjustable frequency generator located outside the reactor, and a speed-adjustable paddle stirring means that is located at the center of the reactor. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明の応用分野は、化学的、電気的及び磁気的プロセスにより可溶性塩を不溶性とすることによるそれら可溶性塩の回収である。   The field of application of the present invention is the recovery of soluble salts by making them soluble by chemical, electrical and magnetic processes.

化学反応により不溶性生成物が生じる多くの最先端技術プロセスがある。一方、他の反応は可溶性塩を形成し、これが、それら可溶性塩を水溶液から分離することができない理由である。   There are many state-of-the-art processes that result in insoluble products from chemical reactions. On the other hand, other reactions form soluble salts, which is why they cannot be separated from aqueous solutions.

本発明は、水溶液からすべての可溶性塩を取り出し、強制的にそれら可溶性塩に不溶性化合物を形成させることによって、この技術的問題を解決する。   The present invention solves this technical problem by removing all soluble salts from an aqueous solution and forcing them to form insoluble compounds.

不溶性塩を形成するプロセスの例は、以下のように最先端技術において見られる。   Examples of processes for forming insoluble salts are found in the state of the art as follows.

特開2004−255627号公報は、逆浸透によって膜が機能しなくなることを防止するための、前処理としての塩不溶化のプロセスを開示している。このプロセスは磁場も周波数も使用せず、塩化物又は硫酸塩を不溶化することができない。   Japanese Patent Application Laid-Open No. 2004-255627 discloses a salt insolubilization process as a pretreatment for preventing the membrane from functioning by reverse osmosis. This process does not use a magnetic field or frequency and cannot insolubilize chloride or sulfate.

米国特許第5858249号明細書は、(水溶液中に本来含まれている塩を用い犠牲電極のイオンを添加して不溶性物質を形成するための電気凝固として働く、電解槽の一種におけるイオン種の不溶化のプロセスを開示している。このプロセスは、塩化物又は硫酸塩を沈殿させることができない。   U.S. Pat. No. 5,858,249 describes the insolubilization of ionic species in one type of electrolytic cell that serves as electrocoagulation to form insoluble material by adding ions of a sacrificial electrode using salts originally contained in an aqueous solution. This process is not capable of precipitating chloride or sulfate.

中国特許文献CN1131127は、リン酸塩やバリウム塩などの化学試薬を添加することによる、水溶液中に含まれている塩の不溶化のプロセスを開示している。水溶液を、この場合には水をろ過することによって沈殿溶液は分離され、結果として塩の含有量が少なくなる。このプロセスでは、電場、磁場又は周波数場を印加することはなく、化合物を形成することができない。   Chinese Patent Document CN1131127 discloses a process for insolubilization of salts contained in an aqueous solution by adding chemical reagents such as phosphates and barium salts. By filtering the aqueous solution, in this case water, the precipitated solution is separated, resulting in a lower salt content. In this process, no electric, magnetic or frequency fields are applied and no compound can be formed.

本発明は、物理的刺激によって液状媒体中で不溶性化合物を形成するための手順を含む。このようにして形成される化合物は、無機化合物であっても有機化合物であってもよく、単純化合物であっても錯化合物であってもよい。本発明によって解決される技術的問題は、不溶性化合物を水溶液から分離して分離した塩からも精製残留液からも利益を得ることができるように、溶解性の高い塩を不溶性化合物に変える際の問題である。   The present invention includes a procedure for forming an insoluble compound in a liquid medium by physical stimulation. The compound thus formed may be an inorganic compound or an organic compound, and may be a simple compound or a complex compound. The technical problem solved by the present invention is that when a highly soluble salt is converted to an insoluble compound so that the insoluble compound can be profited from the separated and purified residual solution from the aqueous solution. It is a problem.

単一相又は単一反応器において、その後の核形成のための核として働く化合物の最初の沈殿及び形成される他の種の吸収機構のような反応機構及び物理変化が起こる。これら第1の沈殿の形成は、犠牲電極として作用する電極の一方によるイオンの寄与に加えて、電極を通じて送られた限外ろ過(ultra−filtered)電流によって印加された電磁場の作用によるものである。   In a single phase or single reactor, reaction mechanisms and physical changes occur, such as the initial precipitation of compounds that serve as nuclei for subsequent nucleation and other types of absorption mechanisms formed. The formation of these first precipitates is due to the action of an electromagnetic field applied by an ultra-filtered current sent through the electrode, in addition to the contribution of ions by one of the electrodes acting as a sacrificial electrode. .

その後、第2のイオンの寄与、通常アルミニウム、カルシウム、鉄、鉛又はスズを加えて、水溶液に含まれる塩との新たな化合物を形成する。これで、最初に形成された核の寸法がこれら新たな化合物によって増大し、この段階で、形成された他の非錯体塩の吸収が起こる。   Thereafter, the contribution of the second ion, usually aluminum, calcium, iron, lead or tin, is added to form a new compound with the salt contained in the aqueous solution. This increases the size of the initially formed nuclei with these new compounds, and at this stage absorption of the other non-complex salts formed takes place.

周波数1KHz〜2MHzの電波スペクトルにおける電磁波周波数を印加することによって、幾何学的形状及び周波数が異なる電磁波発生器によって実現されるプロセスの選択によって、異なる化合物が形成される。   By applying electromagnetic wave frequencies in the radio spectrum of frequencies from 1 KHz to 2 MHz, different compounds are formed depending on the selection of processes realized by electromagnetic wave generators with different geometric shapes and frequencies.

この技法についての可能な応用分野は、数ある中でも以下の分野が代表的である。
○海水脱塩、塩化物及び硫酸塩の沈殿
○採鉱作業による酸性水からの塩の除去
○採鉱PLS溶液からの塩の沈殿
○飲料水処理、塩化物及び硫酸塩の沈殿
○ボイラー水処理及び冷却、塩化物及び硫酸塩の除去
○かんがい用水処理、塩化物及び硫酸塩の沈殿
○かんがい用水処理、リン酸塩及び硝酸塩の沈殿
○下水処理、塩化物、硫酸塩及びリン酸塩の沈殿
○下水処理、硝酸塩及び亜硝酸塩の沈殿
○一般に薬物及び化学試薬を製造するためのプロセスにおける塩の不溶化
○限外ろ過及び逆浸透プロセスのための前処理としての塩の沈殿
Among the many possible applications for this technique, the following are typical.
○ Seawater desalination, chloride and sulfate precipitation ○ Salt removal from acidic water by mining operations ○ Salt precipitation from mining PLS solution ○ Drinking water treatment, chloride and sulfate precipitation ○ Boiler water treatment and cooling , Removal of chloride and sulfate ○ Irrigation water treatment, precipitation of chloride and sulfate ○ Irrigation water treatment, precipitation of phosphate and nitrate ○ Sewage treatment, precipitation of chloride, sulfate and phosphate ○ Sewage treatment Precipitation of nitrate, nitrate and nitrite ○ Generally salt insolubilization in processes for manufacturing drugs and chemical reagents ○ Precipitation of salt as a pretreatment for ultrafiltration and reverse osmosis processes

これらの例は最も知られている例であるが、他の多くのプロセスが、通常可溶性の塩を不溶化し、したがって得られる生成物の性能及び/又は純度を最適化することができるという利点を利用することができる。このように、プロセスが本発明の一部の技術又は技術全体を使用する場合には、それは本発明の範囲内にある。   These examples are the best known examples, but the advantage that many other processes can insolubilize normally soluble salts and thus optimize the performance and / or purity of the resulting product. Can be used. Thus, if a process uses some or the entire technology of the present invention, it is within the scope of the present invention.

この技術では、一組の電極を通じて印加される、可変の正弦波型の幾何学的波形を有する限外ろ過連続電流、減衰のこぎり波パルス、矩形波パルス及び電波スペクトルの電磁波信号を使用する。これらすべてを組み合わせると、沈殿反応を促進することが可能である。   In this technique, an ultrafiltration continuous current having a variable sinusoidal geometric waveform, an attenuated sawtooth pulse, a square wave pulse, and an electromagnetic signal of a radio spectrum are applied through a set of electrodes. When all these are combined, it is possible to accelerate the precipitation reaction.

加えて、前記沈殿に対する優先的なpH範囲があるはずであり、このpH範囲はpH4〜pH12でなければならない。しかしながら、pH目盛りの範囲のいずれでこのプロセスを行っても、優れた結果が得られる。続いて、沈殿粒子の等速凝固段階があり、この凝固が電気的に支援される。電磁場に対応する印加電圧もある範囲内にあり、この範囲は1〜100ボルトでなければならず、一方使用する電流強度は10mA〜3Aでなければならない。上述のとおり、電圧及び電磁信号は、処理しようとする溶液に浸した電極を通じて印加される。前記電極を構成するために使用する材料は、水の質によって異なる。これらの材料は、鉛、白金、アルミニウム、銅、石炭、金、スズ、亜鉛、鉄、チタン、ホウ素、ニッケル又はダイアモンドであってもよい。   In addition, there should be a preferential pH range for the precipitation, which should be between pH 4 and pH 12. However, excellent results are obtained using this process at any of the pH scale ranges. Subsequently, there is a constant solidification stage of the precipitated particles, which is electrically assisted. The applied voltage corresponding to the electromagnetic field is also within a certain range, which must be between 1 and 100 volts, while the current strength used should be between 10 mA and 3A. As described above, the voltage and electromagnetic signals are applied through electrodes immersed in the solution to be processed. The material used to make up the electrode depends on the quality of the water. These materials may be lead, platinum, aluminum, copper, coal, gold, tin, zinc, iron, titanium, boron, nickel or diamond.

不溶性物質を形成するための手順全体を単一装置内で行う。この装置は様々な異なる要素で構成されている。すなわち、
・装置の外にある電源及び磁気誘導源に接続され、反応器の側面付近に一方が他方の反対側に挿入されている、異なる構成を有し異なる材料製である一対の電極が入っている反応器。
・反応器の外に位置する周波数発生器に接続され、反応器内に一方が他方の反対側に、第1の電極対に隣接して挿入されている、異なる構成を有し異なる構成材料製である第2の電極対。
・反応器の外に位置し、電源及び磁気誘導源に接続されているらせん状導電要素であって、この要素を通って特定の磁場を生成する電流が流れるらせん状導電要素。
・可能な限り毛細管が反応器の底部近くにあるように、電源の陰極に接続されている電極に隣接して位置する毛細管を通って反応器に入る、吹込みポンプ(blowing pump)及び光子放出体によって生じる光子化(photonized)空気噴射。
・反応器の外に位置する電磁場発生器及び調整可能な周波数発生器。
・反応器の中央に位置する可変速パドル撹拌手段。
The entire procedure for forming insoluble material is performed in a single device. This device is composed of a variety of different elements. That is,
-It is connected to a power source and magnetic induction source outside the apparatus and contains a pair of electrodes of different construction and made of different materials, one inserted on the other side near the side of the reactor Reactor.
Made of different construction materials with different configurations, connected to a frequency generator located outside the reactor, one inserted into the reactor on the opposite side of the other, adjacent to the first electrode pair A second electrode pair.
A helically conductive element located outside the reactor and connected to a power source and a magnetic induction source, through which a current that generates a specific magnetic field flows.
Blowing pump and photon emission entering the reactor through a capillary located adjacent to the electrode connected to the cathode of the power supply so that the capillary is as close to the bottom of the reactor as possible Photonized air jet produced by the body.
An electromagnetic field generator and an adjustable frequency generator located outside the reactor.
-Variable speed paddle stirring means located in the center of the reactor.

加えて、これらのプロセスすべての実行を、2つ以上の装置を備える他の設備において行うこともできる。   In addition, the execution of all of these processes can be performed in other facilities with more than one device.

沈殿物を形成するためのプロセスには、それぞれ1〜10バール及び0〜90℃の範囲内にある特定の圧力値及び温度値が含まれる。これは、沈殿プロセスが、過飽和を可能にする平衡定数(balance constant)のずれを示唆する濃度に基づいているという事実によるものである。温度の作用は反応の速度論に影響を及ぼし、それにより沈殿プロセスが増進する。というのは、分子衝突が加速し、その結果、速度定数が上昇するからである。外圧の印加によっても同じ結果が生じる。その明白な例はジャロサイトの沈殿であるが、この形成は通常の条件下では不可能であるため、これがこれらの変数の適用が必要となる理由である。   The process for forming the precipitate includes specific pressure and temperature values in the range of 1-10 bar and 0-90 ° C., respectively. This is due to the fact that the precipitation process is based on a concentration that suggests a deviation in the balance constant that allows supersaturation. The effect of temperature affects the kinetics of the reaction, thereby enhancing the precipitation process. This is because molecular collisions accelerate and as a result, the rate constant increases. The same result occurs with the application of external pressure. An obvious example is jarosite precipitation, which is why these variables need to be applied since this formation is not possible under normal conditions.

本発明の構成要素及びその接続を示す図である。It is a figure which shows the component of this invention, and its connection.

このプロセスは、電源及び磁気誘導源(4)に接続されている一対の電極(2及び3)と、周波数発生器(7)に接続されている第2の電極対(5及び6)を有する反応器(1)を備える装置において単一ステップで行う。オゾン及び酸化剤を含まないラジカル(oxidant−free radicals)を含有する加圧光子化空気の流れが、空気を循環させる空気ポンプ(9)から光子発生器(10)を通って反応器に入る。また、らせん状導電要素(11)が反応器の外側を取り囲み、このらせん状導電要素(11)を通じて特定の磁場を発生させる電流が循環する。前記要素は、電流を発生させる電源及び磁気誘導源(4)に接続されている。機械的又は磁気的撹拌装置(8)によりすべてが撹拌され、水溶液中に存在せず所望の不溶性化合物を完成させるために必要であるイオンを添加する化学試薬が添加される。ほとんどの場合、カルシウムイオン及びヒドロキシルイオンは不十分であり、これが好ましくは石灰を単一試薬として使用する理由である。   This process has a pair of electrodes (2 and 3) connected to a power source and a magnetic induction source (4) and a second electrode pair (5 and 6) connected to a frequency generator (7). Performed in a single step in an apparatus with reactor (1). A stream of pressurized photonized air containing ozone and oxidant-free radicals enters the reactor from an air pump (9) that circulates air through a photon generator (10). In addition, a spiral conductive element (11) surrounds the outside of the reactor, and a current for generating a specific magnetic field circulates through the spiral conductive element (11). Said element is connected to a power source and a magnetic induction source (4) for generating a current. Everything is stirred by a mechanical or magnetic stirrer (8) and a chemical reagent is added that adds ions that are not present in the aqueous solution and are necessary to complete the desired insoluble compound. In most cases, calcium ions and hydroxyl ions are inadequate, which is why lime is preferably used as a single reagent.

実施例1:
たとえば、海水脱塩プロセスの用途を取り上げる場合、使用する機構は以下のとおりである。
Example 1:
For example, when taking up the application of the seawater desalination process, the mechanism used is as follows.

まず第一に、光子を通過する空気混合を適用し、次いで海水に直接適用する。結果として生じる反応は以下のとおりである。

Figure 2010115640
First of all, an air mix passing through photons is applied and then applied directly to seawater. The resulting reaction is as follows.
Figure 2010115640

上記反応は、pH>9.8単位まで適用する。アルミニウム電極を通じて電場を印加し、それにより以下の第2の電解反応が生じる。

Figure 2010115640
The reaction is applied up to pH> 9.8 units. An electric field is applied through the aluminum electrode, thereby causing the following second electrolytic reaction.
Figure 2010115640

アルミニウムはOHイオンと反応し、それにより以下の反応に基づく第1の核形成が生じる。

Figure 2010115640
Aluminum reacts with OH ions, resulting in first nucleation based on the following reaction.
Figure 2010115640

水酸化アルミニウム核が形成されたら、水酸化カルシウムを添加し、1.8MHz波長の無線周波数を印加し、次いで以下の硫酸塩、塩化物及びリン酸塩沈殿反応をもたらす。

Figure 2010115640
Figure 2010115640
Figure 2010115640
Once the aluminum hydroxide nuclei are formed, calcium hydroxide is added and a radio frequency of 1.8 MHz wavelength is applied, followed by the following sulfate, chloride and phosphate precipitation reactions.
Figure 2010115640
Figure 2010115640
Figure 2010115640

或いは、アルミニウムイオンの形成と共に、一対の銅電極において適用してまず第一に以下の反応をもたらすことによって、銅イオンを形成することもできる。

Figure 2010115640
Alternatively, copper ions can also be formed by applying them on a pair of copper electrodes together with the formation of aluminum ions, first of all causing the following reaction.
Figure 2010115640

以下の反応に基づき、媒体から硝酸塩が捕獲される。

Figure 2010115640
Figure 2010115640
Based on the following reaction, nitrate is captured from the medium.
Figure 2010115640
Figure 2010115640

上記により、また先の無線周波数及び場の手段において、以下の反応がもたらされる。

Figure 2010115640
The above, and in the previous radio frequency and field means, lead to the following reactions:
Figure 2010115640

塩化物、硫酸塩、リン酸塩及び硝酸塩が沈殿した。アニオンの除去により、それと共にアルミニウム、銅及びカルシウムの除去がもたらされる。形成した各沈殿物は、重金属を吸収する優れた能力を有する。   Chloride, sulfate, phosphate and nitrate precipitated. The removal of anions together with the removal of aluminum, copper and calcium. Each precipitate formed has an excellent ability to absorb heavy metals.

形成したようなこれらの不溶性物質は一般的に、成長するはずの微細沈殿物である。成長を促進させるために、ポリマーを添加することによって、その後沈降により分離することによって、またその後ろ過することによってフロキュレーション(flocculation)を生じさせる。   These insoluble materials as formed are typically fine precipitates that should grow. In order to promote growth, flocculation is caused by adding polymer, followed by separation by sedimentation and subsequent filtration.

以下の表は、サンアントニオ、第5領域からの海水を用いて体験を行った際の作動条件及び適用量を示す。

Figure 2010115640
The following table shows the operating conditions and application amounts when experiencing using sea water from San Antonio, the fifth region.
Figure 2010115640

以下の表は、海水から塩を除去する場合に達する効率を示す。この表は、海水の質を示す未処理の欄を含む。処理後の欄は、砂及び石炭フロキュレーション並びにろ過後に達する値を示す。除去%の欄は得られた有効性を示す。

Figure 2010115640
The following table shows the efficiency achieved when removing salt from seawater. This table includes an untreated column indicating the quality of the seawater. The column after treatment shows the value reached after sand and coal flocculation and filtration. The% removal column shows the effectiveness obtained.
Figure 2010115640

実施例2:
塩析沈殿の用途の別の実施例は、採鉱用水中の硫酸塩の不溶化である。
Example 2:
Another example of the use of salting out precipitation is insolubilization of sulfate in mining water.

このために、Collahuasi鉱山において硫酸塩の初期含量が5,200mg/Lである水サンプルを取得した。   For this, a water sample with an initial sulfate content of 5,200 mg / L was obtained at the Collahuasi mine.

使用した化合物は、ナトリウムジャロサイトの沈殿のような沈殿であった。

Figure 2010115640
The compound used was a precipitate such as a precipitate of sodium jarosite.
Figure 2010115640

元素Mはナトリウム又はカリウムでよい。このために、以下の機構を使用した。   The element M may be sodium or potassium. For this purpose, the following mechanism was used.

まず第一に、光子を通過する空気混合を適用し、次いで海水に直接適用する。結果として生じる反応は以下のとおりである。

Figure 2010115640
First of all, an air mix passing through photons is applied and then applied directly to seawater. The resulting reaction is as follows.
Figure 2010115640

上記反応は、pH>9.8単位まで適用する。アルミニウム電極を通じて電場を印加し、それにより以下の第2の電解反応が生じる。

Figure 2010115640
The reaction is applied up to pH> 9.8 units. An electric field is applied through the aluminum electrode, thereby causing the following second electrolytic reaction.
Figure 2010115640

アルミニウムはOHイオンと反応し、それにより以下の反応に基づく第1の核形成が生じる。

Figure 2010115640
Aluminum reacts with OH ions, resulting in first nucleation based on the following reaction.
Figure 2010115640

平衡状態では水酸化アルミニウム核が形成され、その後無線周波数及び電場により媒体中にジャロサイトとして沈殿する。

Figure 2010115640
In equilibrium, aluminum hydroxide nuclei are formed and then precipitate as jarosite in the medium by radio frequency and electric field.
Figure 2010115640

作動条件は以下のとおりである。

Figure 2010115640
The operating conditions are as follows.
Figure 2010115640

得られた結果は以下のとおりである。

Figure 2010115640
The results obtained are as follows.
Figure 2010115640

このように、それにより塩を低減することができる様々な異なる不溶性成分を構成することができる。   In this way, a variety of different insoluble components can be constructed that can reduce salt.

1 反応器
2 電極
3 電極
4 電源及び磁気誘導源
5 電極
6 電極
7 周波数発生器
8 機械的又は磁気的撹拌装置
9 空気ポンプ
10 光子発生器
11 らせん状導電要素
DESCRIPTION OF SYMBOLS 1 Reactor 2 Electrode 3 Electrode 4 Power supply and magnetic induction source 5 Electrode 6 Electrode 7 Frequency generator 8 Mechanical or magnetic stirring apparatus 9 Air pump 10 Photon generator 11 Helical conductive element

Claims (7)

処理しようとする水溶液を含有する塩から不溶性化合物を形成するための、反応器を備える装置であって、前記反応器が、
a)当該装置の外にある電源及び磁気誘導源に接続され、前記反応器の側面付近に一方が他方の反対側に挿入されている、異なる構成を有し異なる材料製である一対の電極と、
b)前記反応器の外に位置する周波数発生器に接続され、前記反応器内に一方が他方の反対側に、前記第1の電極対に隣接して挿入されている、異なる構成を有し異なる構成材料製である第2の電極対と、
c)前記反応器の外に位置し、電源及び磁気誘導源に接続されているらせん状導電要素であって、この要素を通って特定の磁場を生成する電流が流れるらせん状導電要素と、
d)可能な限り毛細管が前記反応器の底部近くにあるように、前記電源の陰極に接続されている前記電極に隣接して位置する前記毛細管を通って前記反応器に入る、吹込みポンプ及び光子放出体によって生じる光子化空気噴射と、
e)前記反応器の外に位置する電磁場発生器及び調整可能な周波数発生器と、
f)前記反応器の中央に位置する可変速パドル撹拌手段と
を備える、不溶性化合物を形成するための装置。
An apparatus comprising a reactor for forming an insoluble compound from a salt containing an aqueous solution to be treated, the reactor comprising:
a) a pair of electrodes of different construction and made of different materials, connected to a power source and a magnetic induction source outside the apparatus, one inserted near the side of the reactor on the opposite side of the other; ,
b) having a different configuration, connected to a frequency generator located outside the reactor, one inserted into the reactor on the opposite side of the other, adjacent to the first electrode pair A second electrode pair made of different constituent materials;
c) a helically conductive element located outside the reactor and connected to a power source and a magnetic induction source through which a current generating a specific magnetic field flows;
d) a blow pump that enters the reactor through the capillary located adjacent to the electrode connected to the cathode of the power source so that the capillary is as close as possible to the bottom of the reactor; A photonized air jet produced by a photon emitter;
e) an electromagnetic field generator and an adjustable frequency generator located outside the reactor;
f) An apparatus for forming an insoluble compound, comprising a variable speed paddle stirring means located in the center of the reactor.
不溶性化合物を形成するための装置であって、電源及び磁気誘導源により、組み合わさって又は個々に沈殿反応を促進することが可能である電極対を通じて印加される、可変の正弦波型の幾何学的波形を有する限外ろ過連続電流電圧、減衰のこぎり波パルス、矩形波パルス及び電波スペクトルの電磁波信号が印加され、これらの電極が、それら電極を電場及び磁場発生器に、並びに周波数発生器に接続する装置に含まれている、装置。   An apparatus for forming an insoluble compound, variable sinusoidal geometry applied by a power source and a magnetic induction source, combined or individually through electrode pairs that can accelerate the precipitation reaction Ultrasonic continuous current voltage, a damped sawtooth pulse, a square wave pulse, and an electromagnetic wave signal with a radio spectrum are applied, and these electrodes connect the electrodes to the electric and magnetic field generators and to the frequency generator. The device that is included in the device to be. 前記反応器内で起こる反応が、平衡定数に応じてpH目盛りのあらゆる範囲、好ましくはpH4〜pH12の範囲内にあり、その後沈殿粒子の電気的に支援される凝固運動段階がある、請求項1に記載の不溶性化合物を形成するための装置。   The reaction occurring in the reactor is in any range of pH scale depending on the equilibrium constant, preferably in the range of pH 4 to pH 12, followed by an electrically assisted solidification movement stage of the precipitated particles. An apparatus for forming the insoluble compound described in 1. 印加電圧は、電圧が1〜100ボルトで電流密度が10mA〜3Aである電磁場に対応する、請求項1に記載の不溶性化合物を形成するための装置。   The apparatus for forming an insoluble compound according to claim 1, wherein the applied voltage corresponds to an electromagnetic field having a voltage of 1 to 100 volts and a current density of 10 mA to 3A. 電磁場及び/又は周波数が、以下の要素、鉛、白金、アルミニウム、銅、石炭、金、スズ、亜鉛、鉄、チタン、ホウ素、ニッケル、ダイアモンドのうちの1種で作製された、異なる種類の電極対を通じて送られ、この第1の電極が同じ要素の別の電極と、上述の他の電極又はその合金と協力して作用する、請求項1に記載の不溶性化合物を形成するための装置。   Electromagnetic field and / or frequency with different types of electrodes made of one of the following elements: lead, platinum, aluminum, copper, coal, gold, tin, zinc, iron, titanium, boron, nickel, diamond The apparatus for forming an insoluble compound according to claim 1, wherein the apparatus is fed through a pair, the first electrode acting in cooperation with another electrode of the same element and the other electrode or alloy thereof. 前記反応器内におけるプロセスすべての実行が、0〜90℃の温度範囲内、及び1〜10バールの圧力範囲内である、請求項1に記載の不溶性化合物を形成するための装置。   The apparatus for forming insoluble compounds according to claim 1, wherein the performance of all processes in the reactor is in the temperature range of 0-90 ° C and in the pressure range of 1-10 bar. 不溶性化合物を形成するための装置を使用するための方法であって、
a)反応器の側面付近に一方が他方の反対側に挿入されている、異なる構成を有し異なる材料製である一対の電極を有する浸出反応器を設けるステップと、
b)前記反応器内に一方が他方の反対側に、前記第1の電極対に隣接して挿入されている、異なる構成を有し異なる構成材料製である第2の電極対を設けるステップと、
c)前記反応器の外に位置する電源を設けるステップと、
d)前記反応器の外に位置する周波数発生器を設けるステップと、
e)光子化空気噴射システムを設けるステップと、
f)前記電源の陰極に接続されている電極に隣接して位置する空気ポンプ及び毛細管を設けるステップと、
g)前記反応器の外に位置する電磁場発生器及び調整可能な周波数発生器を設けるステップと、
h)前記反応器の中央に位置する可変速パドル撹拌手段を設けるステップと、
i)前記反応器の外側を取り囲むらせん状導電要素を設けるステップと、
j)不溶性化合物を有する溶液を前記反応器に導入するステップと、
k)オゾン及びフリーラジカルを含有する空気を、空気ポンプ、前記光子化空気噴射器及び前記毛細管を使用することによって前記反応器へと噴射するステップと、
l)同時に、周波数又は電波スペクトルの電磁信号を、前記周波数発生器及び一対の電極を使用することによって前記反応器内の不溶性化合物を含有する溶液に印加するステップと、
m)同時に、脈動連続電流で構成される電圧を、前記電源及び別の電極対を使用することによって前記反応器内の不溶性化合物を含有する前記溶液に印加するステップと、
n)同時に、特定磁場を、前記らせん状導電要素を使用することによって印加するステップと、
o)同時に、前記反応器内の不溶性化合物を含有する前記溶液を、前記パドル撹拌手段を使用することによって撹拌するステップと、
p)同時に、前記水溶液中に存在せず前記所望の不溶性化合物を完成させるために必要であるイオンを添加する化学試薬、好ましくは石灰を添加するステップと、
q)アルミニウム、カルシウム、鉄、鉛、スズなどの第2のイオンの寄与を加えて、前記水溶液に含まれる塩との新たな化合物を形成するステップとを含む方法。
A method for using an apparatus for forming an insoluble compound comprising:
a) providing a leaching reactor having a pair of electrodes of different construction and made of different materials, one inserted near the side of the reactor, the other on the other side;
b) providing a second electrode pair having a different configuration and made of a different constituent material, wherein one is inserted adjacent to the first electrode pair on the opposite side of the other in the reactor; ,
c) providing a power source located outside the reactor;
d) providing a frequency generator located outside the reactor;
e) providing a photonized air injection system;
f) providing an air pump and capillary located adjacent to an electrode connected to the cathode of the power source;
g) providing an electromagnetic field generator and an adjustable frequency generator located outside the reactor;
h) providing a variable speed paddle stirring means located in the center of the reactor;
i) providing a helical conductive element surrounding the outside of the reactor;
j) introducing a solution having an insoluble compound into the reactor;
k) injecting air containing ozone and free radicals into the reactor by using an air pump, the photonized air injector and the capillary tube;
l) simultaneously applying an electromagnetic signal of frequency or radio spectrum to the solution containing insoluble compounds in the reactor by using the frequency generator and a pair of electrodes;
m) simultaneously applying a voltage composed of a pulsating continuous current to the solution containing insoluble compounds in the reactor by using the power source and another electrode pair;
n) simultaneously applying a specific magnetic field by using said helical conductive element;
o) simultaneously stirring the solution containing insoluble compounds in the reactor by using the paddle stirring means;
p) simultaneously adding a chemical reagent, preferably lime, that adds ions that are not present in the aqueous solution and are needed to complete the desired insoluble compound;
q) adding a second ion contribution such as aluminum, calcium, iron, lead, tin, etc. to form a new compound with a salt contained in the aqueous solution.
JP2009222839A 2008-09-26 2009-09-28 Recovery of soluble salt from aqueous solution Pending JP2010115640A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CL2008002879A CL2008002879A1 (en) 2008-09-26 2008-09-26 Device for the formation of insoluble chemical compounds in a liquid medium comprising a) a reactor containing a pair of electrodes and a second pair of electrodes, b) spiral-shaped conductor element, c) blower pump and photon emitter, d) generator of an electric / magnetic field, e) agitation medium; and method.

Publications (1)

Publication Number Publication Date
JP2010115640A true JP2010115640A (en) 2010-05-27

Family

ID=41350482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009222839A Pending JP2010115640A (en) 2008-09-26 2009-09-28 Recovery of soluble salt from aqueous solution

Country Status (17)

Country Link
US (1) US20100078332A1 (en)
JP (1) JP2010115640A (en)
CN (1) CN101683605A (en)
AR (1) AR073321A1 (en)
AU (1) AU2009222427A1 (en)
BR (1) BRPI0903456A2 (en)
CA (1) CA2680991A1 (en)
CL (1) CL2008002879A1 (en)
CO (1) CO6210140A1 (en)
DE (1) DE102009043605A1 (en)
FR (1) FR2936508A1 (en)
GB (1) GB0916988D0 (en)
IT (1) IT1397168B1 (en)
MX (1) MX2009010359A (en)
PE (1) PE20100576A1 (en)
SE (1) SE0950705A2 (en)
ZA (1) ZA200906732B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CL2011002879A1 (en) * 2011-11-16 2012-06-22 Quantum Matrix S P A Process and system for the reduction of anions and cations in a liquid medium, which comprises passing ambient air through a first field of electromagnetic radiation (em), subjecting an oxidation column reactor to a second radiation field em, and subjecting a reactor with agitation to a third radiation field em.
CN106555583B (en) * 2016-11-14 2019-07-23 中国科学院力学研究所 A kind of coal bed gas well ground coal powder output and flowing bottomhole pressure (FBHP) monitoring device and method
CN108622987A (en) * 2017-03-17 2018-10-09 周金华 The device and method of photon vibration frequency and tinyization magnetic fluid character in a kind of stable water
US10692619B2 (en) * 2018-01-03 2020-06-23 Reverse Ionizer Systems, Llc Methods and devices for treating radionuclides in a liquid
CN108128856B (en) * 2018-02-05 2019-06-04 中国矿业大学 Utilize the system of principle of electrophoresis control goaf filling weight metal transport
CN108854798A (en) * 2018-09-03 2018-11-23 上海卉沛生物科技有限公司 A kind of radio frequency emulsifying device used for cosmetic
SG11202105361XA (en) 2018-11-21 2021-06-29 Schlumberger Technology Bv Power unit phase angle for separation unit control

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2724164A1 (en) 1994-09-02 1996-03-08 Rhone Poulenc Chimie Treatment of liq. contg. metallic impurities, e.g. alkaline earth and radioactive elements
US5858249A (en) 1997-02-21 1999-01-12 Higby; Loren P. Electrochemical insolubilization of anionic arsenic method and apparatus
JP2004255627A (en) 2003-02-25 2004-09-16 Toppan Printing Co Ltd Printed matter

Also Published As

Publication number Publication date
CL2008002879A1 (en) 2009-05-15
MX2009010359A (en) 2010-08-17
BRPI0903456A2 (en) 2011-06-14
IT1397168B1 (en) 2013-01-04
DE102009043605A1 (en) 2010-04-01
SE0950705A1 (en) 2010-03-27
SE0950705A2 (en) 2010-07-20
ZA200906732B (en) 2010-06-30
PE20100576A1 (en) 2010-09-16
ITMI20091661A1 (en) 2010-03-27
FR2936508A1 (en) 2010-04-02
US20100078332A1 (en) 2010-04-01
CN101683605A (en) 2010-03-31
CO6210140A1 (en) 2010-10-20
CA2680991A1 (en) 2010-03-26
AU2009222427A1 (en) 2010-04-15
AR073321A1 (en) 2010-10-28
GB0916988D0 (en) 2009-11-11

Similar Documents

Publication Publication Date Title
JP2010115640A (en) Recovery of soluble salt from aqueous solution
TWI626990B (en) Treatment method and treatment device for radioactive waste water
JP5102157B2 (en) Method and apparatus for removing and recovering copper from copper-containing acidic waste liquid
US8323510B2 (en) Ultrasound assisted heavy metal recovery
KR102550935B1 (en) Compositions and methods for the treatment and purification of aqueous wastewater streams
KR20150100950A (en) Method for processing toxic matter-containing water and processing device
WO2015181999A1 (en) Water treatment device and water treatment method
JP2016528022A (en) Purification method and system for contaminated liquid and mineral slurries
JP2017114705A (en) Method for producing sodium hypochlorite, and sodium hypochlorite production device
Feng et al. Removal of humic acid from groundwater by electrocoagulation
Morgante et al. Influence of operational strategies for the recovery of magnesium hydroxide from brines at a pilot scale
JP2007111627A (en) Method and system for treating waste water
JP2002192168A (en) Method for separating and recovering nickel and zinc from nickel and zinc-containing wastewater or sludge
JPS61106788A (en) Metal collecting method and its device
RU2526907C1 (en) Method of extracting rare-earth metals (rem) from phosphogypsum
JP3959130B2 (en) Aluminum recovery method in sludge treatment
CN106396164A (en) Industrial acidic wastewater treatment process
KR101276507B1 (en) The appuratus of removing total phosphorus in wastewater using oxidaition process
AU2019430430B2 (en) Method and process arrangement for removing Si based compounds from a leaching liquor and use
Hu et al. Membrane distillation of a waste stream from neodymium‑iron‑boron scrap recovery: Performance and scaling mitigation
JP5199050B2 (en) Water treatment apparatus and water treatment method
NL2022919B1 (en) Method, device and wastewater treatment system for phosphorus, such as phosphate, removal from a feed solution
ES2351292B1 (en) DEVICE AND PROCEDURE FOR THE FORMATION OF INSOLUBLE CHEMICAL COMPOUNDS.
CN112850980B (en) Zero-emission method for removing heavy metals and sulfate in mine water
CN220665121U (en) Waste water treatment equipment