JP2010107445A - Surface acoustic wave element - Google Patents

Surface acoustic wave element Download PDF

Info

Publication number
JP2010107445A
JP2010107445A JP2008281738A JP2008281738A JP2010107445A JP 2010107445 A JP2010107445 A JP 2010107445A JP 2008281738 A JP2008281738 A JP 2008281738A JP 2008281738 A JP2008281738 A JP 2008281738A JP 2010107445 A JP2010107445 A JP 2010107445A
Authority
JP
Japan
Prior art keywords
surface acoustic
acoustic wave
circuit
circulating
trajectory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008281738A
Other languages
Japanese (ja)
Other versions
JP5309900B2 (en
Inventor
Yasuyuki Yanagisawa
恭行 柳沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2008281738A priority Critical patent/JP5309900B2/en
Publication of JP2010107445A publication Critical patent/JP2010107445A/en
Application granted granted Critical
Publication of JP5309900B2 publication Critical patent/JP5309900B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface acoustic wave element capable of circling a plurality of surface acoustic waves many times at the same time using one circulating passage and capable of accurately and precisely measuring the deceleration of the propagation speed, phase delay or intensity reducing degree of the surface acoustic waves accompanying an increase in the circulating number of times of a plurality of the surface acoustic waves. <P>SOLUTION: The surface acoustic wave element 10 is equipped with a substrate 14 formed of a surface acoustic wave excitable crystal material and containing at least one annular circulating passage 14a capable of circulating the excited surface acoustic waves and a surface elastic wave exciting and detecting means 16 for exciting the surface acoustic waves to circulate the same to the circulating passage and detecting the circulated surface acoustic waves. This circulating passage includes one main circulating locus 20 capable of circulating the excited surface acoustic waves along the same locus at every round and at least one sub-circulating locus 22 allowing the excited surface acoustic waves to circulate along mutually different loci below a predetermined circulating number of times and coinciding with the first circulating locus in a predetermined circulating number of times. The exciting and detecting means excites the surface acoustic waves in the sub-circulating locus to detect the same circulated along the sub-circulating locus. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、弾性表面波素子に関する。   The present invention relates to a surface acoustic wave device.

平坦な基体上に配置された平坦な圧電体の上面の相互に離間した2つの位置に弾性表面波励起手段及び弾性表面波検知手段が相互に対向して配置された板状の弾性表面波素子は従来良く知られている。   A plate-like surface acoustic wave element in which surface acoustic wave excitation means and surface acoustic wave detection means are arranged opposite to each other at two positions on the upper surface of a flat piezoelectric body arranged on a flat substrate. Is well known in the art.

このような従来の板状の弾性表面波素子においては、弾性表面波励起手段及び弾性表面波検知手段の夫々としてすだれ状電極(櫛形電極とも呼ばれている)が使用されている。弾性表面波励起手段に高周波電流が供給されると弾性表面波励起手段は圧電体の上面に弾性表面波を励起し励起された弾性表面波を平坦な圧電体の上面に沿い弾性表面波検知手段に向かい伝搬させ弾性表面波検知手段により検知させる。   In such a conventional plate-shaped surface acoustic wave element, interdigital electrodes (also called comb-shaped electrodes) are used as the surface acoustic wave excitation means and the surface acoustic wave detection means, respectively. When a high-frequency current is supplied to the surface acoustic wave excitation means, the surface acoustic wave excitation means excites the surface acoustic wave on the upper surface of the piezoelectric body, and the excited surface acoustic wave is detected along the upper surface of the flat piezoelectric body. And is detected by the surface acoustic wave detection means.

このような従来の板状の弾性表面波素子は、遅延線,発振器の為の発振素子及び共振素子,周波数選択フィルター,化学センサー,バイオセンサー,そしてリモートタグ等に使用されている。そして、圧電体の上面の弾性表面波励起手段と弾性表面波検知手段との間の距離を長くとれればとれるほど、弾性表面波素子を利用したこれら種々の装置の精度は高まる。   Such conventional plate-like surface acoustic wave devices are used in delay lines, oscillation and resonance devices for oscillators, frequency selective filters, chemical sensors, biosensors, remote tags, and the like. The longer the distance between the surface acoustic wave excitation means and the surface acoustic wave detection means on the upper surface of the piezoelectric body, the higher the accuracy of these various devices using surface acoustic wave elements.

しかしながら、このような従来の板状の弾性表面波素子においては、平坦な基体上に配置された圧電体が平坦である為に、弾性表面波励起手段が圧電体の上面に励起した弾性表面波は平坦な圧電体の上面に沿い弾性表面波検知手段に向かい伝搬される間にその伝搬方向に対し直交する方向に拡散してしまい、そのエネルギーを失う。従って、平坦な圧電体の上面において設定可能な弾性表面波励起手段と弾性表面波検知手段との間の距離は、おのずと限りがある。   However, in such a conventional plate-shaped surface acoustic wave element, since the piezoelectric body disposed on the flat substrate is flat, the surface acoustic wave excited by the surface acoustic wave excitation means on the upper surface of the piezoelectric body is provided. Diffuses in a direction perpendicular to the propagation direction while propagating toward the surface acoustic wave detecting means along the upper surface of the flat piezoelectric body, and loses its energy. Accordingly, the distance between the surface acoustic wave excitation means and the surface acoustic wave detection means that can be set on the upper surface of the flat piezoelectric body is naturally limited.

弾性表面波励起手段に供給する高周波電流のエネルギーを増加させ平坦な基体の表面積を拡大すれば、上記距離を長くすることが出来るが、弾性表面波素子の駆動に要する電力が増大し、また弾性表面波素子の外形寸法が大形化する。   If the surface area of the flat substrate is increased by increasing the energy of the high-frequency current supplied to the surface acoustic wave excitation means, the distance can be increased, but the power required for driving the surface acoustic wave element increases and the elasticity is increased. The external dimensions of the surface acoustic wave device are increased.

国際公開 WO 01/45255 号公報(特許文献1)は、弾性表面波を励起させ伝搬させることが出来る球形状の基体の表面に対し弾性表面波励起検知手段としてのすだれ状電極を載置し、基体の半径とすだれ状電極により基体の表面に励起させる弾性表面波の周波数及び幅(基体の表面を弾性表面波が伝搬する方向に対し基体の表面に沿い直交する方向における弾性表面波の寸法)とを所定の条件に設定することにより、すだれ状電極により基体の表面に励起された弾性表面波を、基体の表面に沿い伝搬する方向に対し基体の表面に沿い直交する方向に無限に拡散させることなく、伝搬させることが出来、ひいては繰り返し周回させることが出来ることが明らかにされている。   International Publication No. WO 01/45255 (Patent Document 1) places interdigital electrodes as surface acoustic wave excitation detection means on the surface of a spherical substrate capable of exciting and propagating surface acoustic waves. Surface radius and frequency of surface acoustic wave excited on the surface of the substrate by the interdigital electrode (size of surface acoustic wave in a direction perpendicular to the surface of the substrate along the surface of the surface) Is set to a predetermined condition, and surface acoustic waves excited on the surface of the substrate by the interdigital electrode are diffused infinitely in a direction orthogonal to the direction of propagation along the surface of the substrate. It has been clarified that it can be propagated without being repeated, and thus can be repeatedly circulated.

球形状の基体の表面を弾性表面波が周回する軌跡は、球形状の基体の表面において球形状の基体の最大外周線を含んでいる球の一部が円環状に連続している領域内にあり、この領域を弾性表面波周回路と呼んでいる。そして、球形状の基体を使用したこのような従来の弾性表面波素子は、弾性表面波周回路に沿い弾性表面波周回路の延出方向と交差する方向に拡散することなく弾性表面波を多数回周回させることが出来る(即ち、すだれ状電極が弾性表面波を励起させてから弾性表面波周回路を周回する弾性表面波をすだれ状電極が正確に検知することが出来なくなるまでに弾性表面が周回する回数が多い)ので、周回数の増大に伴う弾性表面波の伝搬速度の減速の程度や弾性表面波の位相の遅れの程度や弾性表面波の強度の減少の程度を精密に測定することが出来る。   The trajectory of the surface acoustic wave that circulates around the surface of the spherical substrate is within a region where a part of the sphere including the maximum outer circumference of the spherical substrate is continuous in an annular shape on the surface of the spherical substrate. This area is called a surface acoustic wave circuit. Such a conventional surface acoustic wave device using a spherical base body generates a large number of surface acoustic waves along the surface acoustic wave circuit without diffusing in the direction intersecting the extending direction of the surface acoustic wave circuit. (I.e., the surface of the elastic surface has not yet been detected until the interdigital electrode can accurately detect the surface acoustic wave that circulates the surface acoustic wave circuit after the interdigital electrode excites the surface acoustic wave.) Therefore, it is necessary to accurately measure the degree of deceleration of the surface acoustic wave propagation speed, the degree of phase lag of the surface acoustic wave, and the degree of reduction of the intensity of the surface acoustic wave. I can do it.

伝搬速度の減速の程度や弾性表面波の位相の遅れの程度や弾性表面波の強度の減少の程度は、弾性表面波素子の弾性表面波周回路が接している環境の変化(例えば、ガス濃度の増加)の程度に比例する。従って、上述した種々の程度を測定することは弾性表面波素子の弾性表面波周回路が接している環境の変化を測定することを意味する。   The degree of deceleration of the propagation velocity, the degree of phase lag of the surface acoustic wave, and the degree of decrease in the intensity of the surface acoustic wave depend on changes in the environment in which the surface acoustic wave circuit of the surface acoustic wave element is in contact (for example, gas concentration Increase). Accordingly, measuring the various degrees described above means measuring changes in the environment in which the surface acoustic wave circuit of the surface acoustic wave element is in contact.

そして上記測定は同じ環境条件で複数回行い、それら複数回の測定結果を平均することにより、より正確度が高まる。しかし、1つの弾性表面波周回路のみを使用して複数回の測定を行なうと複数間の測定に時間が係るし、その間に環境条件が変わる確率も高くなる。   The above measurement is performed a plurality of times under the same environmental conditions, and the accuracy is further increased by averaging the measurement results of the plurality of times. However, if a plurality of measurements are performed using only one surface acoustic wave circuit, it takes time to measure between them, and the probability that the environmental conditions change during that time will also increase.

そのために、1つの球形状の基体の外表面に複数の弾性表面波周回路を設定することが特開2006−121234号公報(特許文献2)に記載されている。
国際公開 WO 01/45255 号公報 特開2006−121234号公報
For this purpose, Japanese Patent Application Laid-Open No. 2006-121234 (Patent Document 2) describes setting a plurality of surface acoustic wave circuits on the outer surface of one spherical base.
International Publication WO 01/45255 JP 2006-121234 A

しかしながら、複数の弾性表面波周回路をその外表面に設定できる基材は例えばリチウムナイオベートやリチウムタンタレートの如く比較的高価であり、さらに1つの球形状の基体の外表面に複数の弾性表面波周回路を設定することが出来た場合でも複数の弾性表面波周回路の夫々において弾性表面波伝搬特性が微妙に異なるので、弾性表面波周回路の夫々において同じ環境条件で測定したとしてもそれらの測定結果の平均が測定結果の正確性を増加させるとは限らない。   However, a base material that can set a plurality of surface acoustic wave circuits on its outer surface is relatively expensive, such as lithium niobate or lithium tantalate, and a plurality of elastic surfaces on the outer surface of one spherical substrate. Even if the wave circuit can be set, the surface acoustic wave propagation characteristics are slightly different in each of the surface acoustic wave circuits, so even if they are measured under the same environmental conditions in each surface wave circuit The average of the measurement results does not necessarily increase the accuracy of the measurement results.

この発明は上記事情の下でなされ、この発明の目的は、1つの弾性表面波周回路のみを使用して同時に複数の弾性表面波を多数回周回させることが出来、従って複数の弾性表面波における周回数の増大に伴う弾性表面波の伝搬速度の減速の程度や弾性表面波の位相の遅れの程度や弾性表面波の強度の減少の程度を正確に精密に測定することが出来る、弾性表面波素子を提供することである。   The present invention has been made under the circumstances described above, and the object of the present invention is to allow a plurality of surface acoustic waves to rotate at the same time using only one surface acoustic wave circuit, and therefore, in a plurality of surface acoustic waves. A surface acoustic wave that can accurately and accurately measure the degree of deceleration of the surface acoustic wave propagation speed, the degree of phase delay of the surface acoustic wave, and the degree of decrease in the intensity of the surface acoustic wave as the number of turns increases. It is to provide an element.

上述したこの発明の目的を達成する為に、この発明に従った弾性表面波素子は:弾性表面波が励起可能な結晶材料により形成されていて、球面の一部により円環状に規定され励起された弾性表面波が周回可能な少なくとも1つの弾性表面波周回路を含む弾性表面波周回基体と;そして、弾性表面波周回基体の弾性表面波周回路に弾性表面波を励起させて励起された弾性表面波を弾性表面波周回路に沿い周回させるとともに周回した弾性表面波を検知する弾性表面波励起検知手段と;を備えている。弾性表面波周回路は、励起された弾性表面波を1周毎に同じ軌跡で周回させることが可能な1つの主周回軌跡と、励起された弾性表面波を所定の周回数未満で相互に異なる軌跡で周回させるとともに所定の周回数で最初の周回の軌跡に一致する少なくとも1つの副周回軌跡と、を含んでおり、そして、弾性表面波励起検知手段が、弾性表面波周回路の副周回軌跡に弾性表面波を励起させるとともに副周回軌跡を周回した弾性表面波を検知する、ことを特徴としている。   In order to achieve the object of the present invention described above, a surface acoustic wave device according to the present invention is formed of a crystal material capable of exciting surface acoustic waves, and is defined and excited in an annular shape by a part of a spherical surface. A surface acoustic wave circuit including at least one surface acoustic wave circuit capable of circulating the surface acoustic wave; and the elasticity excited by exciting the surface wave in the surface wave circuit of the surface wave circuit And surface acoustic wave excitation detecting means for detecting surface acoustic waves that circulate along the surface acoustic wave circuit and detect the surface acoustic waves that have circulated. The surface acoustic wave circuit is different from each other in that the main surface trajectory capable of circulating the excited surface acoustic wave along the same trajectory every round and the excited surface acoustic wave less than a predetermined number of times. And at least one sub-circulation trajectory that circulates along the trajectory and coincides with the trajectory of the first circulation at a predetermined number of turns, and the surface acoustic wave excitation detection means includes a sub-circulation trajectory of the surface acoustic wave circuit. The surface acoustic wave is excited and the surface acoustic wave that circulates in the secondary circulation locus is detected.

上述した如く構成されたことを特徴とするこの発明に従った弾性表面波素子は、1つの弾性表面波周回路のみを使用して同時に複数の弾性表面波を多数回周回させることが出来、従って複数の弾性表面波における周回数の増大に伴う弾性表面波の伝搬速度の減速の程度や弾性表面波の位相の遅れの程度や弾性表面波の強度の減少の程度を正確に精密に測定することが出来る。   The surface acoustic wave device according to the present invention, which is configured as described above, can simultaneously rotate a plurality of surface acoustic waves many times using only one surface acoustic wave circuit, and therefore Accurately and accurately measure the degree of deceleration of the surface acoustic wave propagation speed, the degree of phase lag of the surface acoustic wave, and the degree of decrease in the intensity of the surface acoustic wave with the increase in the number of rounds of the surface acoustic wave. I can do it.

以下、この発明の一実施の形態に従った弾性表面波素子を使用した外部環境測定装置について添付の図面を参照しながら詳細に説明する。   Hereinafter, an external environment measuring apparatus using a surface acoustic wave device according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings.

図1は、この発明の一実施の形態に従った弾性表面波素子10を使用した外部環境測定装置12の基本的な構成を概略的に図示している。   FIG. 1 schematically shows a basic configuration of an external environment measuring apparatus 12 using a surface acoustic wave element 10 according to an embodiment of the present invention.

弾性表面波素子10は:弾性表面波が励起可能な結晶材料により形成されていて、球面の一部により円環状に規定され励起された弾性表面波が周回可能な少なくとも1つの弾性表面波周回路14aを含む弾性表面波周回基体14と;そして、弾性表面波周回基体14の弾性表面波周回路14aに弾性表面波を励起させて励起された弾性表面波を弾性表面波周回路14aに沿い周回させるとともに周回した弾性表面波を検知する弾性表面波励起検知手段16と;を備えている。   The surface acoustic wave element 10 is formed of a crystal material capable of exciting a surface acoustic wave, and is defined as an annular shape by a part of a spherical surface, and is capable of circulating an excited surface acoustic wave. A surface acoustic wave substrate 14 including 14a; and a surface acoustic wave that is excited by exciting a surface acoustic wave in the surface acoustic wave circuit 14a of the surface acoustic wave substrate 14 along the surface acoustic wave circuit 14a. And a surface acoustic wave excitation detecting means 16 for detecting the surface acoustic wave that has circulated.

弾性表面波が励起可能な結晶材料としては、水晶,ランガサイト,リチウムナイオベート(ニオブ酸リチウム:LiNbO3),そしてリチウムタンタレート(タンタル酸リチウム:LiTaO3)などの圧電性結晶材料を例示することが出来る。これらの結晶材料は、夫々の球形状の外表面において夫々が有している結晶面が球形状の外表面と交差する交線14bに沿い弾性表面波を励起させると励起された弾性表面波は上記交線14bに沿い伝搬することが判っている。そして、国際公開 WO 01/45255 号公報(特許文献1)によれば、弾性表面波を励起させ伝搬させることが出来る球形状の弾性表面波周回基体14の半径と弾性表面波周回基体14の外表面に励起させる弾性表面波の周波数及び幅(弾性表面波周回基体14の表面を弾性表面波が伝搬する方向に対し弾性表面波周回基体14の表面に沿い直交する方向における弾性表面波の寸法)とを所定の条件に設定することにより、弾性表面波周回基体14の表面に励起された弾性表面波を、弾性表面波周回基体14の表面に沿い伝搬する方向に対し基体の表面に沿い直交する方向に無限に拡散させることなく、伝搬させることが出来、ひいては繰り返し周回させることが出来ることが明らかにされている。 Examples of crystal materials that can excite surface acoustic waves include piezoelectric crystal materials such as quartz, langasite, lithium niobate (lithium niobate: LiNbO 3 ), and lithium tantalate (lithium tantalate: LiTaO 3 ). I can do it. When these crystal materials excite a surface acoustic wave along an intersection line 14b where the crystal plane of each spherical outer surface intersects the spherical outer surface, the excited surface acoustic waves are It is known that the light propagates along the line of intersection 14b. According to International Publication No. WO 01/45255 (Patent Document 1), the radius of the spherical surface acoustic wave substrate 14 capable of exciting and propagating the surface acoustic wave and the outer surface of the surface acoustic wave substrate 14 are determined. Frequency and width of surface acoustic wave excited on the surface (size of surface acoustic wave in a direction perpendicular to the surface of surface acoustic wave orbiting substrate 14 along the surface of surface acoustic wave orbiting substrate 14) Are set to predetermined conditions so that the surface acoustic wave excited on the surface of the surface acoustic wave substrate 14 is orthogonal to the direction of propagation along the surface of the surface acoustic wave substrate 14 along the surface of the substrate. It has been clarified that it can be propagated without being infinitely diffused in the direction, and can be repeatedly circulated.

上記交線14bは、弾性表面波周回基体14の外表面において最大の径の外周となる線であり、上記交線14aに沿って励起された弾性表面波が伝搬する球面の一部により円環状に規定される領域が弾性表面波周回路14aである。   The intersecting line 14b is a line that becomes the outer periphery of the maximum diameter on the outer surface of the surface acoustic wave circulating substrate 14, and is formed into an annular shape by a part of the spherical surface on which the surface acoustic wave excited along the intersecting line 14a propagates. The region defined by is the surface acoustic wave circuit 14a.

水晶及びランガサイトの夫々は3つの結晶面を有していることが知られている。従って水晶及びランガサイトの夫々を弾性表面波周回基体14の為の圧電結晶性材料として使用した場合には、その球形状の外表面に3個の弾性表面波周回路14aが設定可能であることになる。   Each of quartz and langasite is known to have three crystal planes. Accordingly, when each of quartz crystal and langasite is used as the piezoelectric crystal material for the surface acoustic wave revolving substrate 14, three surface acoustic wave circuits 14a can be set on the spherical outer surface. become.

リチウムナイオベート及びリチウムタンタレートの夫々は10個の結晶面を有していることが知られている。従ってリチウムナイオベート及びリチウムタンタレートの夫々を弾性表面波周回基体14の為の圧電結晶性材料として使用した場合には、その球形状の外表面に10個の弾性表面波周回路14aが設定可能であることになる。   Each of lithium niobate and lithium tantalate is known to have 10 crystal planes. Therefore, when each of lithium niobate and lithium tantalite is used as the piezoelectric crystalline material for the surface acoustic wave revolving substrate 14, ten surface acoustic wave circuits 14a can be set on the spherical outer surface. It will be.

弾性表面波励起検知手段16としては、弾性表面波周回基体14の弾性表面波周回路14aに励起した弾性表面波をその伝搬方向に対し弾性表面波周回基体14の表面に沿い直交する方向に無限に拡散させることなく伝搬させ周回繰り返し周回させることを可能にする前述した所定の条件を満たす波長と幅とを容易に設定可能にする為に、すだれ状電極又は櫛歯状電極と言われている公知の電気音響変換素子が通常使用される。   As the surface acoustic wave excitation detecting means 16, the surface acoustic wave excited by the surface acoustic wave circuit 14a of the surface acoustic wave circulating substrate 14 is infinite in the direction orthogonal to the propagation direction along the surface of the surface acoustic wave circulating substrate 14. In order to make it possible to easily set the wavelength and width satisfying the above-mentioned predetermined conditions, it is said to be an interdigital electrode or a comb-like electrode. A known electroacoustic transducer is usually used.

すだれ状電極又は櫛歯状電極は、夫々が複数の櫛歯状電極枝を有した1対の櫛歯状電極部を、一方の櫛歯状電極部の複数の櫛歯状電極枝の複数の隙間の夫々の中央に他方の櫛歯状電極部の複数の櫛歯状電極枝の夫々を配置することにより構成されている。このような構成のすだれ状電極又は櫛歯状電極は、弾性表面波周回基体14の弾性表面波周回路14aの所望の位置に公知の形成方法(例えば、フォトリソグラフィー法)により容易に精密に形成することが可能である。弾性表面波周回基体14の弾性表面波周回路14aに複数の櫛歯状電極枝を前記交線14bと交差する方向に向けた状態ですだれ状電極又は櫛歯状電極を形成し、1対の櫛歯状電極部に対し相互に対向している2つの櫛歯状電極枝の相互間の離間距離に対応した周波数の高周波電流を供給すると、すだれ状電極又は櫛歯状電極は相互に対向している2つの櫛歯状電極枝の相互間の離間距離に対応した周波数を有しているとともに相互に対向している2つの櫛歯状電極枝の夫々の相互に対向している部分の長さの幅を有している弾性表面波を弾性表面波周回基体14の弾性表面波周回路14aの上記所望の位置に励起させ、励起した弾性表面波を1対の櫛歯状電極部の複数の櫛歯状電極枝が並んでいる方向に進行(即ち、伝搬させ)させる。   A comb-like electrode or a comb-like electrode comprises a pair of comb-like electrode portions each having a plurality of comb-like electrode branches, and a plurality of comb-like electrode branches of one comb-like electrode portion. Each of the plurality of comb-like electrode branches of the other comb-like electrode portion is arranged in the center of each gap. The interdigital electrode or the comb-like electrode having such a configuration is easily and precisely formed by a known forming method (for example, photolithography) at a desired position of the surface acoustic wave circuit 14a of the surface acoustic wave substrate 14. Is possible. A pair of interdigital electrodes or interdigital electrodes are formed on the surface acoustic wave circuit 14a of the surface acoustic wave circuit 14a in a state where a plurality of comb-like electrode branches are directed in a direction crossing the intersection line 14b. When a high-frequency current having a frequency corresponding to the distance between the two comb-shaped electrode branches facing each other is supplied to the comb-shaped electrode portion, the interdigital electrode or the comb-shaped electrode faces each other. The lengths of the two mutually facing portions of the two comb-like electrode branches that have a frequency corresponding to the distance between the two comb-like electrode branches and that are opposed to each other The surface acoustic wave having a certain width is excited at the desired position of the surface acoustic wave circuit 14a of the surface acoustic wave circulating substrate 14, and the excited surface acoustic waves are generated in a plurality of pairs of comb-like electrode portions. In the direction in which the comb-like electrode branches are arranged (that is, propagated).

なおここで、弾性表面波とは、通常のバルク波と呼ばれる縦波や横波と異なり、物質表面にそのエネルギーの多くを集中して伝搬する弾性波であり、レーリー波,セザワ波,擬セザワ波,ラブ波等を例示することができる。   Note that the surface acoustic wave is an elastic wave that concentrates and propagates much of its energy on the material surface, unlike the longitudinal and transverse waves called normal bulk waves. Rayleigh waves, Sezawa waves, and pseudo Sezawa waves , Love waves and the like.

弾性表面波励起検知手段16には、弾性表面波励起検知手段16の動作を制御する為の動作制御手段18が接続されている。動作制御手段18は、弾性表面波周回基体14の弾性表面波周回路14aに対し所望のタイミングで弾性表面波励起検知手段16に弾性表面波をバースト状に励起させ伝搬させるとともに弾性表面波周回路14aに励起され伝搬された弾性表面波を弾性表面波励起検知手段16に所望のタイミングで検知させる。例えば、動作制御手段18は、弾性表面波励起検知手段16を構成しているすだれ状電極又は櫛歯状電極の1対の櫛歯状電極部の一方に接続された入出力切り替え部18aと、入出力切り替え部18aの入力端子に接続された高周波信号発生部18bと、入出力切り替え部18bの出力端子にアンプ18cを介して接続された検出・出力部18dと、を含んでいる。そして、弾性表面波励起検知手段16を構成しているすだれ状電極又は櫛歯状電極の1対の櫛歯状電極部の他方は接地されている。   The surface acoustic wave excitation detection means 16 is connected to an operation control means 18 for controlling the operation of the surface acoustic wave excitation detection means 16. The operation control means 18 causes the surface acoustic wave circuit 14a of the surface acoustic wave circulating substrate 14 to excite and propagate the surface acoustic wave in a burst form to the surface acoustic wave excitation detection means 16 at a desired timing and propagates the surface acoustic wave circuit. The surface acoustic wave excited and propagated by 14a is detected by the surface acoustic wave excitation detecting means 16 at a desired timing. For example, the operation control unit 18 includes an input / output switching unit 18a connected to one of a pair of comb-shaped electrode portions of the interdigital electrode or the comb-shaped electrode constituting the surface acoustic wave excitation detecting unit 16, and A high-frequency signal generation unit 18b connected to the input terminal of the input / output switching unit 18a, and a detection / output unit 18d connected to the output terminal of the input / output switching unit 18b via an amplifier 18c. The other of the pair of interdigital electrodes or the interdigital electrodes constituting the surface acoustic wave excitation detecting means 16 is grounded.

弾性表面波励起検知手段16が入出力切り替え部18aにより高周波信号発生部18bに所望のタイミングで接続されることにより、高周波信号発生部18bから弾性表面波励起検知手段16に供給された高周波信号が弾性表面波周回路14a中にバースト上に弾性表面を励起させ、励起されたバースト状の弾性表面波は弾性表面波周回路14a中を前述した交線14bに沿い伝搬し弾性表面波周回路14a中を周回する。弾性表面波励起検知手段16が入出力切り替え部18aによりアンプ18cを介して検出・出力部18dに所望のタイミングで接続されることにより、弾性表面波周回路14a中を周回しているバースト状の弾性表面波は所望のタイミングでアンプ18cを介して検出・出力部18dにより検知される。   The surface acoustic wave excitation detecting means 16 is connected to the high frequency signal generating section 18b by the input / output switching section 18a at a desired timing, so that the high frequency signal supplied from the high frequency signal generating section 18b to the surface acoustic wave excitation detecting means 16 is changed. The elastic surface is excited on the burst in the surface acoustic wave circuit 14a, and the excited burst-shaped surface acoustic wave propagates in the surface acoustic wave circuit 14a along the above-mentioned intersection line 14b and propagates along the surface acoustic wave circuit 14a. Go around the inside. The surface acoustic wave excitation detection means 16 is connected to the detection / output unit 18d via the amplifier 18c by the input / output switching unit 18a at a desired timing, so that the surface acoustic wave excitation circuit 16a circulates in the surface acoustic wave circuit 14a. The surface acoustic wave is detected by the detection / output unit 18d through the amplifier 18c at a desired timing.

本願の発明者である柳沢を含む研究グループは、弾性表面波周回路14a中を伝搬する弾性表面波の軌跡(経路)を詳細に検討した結果、同じ弾性表面波周回路14a中でも励起された弾性表面波を1周毎に同じ軌跡で周回させることが可能な1つの主周回軌跡20が存在することに気づき、弾性表面波周回基体14が三方晶系の圧電性単結晶材料である場合について、特願2008−067408号の明細書に記載した。同じ弾性表面波周回路14a中でも1つの主周回軌跡20に沿って伝搬する弾性表面波はその強度の減衰が指数関数的な減衰と良く一致し、また弾性表面波の伝搬速度が最も速くなる。   The research group including Yanagisawa, the inventor of the present application, examined in detail the trajectory (path) of the surface acoustic wave propagating in the surface acoustic wave circuit 14a. When the surface acoustic wave substrate 14 is a trigonal piezoelectric single crystal material, it is noticed that there is one main circuit track 20 capable of rotating the surface wave with the same track every round. This is described in the specification of Japanese Patent Application No. 2008-0667408. Even in the same surface acoustic wave circuit 14a, the surface acoustic wave propagating along one main orbit 20 has an intensity attenuation that agrees well with an exponential attenuation, and the propagation speed of the surface acoustic wave is the fastest.

そして、主周回軌跡20は、弾性表面波周回基体14の圧電性単結晶材料が異方性を有していて上記交線14bに沿った複数の位置の夫々において、そこを通過する弾性表面波の伝搬速度や、電気機械結合定数や、パワーフローアングルが相互に僅かに異なっていることから、上記交線14bと一致せず、弾性表面波周回基体14が、三方晶系の圧電性単結晶材料の場合には、図1中に図示されている如く、弾性表面波周回路14a中で上記交線14bの沿った120°の回転角毎に上記交線14bに対し直交する一方向及び他方向に1°乃至3°の回転角αの範囲内で順次交互に正弦的に振れ蛇行している。   The main orbit 20 is a surface acoustic wave that passes through the piezoelectric single crystal material of the surface acoustic wave orbiting substrate 14 at each of a plurality of positions along the intersection line 14b. Since the propagation speed, electromechanical coupling constant, and power flow angle are slightly different from each other, the surface acoustic wave orbiting substrate 14 is not a coincident line 14b, and the surface acoustic wave orbiting substrate 14 is a trigonal piezoelectric single crystal. In the case of a material, as shown in FIG. 1, one direction orthogonal to the intersecting line 14b and the other in every 120 ° rotation angle along the intersecting line 14b in the surface acoustic wave circuit 14a. In the direction of the rotation angle α in the range of 1 ° to 3 °, the sine wave oscillates alternately and sinusoidally.

なお、図1中には、三方晶系の圧電性単結晶材料の一種である水晶のZ軸周りの結晶面が規定している交線14bに沿った弾性表面波周回路14aの場合について例示しており、球状の弾性表面波周回基体14を地球に見立てZ軸を地軸に上記交線14bを赤道とした場合の−Y軸方位の緯度方向では主周回軌跡20は上記交線14bから+2°振れている。   FIG. 1 shows an example of a surface acoustic wave circuit 14a along an intersecting line 14b defined by a crystal plane around the Z axis of quartz crystal, which is a kind of trigonal piezoelectric single crystal material. Assuming the spherical surface acoustic wave orbiting substrate 14 as the earth, the main orbit 20 is +2 from the intersecting line 14b in the latitude direction of the -Y axis direction when the intersecting line 14b is the equator with the Z axis as the ground axis. ° Swing.

次に図2を参照しながら、この発明の一実施の形態に従った弾性表面波素子10を使用した外部環境測定装置12のさらに詳細な構成を説明する。   Next, a more detailed configuration of the external environment measuring device 12 using the surface acoustic wave device 10 according to the embodiment of the present invention will be described with reference to FIG.

本願の発明者である柳沢は、弾性表面波周回路14a中を伝搬する弾性表面波の軌跡(経路)をさらに詳細に検討した結果、同じ弾性表面波周回路14a中で1つの主周回軌跡20以外に、励起された弾性表面波を所定の周回数未満で相互に異なる軌跡で周回させるとともに所定の周回数で最初の周回の軌跡に一致する少なくとも1つの副周回軌跡22が存在することに気が付いた。副周回軌跡22の上記所定の周回数は、弾性表面波周回基体14の圧電性単結晶材料における結晶の対称性に依存していて、図1中に図示されている弾性表面波周回基体14が三方晶系の圧電性単結晶材料の一種である水晶である場合には3であり、図1では1周目の副周回軌跡22に参照符号22aを付し、2周目の副周回軌跡22に参照符号22bを付し、3周目の副周回軌跡22に参照符号22cを付している。   Yanagisawa, the inventor of the present application, examined in more detail the locus (path) of the surface acoustic wave propagating in the surface acoustic wave circuit 14a. As a result, one main circuit locus 20 in the same surface acoustic wave circuit 14a. In addition to this, it is noticed that the excited surface acoustic wave circulates along different trajectories that are less than a predetermined number of revolutions, and that there is at least one sub-circulation locus 22 that coincides with the trajectory of the first revolution at the predetermined number of laps. It was. The predetermined number of turns of the sub-circular trajectory 22 depends on the crystal symmetry of the piezoelectric single crystal material of the surface acoustic wave substrate 14, and the surface acoustic wave substrate 14 shown in FIG. In the case of quartz, which is a kind of trigonal piezoelectric single crystal material, the number is 3, and in FIG. 1, the subcircular trajectory 22 of the second round is given a reference symbol 22a to the secondary round trajectory 22 of the first round. Is attached with a reference sign 22b, and a reference sign 22c is attached to the sub-circular trajectory 22 of the third round.

副周回軌跡22において、主周回軌跡20と重複しない位置には、主周回軌跡20に設置されていたのと同様に弾性表面波励起検知手段16が設置されていて、副周回軌跡22用の弾性表面波励起検知手段16には、主周回軌跡20に設置されていた弾性表面波励起検知手段16の為の動作制御手段18と同じ動作制御手段18が接続されている。   In the subcirculation trajectory 22, the surface acoustic wave excitation detection means 16 is installed at a position that does not overlap with the main circulation trajectory 20 in the same manner as the main circulation trajectory 20. The surface wave excitation detecting means 16 is connected to the same operation control means 18 as the operation control means 18 for the surface acoustic wave excitation detecting means 16 installed on the main orbit 20.

弾性表面波励起検知手段16により副周回軌跡22に励起され伝搬される弾性表面波は、主周回軌跡20を伝搬する弾性表面波ほどには良好に指数関数的に減衰はしないが、主周回軌跡20を伝搬する弾性表面波の伝搬特性が弾性表面波素子10を取り巻く温度の影響により変化するのを校正するという目的のためには十分利用価値がある。   The surface acoustic wave that is excited and propagated by the surface acoustic wave excitation detection means 16 to the subcircular trajectory 22 is not attenuated exponentially as well as the surface acoustic wave that propagates the main circular trajectory 20, but the main circular trajectory. For the purpose of calibrating the change of the propagation characteristics of the surface acoustic wave propagating through the surface 20 due to the influence of the temperature surrounding the surface acoustic wave element 10, it is sufficiently useful.

例えば、1つの弾性表面波周回路14aにおいて主周回軌跡20のみが通過し副周回軌跡22は通過しない領域に弾性表面波素子10を取り巻く外部環境の変化を検知する感応膜24を設ける。   For example, in one surface acoustic wave circuit 14a, a sensitive film 24 for detecting a change in the external environment surrounding the surface acoustic wave element 10 is provided in a region where only the main circular locus 20 passes and the secondary circular locus 22 does not pass.

感応膜24は、外部環境の特定の物質に接触することにより、接触した特定の物質の量に応じてそこを通過する弾性表面波の伝搬速度に変化を生じさせる。例えば、特定の物質を吸着することによりその質量効果によりそこを通過する弾性表面波の伝搬速度を減速させ減衰率を急激に低下させたり、特定の物質が吸蔵されることによりその機械的な硬度が変化しそこを通過する弾性表面波の伝搬速度や減衰率を変化させたり、特定の物質と反応することにより吸熱又は発熱反応を生じてそこを通過する弾性表面波の伝搬速度や減衰率を変化させたりする。そして、感応膜24は、特定の物質に対する可逆反応を生じさせることが好ましい。   When the sensitive film 24 comes into contact with a specific substance in the external environment, the propagation speed of the surface acoustic wave passing therethrough is changed according to the amount of the specific substance in contact. For example, by adsorbing a specific substance, due to its mass effect, the propagation speed of the surface acoustic wave passing therethrough is reduced, and the attenuation rate is drastically reduced. Changes the propagation speed and attenuation rate of surface acoustic waves that pass through it, or generates endothermic or exothermic reactions by reacting with specific substances to change the propagation speed and attenuation rate of surface acoustic waves that pass through it. Change it. And it is preferable that the sensitive film | membrane 24 produces the reversible reaction with respect to a specific substance.

このような感応膜24としては、水素(H2)を吸蔵して水素化物を形成し機械的な特性を変化させるパラジウム(Pd),アンモニア(NH3)に対する吸着性が高いプラチナ(Pt),水素化物を吸着する酸化タングステン(WO3),一酸化炭素(CO)や二酸化炭素(CO2)や二酸化硫黄(SO2)や二酸化窒素(NO2)を選択的に吸着するフタロシアニン(Phthalocyanine)等が知られている。 As such a sensitive film 24, palladium (Pd), which absorbs hydrogen (H 2 ) to form a hydride and changes mechanical characteristics, platinum (Pt) having high adsorptivity to ammonia (NH 3 ), Tungsten oxide (WO 3 ) that adsorbs hydride, phthalocyanine (Phthalocyanine) that selectively adsorbs carbon monoxide (CO), carbon dioxide (CO 2 ), sulfur dioxide (SO 2 ), nitrogen dioxide (NO 2 ), etc. It has been known.

なお、上述した実施の形態においては、1つの弾性表面波周回路14a中の1つの主周回軌跡20及び1つの副周回軌跡22の夫々に弾性表面波励起検知手段16を設置していたが、1つの弾性表面波周回路14a中に複数の副周回軌跡22が含まれている場合には、複数の副周回軌跡22の少なくとも2つに弾性表面波励起検知手段16を設置し1つの主周回軌跡20からは弾性表面波励起検知手段16を無くしても良い。   In the above-described embodiment, the surface acoustic wave excitation detecting means 16 is installed in each of one main circuit locus 20 and one sub circuit locus 22 in one surface acoustic wave circuit 14a. When a plurality of sub-circulation trajectories 22 are included in one surface acoustic wave circuit 14a, the surface acoustic wave excitation detection means 16 is installed in at least two of the plurality of sub-circulation trajectories 22, and one main circuit The surface acoustic wave excitation detecting means 16 may be omitted from the locus 20.

図1は、この発明の一実施の形態に従った弾性表面波素子を使用した外部環境測定装置の基本的な構成を概略的に示す概略図である。FIG. 1 is a schematic diagram schematically showing a basic configuration of an external environment measuring apparatus using a surface acoustic wave device according to an embodiment of the present invention. 図2は、図1中に図示されていた弾性表面波素子を使用した外部環境測定装置のさらに詳細な構成を概略的に示す概略図である。FIG. 2 is a schematic view schematically showing a more detailed configuration of the external environment measuring apparatus using the surface acoustic wave element shown in FIG.

符号の説明Explanation of symbols

10…弾性表面波素子、12…外部環境測定装置、14…弾性表面波周回基体、14a…弾性表面波周回路、14b…交線、16…弾性表面波励起検知手段、18…動作制御手段、18a…入出力切り替え部、18b…高周波信号発生部、18c…アンプ、18d…検出・出力部、20…主周回軌跡、22…副周回軌跡、22a…1周目(副周回軌22)、22b…2周目(副周回軌22)、22c…3周目(副周回軌22)、24…感応膜。   DESCRIPTION OF SYMBOLS 10 ... Surface acoustic wave element, 12 ... External environment measuring device, 14 ... Surface acoustic wave circulation base | substrate, 14a ... Surface acoustic wave circuit, 14b ... Intersection, 16 ... Surface acoustic wave excitation detection means, 18 ... Operation control means, 18a ... Input / output switching unit, 18b ... High frequency signal generator, 18c ... Amplifier, 18d ... Detection / output unit, 20 ... Main circuit locus, 22 ... Sub circuit track, 22a ... First circuit (sub circuit 22), 22b ... 2nd lap (secondary track 22), 22c ... 3rd lap (secondary track 22), 24 ... sensitive membrane.

Claims (6)

弾性表面波が励起可能な結晶材料により形成されていて、球面の一部により円環状に規定され励起された弾性表面波が周回可能な少なくとも1つの弾性表面波周回路を含む弾性表面波周回基体と;そして、
弾性表面波周回基体の弾性表面波周回路に弾性表面波を励起させて励起された弾性表面波を弾性表面波周回路に沿い周回させるとともに周回した弾性表面波を検知する弾性表面波励起検知手段と;
を備えており、
弾性表面波周回路は、励起された弾性表面波を1周毎に同じ軌跡で周回させることが可能な1つの主周回軌跡と、励起された弾性表面波を所定の周回数未満で相互に異なる軌跡で周回させるとともに所定の周回数で最初の周回の軌跡に一致する少なくとも1つの副周回軌跡と、を含んでいて、
弾性表面波励起検知手段が、弾性表面波周回路の副周回軌跡に弾性表面波を励起させとともに副周回軌跡を周回した弾性表面波を検知する、
ことを特徴とする弾性表面波素子。
A surface acoustic wave circuit substrate including at least one surface acoustic wave circuit that is formed of a crystal material capable of exciting surface acoustic waves, and is circularly defined by a part of a spherical surface and capable of circulating the excited surface wave And; and
A surface acoustic wave excitation detection means for detecting a surface acoustic wave that is caused to circulate along the surface acoustic wave circuit by exciting the surface acoustic wave by exciting the surface acoustic wave in the surface acoustic wave circuit of the surface acoustic wave circuit. When;
With
The surface acoustic wave circuit is different from each other in that the main surface trajectory capable of circulating the excited surface acoustic wave along the same trajectory every round and the excited surface acoustic wave less than a predetermined number of times. Including at least one sub-circulation trajectory that circulates in a trajectory and that coincides with the trajectory of the first lap in a predetermined number of laps,
The surface acoustic wave excitation detection means excites a surface acoustic wave in the secondary circulation locus of the surface acoustic wave circuit and detects the surface acoustic wave that circulates in the secondary circulation locus.
A surface acoustic wave device.
1つの弾性表面波周回路は複数の副周回軌跡を含んでいて、弾性表面波励起検知手段は複数の複数回軌跡の少なくとも2つに弾性表面波を励起させとともに少なくとも2つの副周回軌跡を周回した弾性表面波を検知する、
ことを特徴とする請求項1に記載の弾性表面波素子。
One surface acoustic wave circuit includes a plurality of sub-circulation trajectories, and the surface acoustic wave excitation detecting means excites surface acoustic waves in at least two of the plurality of plural trajectories and circulates at least two sub-circulation trajectories. Detect surface acoustic waves,
The surface acoustic wave device according to claim 1.
弾性表面波励起検知手段が、弾性表面波周回路の主周回軌跡及び副周回軌跡に弾性表面波を励起させとともに主周回軌跡及び副周回軌跡を周回した弾性表面波を検知する、
ことを特徴とする請求項1又は2に記載の弾性表面波素子。
The surface acoustic wave excitation detection means detects surface acoustic waves that have excited the surface acoustic wave in the main circuit trajectory and the sub circuit trajectory of the surface acoustic wave circuit and circulated the main circuit trajectory and the sub circuit trajectory.
The surface acoustic wave device according to claim 1, wherein the surface acoustic wave device is provided.
弾性表面波励起検知手段は、主周回軌跡及び1つの副周回軌跡の夫々に対し1つの電気音響変換素子を含んでいる、
ことを特徴とする請求項3に記載の弾性表面波素子。
The surface acoustic wave excitation detection means includes one electroacoustic transducer for each of the main orbit and one sub orbit,
The surface acoustic wave device according to claim 3.
弾性表面波周回基体が、水晶,ランガサイト,リチウムナイオベート,そしてリチウムタンタレートのいずれか1つである、ことを特徴とする請求項1乃至3のいずれか1項に記載の弾性表面波素子。   4. The surface acoustic wave device according to claim 1, wherein the surface acoustic wave revolving base is one of quartz, langasite, lithium niobate, and lithium tantalate. 5. . 弾性表面波周回基体が水晶であり、
弾性表面波周回基体の弾性表面波周回路が、水晶のZ軸を中心とする最大外径線を含む円環形状をしており、
弾性表面波周回路の主周回軌跡が、弾性表面波周回路中を上記最大外径線に沿った120°毎に上記最大外径線に対し直交する一方向及び他方向に1°乃至3°の回転角の範囲内で順次振れ蛇行する、
ことを特徴とする請求項5に記載の弾性表面波素子。
The surface acoustic wave orbiting substrate is quartz,
The surface acoustic wave circuit of the surface acoustic wave circuit substrate has an annular shape including a maximum outer diameter line centering on the Z axis of the crystal,
The main circular trajectory of the surface acoustic wave circuit is 1 ° to 3 ° in one direction and the other direction orthogonal to the maximum outer diameter line every 120 ° along the maximum outer diameter line in the surface acoustic wave circuit. Within the range of rotation angle
The surface acoustic wave device according to claim 5.
JP2008281738A 2008-10-31 2008-10-31 Surface acoustic wave device Expired - Fee Related JP5309900B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008281738A JP5309900B2 (en) 2008-10-31 2008-10-31 Surface acoustic wave device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008281738A JP5309900B2 (en) 2008-10-31 2008-10-31 Surface acoustic wave device

Publications (2)

Publication Number Publication Date
JP2010107445A true JP2010107445A (en) 2010-05-13
JP5309900B2 JP5309900B2 (en) 2013-10-09

Family

ID=42297017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008281738A Expired - Fee Related JP5309900B2 (en) 2008-10-31 2008-10-31 Surface acoustic wave device

Country Status (1)

Country Link
JP (1) JP5309900B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007240297A (en) * 2006-03-08 2007-09-20 Toppan Printing Co Ltd Spherical surface acoustic wave element and spherical optical element
JP2009225104A (en) * 2008-03-17 2009-10-01 Toppan Printing Co Ltd Spherical surface acoustic wave element
JP2009225105A (en) * 2008-03-17 2009-10-01 Toppan Printing Co Ltd Spherical surface acoustic wave element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007240297A (en) * 2006-03-08 2007-09-20 Toppan Printing Co Ltd Spherical surface acoustic wave element and spherical optical element
JP2009225104A (en) * 2008-03-17 2009-10-01 Toppan Printing Co Ltd Spherical surface acoustic wave element
JP2009225105A (en) * 2008-03-17 2009-10-01 Toppan Printing Co Ltd Spherical surface acoustic wave element

Also Published As

Publication number Publication date
JP5309900B2 (en) 2013-10-09

Similar Documents

Publication Publication Date Title
JP3974765B2 (en) Surface acoustic wave element, electric signal processing apparatus using surface acoustic wave element, and environment evaluation apparatus using electric signal processing apparatus
JP2006313092A (en) Surface acoustic wave sensor and surface acoustic wave sensor system
US7170213B2 (en) Surface acoustic wave element, electric signal processing apparatus using the surface acoustic wave element, environment evaluating apparatus using the electric signal processing apparatus, and analyzing method using the surface acoustic wave element
JP5310975B2 (en) Spherical surface acoustic wave sensor
JP5093593B2 (en) Spherical surface acoustic wave device
JP5309900B2 (en) Surface acoustic wave device
JP5157828B2 (en) Surface acoustic wave device
JP5141318B2 (en) Spherical surface acoustic wave device
JP4899743B2 (en) Spherical surface acoustic wave sensor
JP5332079B2 (en) Manufacturing method of spherical surface acoustic wave device
US11333631B2 (en) System, method and computer program product for measuring gas concentration
JP5310362B2 (en) Spherical surface acoustic wave device
RU2533692C1 (en) Multiplexer acoustic array for &#34;electronic nose&#34; and &#34;electronic tongue&#34; analytical instruments
JP2005351799A (en) Surface elastic wave element, biosensor device, and measuring method by surface elastic wave element
WO2005029701A1 (en) Surface acoustic wave element and environmental difference sensor using surface acoustic wave element
JP5482244B2 (en) Spherical surface acoustic wave device
JP2005094610A (en) Surface acoustic wave element and environmental difference detecting apparatus employing the same
JP4876562B2 (en) Spherical surface acoustic wave device
JP2005191650A (en) Surface acoustic wave element using langasite crystal and environment difference detector employing surface acoustic wave element
JP5470994B2 (en) Surface acoustic wave measuring device
JP2011196797A (en) Gas analyzer
JP2011122855A (en) Gas analyzer
JP4389552B2 (en) Acoustic wave element and environmental difference detection device using acoustic wave element
JP5109871B2 (en) Spherical surface acoustic wave device
JP2005315646A (en) Surface acoustic wave sensor and surface acoustic wave sensor system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130617

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees