JP2010098253A - 半導体基板、半導体基板の製造方法および半導体装置の製造方法 - Google Patents

半導体基板、半導体基板の製造方法および半導体装置の製造方法 Download PDF

Info

Publication number
JP2010098253A
JP2010098253A JP2008270059A JP2008270059A JP2010098253A JP 2010098253 A JP2010098253 A JP 2010098253A JP 2008270059 A JP2008270059 A JP 2008270059A JP 2008270059 A JP2008270059 A JP 2008270059A JP 2010098253 A JP2010098253 A JP 2010098253A
Authority
JP
Japan
Prior art keywords
semiconductor substrate
impurity
semiconductor
ingot
impurities
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008270059A
Other languages
English (en)
Inventor
Makoto Sasaki
信 佐々木
Makoto Harada
真 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2008270059A priority Critical patent/JP2010098253A/ja
Publication of JP2010098253A publication Critical patent/JP2010098253A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

【課題】半導体基板に半導体素子などを形成する際に半導体基板の位置合わせを高精度に行なうことが可能な半導体基板、当該半導体基板の製造方法および当該半導体基板を用いた半導体装置の製造方法を提供する。
【解決手段】半導体基板1の主表面上に半導体素子を形成する位置(角度)を高精度に制御するために(位置合わせを精密に行なえるようにするために)、半導体基板1の主表面上における結晶方位を正確に示す目印として用いるための積層欠陥2が備えられている。
【選択図】図1

Description

本発明は、半導体基板、半導体基板の製造方法および半導体装置の製造方法に関するものであり、より特定的には、半導体基板に半導体素子などを形成する際に半導体基板の位置合わせを高精度に行なうことが可能な半導体基板、当該半導体基板の製造方法および当該半導体基板を用いた半導体装置の製造方法に関する。
MOSFET(Metal Oxide Semiconductor Field Effect Transistor)などの半導体素子を半導体基板の一方の主表面上に形成する際には、たとえばフォトリソグラフィ技術を用いて所望のパターンを形成する。なお、ここでは主表面とは、表面のうち最も面積の大きい面をいうこととする。このとき、形成する半導体素子の電気的特性を向上させるためには、半導体素子を形成する半導体基板の結晶面、および半導体基板の結晶面上において半導体素子を形成する方向(たとえばチャネル領域の延在方向と半導体基板の所定の結晶方位とのなす角度)を最適化することが好ましい。たとえば以下の非特許文献1に示すように、6H−SiC(炭化珪素)の(11−20)面上に形成したMOSFETにおいて、<1−100>方向に沿った方向に流れるドレイン電流の値は、<0001>方向に沿った方向に流れるドレイン電流の値の約3倍となっている。このように、同一面上に半導体素子を形成する場合においても、結晶方位がキャリア(電子)の移動度に大きく影響を与えるため、基板の面上における半導体素子を配置する際の位置合わせ(角度の調整)を精密に行なうことが重要である。
通常、半導体基板の主表面上に半導体素子を形成する工程において、半導体素子を形成するための基板の位置合わせ(角度の調整)を精密に行なうために、半導体基板(ウェハ)の主表面の外周部の一部に形成したオリエンテーションフラット(以下、オリフラ(O.F.)とも言う)を用いる。図14は、第1オリフラと第2オリフラとを備える半導体基板を示す概略図である。図14に示すように、たとえばウェハなど、主表面の外周部が円形である基板4は、外周部に上述したオリエンテーションフラット(オリフラ)と呼ばれる、所定の結晶方位に沿った方向に延在する直線状の加工がなされた領域を備えている。たとえば図14に示す基板4の主表面が、6H−SiCの(0001)面である場合、第1オリフラ5が<11−20>方向に沿った方向、第2オリフラ6が<1−100>方向に沿った方向に形成されている。これらはそれぞれ、<11−20>方向、<1−100>方向を示す目印として、半導体素子を形成する際の位置合わせに用いられる。
Hiroshi YANO et al、「High Channel Mobility in Inversion Layer of SiC MOSFETs for Power Switching Transistors」、Jpn.J.Appl.Phys.、Vol.39、2000年、p.2008−2011
基板4の主表面上に半導体素子を形成する場合、特に上述したドレイン電流の値などの特性値は、基板を構成する結晶の所定の方位に対する半導体素子の配置によって大きな差が現れる。そのため、半導体素子の配置(所定の結晶方位に対する半導体素子の配置)の誤差が大きくなると、上述した特性値に影響を及ぼす可能性がある。このため、半導体素子を形成する際には、基板4の結晶方位の方向を示すオリフラを用いて、基板4の配置を精密に調整する(つまり、基板4における所定の結晶方位が、半導体製造装置の処理室内部における所定の方向に向くように、基板4の配置を調整する)。しかし実際は、SEMI(Semiconductor Equipment and Materials International)規格にて、第1オリフラ5については<11−20>方向に対して角度の誤差が±1°以内、第2オリフラ6については<1−100>方向に対して当該誤差が±5°以内となるように規定されている。この誤差は、半導体素子を形成する際の基板4の位置合わせに当該オリフラを用いる際に、結果的に基板4の配置(具体的には基板4の所定の結晶方位の向き)について大きな誤差の原因となる場合がある。すなわち、当該オリフラを用いて基板4の位置(所定の結晶方位の方向)を調整した上で、当該基板4の主表面上に半導体素子を形成した場合、基板4の位置を調整することにより設定する基板4の結晶方位(設計段階で想定した結晶方位)と、実際の結晶方位との角度の誤差が大きくなる場合がある。この場合、基板4の主表面に形成される半導体素子について、当該半導体素子の所定の構造の方向(たとえばチャネル領域の延在方向)が所定の結晶方位に沿うように形成しようとしても、当該所定の構造の方向と所定の結晶方位との角度の誤差が大きくなる。このため、形成される半導体素子の電気的特性などの信頼性が低下する場合があった。この結果、製造される半導体素子の電気的特性が所定の基準を満足せず、製品の歩留りが低下し、結果的に半導体素子の生産性の低下、ひいては製造コストの増大という問題が発生する可能性がある。
本発明は、上述した問題に鑑みなされたものであり、その目的は、半導体基板に半導体素子などを形成する際に半導体基板の位置合わせを高精度に行なうことが可能な半導体基板、当該半導体基板の製造方法および当該半導体基板を用いた半導体装置の製造方法を提供することである。
本発明における半導体基板は、半導体基板の表面の一部に目視可能な積層欠陥を形成するための不純物が導入された半導体基板である。あるいは、不純物が導入された半導体基板を加熱することにより、半導体基板の表面の一部に積層欠陥を備えた半導体基板である。
ここで、半導体基板の表面の一部(たとえば一方の主表面のうち、半導体素子を形成しない外周近傍の領域(縁部))から当該半導体基板の内部に、不純物を導入する。半導体基板を構成する結晶格子中に不純物を導入することにより、当該結晶格子には歪みが発生する。なお、このように不純物を導入したのみの状態では、不純物が結晶格子の内部に存在することに起因して結晶格子に発生した歪みを緩和するために結晶格子を構成する原子が移動したり、半導体基板の結晶格子が変形したりするためのエネルギーが十分ではないため、見かけ上は結晶構造の変形などはほとんど起こらない。しかし、当該不純物を導入した半導体基板を加熱することにより、不純物や結晶格子に運動エネルギーを与えると、不純物や結晶格子は半導体基板の内部にて安定に存在できる状態となるように移動・変形する。それゆえ、不純物が導入された領域の結晶格子は変形し、より安定な状態となる。結晶格子が変形した結果、結晶格子には積層欠陥と呼ばれる欠陥が形成される。この積層欠陥は、ある程度の大きさになると、当該基板が透明基板である場合などには目視で観察することができる。上述した積層欠陥は、目視で観察できる場合には線状構造として認識される。この線状構造として並ぶ目視可能な積層欠陥は、所定の結晶方位に沿って延在する構造として観察できる。たとえば、半導体基板として4H−SiC基板を用いた場合には、当該積層欠陥に対応する線状構造は<1−100>方向に沿った方向に延びるものとして観察される。つまり、上記積層欠陥による線状構造の延在する方向は、半導体基板の結晶格子における所定の結晶方位となっているため、従来の機械加工により形成されたオリエンテーションフラットなどよりも半導体基板の結晶格子における結晶方位を正確に示したものとなる。
このため、半導体基板の主表面上に半導体素子などを形成する際には、当該半導体基板の表面の一部(たとえば外周近傍の領域(縁部))に形成された積層欠陥による線状構造が延びる方向を目印に位置合わせ(半導体基板の角度の調整)を行なえば、所定の結晶方位の向きを正確に設定した状態で半導体基板を固定することができる。そのため、当該結晶方位を考慮して半導体素子の平面構造の向きを決定する(具体的には、半導体素子を形成するために用いるフォトリソグラフィ法におけるマスクの向きを、当該結晶方位に対して正確に決定する)ことができる。この結果、チャンネル領域などの素子構造の延在方向を所定の結晶方位に正確に合わせるように、高い位置精度で半導体素子を形成することができる。したがって、形成される半導体素子の電気的特性などの信頼性を高めることができる。したがって、半導体素子の電気的特性が不十分となるために半導体素子の製造歩留りが低下する、といった問題の発生を抑制できる。
本発明に係る半導体基板では、半導体基板を構成する材料の結晶構造は六方晶であり、積層欠陥による線状構造の延びる方向と、<11−20>方向または<1−100>方向とのなす角度は0.5°以下であることが好ましい。このようにすれば、半導体基板の主表面上に半導体素子などを形成する際に、当該半導体基板の表面の一部(たとえば外周近傍の領域(縁部))に形成された積層欠陥の線状構造が延びる方向を目印に半導体基板の位置合わせ(半導体基板の角度の調整)を行なえば、所望の配置となるように高い位置精度で半導体素子などを形成することができる。したがって、形成される半導体素子の電気的特性などの信頼性を確実に高めることができる。なお、上述した<11−20>方向または<1−100>方向は、従来の半導体基板に形成されるオリエンテーションフラットの結晶方位であり、このような結晶方位に沿って伸びる積層欠陥の線状構造を形成することで、従来の半導体基板の位置合わせのプロセスを、上述した線状構造を用いた半導体基板の位置合わせのプロセスへと容易に流用することが可能になる。また、上述した線状構造の延びる方向と上述した結晶方位とのなす角度の上限を0.5°としたのは、この程度であれば半導体素子の所定の構造を特定の結晶方位に合わせるときの誤差として十分許容できる値であり、形成される半導体素子の電気的特性の劣化を抑制できるからである。
本発明に係る半導体基板においては、積層欠陥の密度は1×10−1cm−1以上1×10cm−1以下であることが好ましい。半導体基板に半導体素子などを形成する際に目印として用いる当該積層欠陥を、目視で十分確認可能とするためには、上述した範囲内の線密度となるように積層欠陥が配置されていることが好ましい。積層欠陥が1×10−1cm−1以下の密度であれば、積層欠陥の数が少ないために線状構造が不鮮明となり、目視で十分に確認することが困難となる。また、積層欠陥が1×10cm−1以上の密度であっても、積層欠陥の数が多すぎて鮮明な積層欠陥の線状構造を目視で十分に確認することが難しく、半導体素子を形成する際の位置合わせには不適となる。
本発明に係る半導体基板において、不純物は、半導体基板の一方の主表面上の、外周部から0.5mm以上5mm以内の領域に導入されていることが好ましい。なお、上記事項は半導体基板(ウェハ)の主表面の直径に無関係に成立する。上述したように、不純物を導入した領域には加熱により積層欠陥が配置されるが、外周近傍の領域、すなわち特に外周部から0.5mm未満の領域には積層欠陥を形成しても目視で十分に確認できる程度の鮮明度を欠き、半導体素子を形成するための目印としての機能を十分に発揮し得ない。また、半導体基板の主表面のうち外周部から5mm以上の領域は、半導体基板の主表面の中心部分であり半導体素子を形成する領域である。したがって、この領域に積層欠陥を配置することは、半導体素子を形成する領域を狭めることになるため、半導体素子(半導体装置)の生産性を悪化させる可能性がある。以上により、不純物は、半導体基板の一方の主表面上の、外周部から0.5mm以上5mm以内の領域に導入されていることが好ましい。
本発明に係る半導体基板においては、不純物の濃度は、5×1018cm−3以上1×1021cm−3以下であることが好ましい。加熱により位置合わせのための目印としての機能を十分に発揮しうる程度に鮮明な積層欠陥を形成するためには、不純物を5×1018cm−3以上の密度となるように導入することが好ましい。また、不純物の濃度を1×1021cm−3以上となるように導入すると、過度の不純物導入により、半導体基板を構成する結晶格子の結晶性が劣化するとともに、加熱により顕在化する積層欠陥の密度が高くなりすぎてその線状構造の延在方向を正確に確認することが難しくなる。したがって、上述した密度の範囲内に納まるように不純物を導入することが好ましい。
また、当該半導体基板においては、半導体基板を構成する材料の結晶構造は六方晶であり、{0001}面の<11−20>方向または<1−100>方向におけるオフ角度が0.0001°以上90°以下であることが好ましい。当該積層欠陥は、たとえば(0001)面に代表されるような{0001}面の法線に沿った方向に関する段差を形成するように配置される場合がある。この場合、たとえ積層欠陥が形成されても、(0001)面に沿った方向にインゴットなどを切断することで形成された半導体基板においては、当該積層欠陥を目視にて確認することができない。しかし、(0001)面に対して、<11−20>方向または<1−100>方向に0.0001°以上90°以下だけオフ角方向に傾斜した半導体基板(いわゆるオフ角基板)では、上述した積層欠陥を目視で確認することが容易である。
以上に述べた本発明に係る半導体基板はSiCであり、導入する不純物はN、P、B、As、Al、Gaからなる群から選択された少なくとも1種を含む材質であることが好ましい。上述したようにSiC基板は特に、半導体素子を配置する位置(角度)に応じて、当該半導体素子に流れる電流の大きさが大きく変化する。すなわち、電流値がSiC基板の結晶方位に大きく依存する。このため、SiC基板の主表面上に半導体素子を形成する際には、基板に対して半導体素子を形成する位置合わせ(角度の調整)をより綿密に行なうことが好ましい。したがって、特にSiC基板に対して、上述した積層欠陥を位置合わせ時の目印として用いることが、形成される半導体素子の電気的特性などの信頼性を向上させるために有益である。また、積層欠陥を形成すためには、導入する不純物として上述したN(窒素)、P(リン)、B(ホウ素)、As(砒素)、Al(アルミニウム)、Ga(ガリウム)からなる群から選択された少なくとも1種を含む材質を用いることが好ましい。上述のような元素を用いるのは、これらの元素が導電性を制御するドーパントとして使われ、かつ大量にドープすることによって積層欠陥が入りやすいという理由による。
次に、上述した本発明に係る半導体基板の製造方法について、半導体基板を準備する工程と、半導体基板の表面の一部に、目視可能な積層欠陥を形成するための不純物を導入する工程とを備えることが好ましい。しかし上述したように、不純物を導入したのみの状態では、見かけ上は結晶構造の変形などはほとんど起こらない。このため、目視可能な積層欠陥を形成するためには、不純物を導入する工程の後に、半導体基板を加熱する工程をさらに備えることが好ましい。このようにすれば、目視可能な積層欠陥を形成することができる。
本発明に係る半導体基板は、必ずしも所望の厚みを有する半導体基板に対して不純物を導入したり加熱したりすることによってのみ形成され得るものではない。具体的には、たとえば半導体または半導体を含む素材からなるインゴットを準備する工程と、上記インゴットの表面の一部に、目視可能な積層欠陥を形成するための不純物を導入する工程と、上記インゴットを切断することにより半導体基板を準備する工程とを備えた製造方法を用いて当該半導体基板を製造してもよい。ここでインゴットとは、一定の厚みを有する半導体基板を形成するための塊状の材料であり、たとえば円柱状などの半導体材料である。
インゴットを切断(スライス)することにより、半導体ウェハなどの半導体基板を形成することができるが、半導体基板とするためにインゴットを切断する前に、インゴットに対して(インゴットの表面の一部に)積層欠陥を形成するための不純物を導入することができる。不純物を導入した上で、インゴットを切断することにより、不純物が部分的に導入された半導体基板を形成することができる。
なお、この場合についても、不純物を導入したのみの状態では、見かけ上は結晶構造の変形などはほとんど起こらない。このため、目視可能な積層欠陥を形成するためには、不純物を導入する工程の後に、インゴットを加熱する工程をさらに備えることが好ましい。インゴットを加熱して目視可能な積層欠陥を形成した上で、インゴットを切断することにより、目視可能な積層欠陥を含む半導体基板を形成することができる。なお、この積層欠陥を形成するために加熱する工程は、不純物を導入する工程を行なった後、インゴットを切断する工程を行なう前に実施してもよいし、インゴットを切断する工程を行なった後に実施してもよい。
上述したように、不純物を半導体基板またはインゴットの内部に導入した後、目視可能な積層欠陥を形成するために加熱する工程においては、加熱温度は500℃以上2400℃以下である(つまり、当該半導体基板またはインゴットを500℃以上2400℃以下の加熱温度に加熱する)ことが好ましい。半導体基板またはインゴットの内部に不純物を導入した際に、当該不純物が導入された領域における半導体の結晶格子に生じる歪みを緩和して積層欠陥を顕在化させる(目視可能な状態とする)ためには、500℃以上の温度に加熱することが好ましい。また、加熱温度の上限を2400℃としたのは、これ以上の温度に上げると、SiC基板または、インゴット表面からのSiCの昇華が激しくなるという理由による。
また、本発明に係る半導体基板の製造方法では、加熱する工程において、不純物を導入した領域では、積層欠陥が1×10−1cm−1以上1×10cm−1以下形成されることが好ましい。また、不純物を導入する工程では、不純物を導入した領域において、不純物濃度が5×1018cm−3以上1×1021cm−3以下となるように不純物を導入することが好ましい。また、半導体基板を構成する材料の結晶構造は六方晶であり、半導体基板は、{0001}面の<11−20>方向または<1−100>方向におけるオフ角度が0.0001°以上90°以下であることが好ましい。また、材質については、半導体基板はSiCからなり、不純物は、N、P、B、As、Al、Gaからなる群から選択された少なくとも1種を含むことが好ましい。
さらに、本発明に係る半導体基板の製造方法については、位置合わせの目印として用いる積層欠陥を形成するための不純物を導入する工程として、半導体基板の表面の一部またはインゴットの表面の一部にイオン注入を行なうこと(イオン注入法を用いること)が好ましい。あるいは、不純物を導入する工程として、半導体基板の表面の一部またはインゴットの表面の一部に不純物を熱拡散させる方法(熱拡散法)を用いてもよい。
ここでは不純物を導入する工程のうち前者をイオン注入法、後者を熱拡散法と呼ぶことにする。まずイオン注入法とは、物質のイオンを電界により加速し、たとえば半導体基板中に注入する方法である。この方法を用いることにより、所望の領域に所望の深さ、所望の濃度のイオンを注入することができる。一方、熱拡散法とは、加熱した拡散炉の内部にたとえば半導体基板を投入し、拡散炉の内部に供給された気体(あるいは半導体基板の不純物を導入したい領域に接触するように配置された不純物源の部材)に含まれる不純物を、半導体基板の表面から内部に拡散する方法である。熱拡散法を用いれば、イオン注入法を用いた場合よりも、不純物を導入した後の残留欠陥を比較的少なくし、安定したドーピングを行なうことができる。また、熱拡散法を用いることにより、イオン注入法を用いた場合よりも比較的容易に高濃度な不純物領域を得ることができる。
以上の手順により形成した目視可能な積層欠陥は、当該半導体基板の主表面上に半導体素子を形成する際の半導体基板の位置合わせ(角度の調整)に用いるものである。したがって、当該半導体基板の一方の主表面上に半導体素子を形成することにより半導体装置を形成する方法である半導体装置の製造方法は、上述した半導体基板の製造方法により(積層欠陥が目視可能な状態となるように)製造された半導体基板について、半導体基板に形成された積層欠陥を用いて半導体基板の位置合わせを行なう工程と、位置合わせを行なった半導体基板の一方の主表面に加工を行なう加工工程とを備える。
上述したように、当該半導体基板に形成する目視可能な積層欠陥がなす線状構造の延びる方向は、所定の結晶方位に沿った(たとえば<11−20>方向または<1−100>方向とのなす角度が0.5°以下となっている)ものである。したがって、半導体基板の配置を、半導体基板の所定の結晶方位が所定の方向へ向くように正確に決定することができる。そのため、当該結晶方位を考慮して半導体基板の主表面に対する加工を行なう(たとえば、半導体基板の主表面に半導体装置を形成するために用いるフォトリソグラフィ法におけるマスクの向きを、当該結晶方位に対して正確に決定する)ことができる。この結果、チャンネル領域などの半導体装置の素子構造の延在方向を所定の結晶方位に正確に合わせるように、高い位置精度で半導体装置を形成することができる。
本発明によれば、半導体基板に半導体素子などを形成する際に半導体基板の位置合わせを高精度に行なうことが可能な半導体基板、当該半導体基板の製造方法および半導体装置の製造方法を提供することができる。
以下、図面を参照しながら、本発明の実施の形態が説明される。なお、各実施の形態において、同一の機能を果たす部位には同一の参照符号が付されており、その説明は、特に必要がなければ、繰り返さない。
(実施の形態1)
図1は、本発明の実施の形態1に係る半導体基板の構成を示す概略図である。本発明の実施の形態1に係る半導体基板1は、結晶方位に応じて電気的特性が大きく変化する(電気的特性について結晶方位に関する異方性を有する)半導体材料を用いた基板である。このような半導体基板1の主表面上に半導体素子などを形成してダイシングによりチップを形成し、当該チップをサブマウントへ搭載する、といった工程を実施することによって半導体装置を製造する場合を考える。この場合、半導体基板1の主表面上に形成された半導体素子の所定の構造と結晶方位との位置関係(たとえばチャネル領域の延在方向と所定の結晶方位とのなす角度)によって、半導体素子の所定の構造を流れる電流値が大きく変化する。したがって、当該半導体基板1の主表面上に形成する半導体素子について、所定の構造と結晶方位との位置関係(角度)を高精度に制御するために(位置合わせを精密に行なえるようにするために)半導体基板1の位置決めを正確に行なう必要がある。このような半導体基板1の結晶方位を考慮した位置決めを行なうため、半導体基板1の主表面上における結晶方位を正確に示す目印が必要となる。このような目印として、半導体基板1の外周部に積層欠陥2が形成されている。積層欠陥2は、具体的には積層欠陥に起因する線状構造であり、目視で確認することが可能である。当該積層欠陥2(線状構造)は所定の結晶方位(たとえば半導体基板1が、結晶構造が六方晶である材料からなる場合の<1−100>方向)と平行に伸びるように形成されている。そのため、積層欠陥2の延在方向が、半導体基板1の結晶構造における所定の結晶方位を正確に示すものとして、当該積層欠陥2を目印に半導体基板1の位置合わせを行なうことができる。
本発明の実施の形態1に係る半導体基板1を用いた場合、主表面上に半導体素子などを形成する際に、目視可能な積層欠陥2(具体的には積層欠陥に起因する線状構造)を目印にしてあらかじめ半導体基板1の位置合わせを行なう。たとえば半導体基板1がSiCからなり、半導体素子のチャネル領域の延在方向が<11−20>方向に沿った方向となるように形成した場合に、当該チャネル領域に流れる電流値を最大にすることができると仮定する。この場合、半導体基板1において所定の結晶方位を示す積層欠陥2を目印に半導体基板1の角度を調整した上で、半導体基板1の主表面に半導体素子を形成する。このとき、半導体基板1については結晶方位の方向が正確に分かっているので、半導体素子のチャネル領域の延在方向を正確に<11−20>方向に沿った方向とすることが可能である。このようにすれば、形成される半導体素子のチャネル領域に流すことができる電流値を最大にすることができる。
上述したように、結晶方位に応じて電気的特性が大きく変化する半導体材料としてはたとえばSiC(炭化珪素)が挙げられる。したがって、図1に示す半導体基板1としては、たとえばSiC(炭化珪素)ウェハなどの、一定の厚みを有する平板状の基板を挙げることができる。なお、SiC以外に、たとえばGaN(窒化ガリウム)やAlN(窒化アルミ)で形成された半導体基板1に対して、図1と同様に積層欠陥2を形成しても、SiCの場合と同様の効果を奏する。
図1に示す積層欠陥2は、半導体基板1の内部に、不純物の原子を導入することにより形成される。当該不純物としては、たとえばN、P、B、As、Al、Gaからなる群から選択された少なくとも1種を含む材質を用いることが好ましい。これらの材質は、半導体材料の電気的特性を制御するための不純物としてしばしば用いられるものである。ただし、不純物を導入しただけでは、当該不純物や不純物が導入された領域の結晶格子は、安定な状態になるよう移動するだけのエネルギーを有さないため、移動することができない。したがって、不純物を導入しただけでは積層欠陥2は発生し得ない。そこで、上述した不純物が導入された半導体基板1を加熱する。このようにすれば、不純物および当該半導体の結晶格子が、半導体基板1の内部にて安定に存在できる状態となるように移動・変形する。その結果、不純物が導入された領域の結晶格子は変形することで、積層欠陥2が発生する。この積層欠陥2は、半導体基板1の主表面上における結晶方位を示す目印として利用するために形成するものであるため、半導体基板1の主表面のうち、半導体素子などを形成しない、主表面の外周部11の近傍の領域に形成することが好ましい。したがって、積層欠陥2の発生原因となる不純物は、図1に示すように、半導体基板1の一方の主表面上の、外周部11から0.5mm以上5mm以内の領域に導入されることが好ましい。
先述したように、外周部11から0.5mm未満の領域には積層欠陥2を形成することが構造上困難である。また、このような領域に積層欠陥2を形成しても目視で十分に確認できる程度の鮮明度を欠き、半導体基板1の主表面上に半導体素子を形成するための結晶方位を示す目印としての機能を十分に発揮し得ない。また、半導体基板1の主表面のうち外周部11から5mm以上の領域は、半導体基板1の主表面の中心部分であり半導体素子を形成する領域である。したがって、この領域に積層欠陥2を配置することは、半導体素子を形成する領域を狭めることになるため、半導体装置の生産性を悪化させる可能性がある。以上により、不純物は、半導体基板1の一方の主表面上の、外周部11から0.5mm以上5mm以内の領域に導入されていることが好ましい。なお、中でも特に、不純物は、半導体基板1の一方の主表面上の、外周部11から1mm以上3mm以内の領域に導入されていることがさらに好ましい。
上述したように、積層欠陥2は、半導体基板1を構成する半導体材料の結晶方位を示すために、半導体基板1の主表面に恣意的に形成するものである。半導体基板1を構成する結晶格子は、当該半導体基板1を構成する材料が六方晶である場合、所定の結晶方位に沿って(たとえば<11−20>方向や<1−100>方向などの結晶方位に沿って積層欠陥2が形成されやすい。以上の理由により、積層欠陥2は、所定の結晶方位(たとえば<11−20>方向や<1−100>方向などの結晶方位)に沿った方向に、線状構造として延びるように形成される。なお、積層欠陥2による線状構造の延びる方向と、<11−20>方向または<1−100>方向といった所定の結晶方位とのなす角度は0.5°以下であることが好ましい。すなわち、図1における積層欠陥2がなす線状構造の延びる方向と、<11−20>方向とのなす角度αが0.5°以下であることがさらに好ましい。なお、当該角度αは0.3°以下であることがさらに好ましい。
上述したように、たとえばSiCウェハなどの半導体基板の外周部に備えられた、半導体素子を形成する際の基板の位置合わせ(角度の調整)に用いるオリエンテーションフラットは、実際の結晶方位である<11−20>方向や<1−100>方向とのなす角度の誤差が±1°ないし±5°である。しかし、本発明に係る積層欠陥2は、上述したように積層欠陥2による線状構造の延びる方向と、<11−20>方向または<1−100>方向とのなす角度の誤差は0.5°以下である。したがって、半導体基板1の主表面上に半導体素子などを形成する際には、半導体基板1の角度の調整に積層欠陥2を用いて位置合わせ(角度の調整)を行なった方が、オリエンテーションフラットを用いて位置合わせ(角度の調整)を行なうよりも高い位置精度で半導体素子などを形成することができる。したがって、形成される半導体素子の電気的特性などの信頼性を高めることができる。
なお、図1に示す半導体基板1にて、積層欠陥2を形成するための不純物は、5×1018cm−3以上1×1021cm−3以下導入されていることが好ましい。半導体基板1の主表面上に半導体素子などを形成する際に、位置合わせのための目印としての機能を十分に発揮しうる程度に鮮明な積層欠陥2を形成するためには、不純物を5×1018cm−3以上の濃度となるように導入することが好ましい。また、不純物の濃度が1×1021cm−3以上となるように半導体基板1へ不純物を導入すると、加熱により顕在化する積層欠陥2の密度が高くなりすぎてその線状構造の延在方向を正確に確認することが難しくなる。したがって、上述した密度の範囲内に納まるように不純物を導入することが好ましい。なお、1×1019cm−3以上1×1020cm−3以下の濃度となるように不純物を導入することがさらに好ましい。
同様に、半導体基板1に形成される積層欠陥2が、位置合わせのための目印としての機能を十分に発揮し得るためには、積層欠陥の密度を1×10−1cm−1以上1×10cm−1以下とすることが好ましい。当該積層欠陥2を、目視で十分確認可能とするためには、上述した範囲内の線密度となるように積層欠陥2が配置されていることが好ましい。積層欠陥2が1×10−1cm−1以下の密度であれば、積層欠陥2の数が少ないためにこれらが連続することにより形成される線状構造が不鮮明となり、目視で十分に確認することが困難となる。また、積層欠陥2が1×10cm−1以上の密度であっても、積層欠陥2の数が多すぎて鮮明な積層欠陥2の線状構造を目視で十分に確認することが難しく、半導体素子を形成する際の位置合わせには不適となる。なお、上述した中でも、積層欠陥2の線密度は1×10cm−1以上1×10cm−1以下であることがさらに好ましい。
図2は、本発明の実施の形態1に係る半導体基板の主表面を示す概略図である。図2に示すように、たとえば半導体基板1を構成する半導体材料は、SiCのようにその結晶構造が六方晶10であり、半導体基板1(図1参照)は、{0001}面の<11−20>方向または<1−100>方向におけるオフ角度が0.0001°以上90°以下であるであることが好ましい。
当該積層欠陥2は、たとえば図2に示す六方晶10の(0001)面9など、{0001}面の主表面の法線に沿った方向である[0001]方向に関する段差を形成するように配置される。このため、たとえ積層欠陥2が配置されても、(0001)面9に沿った方向(図2の水平方向)に切断した面上においては、当該積層欠陥2を目視にて確認することができない。(0001)面9に沿った方向においては、[0001]方向のベクトル成分が存在しないためである。しかし、(0001)面に対して、オフ角方向としての<11−20>方向または<1−100>方向に0.0001°以上90°以下だけ傾斜した傾斜面8(図2においては<1−100>方向をオフ角方向としている傾斜面8)においては、(0001)面の法線である[0001]方向のベクトル成分が存在することになる。このため、上述した[0001]方向に関する段差を形成するように配置される積層欠陥2が存在する場合、当該傾斜面8においては、[0001]方向に沿った方向に存在する段差が目視により認識可能に存在し得ることになる。したがって、上述したようにオフ角方向に傾斜した傾斜面8を半導体基板1の主表面として用いることが好ましい。この場合、図2に示すように、(0001)面の法線方向である[0001]方向の法線ベクトル12と、傾斜面8の法線ベクトル13とのなす角βが上述したオフ角であり、βは0.0001°以上90°以下であることが好ましい。なお、(0001)面に対して、オフ角方向としての<11−20>方向または<1−100>方向に0.001°以上45°以下だけ傾斜した傾斜面8を半導体基板1の主表面として用いることがさらに好ましい。
次に、本発明の実施の形態1に係る半導体基板の製造方法について説明する。図3は、本発明の実施の形態1に係る半導体基板の製造方法を示すフローチャートである。図3のフローチャートに示すように、本発明による半導体基板の製造方法では、まず半導体基板を準備する工程(S10)を実施する。具体的には、たとえば従来周知の方法により得られた半導体のインゴットから、所望の材質、大きさ、形状を有するものとなるように半導体基板1となるべき板状体を切り出すことにより、上述した図1に示す半導体基板1を形成する工程である。ここで、インゴットを構成する材質は、結晶構造が六方晶である半導体、または当該半導体を含む素材であることが好ましい。具体的には当該半導体は、SiC、GaN、AlNなどを用いることができる。また、半導体として、SiCまたは、ウルツ鉱構造を有するGaNまたはAlNを用いることが好ましい。したがって、たとえばSiCからなる半導体基板1を形成したい場合は、半導体基板1を形成する材料としてのインゴットは、たとえばSiCからなるインゴットを用いることが好ましい。また同様に、たとえばGaNやAlNからなる半導体基板1を形成したい場合は、半導体基板1を形成する材料としてのインゴットは、たとえばGaNやAlNからなるインゴットを用いることが好ましい。
インゴットから所望の大きさ、形状の半導体基板1を切断する方法としては、たとえばワイヤソーを用いる方法がある。具体的には、1本のワイヤを2本ないし3〜4本のガイドロール間に張り、当該ガイドロール間にインゴットを置き、ワイヤを走行させて当該走行するワイヤによりインゴットを切断するという方法である。本加工に用いるワイヤは、たとえば炭素を0.8質量%以上0.9質量%以下含む、不純物が少ないピアノ線用線材を素材として用いることができる。これを冷間伸線加工を熱処理を2回繰り返し行ない、真鍮めっきをした後、最後にもう一度仕上げ伸線加工を行なうことによりワイヤを形成する。当該ワイヤを用いてインゴットを切断することにより、たとえばSiCやGaN、AlNからなる半導体基板1が形成される。
なお、インゴットを形成する材質の結晶構造である六方晶の、{0001}面の<11−20>方向または<1−100>方向におけるオフ角度が0.0001°以上90°以下である結晶面が主表面である傾斜面8(図2参照)となるように、インゴットから半導体基板1を切断することが好ましい。このようにすれば、上述したように、後に形成する積層欠陥を、半導体基板1の主表面にて目視可能とすることができる。
続いて不純物を導入する工程(S20)を実施する。これは具体的には、上述した目視可能な積層欠陥2(図1参照)を形成するための不純物を、半導体基板を準備する工程(S10)にて形成した半導体基板1(図1参照)の内部に導入する工程である。
図4は、本発明の実施の形態1において、半導体基板の内部に不純物を導入する工程(S20)を行なう態様を示す概略図である。図4に示す、一定の厚みを有するたとえばSiCウェハなどの半導体基板1の主表面において、外周近傍の領域、特に外周部11(図1参照)から0.5mm以上5mm以下の領域に対して、たとえば所望の不純物をイオン注入する。図4においてはイオン注入を行なっていることを、下向きの矢印で示している。このようにすれば、半導体基板1の内部のうち、主表面の外周部11から少なくとも0.5mm以上5mm以下の領域に対向する領域は、イオン注入により注入された不純物を含有することになる。なお、このような主表面の外周部11近傍の領域に選択的に不純物を注入するために、たとえば半導体基板1の主表面の中央部(外周部11からの距離が5mm以上となっている領域)上に酸化膜などのマスク層を形成するとともに、不純物を注入したい領域を露出した状態にして、半導体基板1の主表面に対してイオン注入を行なってもよい。このようにすれば、マスク層の平面形状によって、不純物を注入する領域の位置や平面形状を制御することができる。
ここで、イオン注入する不純物は、N、P、B、As、Al、Gaからなる群から選択された少なくとも1種を含むことが好ましい。また、不純物を導入した領域においては、不純物濃度が5×1018cm−3以上1×1021cm−3以下となるように不純物を導入することが好ましい。なお、不純物濃度が1×1019cm−3以上1×1020cm−3以下となるように不純物を導入することがさらに好ましい。
また、後述する積層欠陥を形成する工程(半導体基板を加熱する工程(S30))を行なった際に、半導体基板1のうち不純物を導入した領域において、積層欠陥2(図1参照)が1×10−1cm−1以上1×10cm−1以下形成されることが好ましい。積層欠陥2が上述した線密度の範囲で形成されると、複数の積層欠陥2がなす線状構造を、当該半導体基板1の主表面上に半導体素子などを形成する際に、半導体基板1の位置決めを行なう際に半導体基板1の結晶方位を示す目印として確実に利用できる。つまり、複数の積層欠陥2からなる目視可能な線状構造(積層欠陥に起因する構造)を十分に鮮明なものとすることができる。なお、上述した不純物濃度となるように不純物を導入することで、上記のような積層欠陥の密度範囲を実現することができる。
あるいは、不純物を導入する工程として、たとえば半導体基板1の表面の一部に不純物を熱拡散させる方法を用いてもよい。この方法は熱拡散法と呼ばれ、上述したように、イオン注入法を用いた場合よりも、不純物を導入した後の残留欠陥を比較的少なくし、安定したドーピングを行なうことができる。また、熱拡散法を用いることにより、イオン注入法を用いた場合よりも高濃度な不純物領域を得ることができる。
図5は、本発明の実施の形態1において、拡散炉の中で半導体基板に不純物を拡散導入する方法の態様を示す概略図である。図5に示すように、拡散炉14の内部に不純物を導入する対象である半導体基板1を配置する。なお、このとき半導体基板1の主表面においては、不純物を導入する領域(外周部近傍の領域)を露出させるとともに、主表面の中央部を覆うようにマスク層が形成されている。当該マスク層としては、任意の材料を用いることができるが、たとえばマスク層として酸化膜を用いることができる。また、マスク層として、半導体基板1の主表面の一部を覆うように、当該主表面上に所定の形状の別部材(マスク部材)を搭載してもよい。そして拡散炉14の内部に、半導体基板1の内部に導入する不純物を含有した雰囲気ガスを供給した状態で、拡散炉14の内部を加熱する。このようにすれば、加熱により半導体基板1の内部の雰囲気中に含まれた不純物を、半導体基板1の内部に導入することが可能となる。
なお、ここで拡散炉14の内部の雰囲気は、圧力を100Pa以上10MPa以下、より好ましくは50kPa以上1MPa以下とする。また、雰囲気の加熱条件としては500℃以上2400℃以下に加熱することが好ましく、その中でも、1000℃以上2200℃以下に加熱することがさらに好ましい。また、加熱時間は10分以上20時間以下、より好ましくは1時間以上10時間以下とすることができる。
あるいは、熱拡散法を用いて半導体基板1の内部に不純物を導入する態様として、以下のような方法を用いることもできる。図6は、本発明の実施の形態1において、不純物を含有する物体を接触させることにより半導体基板の内部に不純物を導入する方法の態様を示す概略図である。上述したように、半導体基板1の主表面の外周の近傍領域である縁部7(後述する図7参照)、特に外周部11から0.5mm以上5mm以下の領域に対して不純物を導入することが好ましい。この場合、半導体基板1の外周部11から0.5mmの箇所に外周が、そして半導体基板1の外周部11から5mmの箇所に内周が存在するように形成した、ドーナツ状の不純物含有物体15を準備する。図6に示すように、この不純物含有物体15のなす円形の中心を、半導体基板1の主表面のなす円形の中心にほぼ一致するように配置する。このようにすれば、半導体基板1の主表面の、外周部11から0.5mmの箇所に不純物含有物体15の主表面(半導体基板1の表面と対向する底面)がなす円形の外周が配置される。そして半導体基板1の主表面の、外周部11から5mmの箇所に不純物含有物体15の主表面がなす円形の内周が重なる状態とすることができる。不純物含有物体15としては、半導体基板1の内部に導入する不純物を含有する材料であれば任意の材料を用いることができるが、たとえば不純物含有物体15としてBN(窒化ホウ素)などを用いることができる。このようにすれば、半導体基板1の主表面上の、不純物を導入したい領域が、不純物含有物体15の主表面のなす円環状部分と接触することになる。
このように不純物含有物体15を、半導体基板1において半導体素子などを形成したい一方の主表面上に載置した状態で、不純物含有物体15および半導体基板1を加熱する。この加熱においては、加熱温度を100℃以上2400℃以下、より好ましくは500℃以上2000℃以下となるようにすることが好ましい。また、加熱時間を1分以上60分以下、より好ましくは1分以上10分以下とすることができる。すると、半導体基板1の主表面上の、不純物を導入したい領域の内部には、当該領域に接触している不純物含有物体15から、不純物含有物体15の内部に含有されている不純物が拡散することにより導入される。
なお、半導体基板1の内部に導入された当該不純物は、半導体基板1の内部にて熱拡散し、当初不純物が導入された領域よりも広い範囲に拡散することがある。したがって、不純物含有物体15の主表面をなす円環状部分は、不純物を導入したい領域よりも小さいことがより好ましい。具体的には、たとえば半導体基板1の主表面の、外周部11から1.5mmの箇所に不純物含有物体15の主表面がなす円形の外周が、そして半導体基板1の主表面の、外周部11から4mmの箇所に不純物含有物体15の主表面がなす円形の内周が重なるような大きさとなるように不純物含有物体15を形成することが好ましい。
以上の各方法により、半導体基板1の内部に不純物が導入され、たとえば加熱により積層欠陥2を目視可能な状態にする前段階の状態とすることができる。次に、半導体基板を加熱する工程(S30)を実施する。これは具体的には、先の不純物を導入する工程(S20)にて不純物が導入された領域において、目視可能な積層欠陥2(図1参照)を形成するために、半導体基板1を加熱する工程である。図7は、本発明の実施の形態1において、不純物を導入した半導体基板を加熱する態様を示す概略図である。図7に示すように、半導体基板1のうち特に、外周近傍の、不純物が導入された領域である縁部7を加熱することが好ましい。したがって、半導体基板1の全体を加熱してもよいし、半導体基板1のうち上述した縁部7のみを局所的に加熱してもよい。
上述したように、不純物を導入しただけでは目視可能な積層欠陥2は発生し得ないため、不純物が導入された半導体基板1を加熱し、半導体基板1中の原子の移動を容易にすることで、不純物の導入により結晶構造中に発生した歪みに起因する積層欠陥2を目視可能な状態に顕在化させる。このときの半導体基板1の加熱温度は500℃以上2400℃以下とすることが好ましい。目視可能な積層欠陥2(具体的には複数の積層欠陥2が集合した線状構造)を形成するために十分なエネルギーを与えるためには半導体基板1を500℃以上に加熱することが好ましい。また、半導体基板1の材料としてSiCやGaNを用いる場合、SiCの融点は2730℃、結晶構造がウルツ鉱構造であるGaNの融点が2500℃であるため、半導体基板1の加熱温度は2400℃以下とすることが好ましい。なお、結晶構造がウルツ鉱構造であるAlNの融点は2200℃であるため、上述した加熱温度を500℃以上2000℃以下としてもよく、また当該加熱温度をより好ましくは700℃以上1500℃以下の温度範囲に設定する。また、加熱時間を1分以上60分以下、より好ましくは1分以上10分以下としてもよい。
以上のように、半導体基板1のうち、特に不純物が導入された領域(縁部7)を、たとえばアルゴンやヘリウムなどの不活性元素からなる雰囲気中にて加熱することにより、縁部7には図1に示すような積層欠陥2が形成される。図8は、加熱により積層欠陥が形成された状態を示す概略図である。図8に示すように、半導体基板1の縁部7(図7参照)(不純物が導入された、外周部11(図1参照)から0.5mm以上5mm以下の領域)の主表面上には、複数個の積層欠陥が形成される。そして、これらの積層欠陥が複数個、線状構造を形成するように整列することにより、目視可能な積層欠陥2(積層欠陥による線状構造)が形成される。このような積層欠陥2が、図8に示すように複数本、ほぼ同一方向に延在するように形成される。なお、当該積層欠陥2は、たとえば<11−20>方向や<1−100>方向に沿った方向に、より具体的には<11−20>方向や<1−100>方向とのなす角度が0.5°以下となる方向に延在するように形成されることが好ましい。このようにすれば、当該目視可能な線状構造としての積層欠陥2を、たとえば<11−20>方向や<1−100>方向などの結晶方位を示す目印として有効に利用することができる。
図9は、積層欠陥が形成された半導体基板に、半導体素子などを形成する工程を示すフローチャートである。図9に示すように、本発明による半導体装置の製造方法では、まず位置合わせを行なう工程(S100)を実施する。これは具体的には、本発明の実施の形態1に係る、一方の主表面上にたとえば<11−20>方向または<1−100>方向などに沿って延在することが目視で確認できる線状構造(積層欠陥2)を形成した半導体基板1を、当該積層欠陥2の延在方向を利用して所定の結晶方位の向きを正確に規定した状態に固定する、といった工程である。このとき、たとえば<11−20>方向や<1−100>方向とのなす角度が0.5°以下である方向に延在することが目視で確認きる線状構造の積層欠陥2を用いることにより、半導体基板1の向きを、所定の結晶方位が特定の方向に沿った状態となるように高精度に制御できる。
なお、当該半導体基板1を構成する材料としては、結晶方位によって(キャリアの移動度に応じて)流すことができる電流の値が大きく変化する材料(たとえばSiCなど)を用いることができる。この場合、半導体基板1の主表面に形成する半導体素子のチャネル領域などが、電流値を最大にできる結晶方位に沿った方向に配置されるように、半導体素子を形成することが好ましい。具体的には、後述する加工工程(S200)において、たとえば半導体素子を形成するためのフォトリソグラフィ法を行なう場合に、当該フォトリソグラフィ法において用いるマスクについて、半導体基板1の結晶方位の向きを考慮してそのマスクの向きを決定することが好ましい。このようにすれば、半導体基板1の主表面上にて半導体素子などを形成する方向(角度)を、半導体基板1の結晶方位を考慮して正確に設定することができる。
そして、加工工程(S200)を行なう。具体的には、先の位置合わせを行なう工程(S100)にて半導体基板1の向きを所定の状態(所定の結晶方位が特定の方向に沿った状態)に正確に決定した上で、実際にたとえばフォトリソグラフィ技術を用いて、半導体基板1の主表面上に半導体素子などを形成する工程である。このとき、半導体基板1の主表面のうち外周近傍の領域、たとえば図7における縁部7など、半導体基板1の外周部11から0.5mm以上5mm以下の領域においては、積層欠陥2が形成されているため、半導体基板1の主表面のうち外周部11から5mm以上の領域、すなわち半導体基板1の主表面上において、積層欠陥2の形成されている領域より内周側の領域に、所望の半導体素子を形成することが好ましい。このようにすれば、不純物の導入によって積層欠陥が形成された領域とは別の領域(つまり積層欠陥が形成されておらず、結晶構造の乱れが相対的に少ない領域)に半導体素子を形成することができる。このため、上述した不純物の導入に影響されることなく、良好な特性の半導体素子を形成することができる。
また、たとえばMOSFETなどの半導体素子を形成する場合であって、チャネル領域の方向(チャネル方向)が<11−20>方向に沿った方向となるように当該半導体素子を形成したい場合には、上述のように半導体基板1の方向が正確に決定されていることから、チャネル方向が<11−20>方向とのなす角度を0.5°以下となるように半導体素子を形成することができる。なお、チャネル領域などの構造の延在方向と所定の結晶方位との間の0.5°以下の誤差は、半導体素子としての高い電気的特性を保つために十分と考えられるため、上述した方法により、位置精度が高く、特性の優れた半導体素子(半導体装置)を形成することができる。
(実施の形態2)
図10は、本発明の実施の形態2に係る半導体基板の製造方法を示すフローチャートである。上述した本発明の実施の形態1においては、最初にインゴットから半導体基板1としての形状を切断した上で、当該半導体基板1に不純物を導入し、加熱することにより、半導体基板1に積層欠陥2を形成する。これに対して本発明の実施の形態2のように、インゴットから半導体基板1としての形状を切断する前に当該インゴットに不純物を導入し、その後インゴットを切断して半導体基板1を得るようにしてもよい。すなわち本発明の実施の形態1と本発明の実施の形態2とは、工程の結果の形成物は同一であるが、工程の手順が異なる。
図10のフローチャートに示すように、本発明の実施の形態2においては、最初にインゴットを準備する工程(S11)を行なう。ここで準備されるインゴットは、本発明の実施の形態1の半導体基板を準備する工程(S10)にて半導体基板1を得るため切断するインゴットと同一であり、具体的にはたとえば半導体であるSiC、GaN、AlNまたはこれらを含む素材からなるインゴットであることが好ましい。また、ここでインゴットとしては、従来周知の任意の方法により得られたインゴットを用いることができる。また、インゴットの形状は円柱形状であってもよいが、他の形状であってもよい。
続いて不純物を導入する工程(S21)を実施する。これは具体的には、先のインゴットを準備する工程(S11)にて準備したインゴットの表面の一部に、目視可能な積層欠陥を形成するための不純物を導入する工程である。
図11は、イオン注入法を用いてインゴットの表面の一部に不純物を導入する態様を示す概略図である。図12は、不純物を含有する物体を接触させる熱拡散法を用いてインゴットの表面の一部に不純物を導入する態様を示す概略図である。図11に示すように、たとえば円柱形をなすインゴット3の表面(側面)の一部に、上述したイオン注入法を用いて不純物を導入する。すると、当該不純物は、インゴット3の曲面状の表面(側面)から、インゴット3の内部のある深さにまで分布した状態となる。
ここで、図11に示すインゴット3は上下方向が長軸方向であり、ここから半導体基板1を切断する際には図の左右方向(水平方向)に沿った方向に一定の厚みずつインゴット3を切断し、図11のインゴット3の上部に見える上面に対向する円形の主表面を有する半導体基板1を得る。したがって、インゴット3の曲面(側面)は、インゴット3を切断して形成した半導体基板1の主表面の外周端面をなす曲面に該当する。上述したように、不純物は、半導体基板1の主表面の外周から0.5mm以上5mm以下の領域に導入されることが好ましいため、インゴット3の外周の曲面から0.5mm以上5mm以下の深さに不純物が導入されることが好ましい。つまり、不純物の導入にイオン注入法を用いる場合、インゴット3の外周の曲面からイオン注入された不純物が、インゴット3の外周の曲面から0.5mm以上5mm以下の深さの領域に留まるように、注入する不純物(イオン)に与えるエネルギーを制御することが好ましい。
なお、イオン注入を行なう領域は、インゴット3の外周面全周であってもよいが、インゴット3の外周面の一部であってもよい。たとえば、図11のインゴット3の平坦な上部表面と下部表面との間をつなぐように、外周面の上方から下方へ伸びる帯状の領域に不純物を導入してもよい。
また、図12に示すように、たとえばインゴット3の外周の曲面に、内周面が接触するような構成である円筒形状の不純物含有物体16を接触させて、熱拡散法によりインゴット3の外周の曲面からインゴット3の内部に不純物を導入する方法を用いてもよい。まず、インゴット3の外周の曲面が当該開口部の内周面に接触するように、不純物含有物体16の開口部にインゴット3を挿入する。ここで不純物含有物体16はたとえばBNからなる固体状の物体であり、構成元素としてインゴット3の内部に導入したい不純物を含有することが好ましい。なお、不純物含有物体16の形状は、図12に示す円筒形状に限らず、インゴット3の外周面に接触しうる任意の形状を用いてもよい。また、不純物含有物体16は、インゴット3の外周面全体に接触する必要は無く、インゴット3の外周面のうち不純物を導入したい部分のみに接触するような形状としてもよい。
図12に示すように、不純物含有物体16の開口部にインゴット3を嵌合し、不純物含有物体16の内周面とインゴット3の外周面とを接触させた状態で、不純物含有物体16およびインゴット3を加熱する。この加熱においては、100℃以上2400℃以下、より好ましくは500℃以上2000℃以下となるようにすることが好ましい。また、加熱時間を1分以上60分以下、より好ましくは1分以上10分以下とすることができる。すると熱拡散により、不純物含有物体16から、インゴット3の外周面を介して、インゴット3の内部に不純物が拡散することにより導入される。ここで、インゴット3の外周面から0.5mm以上5mm以下の深さの領域に不純物が拡散するように、不純物含有物体16に含まれる不純物の濃度や、不純物含有物体16の加熱温度を制御することが好ましい。あるいは、本発明の実施の形態1にて説明した、拡散炉を用いた熱拡散法によりインゴット3の内部に不純物を導入してもよい。
次に、図10に示すように加熱する工程(S31)を行なう。具体的には、上記不純物を導入する工程(S21)にて不純物を導入したインゴット3を加熱することにより、インゴット3において目視可能な積層欠陥を形成する工程である。この加熱する工程(S31)のプロセス条件としては、たとえばアルゴンやヘリウムなどの不活性元素からなる雰囲気中にて、加熱温度を100℃以上2400℃以下、より好ましくは500℃以上2000℃以下とすることが好ましい。また、加熱時間を1分以上60分以下、より好ましくは1分以上10分以下とすることができる。
次に、インゴットを切断する工程(S41)を実施する。具体的には、たとえば上述したワイヤソーを用いてインゴット3を所望の厚みを有する半導体基板1となるよう切断する。以上の各工程を実施することにより、本発明の実施の形態2においても、本発明の実施の形態1と同様に、結晶方位に沿った方向に延在する線状構造の積層欠陥2を備えた半導体基板1を形成することができる。
なお、加熱する工程(S31)とインゴットを切断する工程(S41)とは順序を逆にし、インゴットを切断する工程(S41)を行なった後で加熱する工程(S31)を行ない、目視可能な積層欠陥2を形成してもよい。
本発明の実施の形態2は、以上に述べた各点についてのみ、本発明の実施の形態1と異なる。すなわち、本発明の実施の形態2について、上述しなかった構成や条件、手順や効果などは、全て本発明の実施の形態1に順ずる。
(実施の形態3)
図13は、本発明の実施の形態3に係る、半導体基板の製造方法の態様を示す概略図である。上述した本発明の実施の形態1においては、図4に示すように、半導体基板1の主表面に対してイオン注入することにより、半導体基板1の内部に不純物を導入している。これに対して図13に示すように、本発明の実施の形態3においては、半導体基板1の内部に不純物を導入する際にイオン注入法を用いているが、半導体基板1の外周部11(外周面)からイオン注入することにより半導体基板1の内部に不純物を導入している。このように半導体基板1の外周面から不純物を導入してもよい。
本発明の実施の形態3における、半導体基板の製造方法の手順は、図3に示すフローチャートにて説明することができる。ただし、上述したように、不純物を導入する工程(S20)において、半導体基板1の外周端面(外周部11)から半導体基板1の内部に不純物を導入する。具体的には図13に示すように、たとえばイオン注入法を用いる場合には、半導体基板1の外周面に向けて不純物をイオン注入する。なお、このとき半導体基板1を複数枚積層し、積層した半導体基板1の外周端面にイオン注入を行なうことによって、同時に複数の半導体基板1に対して不純物の導入を行なってもよい。
上述したように、不純物は、半導体基板1の主表面の外周から0.5mm以上5mm以下の領域に導入されることが好ましい。このため、図13に示すイオン注入法を用いる場合には、半導体基板の外周の曲面から0.5mm以上5mm以下に不純物が導入されるように、すなわち半導体基板1の外周の曲面からイオン注入された不純物は、半導体基板1の外周の曲面から0.5mm以上5mm以下の深さの領域に留まるよう、イオン注入する不純物に与えるエネルギーを制御することが好ましい。
また図示しないが、本発明の実施の形態3においても、熱拡散法を用いて半導体基板1の内部に不純物を導入してもよい。たとえば図13に示す半導体基板1の主表面の外周部11に、内周面が接触するような構成であるドーナツ状の不純物含有物体16(図12参照)を用いて、熱拡散法により半導体基板1の外周部11から半導体基板1の内部に不純物を導入する方法を用いてもよい。あるいは、本発明の実施の形態1にて説明した、拡散炉を用いた熱拡散法により半導体基板1の内部に不純物を導入してもよい。
本発明の実施の形態3は、以上に述べた各点についてのみ、本発明の実施の形態1と異なる。すなわち、本発明の実施の形態3について、上述しなかった構成や条件、手順や効果などは、全て本発明の実施の形態1に順ずる。
今回開示された各実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上述した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
本発明は、半導体基板に半導体素子などを形成する際に半導体基板の位置合わせを高精度に行なうことが可能とし、その結果、形成する半導体素子などの電気的特性を向上する技術として、特に優れている。
本発明の実施の形態1に係る半導体基板の構成を示す概略図である。 本発明の実施の形態1に係る半導体基板の主表面を示す概略図である。 本発明の実施の形態1に係る半導体基板の製造方法を示すフローチャートである。 本発明の実施の形態1において、半導体基板の内部に不純物を導入する工程(S20)を行なう態様を示す概略図である。 本発明の実施の形態1において、拡散炉の中で半導体基板に不純物を拡散導入する方法の態様を示す概略図である。 本発明の実施の形態1において、不純物を含有する物体を接触させることにより半導体基板の内部に不純物を導入する方法の態様を示す概略図である。 本発明の実施の形態1において、不純物を導入した半導体基板を加熱する態様を示す概略図である。 加熱により積層欠陥が形成された状態を示す概略図である。 積層欠陥が形成された半導体基板に、半導体素子などを形成する工程を示すフローチャートである。 本発明の実施の形態2に係る半導体基板の製造方法を示すフローチャートである。 イオン注入法を用いてインゴットの表面の一部に不純物を導入する態様を示す概略図である。 不純物を含有する物体を接触させる熱拡散法を用いてインゴットの表面の一部に不純物を導入する態様を示す概略図である。 本発明の実施の形態3に係る、半導体基板の製造方法の態様を示す概略図である。 第1オリフラと第2オリフラとを備える半導体基板を示す概略図である。
符号の説明
1 半導体基板、2 積層欠陥、3 インゴット、4 基板、5 第1オリフラ、6 第2オリフラ、7 縁部、8 傾斜面、9 (0001)面、10 六方晶、11 外周部、12,13 法線ベクトル、14 拡散炉、15,16 不純物含有物体。

Claims (22)

  1. 半導体基板の表面の一部に目視可能な積層欠陥を形成するための不純物が導入された、半導体基板。
  2. 前記半導体基板を加熱することにより形成された前記積層欠陥を、前記表面の一部に備えた、請求項1に記載の半導体基板。
  3. 前記半導体基板を構成する材料の結晶構造は六方晶であり、
    前記積層欠陥による線状構造の延びる方向と、<11−20>方向または<1−100>方向とのなす角度は0.5°以下である、請求項2に記載の半導体基板。
  4. 前記積層欠陥の密度は1×10−1cm−1以上1×10cm−1以下である、請求項2または3に記載の半導体基板。
  5. 前記不純物は、前記半導体基板の一方の主表面上の、外周部から0.5mm以上5mm以内の領域に導入された、請求項1〜4のいずれか1項に記載の半導体基板。
  6. 前記不純物の濃度は、5×1018cm−3以上1×1021cm−3以下である、請求項1〜5のいずれか1項に記載の半導体基板。
  7. 前記半導体基板を構成する材料の結晶構造は六方晶であり、
    {0001}面の<11−20>方向または<1−100>方向におけるオフ角度が0.0001°以上90°以下である、請求項1〜6のいずれか1項に記載の半導体基板。
  8. 前記半導体基板はSiCからなる、請求項1〜7のいずれか1項に記載の半導体基板。
  9. 前記不純物は、N、P、B、As、Al、Gaからなる群から選択された少なくとも1種を含む、請求項1〜8のいずれか1項に記載の半導体基板。
  10. 半導体基板を準備する工程と、
    前記半導体基板の表面の一部に、目視可能な積層欠陥を形成するための不純物を導入する工程とを備える、半導体基板の製造方法。
  11. 前記不純物を導入する工程の後に、前記半導体基板を加熱する工程をさらに備えた、請求項10に記載の半導体基板の製造方法。
  12. 半導体または半導体を含む素材からなるインゴットを準備する工程と、
    前記インゴットの表面の一部に、目視可能な積層欠陥を形成するための不純物を導入する工程と、
    前記インゴットを切断することにより半導体基板を準備する工程とを備えた、半導体基板の製造方法。
  13. 前記不純物を導入する工程の後に、前記インゴットを加熱する工程をさらに備えた、請求項12に記載の半導体基板の製造方法。
  14. 前記加熱する工程における加熱温度は500℃以上2400℃以下である、請求項11または13に記載の半導体基板の製造方法。
  15. 前記加熱する工程において、前記不純物を導入した領域では、前記積層欠陥が1×10−1cm−1以上1×10cm−1以下形成される、請求項11、13、14のいずれか1項に記載の半導体基板の製造方法。
  16. 前記不純物を導入する工程では、前記不純物を導入した領域において、不純物濃度が5×1018cm−3以上1×1021cm−3以下となるように前記不純物を導入する、請求項10〜15のいずれか1項に記載の半導体基板の製造方法。
  17. 前記半導体基板を準備する工程において準備する前記半導体基板を構成する材料の結晶構造は六方晶であり、前記半導体基板は、{0001}面の<11−20>方向または<1−100>方向におけるオフ角度が0.0001°以上90°以下である、請求項10〜16のいずれか1項に記載の半導体基板の製造方法。
  18. 前記半導体基板はSiCからなる、請求項10〜17のいずれか1項に記載の半導体基板の製造方法。
  19. 前記不純物は、N、P、B、As、Al、Gaからなる群から選択された少なくとも1種を含む、請求項10〜18のいずれか1項に記載された半導体基板の製造方法。
  20. 前記不純物を導入する工程として、前記半導体基板の表面の一部または前記インゴットの表面の一部にイオン注入を行なう、請求項10〜19のいずれか1項に記載の半導体基板の製造方法。
  21. 前記不純物を導入する工程として、前記半導体基板の表面の一部または前記インゴットの表面の一部に前記不純物を熱拡散させる、請求項項10〜19のいずれか1項に記載の半導体基板の製造方法。
  22. 請求項11、13〜15のいずれか1項に記載に半導体基板の製造方法により製造された前記半導体基板について、前記半導体基板に形成された前記積層欠陥を用いて前記半導体基板の位置合わせを行なう工程と、
    置合わせを行なった前記半導体基板の一方の主表面に加工を行なう加工工程とを備える、半導体装置の製造方法。
JP2008270059A 2008-10-20 2008-10-20 半導体基板、半導体基板の製造方法および半導体装置の製造方法 Withdrawn JP2010098253A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008270059A JP2010098253A (ja) 2008-10-20 2008-10-20 半導体基板、半導体基板の製造方法および半導体装置の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008270059A JP2010098253A (ja) 2008-10-20 2008-10-20 半導体基板、半導体基板の製造方法および半導体装置の製造方法

Publications (1)

Publication Number Publication Date
JP2010098253A true JP2010098253A (ja) 2010-04-30

Family

ID=42259710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008270059A Withdrawn JP2010098253A (ja) 2008-10-20 2008-10-20 半導体基板、半導体基板の製造方法および半導体装置の製造方法

Country Status (1)

Country Link
JP (1) JP2010098253A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018037560A (ja) * 2016-08-31 2018-03-08 富士電機株式会社 炭化珪素半導体基体、炭化珪素半導体基体の結晶軸合わせ方法および炭化珪素半導体装置の製造方法
CN108369893A (zh) * 2015-11-24 2018-08-03 住友电气工业株式会社 碳化硅单晶衬底、碳化硅外延衬底及制造碳化硅半导体器件的方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108369893A (zh) * 2015-11-24 2018-08-03 住友电气工业株式会社 碳化硅单晶衬底、碳化硅外延衬底及制造碳化硅半导体器件的方法
JP2018037560A (ja) * 2016-08-31 2018-03-08 富士電機株式会社 炭化珪素半導体基体、炭化珪素半導体基体の結晶軸合わせ方法および炭化珪素半導体装置の製造方法
JP7017021B2 (ja) 2016-08-31 2022-02-08 富士電機株式会社 炭化珪素半導体基体、炭化珪素半導体基体の結晶軸合わせ方法および炭化珪素半導体装置の製造方法

Similar Documents

Publication Publication Date Title
JP4971340B2 (ja) 炭化珪素半導体素子の製造方法
JP3854508B2 (ja) SiCウエハ、SiC半導体デバイス、およびSiCウエハの製造方法
JP5344037B2 (ja) 炭化珪素基板および半導体装置
CN108140563B (zh) 半导体元件用外延基板、半导体元件和半导体元件用外延基板的制造方法
WO2010119792A1 (ja) 基板、薄膜付き基板、半導体装置、および半導体装置の製造方法
JP4858325B2 (ja) SiCエピタキシャル成膜装置およびこのエピタキシャル成膜装置を用いるSiC半導体装置の製造方法
US20170236711A1 (en) Silicon-based substrate, semiconductor device, and method for manufacturing semiconductor device
JP2009088223A (ja) 炭化珪素半導体基板およびそれを用いた炭化珪素半導体装置
US20160189955A1 (en) Silicon carbide semiconductor substrate, method for manufacturing silicon carbide semiconductor substrate, and method for manufacturing silicon carbide semiconductor device
CA2581856A1 (en) Low micropipe 100 mm silicon carbide wafer
JP2008290898A (ja) 低抵抗率炭化珪素単結晶基板
JP2000319099A (ja) SiCウエハ、SiC半導体デバイス、および、SiCウエハの製造方法
JP2008074661A (ja) エピタキシャル炭化珪素単結晶基板及びその製造方法
US20110284871A1 (en) Silicon carbide substrate, semiconductor device, and method for manufacturing silicon carbide substrate
US9966249B2 (en) Silicon carbide semiconductor substrate and method for manufacturing same
US9818608B2 (en) Silicon carbide semiconductor substrate, method for manufacturing silicon carbide semiconductor substrate, and method for manufacturing silicon carbide semiconductor device where depression supression layer is formed on backside surface of base substrate opposite to main surface on which epitaxial layer is formed
US9070567B2 (en) Silicon carbide substrate and method of manufacturing silicon carbide substrate
JP5928335B2 (ja) 炭化珪素基板の製造方法および半導体装置の製造方法
CN112725893B (zh) 一种导电型碳化硅单晶及其制备方法
US20180096854A1 (en) Method for manufacturing silicon carbide epitaxial substrate, silicon carbide epitaxial substrate, method for manufacturing silicon carbide semiconductor device, and silicon carbide semiconductor device
US11094539B2 (en) Method for manufacturing nitride semiconductor substrate and nitride semiconductor substrate
JP5170859B2 (ja) 基板及びその製造方法
KR20110120335A (ko) 탄화규소 기판의 제조 방법
KR20180075524A (ko) 반도체 소자용 에피택셜 기판, 반도체 소자, 및 반도체 소자용 에피택셜 기판의 제조 방법
JP2010098253A (ja) 半導体基板、半導体基板の製造方法および半導体装置の製造方法

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20120110