JP2010096293A - Vacuum heat insulating material - Google Patents

Vacuum heat insulating material Download PDF

Info

Publication number
JP2010096293A
JP2010096293A JP2008268480A JP2008268480A JP2010096293A JP 2010096293 A JP2010096293 A JP 2010096293A JP 2008268480 A JP2008268480 A JP 2008268480A JP 2008268480 A JP2008268480 A JP 2008268480A JP 2010096293 A JP2010096293 A JP 2010096293A
Authority
JP
Japan
Prior art keywords
heat insulating
vacuum heat
insulating material
core material
sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008268480A
Other languages
Japanese (ja)
Other versions
JP5245710B2 (en
Inventor
Toshio Shinoki
俊雄 篠木
Kenro Mitsuta
憲朗 光田
Akira Shiragami
昭 白神
Shuichi Matsumoto
秀一 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2008268480A priority Critical patent/JP5245710B2/en
Publication of JP2010096293A publication Critical patent/JP2010096293A/en
Application granted granted Critical
Publication of JP5245710B2 publication Critical patent/JP5245710B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Thermal Insulation (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vacuum heat insulating material capable of enhancing heat insulating performance by a curved surface shape. <P>SOLUTION: The vacuum heat insulating material in a curved surface shape includes a core material made of a plurality of laminated fiber sheets, a sheet material covering the core material tightly with the inside decompressed, and slip sheets inserted between the fiber sheets, wherein the fiber sheets are separated in the plane direction to form a plurality of separate cores, and a shrink space surrounded by the separate cores and slip sheets or the sheath material is provided at the fiber sheets in at least part thereof. Thus, the difference in the circumferential length caused between the outside and inside when the vacuum heat insulation is processed into a roll shape is reduced, a heat insulating material free from wrinkles can be made, and the performance of the vacuum heat insulation is enhanced. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、非平面を持つ物体を断熱することができる真空断熱材に関するものである。   The present invention relates to a vacuum heat insulating material that can insulate an object having a non-planar surface.

従来の非平面を持つ冷熱機器を断熱することができる真空断熱材は、可撓性のある外被と充填物質とを具備し、充填物質は少なくとも二枚の板からなる連続気泡高分子フォームとし、滑りを有利にするために隣り合う一対の板の各々の間にプラスチックシートを差し挟んだ構成としている(例えば、特許文献1参照)。   A vacuum insulation material that can insulate a conventional non-planar refrigeration equipment comprises a flexible jacket and a filling material, and the filling material is an open-cell polymer foam composed of at least two plates. In order to facilitate sliding, a plastic sheet is sandwiched between each pair of adjacent plates (see, for example, Patent Document 1).

特表2004−502118号公報(2頁、請求項2)JP-T-2004-502118 (2 pages, claim 2)

従来の真空断熱材では、非平面として円筒状物体の曲面形状に沿って真空断熱材を曲げる場合、真空化する過程で、板状の高分子フォームを覆う外被が端部において、最初に円筒状物体の表面に固定されてしまうため、真空断熱材全体を円筒状物体の曲面形状の表面に沿って曲げることが困難になりフォームが多角形状になりやすい。そのため断熱性能の著しい低下を招くと共に、外被の破損等の原因となるという課題があった。   In the conventional vacuum heat insulating material, when the vacuum heat insulating material is bent along the curved surface shape of the cylindrical object as a non-planar surface, the outer cover covering the plate-like polymer foam is first cylindrical at the end in the process of evacuation. Therefore, it becomes difficult to bend the entire vacuum heat insulating material along the curved surface of the cylindrical object, and the foam tends to be polygonal. For this reason, there has been a problem that the heat insulation performance is significantly lowered and the outer casing is damaged.

この発明は、上記のような課題を解決するためにされたもので、真空断熱材を冷熱機器に取り付けた場合の断熱性能の向上と加工時の信頼性の向上を図ることを目的とする。   This invention was made in order to solve the above problems, and it aims at improving the heat insulation performance at the time of attaching a vacuum heat insulating material to a refrigeration equipment, and the reliability at the time of a process.

この発明に係る真空断熱材は、繊維シートからなる芯材と、繊維シートからなり一部に空間を有する分離芯材と、滑りシートとを具備し、前記芯材と前記分離芯材と前記滑りシートとを積層して構成された真空断熱材において、前記分離芯材の積層方向に対して垂直な面が少なくとも1つの前記滑りシートに面するようにしたものである。   The vacuum heat insulating material according to the present invention includes a core material made of a fiber sheet, a separation core material made of a fiber sheet and having a space in part, and a sliding sheet, and the core material, the separation core material, and the slip In the vacuum heat insulating material constituted by laminating sheets, a surface perpendicular to the laminating direction of the separation core material faces at least one sliding sheet.

この発明に係る真空断熱材では、非平面、例えば円筒状物体の曲面形状に沿って真空断熱材を曲げる場合、円筒状物体の中心から半径方向で異なる距離にある芯材の真空断熱材曲げ時に生じる周方向長さの違いを吸収することができるため、真空断熱材の折れが発生し難く、折れ部を通じた放熱が防止できる。さらに、曲面形状に沿った外被内面に折れシワが出来難く、冷熱機器と内面包装材の密着性が良くなる。加えて外被の破損等を防止することができる。   In the vacuum heat insulating material according to the present invention, when the vacuum heat insulating material is bent along a non-planar shape, for example, the curved surface shape of the cylindrical object, when the vacuum heat insulating material is bent at the core at a different distance in the radial direction from the center of the cylindrical object. Since the difference in the circumferential length that occurs can be absorbed, it is difficult for the vacuum heat insulating material to be broken, and heat dissipation through the folded portion can be prevented. Further, the inner surface of the outer casing along the curved surface is hardly folded and wrinkled, and the adhesion between the cooling / heating device and the inner surface packaging material is improved. In addition, damage to the jacket can be prevented.

実施の形態1.
図1は、この発明の実施の形態1における真空断熱材を示す断面図である。図2は、この発明の実施の形態1における真空断熱材が円筒形状の保温機器である円筒状物体11に巻きつけられた状態を示す断面図である。図において1枚もしくは積層された複数の繊維シートからなる芯材1と、同じく1枚もしくは積層された複数の繊維シートからなり第11構成部材2a、第12構成部材2b、第13構成部材2cにそれぞれ曲げ方向(すなわち円周に沿った方向。以下曲げ方向とのみ記載する)に対して垂直に分割され、第11構成部材2aと第12構成部材2bとの間、および第12構成部材2bと第13構成部材2cとの間にそれぞれ円筒状物体11の曲面形状に沿って密着保持する場合に内外周差を吸収するための空間として第1の伸縮空間3を有する第1の分離芯材2と、同じく1枚もしくは積層された複数の繊維シートからなり第21構成部材4a、第22構成部材4b、第23構成部材4cにそれぞれ曲げ方向に対して垂直に分割され、第21構成部材4aと第22構成部材4bとの間、および第22構成部材4bと第23構成部材4cとの間にはそれぞれ円筒状物体11の曲面形状に沿って密着保持する場合に内外周長差を吸収するための空間として第2の伸縮空間5を有する第2の分離芯材4とが設けられている。
Embodiment 1 FIG.
1 is a cross-sectional view showing a vacuum heat insulating material according to Embodiment 1 of the present invention. FIG. 2 is a cross-sectional view showing a state in which the vacuum heat insulating material according to Embodiment 1 of the present invention is wound around a cylindrical object 11 that is a cylindrical heat retaining device. In the figure, a core material 1 made of one or a plurality of laminated fiber sheets, and an eleventh component member 2a, a twelfth component member 2b, and a thirteenth component member 2c, also made of one or a plurality of laminated fiber sheets. Each is divided perpendicularly to the bending direction (ie, the direction along the circumference; hereinafter, only described as the bending direction), between the eleventh component member 2a and the twelfth component member 2b, and the twelfth component member 2b. A first separation core member 2 having a first expansion / contraction space 3 as a space for absorbing the difference between the inner and outer circumferences when it is held in close contact with the thirteenth constituent member 2c along the curved surface shape of the cylindrical object 11. And composed of a single fiber sheet or a plurality of laminated fiber sheets, divided into a twenty-first component member 4a, a twenty-second component member 4b, and a twenty-third component member 4c perpendicular to the bending direction, respectively. The inner and outer circumference length difference is maintained between the component member 4a and the twenty-second component member 4b, and between the twenty-second component member 4b and the twenty-third component member 4c, when they are held in close contact with each other along the curved surface shape of the cylindrical object 11. A second separation core member 4 having a second stretchable space 5 is provided as a space for absorbing water.

また、図において前記芯材1と前記第1の分離芯材2との間には、前記円筒状物体11の曲面形状に沿って密着保持させる場合に、芯材1と第1の分離芯材2との間の摩擦抵抗を減少させ、芯材1に対して前記第11構成部材2a、第12構成部材2b、第13構成部材2cが滑りやすくするための第1の滑りシート6と、第1の分離芯材2と前記第2の分離芯材4との間には、円筒状物体11の曲面形状に沿って密着保持させる場合に、第1の分離芯材2と第2の分離芯材4との間の摩擦抵抗を減少させ、第1の分離芯材2に対して前記第21構成部材4a、第22構成部材4b、第23構成部材4cが滑りやすくするための第2の滑りシート7と、円筒状物体11の曲面形状に沿って密着保持させる場合に、真空断熱材内部を真空に保つと共に外面を形成する外側外被材8と、同じく真空断熱材内部を真空に保つと共に被保温面側となる内面を形成する内側外被材9と、第2の分離芯材4と内側外被材9との間の摩擦抵抗を減少させ、内側外被材9に対して第21構成部材4a、第22構成部材4b、第23構成部材4cが滑りやすくするための外被滑りシート10とが設けられている。   In the figure, when the core material 1 and the first separation core material 2 are held in close contact with each other along the curved surface shape of the cylindrical object 11, the core material 1 and the first separation core material. A first sliding sheet 6 for reducing the frictional resistance between the first and second constituent members 2a, 2b, and 13c with respect to the core material 1; When the first separation core member 2 and the second separation core member 4 are held in close contact with each other along the curved surface shape of the cylindrical object 11, the first separation core member 2 and the second separation core member A second slip for reducing the frictional resistance with the material 4 and making the 21st component member 4a, the 22nd component member 4b, and the 23rd component member 4c slip easily with respect to the first separation core material 2. When the sheet 7 and the curved surface shape of the cylindrical object 11 are held in close contact with each other, the inside of the vacuum heat insulating material is kept in a vacuum. The outer covering material 8 that forms the outer surface together, the inner covering material 9 that forms the inner surface on the heat insulating surface side while keeping the inside of the vacuum heat insulating material in a vacuum, the second separation core material 4 and the inner covering An outer slip sheet 10 for reducing the frictional resistance with the material 9 and making the 21st component member 4a, the 22nd component member 4b, and the 23rd component member 4c slip easily with respect to the inner sheath material 9; Is provided.

次に、この発明の実施の形態1における真空断熱材の製造方法について説明する。例えば水と繊維を混合させ抄紙した後、乾燥させてシート化した繊維シート(繊維シートは一般的に使用され、既に知られていることから、ここでは繊維シート単体としての図示は省略する)を1枚もしくは複数枚重ねて必要なサイズに裁断し芯材1を製造する。同様な方法で、第1の分離芯材2および第2の分離芯材4を製造する。ここで、繊維シートは、例えばガラス素材や樹脂系素材がある。樹脂系素材の場合は、ポリエチレン、ポリプロピレン、ポリスチレン、ポリエチレンテレフタレートを含めたポリエステルなどがある。勿論、無機素材からなる無機繊維と樹脂系素材からなる樹脂系繊維の混合でもよい。   Next, the manufacturing method of the vacuum heat insulating material in Embodiment 1 of this invention is demonstrated. For example, a paper sheet made by mixing water and fibers, and then drying to form a sheet (the fiber sheet is generally used and already known, so the illustration of the fiber sheet alone is omitted here) The core material 1 is manufactured by cutting one sheet or a plurality of sheets into a required size. The first separation core material 2 and the second separation core material 4 are manufactured by the same method. Here, the fiber sheet includes, for example, a glass material and a resin material. In the case of a resin-based material, there are polyethylene, polypropylene, polystyrene, polyester including polyethylene terephthalate, and the like. Of course, a mixture of inorganic fibers made of an inorganic material and resin fibers made of a resin material may be used.

次に芯材1と第1の分離芯材2との間に、芯材1と第1の分離芯材2の全体をカバーする大きさで適当な大きさにカットされた第1の滑りシート6を設け、第1の分離芯材2と第2の分離芯材4との間に、第1の分離芯材2と第2の分離芯材4の全体をカバーする大きさで適当な大きさにカットされた第2の滑りシート7を設け、第2の分離芯材4を挟んで第2の滑りシート7と対峙する位置で第2の分離芯材4の全体をカバーする大きさで適当な大きさにカットされた外被滑りシート10を設け、これらが積層された状態で外側外被材8および内側外被材9で覆われている。なお、外側外被材8は芯材1を覆う位置に、内側外被材9は外被滑りシート10を覆う位置に設けられている。   Next, a first sliding sheet cut between the core material 1 and the first separated core material 2 to an appropriate size with a size that covers the entire core material 1 and the first separated core material 2. 6 and an appropriate size that covers the entire first and second separation cores 2 and 4 between the first and second separation cores 2 and 4. The second sliding sheet 7 that is cut to the right is provided, and the second separating core member 4 is covered with the second separating core member 4 at a position facing the second sliding sheet 7 with the second separating core member 4 interposed therebetween. An outer slip sheet 10 cut to an appropriate size is provided, and the outer cover member 8 and the inner cover member 9 are covered in a state where they are laminated. The outer covering material 8 is provided at a position covering the core material 1, and the inner covering material 9 is provided at a position covering the covering slip sheet 10.

なお、ここでは、第1の滑りシート6および第2の滑りシート7は第1の分離芯材2および第2の分離芯材4の全体をカバーする大きさであるが、芯材1と第1の分離芯材2および第1の分離芯材2と第2の分離芯材4それぞれの間に生じる摩擦を軽減でき、滑りやすくするための効果が達成できれば、特に大きさは規定しない。もちろん、第1の分離芯材2又は第2の分離芯材4より小さくても良い。   Here, the first sliding sheet 6 and the second sliding sheet 7 are sized to cover the whole of the first separation core material 2 and the second separation core material 4, but the core material 1 and the second The size is not particularly defined as long as the friction generated between each of the first separation core member 2 and the first separation core member 2 and the second separation core member 4 can be reduced and the effect of making it slippery can be achieved. Of course, it may be smaller than the first separation core material 2 or the second separation core material 4.

以上説明したように構成された真空断熱材を真空チャンバ内に入れる。次に、真空チャンバ内を減圧することにより、外側外被材8と内側外被材9で覆われた内部を減圧して真空状態にする。この場合の真空状態とは外側外被材8と内側外被材9で覆われた内部が、例えば0.1〜3Pa程度の真空圧になっている状態である。次に外側外被材8と内側外被材9を接着することで、外側外被材8と内側外被材9で覆われた内部を密閉し、真空チャンバ内の圧力を大気圧状態にまで戻す。これにより、真空断熱材は、内部を真空状態に保持され、外側外被材8と内側外被材9で覆われた内部は外部との圧力差による圧縮力を受ける。   The vacuum heat insulating material configured as described above is placed in the vacuum chamber. Next, by depressurizing the inside of the vacuum chamber, the inside covered with the outer covering material 8 and the inner covering material 9 is depressurized to be in a vacuum state. The vacuum state in this case is a state in which the inside covered with the outer jacket material 8 and the inner jacket material 9 is at a vacuum pressure of about 0.1 to 3 Pa, for example. Next, by bonding the outer covering material 8 and the inner covering material 9, the inside covered with the outer covering material 8 and the inner covering material 9 is sealed, and the pressure in the vacuum chamber is brought to atmospheric pressure. return. As a result, the vacuum heat insulating material is maintained in a vacuum state, and the inside covered with the outer jacket material 8 and the inner jacket material 9 receives a compressive force due to a pressure difference with the outside.

なお、長期真空下に置くことにより、前記芯材1、第1の分離芯材2等、第1の滑りシート6等、または外側外被材8等からガスが発生する場合とか、外部から気体が混入する場合とか、水分が混入する場合などが想定される場合には、必要に応じて外側外被材8と内側外被材9で覆われた内部に適切なガス吸着剤を挿入する場合もある。   It should be noted that the gas is generated from the core material 1, the first separation core material 2, the first sliding sheet 6, the outer jacket material 8, or the like by being placed in a vacuum for a long time, or from the outside. When an appropriate gas adsorbent is inserted into the interior covered with the outer jacket material 8 and the inner jacket material 9 as necessary There is also.

あらかじめ繊維シートに含有されている水分については、抄紙時の乾燥工程とは別に、裁断前後等に繊維シートを加熱しながら吸気するような工程を設けて、水分を除去してもよい。また、真空チャンバ内で減圧された状態で、真空チャンバ内を加熱するような機構を設けて、繊維自体に熱収縮や熱分解等の熱負荷が掛からない温度で、かつ真空放電等が誘発しない圧力など、適切な条件にて水分を除去してもよい。   The moisture contained in the fiber sheet in advance may be removed by providing a step of sucking while heating the fiber sheet before and after cutting, in addition to the drying step at the time of papermaking. In addition, a mechanism for heating the inside of the vacuum chamber is provided in a state where the pressure is reduced in the vacuum chamber, and the fiber itself is at a temperature at which a thermal load such as thermal contraction or thermal decomposition is not applied, and vacuum discharge or the like is not induced. Water may be removed under appropriate conditions such as pressure.

真空断熱材は、図1に示すような平板形状であれば比較的容易に製造可能である。しかし、例えば厚み8mmの真空断熱材を非平面であるφ400mm程度の円筒状物体11の曲面形状に沿って密着保持させる場合、真空断熱材の外面を形成する外側と真空断熱材の被保温面側となる内面とでは内外周長が約50mm異なる。そのため、特許文献1に記載された従来の真空断熱材では、平面形状の真空断熱材の両端部において、既に真空化によって外被と充填物質とが固定されており、円筒状物体11の曲面形状に沿って密着保持させる時すなわち曲げ加工時に、充填物質は内外周長差を吸収する空間を持たないため、充填物質は内面の外被と共に折れ曲がりシワになる。   The vacuum heat insulating material can be manufactured relatively easily if it has a flat plate shape as shown in FIG. However, for example, in the case where a vacuum heat insulating material having a thickness of 8 mm is closely held along the curved surface shape of the cylindrical object 11 having a non-planar diameter of about 400 mm, the outer side forming the outer surface of the vacuum heat insulating material and the heat insulating surface side of the vacuum heat insulating material The inner and outer peripheral lengths differ from the inner surface by about 50 mm. Therefore, in the conventional vacuum heat insulating material described in Patent Document 1, the outer cover and the filling material are already fixed by vacuuming at both ends of the flat vacuum heat insulating material, and the curved surface shape of the cylindrical object 11 Since the filling material does not have a space for absorbing the inner and outer circumference length difference when it is held in close contact with each other, that is, during bending, the filling material is bent together with the outer cover of the inner surface and becomes wrinkled.

そこで、この発明の実施の形態1における真空断熱材では、前記内外周長差に相当する長さの伸縮を吸収する空間を第1の分離芯材2および第2の分離芯材4に設け、それぞれ第1の伸縮空間3および第2の伸縮空間5とすることで、円筒状物体11の曲面形状に沿って密着保持させる時すなわち曲げ加工時に第1の分離芯材2の第11構成部材2a、第12構成部材2b、第13構成部材2cおよび第2の分離芯材4の第21構成部材4a、第22構成部材4b、第23構成部材4cが、第1の伸縮空間3および第2の伸縮空間5を埋める形で移動することで内外周長差から生じるシワを防止し、円筒状物体11の曲面形状に沿って隙間無く密着保持させることができる。ここで、第1の滑りシート6、第2の滑りシート7、および外被滑りシート10は、移動がスムーズに行えるよう各芯材間、及び芯材と外被材間の摩擦係数を減少させる役割を有する。   Then, in the vacuum heat insulating material in Embodiment 1 of this invention, the space which absorbs the expansion-contraction of the length equivalent to the said inner and outer periphery length difference is provided in the 1st separated core material 2 and the 2nd separated core material 4, By using the first stretchable space 3 and the second stretchable space 5 respectively, the eleventh component 2a of the first separation core member 2a is brought into close contact with the curved surface shape of the cylindrical object 11, that is, during bending. The twelfth component member 2b, the thirteenth component member 2c, and the twenty-first component member 4a, the twenty-second component member 4b, and the twenty-third component member 4c of the second separation core 4 are connected to the first telescopic space 3 and the second component. By moving so as to fill the expansion and contraction space 5, wrinkles caused by the difference between the inner and outer peripheral lengths can be prevented, and the cylindrical object 11 can be held tightly along the curved surface shape. Here, the first sliding sheet 6, the second sliding sheet 7, and the outer covering sliding sheet 10 reduce the friction coefficient between the core members and between the core member and the outer covering member so that the movement can be performed smoothly. Have a role.

ここで、この発明の実施の形態1における真空断熱材では、前記芯材1と外側外被材8との間には、滑りシート又は外被滑りシートを設けていないが、設ける構成をとっても同様な効果が得られることは明らかである。   Here, in the vacuum heat insulating material according to the first embodiment of the present invention, no sliding sheet or outer covering sheet is provided between the core material 1 and the outer outer covering material 8, but the configuration is also the same. It is clear that a good effect can be obtained.

上記効果を確認するために、厚み8mmの真空断熱材をφ400mm程度の円筒状物体11の曲面形状に沿って密着保持させる場合について製造試験を実施した。その結果、伸縮空間を設けない従来の真空断熱材では、内面に沿って高さ約3mm程度の凹凸が曲げ方向、すなわち周方向に約10mm間隔で生じていたのに対して、伸縮空間を設けた真空断熱材では、凹凸高さおよび間隔共に倍程度の改善が見られた。これにより、被保温面と真空断熱材内面との接触状態が改善され、保温性能においても倍程度の改善が確認できた。   In order to confirm the above effect, a manufacturing test was performed for a case where a vacuum heat insulating material having a thickness of 8 mm was held in close contact with the curved surface shape of the cylindrical object 11 having a diameter of about 400 mm. As a result, in the conventional vacuum heat insulating material that does not provide the expansion / contraction space, the unevenness of about 3 mm in height is generated along the inner surface at intervals of about 10 mm in the bending direction, that is, in the circumferential direction, whereas the expansion / contraction space is provided. In the vacuum heat insulating material, both the unevenness height and spacing were improved by about twice. Thereby, the contact state between the heat insulation surface and the inner surface of the vacuum heat insulating material was improved, and it was confirmed that the heat insulation performance was improved about twice.

さらに、滑りシートの効果を確認するために要素試験を実施した。3つの芯材を重ね合わせた状態で、上面から約1kgf/cm2の圧力を印加して、横から真ん中の芯材を引き抜くときの力を計測して最大静止摩擦係数μmaxを求めた。その結果、芯材のみではμmaxが0.6以上であったものが、各芯材間に滑りシート(ここではPET75μmシートを使用)を挿入することで、0.35程度に低減されることを確認した。よって、第1の分離芯材2の第11構成部材2a、第12構成部材2b、第13構成部材2cおよび第2の分離芯材4の第21構成部材4a、第22構成部材4b、第23構成部材4cが、第1の伸縮空間3および第2の伸縮空間5を埋める形で移動する場合の摩擦抵抗を軽減でき、よりシワが少なく保温効果に優れた真空断熱材を提供できる。   Furthermore, an element test was conducted to confirm the effect of the sliding sheet. In a state where the three core materials were superposed, a pressure of about 1 kgf / cm 2 was applied from the upper surface, and the force when the core material in the middle was pulled out from the side was measured to obtain the maximum static friction coefficient μmax. As a result, the core material alone having a μmax of 0.6 or more is reduced to about 0.35 by inserting a slip sheet (here, a PET 75 μm sheet) between the core materials. confirmed. Therefore, the eleventh component member 2a, the twelfth component member 2b, the thirteenth component member 2c of the first separation core member 2, the twenty-first component member 4a, the twenty-second component member 4b, and the twenty-third component of the second separation core member 4. Friction resistance when the component member 4c moves so as to fill the first stretchable space 3 and the second stretchable space 5 can be reduced, and a vacuum heat insulating material with less wrinkles and excellent heat retaining effect can be provided.

前記真空断熱材の製造方法では、抄紙法を用いた湿式法で繊維シート製造法を示したが、何もこれに限定されるものではなく、例えば、ガラス素材を用いた場合では遠心分離法、樹脂素材用いた場合では、スパンボンド法、メルトブロー法等の乾式シート製造法を用いても良い。   In the manufacturing method of the vacuum heat insulating material, a fiber sheet manufacturing method was shown by a wet method using a papermaking method, but nothing is limited thereto, for example, when a glass material is used, a centrifugal separation method, In the case of using a resin material, a dry sheet manufacturing method such as a spun bond method or a melt blow method may be used.

実施の形態2
図3は、この発明の実施の形態2における真空断熱材を示す断面図である。図4は、この発明の実施の形態2における真空断熱材が円筒形状の保温機器である円筒状物体11に巻きつけられた状態を示す断面図である。前記実施の形態1では、第1の分離芯材2と第2の分離芯材4を平面で重ね合わせた場合、第1の伸縮空間3と第2の伸縮空間5が重なる位置に設けられているが、この発明の実施の形態2における真空断熱材では、第1の伸縮空間3と第2の伸縮空間5が重なりあわない位置に設けられている。このような構成をとることにより、円筒状物体11の曲面形状に沿って密着保持させ場合、すなわち曲げ加工時に、第1の分離芯材2の第11構成部材2aと第12構成部材2bの継ぎ目と、第2の分離芯材4の第21構成部材4aと第22構成部材4bの継ぎ目、および、第1の分離芯材2の第12構成部材2bと第13構成部材2cの継ぎ目と、第2の分離芯材4の第22構成部材4bと第23構成部材4cの継ぎ目の継ぎ目とが一致しなくなり、折れ曲がりシワが特定の場所に集中しない。
Embodiment 2
FIG. 3 is a cross-sectional view showing a vacuum heat insulating material in Embodiment 2 of the present invention. FIG. 4 is a cross-sectional view showing a state in which the vacuum heat insulating material in Embodiment 2 of the present invention is wound around a cylindrical object 11 that is a cylindrical heat insulating device. In the first embodiment, when the first separation core member 2 and the second separation core member 4 are overlapped on a plane, the first stretchable space 3 and the second stretchable space 5 are provided at the overlapping positions. However, in the vacuum heat insulating material in Embodiment 2 of this invention, the 1st expansion-contraction space 3 and the 2nd expansion-contraction space 5 are provided in the position which does not overlap. By adopting such a configuration, when the cylindrical object 11 is closely held along the curved surface shape, that is, at the time of bending, the seam between the eleventh component member 2a and the twelfth component member 2b of the first separation core member 2 is used. A seam of the 21st component member 4a and the 22nd component member 4b of the second separation core member 4, a seam of the twelfth component member 2b and the 13th component member 2c of the first separation core member 2, The seam of the 22nd component member 4b and the 23rd component member 4c of the second separation core member 4 does not coincide with each other, and bending wrinkles do not concentrate at a specific place.

また、真空化時の積層方向の圧縮力により、この発明の実施の形態1で示したように、第1の伸縮空間3と第2の伸縮空間5が重なる場合には、その位置に生じた大きな空間がつぶれることで、1箇所に大きな歪が発生するが、この発明の実施の形態2で示したように、第1の伸縮空間3と第2の伸縮空間5が重ならない場合には、そのような大きな空間が生じることが無くなり、さらに、第1の伸縮空間3は、芯材1と第2の分離芯材4の第21構成部材4a、第22構成部材4b、又は第23構成部材4cに囲まれる構成をとることで、上下をこれらの芯材で保護される結果となり、折れ曲がりシワの凹凸高さに更なる改善が見られ、その結果、被保温面と真空断熱材内面との接触状態がより改善され、より高い保温性能が得られる。   Further, as shown in the first embodiment of the present invention, when the first stretchable space 3 and the second stretchable space 5 overlap each other due to the compressive force in the stacking direction at the time of evacuation, it occurs at that position. When the large space is crushed, a large distortion occurs in one place. As shown in the second embodiment of the present invention, when the first stretchable space 3 and the second stretchable space 5 do not overlap, Such a large space is not generated, and further, the first stretchable space 3 includes the 21st component member 4a, the 22nd component member 4b, or the 23rd component member of the core material 1 and the second separation core material 4. By adopting the configuration surrounded by 4c, the result is that the upper and lower sides are protected by these core materials, and further improvement is seen in the uneven height of the bent wrinkles. As a result, the heat insulation surface and the vacuum heat insulating material inner surface The contact state is further improved, and higher heat retention performance is obtained.

実施の形態3
図5は、この発明の実施の形態3における真空断熱材を示す断面図である。図6は、この発明の実施の形態3における真空断熱材が円筒形状の保温機器である円筒状物体11に巻きつけられた状態を示す断面図である。前記実施の形態1では、真空断熱材を円筒形状の保温機器である円筒状物体11に巻きつける際に生じる内外周長差を吸収するために、第1の分離芯材2に第1の伸縮空間3を設け、第2の分離芯材4に第2の伸縮空間5を設けていたが、第1の伸縮空間3の代わりとなる伸縮領域として、第1の分離芯材2に比べ低密度で低弾性の繊維シートからなる第1の伸縮芯材12、第2の伸縮空間5の代わりとなる伸縮領域として、第2の分離芯材4に比べ低密度で低弾性の繊維シートからなる第2の伸縮芯材13をそれぞれ設けることにより、上記課題の解決が図れると共に、前記実施の形態1と比較して部品点数を減少することができ、製造が容易になるという効果を有する。
Embodiment 3
FIG. 5 is a cross-sectional view showing a vacuum heat insulating material in Embodiment 3 of the present invention. FIG. 6 is a cross-sectional view showing a state in which the vacuum heat insulating material in Embodiment 3 of the present invention is wound around a cylindrical object 11 that is a cylindrical heat insulating device. In the first embodiment, in order to absorb the difference between the inner and outer peripheral lengths generated when the vacuum heat insulating material is wound around the cylindrical object 11 which is a cylindrical heat retaining device, the first separation core member 2 is subjected to the first expansion and contraction. Although the space 3 is provided and the second stretchable space 5 is provided in the second separation core material 4, the density is low as compared with the first separation core material 2 as a stretchable region instead of the first stretchable space 3. The first stretchable core member 12 made of a low elastic fiber sheet and the stretchable region that takes the place of the second stretchable space 5 have a lower density and a lower elastic fiber sheet than the second separation core member 4. By providing each of the two stretchable core members 13, the above-described problems can be solved, and the number of parts can be reduced as compared with the first embodiment, which makes it easy to manufacture.

前記伸縮芯材は、例えば乾式製造法を用いた場合には、繊維シートの作製時に繊維密度差をつけることによって容易に設けることができる。また、伸縮芯材が空間を有しないことから、真空化時に積層方向の圧縮力により第1の伸縮空間3または第2の伸縮空間5がつぶれるようなことが無くなり、補強効果が得られる。そのため、歪を抑制し、より信頼性のある真空断熱材を製造できる。   For example, when a dry manufacturing method is used, the stretchable core material can be easily provided by providing a fiber density difference at the time of producing a fiber sheet. In addition, since the stretchable core member does not have a space, the first stretchable space 3 or the second stretchable space 5 is not crushed by the compressive force in the stacking direction when evacuated, and a reinforcing effect is obtained. Therefore, distortion can be suppressed and a more reliable vacuum heat insulating material can be manufactured.

なお、この発明の実施の形態3では、各分離芯材に対して、それぞれ伸縮芯材を2箇所に設けたが、2箇所に限られたわけではなく円筒状物体11の直径、繊維シートの材質、分離芯材の厚み等に対応し、何箇所設けてもよく、場合によっては分離芯材を設けず、全体を圧縮張度の強い伸縮芯材で構成しても良い。   In Embodiment 3 of the present invention, each of the separation cores is provided with two stretchable cores. However, the number of stretchable cores is not limited to two, but the diameter of the cylindrical object 11 and the material of the fiber sheet. Depending on the thickness of the separation core, etc., any number of locations may be provided. In some cases, the separation core is not provided, and the whole may be composed of a stretch core having a high compression tension.

実施の形態4.
図7は、この発明の実施の形態4における真空断熱材を示す断面図である。前記実施の形態1では、前記芯材1と前記第1の分離芯材2との間、第1の分離芯材2と前記第2の分離芯材4との間、および第2の分離芯材4と前記内側外被材9との間には、それぞれ摩擦抵抗を減少させ、滑りやすくするための第1の滑りシート6、第2の滑りシート7、および外被滑りシート10とが各1枚ずつ設けられているが、より摩擦抵抗を減少させ、滑りやすくするためにこれらのシートを必要な部分について2枚重ねで構成しても良い。
Embodiment 4 FIG.
FIG. 7 is a cross-sectional view showing a vacuum heat insulating material in Embodiment 4 of the present invention. In the first embodiment, between the core material 1 and the first separation core material 2, between the first separation core material 2 and the second separation core material 4, and the second separation core. Between the material 4 and the inner covering material 9, there are a first sliding sheet 6, a second sliding sheet 7, and an outer covering sheet 10 for reducing frictional resistance and making them slippery. Each sheet is provided one by one, but these sheets may be formed by overlapping two sheets on necessary portions in order to further reduce the frictional resistance and make it easier to slip.

図7では、第1の分離芯材2および第2の分離芯材4にそれぞれ対応して設けられた第1の分割滑りシート14および第2の分割滑りシート15は、各構成部材に対応して設けられており、各構成部材が重なる部分および第1の分離芯材2の各構成部材と芯材1または第2の分離芯材4の各構成部材と内側外被材9とがそれぞれ重なる部分に2枚重ねの構成としているが、この構成に限られない。   In FIG. 7, the first divided sliding sheet 14 and the second divided sliding sheet 15 provided corresponding to the first separation core material 2 and the second separation core material 4 respectively correspond to the respective constituent members. The portions where the respective constituent members overlap, the respective constituent members of the first separation core member 2, the respective constituent members of the core member 1 or the second separation core member 4, and the inner covering member 9 respectively overlap. Although it is set as the structure of two sheets piled up in a part, it is not restricted to this structure.

また、第2の分離芯材4と内側外被材9との間に設けられた第2の分割滑りシート15は第2の滑りシート7と同様な素材で構成されていても、外被滑りシート10と同様な素材で構成されていても良い。もちろん、第2の滑りシート7と外被滑りシート10が同一の素材又は同一の性質を有してもかまわない。   Even if the second split sliding sheet 15 provided between the second separation core member 4 and the inner covering member 9 is made of the same material as that of the second sliding sheet 7, You may be comprised with the raw material similar to the sheet | seat 10. FIG. Of course, the second sliding sheet 7 and the outer covering sliding sheet 10 may have the same material or the same properties.

この発明の実施の形態4における真空断熱材は、滑りシート同士の摩擦力と、滑りシートと分離芯材との摩擦力の差から、より分離芯材を移動しやすくするもので、円筒状物体11の曲面形状に沿って密着保持させる時すなわち曲げ加工時に、分割滑りシートにより挟持された各構成部材が、これらの分割滑りシートと一体となって移動する際、これらの分割滑りシートに面する他の滑りシートとの接触面でより少ない摩擦抵抗を得ている。   The vacuum heat insulating material according to the fourth embodiment of the present invention makes the separation core material easier to move from the difference between the friction force between the sliding sheets and the friction force between the sliding sheet and the separation core material. When the component members sandwiched by the divided sliding sheets move together with the divided sliding sheets when they are held in close contact with each other along the curved surface shape, that is, during bending, they face these divided sliding sheets. Less frictional resistance is obtained at the contact surface with other sliding sheets.

なお、分割滑りシートと分割滑りシートに面する他の滑りシートとの間に潤滑手段を設けることで滑りシート同士の摩擦力をより低減できる。図9から図12は分割滑りシートと分割滑りシートに面する他の滑りシートとの間に潤滑手段を設けた場合を模式的に表した図である。そのうち図9は潤滑手段として球形粒子を挿入した場合を模式的に表した図である。この球形粒子としては、例えば、ガラス球、セラミックス球、シリカ球またはアクリル球などがある。図10は潤滑手段として薄膜片を挿入した場合を模式的に表した図である。この薄膜片としては、例えば、人工または天然マイカ片などがある。図11は潤滑手段として接合面に低摩擦物質を塗付した場合を模式的に表した図である。この塗付剤としては、例えば、シリカ系およびフッ素系樹脂の離型剤などがある。図12は潤滑手段として円柱形のコロを挿入した場合を模式的に表した図である。この円柱形のコロ剤としては、例えば、ガラス、セラミックスのほか、ポリスチレン、ポリエチレンテレフタレート、ポリプロピレン等の樹脂系の繊維がある。これらの潤滑手段は例示であり、これ以外にも滑りシート同士の摩擦力を低減できる潤滑手段は多数あり、これらに限定したものではない。   In addition, the frictional force between the sliding sheets can be further reduced by providing a lubricating means between the divided sliding sheet and another sliding sheet facing the divided sliding sheet. 9 to 12 are diagrams schematically showing a case where a lubricating means is provided between the divided sliding sheet and another sliding sheet facing the divided sliding sheet. FIG. 9 schematically shows a case where spherical particles are inserted as a lubricating means. Examples of the spherical particles include glass spheres, ceramic spheres, silica spheres, and acrylic spheres. FIG. 10 is a diagram schematically showing a case where a thin film piece is inserted as a lubricating means. Examples of the thin film pieces include artificial or natural mica pieces. FIG. 11 is a diagram schematically showing a case where a low friction material is applied to the joint surface as a lubricating means. Examples of the coating agent include silica-based and fluorine-based resin release agents. FIG. 12 is a diagram schematically showing a case where a cylindrical roller is inserted as the lubricating means. Examples of the cylindrical roller agent include resin fibers such as polystyrene, polyethylene terephthalate, and polypropylene, in addition to glass and ceramics. These lubrication means are examples, and there are many other lubrication means that can reduce the frictional force between the sliding sheets, and the present invention is not limited to these.

ここで、前記要素試験と同じ手法で、潤滑手段を用いない場合と特定の潤滑手段を用いた場合の2枚重ねの滑りシートの最大静止摩擦係数を測定した結果を表1に示す。   Here, Table 1 shows the results of measuring the maximum static friction coefficient of the two-layered sliding sheets when the lubrication means is not used and when the specific lubrication means is used by the same method as the element test.

Figure 2010096293
Figure 2010096293


表1からも明らかなように、各芯材間に滑りシートを1枚だけ挿入したときの最大静止摩擦係数0.35(μmax)程度と比較して、滑りシートを2枚重ねとした場合には、最大静止摩擦係数0.16(μmax)と半分以下にすることができ、さらに、適切な潤滑手段を設けることにより、最大静止摩擦係数をさらに半分程度にまで低減することができる。但し、これらの実験値は条件等により変動することは自明である。また、潤滑手段として球状粒子等の微粉末成分を用いる場合、真空化時に真空ポンプへの吸引等による微粉末成分の飛散が考えられる。そのため、飛散防止対策および量産化時のメンテナンス等への対策が必要である。

As can be seen from Table 1, when the sliding sheet is doubled as compared with the maximum static friction coefficient of about 0.35 (μmax) when only one sliding sheet is inserted between the cores. Can be reduced to half the maximum static friction coefficient of 0.16 (μmax), and the maximum static friction coefficient can be further reduced to about half by providing an appropriate lubricating means. However, it is obvious that these experimental values vary depending on conditions. In addition, when a fine powder component such as spherical particles is used as a lubricating means, it is possible that the fine powder component is scattered by suction to a vacuum pump or the like during vacuuming. For this reason, it is necessary to take measures to prevent scattering and to maintain the mass production.

前記測定結果を受けて、潤滑手段として接合面に低摩擦物質を塗付する方法である片面離型剤付のシート用いて、前記実施の形態1と同様の製造試験を実施した。その結果、折れ曲がりシワおよび凹凸が殆ど無くなり、被保温面と真空断熱材内面との接触状態がより改善され、平面形状の真空断熱材そのものが有する保温性能に近いより高い保温性能が得られた。つまり、潤滑手段として離型剤を用いた2枚重ねの滑りシートが、曲げ加工時に予め設けた伸縮空間を埋めるように分離芯材の各構成部材をより滑らかに移動させたことで、真空断熱材を円筒状物体11の曲面形状に沿って密着保持する場合に生じる内外周長差がより適切に吸収できたことにより、折れ曲がりシワおよび凹凸が無くなり、これらから発生する熱損失が殆ど無くなった結果による。   In response to the measurement result, a manufacturing test similar to that of the first embodiment was carried out using a sheet with a single-sided release agent, which is a method of applying a low friction material to the joint surface as a lubricating means. As a result, bending wrinkles and irregularities were almost eliminated, the contact state between the heat-insulated surface and the inner surface of the vacuum heat insulating material was further improved, and a higher heat retaining performance close to the heat retaining performance possessed by the planar vacuum heat insulating material itself was obtained. In other words, the two-layer sliding sheet using a release agent as a lubrication means moves each component member of the separation core material more smoothly so as to fill the expansion / contraction space provided in advance during the bending process. As a result that the inner and outer peripheral length differences generated when the material is held in close contact with the curved surface shape of the cylindrical object 11 can be more appropriately absorbed, bending wrinkles and irregularities are eliminated, and heat loss generated from these is almost eliminated. by.

なお、この発明の実施の形態4における真空断熱材では、前記実施の形態1に対して各滑りシートを2枚重ねとする構成としているが、前記実施の形態3に対して各滑りシートを2枚重ねとする構成としても良い。図8は実施の形態3に対して各滑りシートを2枚重ねとする構成とした場合の真空断熱材を示す断面図である。   In addition, in the vacuum heat insulating material in Embodiment 4 of this invention, although it is set as the structure which makes each sheet | seat sheet 2 sheet | seats overlap with respect to the said Embodiment 1, each sheet | seat sheet | seat is set to 2 with respect to the said Embodiment 3. It is good also as a structure made into a sheet pile. FIG. 8 is a cross-sectional view showing a vacuum heat insulating material in a configuration in which two sliding sheets are stacked on the third embodiment.

また、前記実施の形態1では、真空断熱材を円筒形状の保温機器である円筒状物体11に巻きつける際に生じる内外周長差を吸収するために伸縮空間のみを設けた構成とし、前記実施の形態3では、真空断熱材を円筒形状の保温機器である円筒状物体11に巻きつける際に生じる内外周長差を吸収するために伸縮芯材のみを設けた構成としたが、伸縮空間と伸縮芯材を組み合わせて設けた構成としても良い。   Moreover, in the said Embodiment 1, it was set as the structure which provided only the expansion-contraction space in order to absorb the inner-periphery length difference produced when winding a vacuum heat insulating material around the cylindrical object 11 which is a cylindrical heat retention apparatus, and the said implementation. In the third embodiment, only the stretchable core material is provided in order to absorb the difference between the inner and outer circumference lengths when the vacuum heat insulating material is wound around the cylindrical object 11 that is a cylindrical heat retaining device. It is good also as a structure provided combining the expansion-contraction core material.

また、前記実施の形態では、伸縮空間または伸縮芯材を各分離芯材の所定の位置にそれぞれ3箇所ずつ設けた構成としたが、これらの位置および個数は曲げ条件に応じて変更可能であり、特に図に示した位置および個数に限定されるものではない。つまり、滑りシートは外被滑りシート10のみの構成でもよく、また、例では示さなかったが、芯材1と外側外被材8との間に外被滑りシート10を設けても良い。   Moreover, in the said embodiment, it was set as the structure which provided the expansion-contraction space or the expansion-contraction core material 3 each in the predetermined position of each isolation | separation core material, However, These positions and number can be changed according to bending conditions. However, it is not particularly limited to the position and number shown in the figure. That is, the sliding sheet may be configured only by the covering sheet 10, and although not shown in the example, the covering sheet 10 may be provided between the core material 1 and the outer covering material 8.

また、これら実施の形態に示した外被滑りシート10を、収縮空間または伸縮芯材が真空時の圧縮力に耐えるように、1枚もしくは複数枚で適切な厚みに設計してもよい。この場合、より効果的な周長差吸収が可能となる。   Moreover, you may design the covering slip sheet | seat 10 shown in these embodiment to suitable thickness by 1 sheet or several sheets so that shrink space or an expansion-contraction core material may endure the compressive force at the time of a vacuum. In this case, more effective circumference difference absorption is possible.

また、前記実施の形態では、非平面として真空断熱材を円筒形状の保温機器である円筒状物体11の円筒面に巻きつける形で説明したが、特に円筒面に限定されるものではなく、例えば、波曲面形状、多角形形状または不定形状等の平面もしくは曲面からなる非平面を表面に有し、真空断熱材を保温機器の表面に沿って密着保持する場合に内外周長差を生じるような形状の冷熱機器を保温する場合についても、真空断熱材の厚み、積層数、大きさ、形状、および内外周長差等の条件にあわせて用いることができることは明らかである。   In the above embodiment, the vacuum heat insulating material is described as a non-planar shape wound around the cylindrical surface of the cylindrical object 11 which is a cylindrical heat retaining device, but is not particularly limited to a cylindrical surface, for example, If the surface has a non-planar surface consisting of a curved surface, a polygonal shape or an indefinite shape, such as a curved surface, or a curved surface, the inner and outer peripheral length difference may occur when the vacuum heat insulating material is closely held along the surface of the heat insulation device. Obviously, the shape of the heat-reducing device can also be used in accordance with conditions such as the thickness, number of layers, size, shape, and inner / outer length difference of the vacuum heat insulating material.

この発明の実施の形態1における真空断熱材を示す断面図である。It is sectional drawing which shows the vacuum heat insulating material in Embodiment 1 of this invention. この発明の実施の形態1における真空断熱材が円筒形状の保温機器である円筒状物体11に巻きつけられた状態を示す断面図である。It is sectional drawing which shows the state by which the vacuum heat insulating material in Embodiment 1 of this invention was wound around the cylindrical object 11 which is a cylindrical heat retention apparatus. この発明の実施の形態2における真空断熱材を示す断面図である。It is sectional drawing which shows the vacuum heat insulating material in Embodiment 2 of this invention. この発明の実施の形態2における真空断熱材が円筒形状の保温機器である円筒状物体11に巻きつけられた状態を示す断面図である。It is sectional drawing which shows the state in which the vacuum heat insulating material in Embodiment 2 of this invention was wound around the cylindrical object 11 which is a cylindrical heat retention apparatus. この発明の実施の形態3における真空断熱材を示す断面図である。It is sectional drawing which shows the vacuum heat insulating material in Embodiment 3 of this invention. この発明の実施の形態3における真空断熱材が円筒形状の保温機器である円筒状物体11に巻きつけられた状態を示す断面図である。It is sectional drawing which shows the state in which the vacuum heat insulating material in Embodiment 3 of this invention was wound around the cylindrical object 11 which is a cylindrical heat retention apparatus. この発明の実施の形態4における真空断熱材を示す断面図である。It is sectional drawing which shows the vacuum heat insulating material in Embodiment 4 of this invention. この発明の実施の形態4における真空断熱材を示す断面図である。It is sectional drawing which shows the vacuum heat insulating material in Embodiment 4 of this invention. この発明の実施の形態4における潤滑手段を示す模式図である。It is a schematic diagram which shows the lubrication means in Embodiment 4 of this invention. この発明の実施の形態4における潤滑手段を示す模式図である。It is a schematic diagram which shows the lubrication means in Embodiment 4 of this invention. この発明の実施の形態4における潤滑手段を示す模式図である。It is a schematic diagram which shows the lubrication means in Embodiment 4 of this invention. この発明の実施の形態4における潤滑手段を示す模式図である。It is a schematic diagram which shows the lubrication means in Embodiment 4 of this invention.

符号の説明Explanation of symbols

1 芯材、2 第1の分離芯材、2a 第11構成部材、2b 第12構成部材、2c第13構成部材 3 第1の収縮空間、4 第2の分離芯材、4a 第21構成部材、4b 第22構成部材、4c 第23構成部材、5 第2の収縮空間、6 第1の滑りシート、7 第2の滑りシート、8 外側外被材、9 内側外被材、10 外被滑りシート、11 円筒状物体、12 第1の伸縮芯材、13 第2の伸縮芯材、14 第1の分割滑りシート、15 第2の分割滑りシート、16 球形粒子、17 薄膜片、18 低摩擦物質、19 円柱形のコロ DESCRIPTION OF SYMBOLS 1 Core material, 2 1st isolation | separation core material, 2a 11th structural member, 2b 12th structural member, 2c 13th structural member 3 1st contraction space, 4 2nd isolation | separation core material, 4a 21st structural member, 4b 22nd component member, 4c 23rd component member, 5 2nd contraction space, 6 1st sliding sheet, 7 2nd sliding sheet, 8 outer covering material, 9 inner covering material, 10 covering slip sheet , 11 Cylindrical object, 12 First elastic core material, 13 Second elastic core material, 14 First divided sliding sheet, 15 Second divided sliding sheet, 16 Spherical particles, 17 Thin film piece, 18 Low friction material , 19 Cylindrical roller

Claims (5)

繊維シートからなる芯材と、繊維シートからなり一部に空間を有する分離芯材と、滑りシートとを具備し、前記芯材と前記分離芯材と前記滑りシートとを積層して構成された真空断熱材において、前記分離芯材の積層方向に対して垂直な面が少なくとも1つの前記滑りシートに面することを特徴とする真空断熱材。 A core material composed of a fiber sheet, a separation core material composed of a fiber sheet and having a space in part, and a sliding sheet, and configured by laminating the core material, the separation core material, and the sliding sheet. In the vacuum heat insulating material, the surface perpendicular to the stacking direction of the separation core material faces at least one sliding sheet. 繊維シートからなる芯材と、繊維シートからなり一部に伸縮領域を有する分離芯材と、滑りシートとを具備し、前記芯材と前記分離芯材と前記滑りシートとを積層して構成された真空断熱材において、前記分離芯材の積層方向に対して垂直な面が少なくとも1つの前記滑りシートに面することを特徴とする真空断熱材。 It comprises a core material made of a fiber sheet, a separation core material made of a fiber sheet and having a stretchable region in part, and a sliding sheet, and is configured by laminating the core material, the separating core material, and the sliding sheet. In the vacuum heat insulating material, a surface perpendicular to the stacking direction of the separation core material faces at least one of the sliding sheets. 前記滑りシートを少なくとも2枚重ねで構成したことを特徴とする請求項1又は請求項2記載の真空断熱材。 The vacuum heat insulating material according to claim 1 or 2, wherein at least two sliding sheets are stacked. 前記分離芯材の積層方向に対して垂直な面に面した滑りシートが、対面する分離芯材の前記空間または前記伸縮領域に対面する部分を除去するように分割されたことを特徴とする請求項3記載の真空断熱材。 The sliding sheet facing a surface perpendicular to the stacking direction of the separation core material is divided so as to remove a portion facing the space or the stretchable region of the separation core material facing. Item 4. The vacuum heat insulating material according to Item 3. 前記滑りシートの間に、潤滑手段を設けたことを特徴とする請求項3又は請求項4記載の真空断熱材。 The vacuum heat insulating material according to claim 3 or 4, wherein a lubricating means is provided between the sliding sheets.
JP2008268480A 2008-10-17 2008-10-17 Vacuum insulation Expired - Fee Related JP5245710B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008268480A JP5245710B2 (en) 2008-10-17 2008-10-17 Vacuum insulation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008268480A JP5245710B2 (en) 2008-10-17 2008-10-17 Vacuum insulation

Publications (2)

Publication Number Publication Date
JP2010096293A true JP2010096293A (en) 2010-04-30
JP5245710B2 JP5245710B2 (en) 2013-07-24

Family

ID=42258119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008268480A Expired - Fee Related JP5245710B2 (en) 2008-10-17 2008-10-17 Vacuum insulation

Country Status (1)

Country Link
JP (1) JP5245710B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014051993A (en) * 2010-10-18 2014-03-20 Mitsubishi Electric Corp Vacuum heat insulation material and method for manufacturing the same
JP2015055284A (en) * 2013-09-11 2015-03-23 大日本印刷株式会社 Vacuum heat insulation material
JP2017002949A (en) * 2015-06-08 2017-01-05 日立アプライアンス株式会社 Vacuum heat insulation material and equipment using the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000249290A (en) * 1999-02-26 2000-09-12 Matsushita Refrig Co Ltd Vacuum heat insulating body
JP2002527697A (en) * 1998-10-09 2002-08-27 フォルシュングスツェントルム カールスルーエ ゲゼルシャフト ミット ベシュレンクテル ハフツング Support mechanism for super insulator
JP2004502118A (en) * 2000-06-30 2004-01-22 サエス ゲッターズ ソチエタ ペル アツィオニ Vacuum panel for thermal insulation of non-planar objects
JP2004534192A (en) * 2001-07-09 2004-11-11 サエス ゲッターズ ソチエタ ペル アツィオニ Equipment for thermal insulation tubular bodies
JP2008223922A (en) * 2007-03-14 2008-09-25 Sharp Corp Vacuum heat insulating material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002527697A (en) * 1998-10-09 2002-08-27 フォルシュングスツェントルム カールスルーエ ゲゼルシャフト ミット ベシュレンクテル ハフツング Support mechanism for super insulator
JP2000249290A (en) * 1999-02-26 2000-09-12 Matsushita Refrig Co Ltd Vacuum heat insulating body
JP2004502118A (en) * 2000-06-30 2004-01-22 サエス ゲッターズ ソチエタ ペル アツィオニ Vacuum panel for thermal insulation of non-planar objects
JP2004534192A (en) * 2001-07-09 2004-11-11 サエス ゲッターズ ソチエタ ペル アツィオニ Equipment for thermal insulation tubular bodies
JP2008223922A (en) * 2007-03-14 2008-09-25 Sharp Corp Vacuum heat insulating material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014051993A (en) * 2010-10-18 2014-03-20 Mitsubishi Electric Corp Vacuum heat insulation material and method for manufacturing the same
US8911847B2 (en) 2010-10-18 2014-12-16 Mitsubishi Electric Corporation Vacuum insulation material and manufacturing method thereof
JP2015055284A (en) * 2013-09-11 2015-03-23 大日本印刷株式会社 Vacuum heat insulation material
JP2017002949A (en) * 2015-06-08 2017-01-05 日立アプライアンス株式会社 Vacuum heat insulation material and equipment using the same

Also Published As

Publication number Publication date
JP5245710B2 (en) 2013-07-24

Similar Documents

Publication Publication Date Title
JP2006125631A (en) Vacuum insulation material and manufacturing method thereof
JP5618756B2 (en) Vacuum insulation material and manufacturing method thereof
JP2006077792A (en) Vacuum insulating material
JP2007056972A5 (en)
KR20170105049A (en) Vacuum insulation panel
JP2007155065A (en) Vacuum heat insulating material and its manufacturing method
JP2011074934A (en) Vacuum thermal insulator and thermally insulating box including the vacuum thermal insulator
JP5245710B2 (en) Vacuum insulation
JP2005061611A (en) Method of manufacturing vacuum insulating material core
JP6073005B1 (en) Vacuum heat insulating material and method for manufacturing vacuum heat insulating material
JP5195494B2 (en) Vacuum heat insulating material and manufacturing method thereof
JP2009133336A (en) Vacuum heat insulating material
JP6579740B2 (en) Manufacturing method of vacuum insulation
JP5907204B2 (en) Manufacturing method of vacuum insulation
JP6192554B2 (en) Manufacturing method of vacuum insulation
JP2010031958A (en) Vacuum heat insulation material
JP2009228886A (en) Vacuum heat insulating material and heat insulating box using the same
JP2010156066A (en) Apparatus and method for producing heat insulation sheet
KR101113041B1 (en) A manufacturing process for corrugated mattress structure
JP2007138976A (en) Vacuum heat insulating material and its manufacturing method
JP2009092224A (en) Vacuum heat insulating material and building adopting vacuum heat insulation material
JP5461895B2 (en) Porous carbon sheet roll and its horizontal packaging and its packing method
JP2019168001A (en) Vacuum heat insulating material and refrigerator using vacuum heat insulating material
JP6359087B2 (en) Vacuum heat insulating material and heat insulator provided with the same
JP2005076725A (en) Core material for vacuum heat insulating material and vacuum heat insulating panel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101006

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130325

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160419

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees