JP2017072185A - Vacuum heat insulating material and device using the same - Google Patents

Vacuum heat insulating material and device using the same Download PDF

Info

Publication number
JP2017072185A
JP2017072185A JP2015199041A JP2015199041A JP2017072185A JP 2017072185 A JP2017072185 A JP 2017072185A JP 2015199041 A JP2015199041 A JP 2015199041A JP 2015199041 A JP2015199041 A JP 2015199041A JP 2017072185 A JP2017072185 A JP 2017072185A
Authority
JP
Japan
Prior art keywords
heat insulating
vacuum heat
insulating material
core material
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015199041A
Other languages
Japanese (ja)
Inventor
一輝 柏原
Kazuteru Kashiwabara
一輝 柏原
越後屋 恒
Hisashi Echigoya
恒 越後屋
祐志 新井
Yushi Arai
祐志 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2015199041A priority Critical patent/JP2017072185A/en
Publication of JP2017072185A publication Critical patent/JP2017072185A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Refrigerator Housings (AREA)
  • Thermal Insulation (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a vacuum heat insulating material having reduced heat conductivity, and a device including the vacuum heat insulating material.SOLUTION: A vacuum heat insulating material 1 comprises: a core material 10 in which second core materials 101 comprising holes are stacked in a thickness direction; and an outer package material 11 formed so as to include a resin layer, and housing the core material. Pressure inside the outer package material is less than atmospheric pressure. The vacuum heat insulating material comprises a depressurized space 12 surrounded by the core material and the outer package material.SELECTED DRAWING: Figure 2

Description

本発明は、真空断熱材及びこれを用いた機器に関する。   The present invention relates to a vacuum heat insulating material and a device using the same.

芯材を外包材に挿入した後、外包材内圧力を減圧する工程を経て製造される真空断熱材が広く知られている。このような真空断熱材は、減圧工程により外包材内の空気量が減少しているため、熱伝達メカニズムとしては、対流による熱伝達の影響は比較的小さく、芯材の繊維間や外包材等で生じる固体熱伝導に比較的支配される。このような中、芯材繊維間の熱伝導を抑制する技術として、例えば特許文献1が知られている。   2. Description of the Related Art A vacuum heat insulating material manufactured through a process of reducing the pressure inside an outer packaging material after inserting the core material into the outer packaging material is widely known. Since such a vacuum heat insulating material has a reduced amount of air in the outer packaging material due to the decompression process, the heat transfer mechanism has a relatively small influence of heat transfer by convection, between the fibers of the core material, the outer packaging material, etc. It is relatively governed by solid heat conduction that occurs in Under such circumstances, Patent Document 1 is known as a technique for suppressing heat conduction between core fibers, for example.

特開2009−133336号公報JP 2009-133336 A

特許文献1は、芯材を構成する不織布に高密度部と低密度部とを設ける構成を開示しており、例えば低密度部として不織布4の繊維の一部を押し分けて貫通穴31を設ける構成を開示しているが、この貫通穴の直径は1mm程度と小さい(0058,0062,0063,0067、図15)。芯材の繊維による固体熱伝導を抑制するには、完成した真空断熱材においても、形成された穴や凹部による空間が残存している必要がある。しかし、特許文献1のような小さな寸法の貫通穴では、真空断熱材の減圧工程を経ると周囲の繊維の圧縮により縮小し、消滅すると考えられる。また、密閉フィルム3(外包材)と芯材との位置関係については何ら開示していない。   Patent Document 1 discloses a configuration in which a high-density portion and a low-density portion are provided in a non-woven fabric that constitutes a core material. For example, a configuration in which a portion of the fibers of the non-woven fabric 4 is pressed as a low-density portion and a through hole 31 is provided. However, the diameter of the through hole is as small as about 1 mm (0058, 0062, 0063, 0067, FIG. 15). In order to suppress the solid heat conduction by the fibers of the core material, it is necessary that the space formed by the formed holes and recesses remain in the completed vacuum heat insulating material. However, in a through hole having a small size as in Patent Document 1, it is considered that when the vacuum heat insulating material is subjected to a pressure reducing step, the through hole is reduced due to compression of surrounding fibers and disappears. Moreover, nothing is disclosed about the positional relationship between the sealing film 3 (outer packaging material) and the core material.

上記事情に鑑みてなされた本発明は、孔を有する第二芯材を厚み方向に積層した芯材と、樹脂層を含んで形成され、前記芯材を収納した外包材と、を有し、前記外包材内部が大気圧未満の圧力であり、前記芯材及び前記外包材で囲まれた減圧空間を有する真空断熱材である。   The present invention made in view of the above circumstances has a core material in which a second core material having a hole is laminated in the thickness direction, and an outer packaging material that is formed including a resin layer and stores the core material, The inside of the outer packaging material is a pressure lower than atmospheric pressure, and is a vacuum heat insulating material having a decompression space surrounded by the core material and the outer packaging material.

本発明によれば、熱伝導率を低減した真空断熱材及びこれを備えた機器を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the vacuum heat insulating material which reduced heat conductivity and an apparatus provided with the same can be provided.

(a)は実施例1の第一芯材の正面図、(b)は実施例1の第二芯材の正面図、(c)は第一芯材及び第二芯材を積層して形成した実施例1の芯材の側面断面図(A) is a front view of the first core material of Example 1, (b) is a front view of the second core material of Example 1, and (c) is formed by laminating the first core material and the second core material. Side surface sectional view of the core material of Example 1 実施例1の真空断熱材の側面断面図Side surface sectional view of the vacuum heat insulating material of Example 1 (a)は減圧後の実施例1の真空断熱材に収められている芯材の形状の模式図、(b)は空間を有しない比較例としての真空断熱材に収められている芯材の形状の模式図(A) is the schematic diagram of the shape of the core material accommodated in the vacuum heat insulating material of Example 1 after pressure reduction, (b) is the core material accommodated in the vacuum heat insulating material as a comparative example which does not have a space. Schematic diagram of shape 実施例2の真空断熱材の側面断面図Side surface sectional drawing of the vacuum heat insulating material of Example 2. 実施例3の真空断熱材の側面断面図Side surface sectional drawing of the vacuum heat insulating material of Example 3. 実施例4の真空断熱材の正面図Front view of the vacuum heat insulating material of Example 4 図6のA−A線に沿って折り曲げられた真空断熱材のB−B線に沿った側面断面図Side surface sectional drawing along the BB line of the vacuum heat insulating material bent along the AA line of FIG. 実施例5の芯材の正面図Front view of the core material of Example 5 図8のC−C線断面斜視図CC sectional perspective view of FIG. 冷蔵庫の正面図Front view of refrigerator 冷蔵庫の扉の断面図Cross section of refrigerator door

以下、添付の図面を参照しつつ本発明の実施例を詳細に説明する。同様の構成要素には同様の符号を付し、また、同一の説明は繰り返さない。   Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. Similar components are denoted by the same reference numerals, and the same description is not repeated.

図1(a)は本実施例の第一芯材100の正面図、図1(b)は本実施例の第二芯材101の正面図、図1(c)は第一芯材100及び第二芯材101を積層して形成した芯材10の側面断面図、図2は本実施例の真空断熱材1の側面断面図である。
真空断熱材1は、複数枚が厚み方向に積層されたシート状の芯材10と、芯材10を内包する外包材11と、を有する。真空断熱材1は、芯材10を外包材11に挿入した後外包材11を減圧する工程を経て製造できる。
1A is a front view of the first core member 100 of the present embodiment, FIG. 1B is a front view of the second core member 101 of the present embodiment, and FIG. FIG. 2 is a side sectional view of the vacuum heat insulating material 1 of the present embodiment, and FIG. 2 is a side sectional view of the core material 10 formed by laminating the second core material 101.
The vacuum heat insulating material 1 includes a sheet-like core material 10 in which a plurality of sheets are stacked in the thickness direction, and an outer packaging material 11 that encloses the core material 10. The vacuum heat insulating material 1 can be manufactured through the process of decompressing the outer packaging material 11 after inserting the core material 10 into the outer packaging material 11.

[芯材10]
芯材10は、平面状の第一芯材100と、厚み方向に貫通した1つ又は2つ以上の孔1010を設けた第二芯材101とを有する。芯材10は、厚み方向の一方側(図1(c)中では下側)の最外層から他方側に向かって途中までの層として第一芯材100が積層されており、そこから厚み方向の他方側(図1(c)中では上側)の最外層までの層として第二芯材101が積層されている。第二芯材101の孔1010は、それぞれ厚み方向で重なっている。重なった孔1010によって芯材10には、厚み方向に非貫通の空間12が形成されている。空間12の詳細については後述する。
[Core 10]
The core material 10 includes a planar first core material 100 and a second core material 101 provided with one or more holes 1010 penetrating in the thickness direction. The core material 10 is laminated with a first core material 100 as a layer extending from the outermost layer on one side in the thickness direction (the lower side in FIG. 1C) toward the other side, and from there in the thickness direction. The second core material 101 is laminated as a layer up to the outermost layer on the other side (the upper side in FIG. 1C). The holes 1010 of the second core material 101 overlap each other in the thickness direction. A non-penetrating space 12 is formed in the core member 10 by the overlapping holes 1010 in the thickness direction. Details of the space 12 will be described later.

本実施例の第一芯材100及び第二芯材101の外端1001,1011の形状は矩形状であるが、略円形状、略楕円形状、略多角形状等にしてもよい。   The shapes of the outer ends 1001, 1011 of the first core member 100 and the second core member 101 of this embodiment are rectangular, but may be substantially circular, substantially elliptical, substantially polygonal, or the like.

芯材10は、例えば、スラリー化したグラスウールやガラス繊維を抄造した湿式のガラスシートとすることができる。このガラスシートの製造法は、例えば以下の工程を含むことができる。まず、硫酸を分散剤として、繊維径3〜5μm,繊維長20〜50mmのガラス繊維をスラリー化する。その後、ガラス繊維が落下しない程度の平面状の網にスラリーを流し込んで漉き、乾燥させる。これらの工程を経て、第一芯材100を製造できる。   The core material 10 can be, for example, a wet glass sheet obtained by making slurry glass wool or glass fiber. This method for producing a glass sheet can include, for example, the following steps. First, glass fiber having a fiber diameter of 3 to 5 μm and a fiber length of 20 to 50 mm is slurried using sulfuric acid as a dispersant. Thereafter, the slurry is poured into a flat mesh that does not drop the glass fiber, and dried. Through these steps, the first core material 100 can be manufactured.

一方、上述の平面状の網の一部に、例えば円筒状の物体を立設固定して、スラリーがこの領域に滞留しないようにしておくと、この物体の形状に対応した形状の孔1010を有する第二芯材101を製造できる。このようにして第二芯材101を製造すると、ガラス繊維の使用量を比較的低減することができる。   On the other hand, if, for example, a cylindrical object is erected and fixed to a part of the above-described planar mesh so that the slurry does not stay in this region, a hole 1010 having a shape corresponding to the shape of the object is formed. The 2nd core material 101 which has can be manufactured. If the 2nd core material 101 is manufactured in this way, the usage-amount of glass fiber can be reduced comparatively.

第二芯材101の別の製造法としては、平面状の網に物体を立設固定することに代えて、製造した第一芯材100に対して冶具を用いて、孔1010を開ける工程を経させても良い。この場合、ガラス繊維の使用量が比較的増加するものの、上記の製造法に比して、物体周囲にスラリー化した繊維が滞留することを抑制できる。このため、孔1010の近傍領域において芯材10が面方向に繊維が絡みつくことが抑制できるため、熱伝導率を低減した第二芯材101を提供できる。なお、いわゆる乾式の芯材は厚みが比較的大きいため、孔1010を開ける工程を行いにくい。このため、第一芯材100に冶具を用いて第二芯材101を製造する場合は、第一芯材100は上記のガラス繊維を漉く工程を経て製造されたものであることが好ましい。   As another manufacturing method of the second core material 101, instead of standing and fixing an object on a flat mesh, a step of opening a hole 1010 using a jig to the manufactured first core material 100 is performed. You may let it pass. In this case, although the amount of the glass fiber used is relatively increased, it is possible to suppress the slurried fibers from staying around the object as compared with the above manufacturing method. For this reason, since it can suppress that the core material 10 becomes entangled in the surface direction in the area | region of the hole 1010, the 2nd core material 101 which reduced thermal conductivity can be provided. Note that since the so-called dry core material has a relatively large thickness, it is difficult to perform the step of opening the hole 1010. For this reason, when manufacturing the 2nd core material 101 using a jig for the 1st core material 100, it is preferable that the 1st core material 100 is manufactured through the process of spreading said glass fiber.

[外包材11]
外包材11は、1つの開口を有する袋状の物を使用できる。外包材11は、この開口を介して芯材10を内側に挿入可能である。外包材11の材質としては、例えば、アルミ蒸着された蒸着層や、複数の樹脂フィルム層を含むラミネートフィルムを製袋した三方袋を用いることができる。アルミ層を用いることで、輻射による熱伝達を抑制できる。また、伸縮性のある樹脂フィルム層を用いることで、後述する外包材11の押し込みに対する強度を向上できる。
積層した芯材10を外包材11に挿入した後に外包材11内を減圧すると、真空断熱材1の上面視において、空間12と重なる領域及び外端1001,1011より外側の領域に位置する外包材11が、大気圧により押し込まれる。このため、空間12と重なる領域では、外包材11が空間12に向かって凸になり、外端1001,1011より外側の領域では、外包材11が各第一芯材100及び第二芯材101の外端1001,1011に密着するようになる。
この減圧工程により、空間12は、芯材10及び外包材11で囲まれた減圧空間となる。なお、外包材11に芯材10を挿入する際、積層した芯材10を一旦内袋(不図示)に入れた後真空引きすることで芯材10を圧縮してから内袋の開口部を封止し、その上でこれを外包材11に挿入する工程を行っても良い。こうすると、芯材10を圧縮してから外包材11に挿入できるため、挿入工程を容易に行うことができる。挿入工程の後、内袋の封止を解除すれば、外包材11を減圧した際に上記と同様の効果を得ることができる。
[Outer packaging material 11]
The outer packaging material 11 can be a bag-like object having one opening. The outer packaging material 11 can insert the core material 10 inside through this opening. As a material of the outer packaging material 11, for example, a three-sided bag in which an aluminum-deposited deposited layer or a laminate film including a plurality of resin film layers is formed can be used. By using the aluminum layer, heat transfer due to radiation can be suppressed. Moreover, the intensity | strength with respect to pushing of the outer packaging material 11 mentioned later can be improved by using the elastic resin film layer.
When the inside of the outer packaging material 11 is decompressed after the laminated core material 10 is inserted into the outer packaging material 11, the outer packaging material is located in a region overlapping the space 12 and a region outside the outer ends 1001 and 1011 in a top view of the vacuum heat insulating material 1. 11 is pushed in by atmospheric pressure. For this reason, in the area | region which overlaps with the space 12, the outer packaging material 11 becomes convex toward the space 12, and in the area | region outside the outer ends 1001 and 1011, the outer packaging material 11 is each 1st core material 100 and the 2nd core material 101. It comes in close contact with the outer ends 1001, 1011.
By this decompression step, the space 12 becomes a decompressed space surrounded by the core material 10 and the outer packaging material 11. In addition, when inserting the core material 10 into the outer packaging material 11, the laminated core material 10 is once put in an inner bag (not shown) and then evacuated to compress the core material 10, and then the opening of the inner bag is opened. You may perform the process of sealing and inserting this in the outer packaging material 11 on it. If it carries out like this, since the core material 10 can be compressed, it can insert in the outer packaging material 11, Therefore An insertion process can be performed easily. If the sealing of the inner bag is released after the insertion step, the same effect as described above can be obtained when the outer packaging material 11 is decompressed.

[孔1010及び空間12]
外包材11には、孔1010の外周領域及び外端1001,1011の領域で、大気圧による押し込み力が大きく印加される。中でも、孔1010に重なる領域では、押し込まれた外包材11を芯材10が支持しないため、孔1010の外周領域に力が集中する。このため、外包材11の破断を抑制する構成を施すことが好ましい。これを、孔1010や空間12の寸法等の観点から説明する。
[Hole 1010 and Space 12]
A large pressing force due to atmospheric pressure is applied to the outer packaging material 11 in the outer peripheral region of the hole 1010 and the regions of the outer ends 1001 and 1011. Especially, in the area | region which overlaps with the hole 1010, since the core material 10 does not support the pressed outer packaging material 11, force concentrates on the outer peripheral area | region of the hole 1010. For this reason, it is preferable to give the structure which suppresses the fracture | rupture of the outer packaging material 11. FIG. This will be described from the viewpoint of the dimensions of the hole 1010 and the space 12.

まず、孔1010は、芯材10の上面視で略円形状、略楕円形状、又は略多角形状等にできるが、略円形状にした場合について検討する。孔1010の直径をn倍にすると、孔1010の面積、すなわち減圧空間を覆う外包材11の面積はn2倍になる。このため、大気圧による外包材11の押し込み力はn2倍になる。一方、孔1010の外周長さはn倍になるため、押し込み力を支持する領域はn倍になる。すなわち、外包材11が孔1010の外周で受ける単位長さ当たりの力はn倍になると考えられる。よって、孔1010の直径を大きくするほど、外包材11は破断し易くなる。外包材11が破断すると真空状態が解除されてしまうため、破断を抑制する構成が望まれる。 First, the hole 1010 can be formed into a substantially circular shape, a substantially elliptical shape, a substantially polygonal shape, or the like in a top view of the core member 10, but the case where it is formed into a substantially circular shape will be considered. When the diameter of the hole 1010 is increased by n times, the area of the hole 1010, that is, the area of the outer packaging material 11 covering the decompression space is increased by n 2 times. Therefore, the pushing force of the outer cover material 11 according to the atmospheric pressure is doubled n. On the other hand, since the outer peripheral length of the hole 1010 is n times, the region for supporting the pushing force is n times. That is, the force per unit length that the outer packaging material 11 receives on the outer periphery of the hole 1010 is considered to be n times. Therefore, the outer packaging material 11 is easily broken as the diameter of the hole 1010 is increased. Since the vacuum state is released when the outer packaging material 11 breaks, a configuration that suppresses the break is desired.

また、孔1010の面積や個数を増加させると、外包材11が受ける力を支持する芯材10の面積が減少するため、芯材10に印加される単位面積当たりの圧縮力が大きくなる。圧縮力が大きくなった結果、減圧後の真空断熱材1の厚みが小さくなると、減圧空間に向かって凸となった外包材11の2面が接触して熱伝導経路が発生するおそれがあるので、構成上適正な範囲に圧縮力を収めることが好ましい。孔1010の総面積は、第二芯材101の面積及び孔1010の総面積の和の例えば50%以下にすることが好ましい。   Further, when the area and the number of the holes 1010 are increased, the area of the core material 10 that supports the force received by the outer packaging material 11 is decreased, so that the compressive force per unit area applied to the core material 10 is increased. As a result of the increase in compressive force, if the thickness of the vacuum heat insulating material 1 after decompression is reduced, the two surfaces of the outer packaging material 11 that protrude toward the decompression space may come into contact with each other, and a heat conduction path may be generated. It is preferable that the compression force is within an appropriate range in terms of configuration. The total area of the holes 1010 is preferably 50% or less of the sum of the area of the second core material 101 and the total area of the holes 1010.

また、真空断熱材1の上面視において、各空間12は、空間12の寸法の2倍以上、好ましくは2.5倍以上の距離だけ離間していることが好ましい。例えば、本実施例の直径φ20mmの空間12を備える真空断熱材1においては、図1(b)に例示した縦方向離間距離a、横方向離間距離aをそれぞれ40mm以上、好ましくは50mm以上にすると良い。なお、例えば孔1010の形状が略円形状でない場合は、各方向の寸法毎に同様に考える。例えば、a方向が長軸方向、a方向が短軸方向である略楕円形状である場合、aを長軸寸法の、aを短軸寸法の、それぞれ2倍以上、好ましくは2.5倍以上の距離だけ離間させるとよい。 Moreover, in the top view of the vacuum heat insulating material 1, it is preferable that the spaces 12 are separated by a distance of at least twice, preferably at least 2.5 times the size of the space 12. For example, in the vacuum heat insulating material 1 including the space 12 having a diameter of 20 mm according to the present embodiment, the vertical separation distance a 1 and the horizontal separation distance a 2 illustrated in FIG. 1B are each 40 mm or more, preferably 50 mm or more. It is good to make it. For example, when the shape of the hole 1010 is not a substantially circular shape, the same is considered for each dimension in each direction. For example, if a 1 direction long axis direction, a 2 direction is substantially elliptical a minor axis direction, the major axis dimension a 1, the minor axis dimension of a 2, respectively 2 times or more, preferably 2 It is better to separate them by a distance of 5 times or more.

このように、熱伝導の抑制の観点からは、孔1010の面積を大きくして芯材10の使用量を抑制することが好ましいが、上記に鑑みて構成することが望まれる。孔1010の直径の上限は、外包材11や芯材10の強度、減圧後の真空断熱材1の厚さにもよるが、例えば、外包材11が樹脂フィルムの場合、空間12を形成する孔1010それぞれの直径を例えばφ20mm以下とすれば、大気圧による外包材11の押し込みを考慮しても、外包材11が押し込みにより破断すること等を抑制できる。このとき、芯材10をガラス繊維とするのであれば、減圧後の真空断熱材1の厚みを例えば孔1010の直径の1/4以上、好ましくは半分以上、すなわち上記の例であれば5mm以上、好ましくは10mm以上になるように設計すると、減圧空間において外包材11の2面を離間させやすくできる。なお、孔1010の形状を略円形状以外にするのであれば、最も長い寸法となる方向に置き換えて同様に考えることができる。例えば略楕円形状であれば、孔1010の直径に代えて、長軸長さに置き換えればよい。   As described above, from the viewpoint of suppressing heat conduction, it is preferable to increase the area of the hole 1010 to suppress the amount of the core material 10 used. The upper limit of the diameter of the hole 1010 depends on the strength of the outer packaging material 11 and the core material 10 and the thickness of the vacuum heat insulating material 1 after decompression. For example, when the outer packaging material 11 is a resin film, the hole forming the space 12 is formed. If each 1010 has a diameter of, for example, φ20 mm or less, it is possible to prevent the outer packaging material 11 from being broken due to the pressing even when the outer packaging material 11 is pushed by atmospheric pressure. At this time, if the core material 10 is made of glass fiber, the thickness of the vacuum heat insulating material 1 after depressurization is, for example, 1/4 or more of the diameter of the hole 1010, preferably more than half, that is, 5 mm or more in the above example. If designed to be preferably 10 mm or more, it is possible to easily separate the two surfaces of the outer packaging material 11 in the decompression space. If the shape of the hole 1010 is other than a substantially circular shape, it can be considered in the same manner by replacing the direction with the longest dimension. For example, in the case of a substantially elliptical shape, the major axis length may be substituted for the diameter of the hole 1010.

一方、減圧後に減圧空間が生じる寸法にするため、孔1010の任意の方向の寸法、例えば直径の下限は、例えばφ2mm以上、好ましくは4mm以上にすることができる。以上の知見によれば、外包材11に対する大気圧による押し込み力に鑑みると、孔1010の形状は、孔1010の面積に対して孔1010の外周長さを確保しやすい形状、例えば略円形状又は略楕円形状が好ましい。孔1010の形状を略円形状以外にする場合は、孔1010の直径に代えて、例えば(孔1010の外周長さ)/孔1010の面積)の値を指標にすることができる。   On the other hand, in order to obtain a dimension in which a decompression space is generated after decompression, the dimension in any direction of the hole 1010, for example, the lower limit of the diameter can be set to, for example, φ2 mm or more, preferably 4 mm or more. According to the above knowledge, in view of the pushing force by the atmospheric pressure on the outer packaging material 11, the shape of the hole 1010 is a shape that can easily secure the outer peripheral length of the hole 1010 with respect to the area of the hole 1010, for example, a substantially circular shape or A substantially elliptical shape is preferred. When the shape of the hole 1010 is other than a substantially circular shape, for example, a value of (peripheral length of the hole 1010) / area of the hole 1010) can be used as an index instead of the diameter of the hole 1010.

上述したように、空間12は芯材10の厚み方向について少なくとも一方側には非貫通である。このため、仮に減圧空間に空気が所定量以上残留していても、対流によって厚み方向の一方側から他方側に熱が伝達されることを抑制できる。このように、空間12を非貫通とすることは、例えば減圧工程による真空引きを高精度に行うことが困難な場合に好ましい。   As described above, the space 12 is non-penetrating on at least one side in the thickness direction of the core member 10. For this reason, even if air remains in the decompression space in a predetermined amount or more, heat can be suppressed from being transferred from one side in the thickness direction to the other side by convection. Thus, making the space 12 non-penetrating is preferable, for example, when it is difficult to perform evacuation with a reduced pressure step with high accuracy.

図3(a)は減圧後の本実施例の真空断熱材1に収められている芯材10の形状の模式図、図3(b)は空間12を有しない比較例としての真空断熱材1Aに収められている芯材10の形状の模式図である。図1(b)に例示したように、本実施例の真空断熱材1には、複数の空間12を配することができ、例えば格子状に配置できる。真空断熱材1の上面視において、外包材11は、空間12が配置された箇所それぞれに加えて、外端1011において、厚み方向内側に押し込まれる力を受ける。すなわち外包材11は、空間12の外周及び外端1011それぞれで芯材10を押し込む力を与えることになる。このように、空間12によって、芯材10中央側領域においても押し込み力を与えることができるため、本実施例の真空断熱材1は、平滑性を向上し得る。このため、これを通じて美感を向上し得る。一方、比較例の真空断熱材1Aでは、外包材11は、芯材10端面、すなわち外端1001付近でのみ芯材10を厚み方向に押し込む。すなわち、芯材10の中央側領域は比較的凸な形状になり、本実施例に比して中央側が大きく膨らみやすい。   FIG. 3A is a schematic diagram of the shape of the core material 10 housed in the vacuum heat insulating material 1 of the present embodiment after decompression, and FIG. 3B is a vacuum heat insulating material 1A as a comparative example having no space 12. It is a schematic diagram of the shape of the core material 10 accommodated in. As illustrated in FIG. 1B, a plurality of spaces 12 can be arranged in the vacuum heat insulating material 1 of the present embodiment, for example, can be arranged in a lattice shape. In the top view of the vacuum heat insulating material 1, the outer packaging material 11 receives a force that is pushed inward in the thickness direction at the outer end 1011 in addition to each of the places where the spaces 12 are arranged. That is, the outer packaging material 11 gives a force for pushing the core material 10 at the outer periphery of the space 12 and the outer end 1011 respectively. Thus, since the pushing force can be given also in the core material 10 center side area | region by the space 12, the vacuum heat insulating material 1 of a present Example can improve smoothness. For this reason, aesthetics can be improved through this. On the other hand, in the vacuum heat insulating material 1A of the comparative example, the outer packaging material 11 pushes the core material 10 in the thickness direction only on the end surface of the core material 10, that is, in the vicinity of the outer end 1001. That is, the center side region of the core material 10 has a relatively convex shape, and the center side tends to swell greatly compared to the present embodiment.

空間12の分布は、真空断熱材1の形状に相似した分布にすることができる。例えば本実施例のように芯材10が上面視において矩形状である場合は、空間12の分布を矩形状の繰り返し、すなわち実質的に格子状に配すると、真空断熱材1に均等に空間12を分布させやすいため好ましい。同様に、芯材10が略円形である場合は、実質的に同心円周上に空間12を配すると好ましい。   The distribution of the space 12 can be a distribution similar to the shape of the vacuum heat insulating material 1. For example, when the core member 10 has a rectangular shape in a top view as in the present embodiment, the space 12 is evenly distributed in the vacuum heat insulating material 1 when the distribution of the space 12 is repeated in a rectangular shape, that is, substantially in a lattice shape. Is preferable because it is easy to distribute. Similarly, when the core material 10 is substantially circular, it is preferable to arrange the space 12 substantially on a concentric circumference.

また、芯材10の外端1011の近傍には空間12を設けずに、芯材10の平面形状を保持しておくとよい。例えば本実施例においては、外端1011からの縦方向距離c、横方向距離cを、それぞれ直径φの0.5倍以上、好ましくは1.0倍以上にするとよい。外端1011近傍に空間12を設けると、外包材11が外端1011を外側に押して芯材10が破損したり、外端1011近傍の芯材10の量が少なくなってその他の製造工程で破損するおそれが生じるためである。また、外端1011を切り取るように空間12を設けると、外端1011の長さが増加することになるため、外包材11が厚み方向に延在する部分の面積が増加する。こうすると、外包材11による熱伝達が増加するため、好ましくない。以上から、例えば、外端1011から10mm以上は空間12を設けずに、平面形状を保持させると好ましい。なお、孔1010が略円形状以外の形状である場合は、上述したa,aと同様に考えることができる。 In addition, it is preferable to maintain the planar shape of the core material 10 without providing the space 12 near the outer end 1011 of the core material 10. For example, in this embodiment, the longitudinal distance c 1 and the lateral distance c 2 from the outer end 1011 are each 0.5 times or more, preferably 1.0 times or more of the diameter φ. If the space 12 is provided in the vicinity of the outer end 1011, the outer packaging material 11 pushes the outer end 1011 outward to damage the core material 10, or the amount of the core material 10 in the vicinity of the outer end 1011 decreases to cause damage in other manufacturing processes. This is because there is a risk of doing so. In addition, when the space 12 is provided so as to cut out the outer end 1011, the length of the outer end 1011 increases, so that the area of the portion where the outer packaging material 11 extends in the thickness direction increases. This is not preferable because heat transfer by the outer packaging material 11 increases. From the above, for example, it is preferable to keep the planar shape without providing the space 12 at 10 mm or more from the outer end 1011. In addition, when the hole 1010 has a shape other than a substantially circular shape, it can be considered in the same manner as a 1 and a 2 described above.

[吸着剤]
第一芯材100又は第二芯材101の層の間に、ゼオライト系等の吸着剤(不図示)を配置できる。こうすると、外包材11減圧後の残存気体を吸着することで、真空断熱材1の初期熱伝導率の低減に寄与したり、外包材11内部に侵入してきた気体を吸着することで、真空断熱材1の断熱性能の劣化抑制に寄与する。第二芯材101の間に吸着剤を配すると時間経過とともに空間12に集まる可能性があるため、第一芯材100の間に配すると好ましい。
[Adsorbent]
Between the layers of the first core material 100 or the second core material 101, an adsorbent (not shown) such as a zeolite-based material can be disposed. If it carries out like this, it will contribute to reduction of the initial thermal conductivity of the vacuum heat insulating material 1 by adsorb | sucking the residual gas after pressure reduction of the outer packaging material 11, or vacuum heat insulation by adsorb | sucking the gas which penetrate | invaded the outer packaging material 11 inside. This contributes to suppression of deterioration of the heat insulation performance of the material 1. If an adsorbent is disposed between the second core members 101, it may be collected in the space 12 over time. Therefore, it is preferable to dispose the adsorbent between the first core members 100.

[その他]
上述した真空断熱材1では、厚み方向の他方側(図1(c)では上側)の最外層を第二芯材101としたが、最外層又は略最外層を第一芯材100にしてもよい。これにより、外包材11が減圧工程後に第一芯材100に接触するように設計すると、効果的に外包材11の破断を抑制できる。但しこの場合、第一芯材100が薄いと、外包材11の押し込み力を第一芯材100が支持しきれずに破断するおそれがあり、厚いと空間12の減圧が効果的に行われないおそれがある。破断した第一芯材100が厚み方向に垂れて延在すると厚み方向の熱伝達が生じやすくなるため、破断を抑制しつつ、かつ減圧空間を形成できるように構成することが好ましい。なお、上述したように略最外層に第一芯材100を設けなければ、これらの設計を省略し得るため、減圧工程後の真空断熱材1を製造し易い。
[Others]
In the vacuum heat insulating material 1 described above, the outermost layer on the other side in the thickness direction (the upper side in FIG. 1C) is the second core material 101, but the outermost layer or the substantially outermost layer is the first core material 100. Good. Thereby, if it designs so that the outer packaging material 11 may contact the 1st core material 100 after a pressure reduction process, the fracture | rupture of the outer packaging material 11 can be suppressed effectively. However, in this case, if the first core material 100 is thin, the pressing force of the outer packaging material 11 may not be supported by the first core material 100 and may break, and if it is thick, the space 12 may not be effectively decompressed. There is. When the fractured first core member 100 extends in the thickness direction, heat transfer in the thickness direction is likely to occur. Therefore, it is preferable that the decompressed space can be formed while the fracture is suppressed. In addition, since the design can be omitted if the first core member 100 is not provided in the substantially outermost layer as described above, it is easy to manufacture the vacuum heat insulating material 1 after the pressure reducing step.

実施例2の構成は、以下の点を除き実施例1と同様にできる。
図4は本実施例の真空断熱材1の側面断面図である。芯材10は、第二芯材101を厚み方向の一方側最外層から他方側の最外層まで積層して形成されており、空間12は一方側から他方側に貫通した貫通孔として形成されている。こうすることで、芯材10の量を更に抑制できるため、芯材10を通じた熱伝導をさらに抑制できる。但しこの場合、減圧空間に空気が所定量以上残っていると対流による熱伝達の影響が大きくなるため、例えば真空引きを高精度に行えるときに行うのが好ましい。
The configuration of the second embodiment can be the same as that of the first embodiment except for the following points.
FIG. 4 is a side sectional view of the vacuum heat insulating material 1 of this embodiment. The core material 10 is formed by laminating the second core material 101 from one outermost layer in the thickness direction to the outermost layer on the other side, and the space 12 is formed as a through hole penetrating from one side to the other side. Yes. By carrying out like this, since the quantity of the core material 10 can further be suppressed, the heat conduction through the core material 10 can further be suppressed. In this case, however, if a predetermined amount or more of air remains in the decompression space, the influence of heat transfer due to convection increases, and therefore, it is preferable to carry out vacuuming, for example, with high accuracy.

空間12が貫通孔であることから、外包材11が厚み方向の両側から減圧空間に向けて凸状に変形する。外包材11による熱伝達を抑制するため、これら2面の外包材11が離間するように構成するとよい。   Since the space 12 is a through hole, the outer packaging material 11 is deformed into a convex shape from both sides in the thickness direction toward the decompression space. In order to suppress heat transfer by the outer packaging material 11, it is preferable that these two outer packaging materials 11 be separated from each other.

実施例3の構成は、以下の点を除き実施例2と同様にできる。
図5は本実施例の真空断熱材1の側面断面図である。積層された芯材10の厚み方向について、一方側及び他方側それぞれの最外層を含む箇所には第二芯材101が積層された領域が存在し、かつ、中央側の1箇所又は2箇所以上には第一芯材100が単数又は複数積層された領域が存在する。
The configuration of the third embodiment can be the same as that of the second embodiment except for the following points.
FIG. 5 is a side sectional view of the vacuum heat insulating material 1 of the present embodiment. With respect to the thickness direction of the laminated core material 10, there is a region where the second core material 101 is laminated at a location including the outermost layers on one side and the other side, and one or more locations on the central side. There is a region where one or more first core members 100 are laminated.

真空断熱材1には、上面視において重なる位置、かつ厚み方向の両側に空間12が設けられている。さらにそれら2つの空間12の間に第一芯材100が配されており、芯材10による熱伝導を抑制しつつ、減圧空間に残留した空気の対流による熱伝達を抑制できる。空間12の間に配される芯材は、空気の対流を抑制すればよいから、必ずしも第一芯材100である必要はなく、空間12と重なる部分以外に孔を設けた第二芯材101でもよい。   The vacuum heat insulating material 1 is provided with spaces 12 on both sides in the thickness direction and overlapping in the top view. Furthermore, the 1st core material 100 is distribute | arranged between those two spaces 12, and it can suppress the heat transfer by the convection of the air which remained in the pressure reduction space, suppressing the heat conduction by the core material 10. FIG. Since the core material disposed between the spaces 12 only needs to suppress air convection, the core material does not necessarily have to be the first core material 100, and the second core material 101 provided with holes other than the portion overlapping the space 12. But you can.

吸着剤は、中央側に積層されている第一芯材100の1箇所以上を2層以上にして、これら第一芯材100の間に配すると好ましい。このとき、真空断熱材1の上面視において、空間12に重なる領域を含んで吸着材を配すると、減圧空間に残留している空気を効果的に吸着できるためさらに好ましい。   It is preferable that the adsorbent is arranged between two or more first core members 100 laminated on the center side and arranged between the first core members 100. At this time, it is more preferable to dispose the adsorbent including the region overlapping the space 12 in the top view of the vacuum heat insulating material 1 because the air remaining in the decompressed space can be adsorbed effectively.

また、第一芯材100の目付を第二芯材101の目付よりも大きくすると好ましい。第一芯材100には、空間12の途中に設けられて空気の対流を抑制したり、吸着剤を保持する機能がより期待されるため、対流の遮断や強度を確保すると好ましく、一方、第二芯材101には、熱伝導を抑制する機能がより期待されるため、芯材10の量を抑制すると好ましいからである。例えば、第一芯材100の目付を150g/m以上、又は180g/m以上とし、第二芯材101の目付を150g/m未満、又は120g/m以下にすることができる。 Moreover, it is preferable that the basis weight of the first core member 100 is larger than the basis weight of the second core member 101. The first core member 100 is preferably provided in the middle of the space 12 to suppress the convection of air or to retain the adsorbent. Therefore, it is preferable to ensure the blockage and strength of the convection, This is because it is preferable to suppress the amount of the core material 10 because the two-core material 101 is expected to have a function of suppressing heat conduction. For example, the basis weight of the first core material 100 can be 150 g / m 2 or more, or 180 g / m 2 or more, and the basis weight of the second core material 101 can be less than 150 g / m 2 or 120 g / m 2 or less.

実施例4の構成は、以下の点を除き実施例1乃至3の何れかと同様にできる。
図6は本実施例の真空断熱材1の正面図、図7は図6のA−A線に沿って折り曲げられた本実施例の真空断熱材1のB−B線に沿った側面断面図である(但し、空間12の図示は省略している)。本実施例の真空断熱材1は、折り曲げられている。折り曲げ部分に相当する芯材10には空間が設けられており、これを折り曲げ用空間13と呼称する。折り曲げ用空間13の形成は、空間12と同様に孔を設けることで形成できる。折り曲げ用空間13を形成する孔の形状は、孔1010と同様にできるが、好ましくは、折り曲げ方向に長軸を有する略楕円形状である。例えば、図6に示すA−A線に沿って芯材10を折り曲げる場合、A−A線方向に長軸を有する略楕円形状の孔を芯材10に設けておくことができる。このように、長軸方向に折り曲げ用空間13を複数配すると、折り曲げを効果的に行えるため好ましい。なお、折り曲げ用空間13も減圧空間を形成し得るため、空間12と同様の効果を奏することができる。
The configuration of the fourth embodiment can be the same as that of any of the first to third embodiments except for the following points.
FIG. 6 is a front view of the vacuum heat insulating material 1 of the present embodiment, and FIG. 7 is a side cross-sectional view along the line BB of the vacuum heat insulating material 1 of the present embodiment bent along the line AA of FIG. (However, the space 12 is not shown). The vacuum heat insulating material 1 of the present embodiment is bent. A space is provided in the core member 10 corresponding to the bent portion, and this is referred to as a bending space 13. The bending space 13 can be formed by providing a hole in the same manner as the space 12. The shape of the hole forming the folding space 13 can be the same as that of the hole 1010, but is preferably a substantially elliptical shape having a major axis in the bending direction. For example, when the core material 10 is bent along the line AA shown in FIG. 6, a substantially elliptical hole having a major axis in the AA line direction can be provided in the core material 10. Thus, it is preferable to arrange a plurality of bending spaces 13 in the major axis direction because the bending can be effectively performed. In addition, since the space 13 for bending can also form a decompression space, the effect similar to the space 12 can be show | played.

本実施例では折り曲げ用空間13を芯材10の厚み方向に貫通するものにしているが、非貫通でも良い。折り曲げ方向の外側(山側)に開口する折り曲げ用空間13を設けると、折り曲げにより芯材10に角が発生することを抑制できるため、外包材11が角に沿って引き延ばされて破断することを抑制できる。一方、折り曲げ方向の内側(谷側)に開口する折り曲げ用空間13を設けると、折り曲げにより芯材10に出っ張りが生じることを抑制できるため、折り曲げ部分近傍に他の部材等を配置し難くなることを抑制できる。
また、折り曲げ方向の内側(谷側)に開口する折り曲げ用空間13を設けると、折り曲げに伴い外包材11が「余り」、真空断熱材1の厚み方向内側に押し込まれることがある。このため、このようにするときは、折り曲げ用空間13を貫通孔にしたり、折り曲げ用空間13を分割する第一芯材100又は第二芯材101の積層位置を厚み方向中央より山側寄りにすることで、外包材11が内側に押し込まれても、減圧空間で他の部材から離間するようにできる。
In this embodiment, the bending space 13 is penetrated in the thickness direction of the core member 10, but it may be non-penetrating. Providing the folding space 13 that opens to the outside (mountain side) in the folding direction can suppress the generation of corners in the core material 10 due to the bending, and therefore the outer packaging material 11 is stretched along the corners and broken. Can be suppressed. On the other hand, when the folding space 13 that opens inside (the valley side) in the folding direction is provided, it is possible to prevent the core material 10 from being bulged due to the folding, so that it is difficult to arrange other members in the vicinity of the bent portion. Can be suppressed.
In addition, when the folding space 13 opened inside (the valley side) in the folding direction is provided, the outer packaging material 11 may be pushed into the inner side in the thickness direction of the vacuum heat insulating material 1 along with the folding. For this reason, when doing in this way, the space 13 for bending is made into a through-hole, or the lamination | stacking position of the 1st core material 100 or the 2nd core material 101 which divides | segments the space 13 for bending is made a mountain side near the thickness direction center. Thus, even if the outer packaging material 11 is pushed inward, it can be separated from other members in the decompression space.

実施例5の構成は、以下の点を除き実施例1乃至4の何れかと同様にできる。
図8は本実施例の芯材10の正面図、図9は図8のC−C線断面斜視図である。本実施例の折り曲げ用空間13は略楕円形状であり、円周上に複数が並び、折り曲げ用空間13それぞれの長軸方向が円周方向を向いている。こうすることで、芯材10の略円形の領域を、厚み方向の一方に凸させるよう曲げることができる。図8に例示するように折り曲げ用空間13の並ぶ円の内側に空間12を配置しても良いし、配置しなくても良い。
The configuration of the fifth embodiment can be the same as that of any of the first to fourth embodiments except for the following points.
FIG. 8 is a front view of the core material 10 of the present embodiment, and FIG. 9 is a cross-sectional perspective view taken along the line CC of FIG. The folding space 13 of the present embodiment has a substantially elliptical shape, and a plurality of the folding spaces 13 are arranged on the circumference, and the major axis direction of each of the folding spaces 13 faces the circumferential direction. By carrying out like this, the substantially circular area | region of the core material 10 can be bent so that it may protrude to one side of the thickness direction. As illustrated in FIG. 8, the space 12 may be arranged inside the circle in which the bending spaces 13 are arranged, or may not be arranged.

本実施例は、各実施例の真空断熱材1を備える機器の一例である冷蔵庫2に関する。図10は冷蔵庫2の正面図、図11は冷蔵庫の扉6の断面図である。
冷蔵庫2は、冷蔵室扉6a,6b、冷凍室扉7a,7b,8、野菜室扉9を有する。扉6−9の何れにも真空断熱材1を適宜配することができるが、本実施例では冷蔵室扉6に実施例1の真空断熱材1を配する場合を説明する。
A present Example is related with the refrigerator 2 which is an example of an apparatus provided with the vacuum heat insulating material 1 of each Example. 10 is a front view of the refrigerator 2, and FIG. 11 is a sectional view of the door 6 of the refrigerator.
The refrigerator 2 includes refrigerator compartment doors 6a and 6b, freezer compartment doors 7a, 7b and 8, and a vegetable compartment door 9. Although the vacuum heat insulating material 1 can be suitably arranged in any of the doors 6-9, the case where the vacuum heat insulating material 1 of Example 1 is arranged in the refrigerator compartment door 6 is demonstrated in a present Example.

冷蔵室扉6は、冷蔵庫2の正面側に設けられた鋼板60と、鋼板60の背面側に空間を画定する側板61と、鋼板60と側板61との間に取り付けられた真空断熱材1及び発泡断熱材62を有する。真空断熱材1は、空間12を設けた側の面を発泡断熱材62に向け、略最外層が第一芯材100である側の面を鋼板60に向けて取付けられている。
発泡断熱材62の充填に伴い、真空断熱材1の発泡断熱材62側の面には押し込み力が加えられる。すると、外包材11のうち、空間12に重なっている部分は厚み方向内側に押し込まれて移動するが、この移動に伴いできた空間に発泡断熱材62が充填されるため、外包材11近傍に空気層やボイドができることを抑制できる。また、最外層が第一芯材100であるために凹が少ない側の面が鋼板60に向いているため、鋼板60と真空断熱材1との間に空気層ができることを抑制できる。仮に、真空断熱材1の取付向きを反対にすると、外包材11のうち、空間12に重なっている部分と鋼板60との間に凹が生じて、結果として空気層が生じるおそれがある。
The refrigerator compartment door 6 includes a steel plate 60 provided on the front side of the refrigerator 2, a side plate 61 defining a space on the back side of the steel plate 60, the vacuum heat insulating material 1 attached between the steel plate 60 and the side plate 61, and A foam insulation 62 is provided. The vacuum heat insulating material 1 is attached so that the surface on which the space 12 is provided faces the foam heat insulating material 62, and the surface on which the outermost layer is the first core material 100 faces the steel plate 60.
As the foam heat insulating material 62 is filled, a pressing force is applied to the surface of the vacuum heat insulating material 1 on the foam heat insulating material 62 side. Then, the portion of the outer packaging material 11 that is overlapped with the space 12 moves while being pushed inward in the thickness direction, and the space formed by this movement is filled with the foam heat insulating material 62. The formation of air layers and voids can be suppressed. In addition, since the outermost layer is the first core member 100 and the surface with less recesses faces the steel plate 60, it is possible to suppress the formation of an air layer between the steel plate 60 and the vacuum heat insulating material 1. If the mounting direction of the vacuum heat insulating material 1 is reversed, a recess is formed between the portion of the outer packaging material 11 that overlaps the space 12 and the steel plate 60, and as a result, an air layer may be generated.

真空断熱材1は、その他の実施例の物等、本発明の思想の範囲に属するその他の物を適用しても良いし、冷凍室扉7,8や野菜室扉9又はその他の箇所に設けても良い。同様の取付構成を任意の機器に適用可能であることは、当業者に明らかである。   The vacuum heat insulating material 1 may be applied to other objects belonging to the scope of the present invention, such as those of other embodiments, or provided in the freezer compartment doors 7 and 8, the vegetable compartment door 9 or other places. May be. It will be apparent to those skilled in the art that a similar mounting configuration can be applied to any device.

1・・・真空断熱材
10・・・芯材
100・・・第一芯材
1001・・・外端
101・・・第二芯材
1010・・・孔
1011・・・外端
11・・・外包材
12・・・空間
13・・・折り曲げ用空間
2・・・冷蔵庫
6・・・冷蔵室扉
7・・・冷凍室扉
8・・・冷凍室扉
9・・・野菜室扉
1A・・・比較例の真空断熱材
DESCRIPTION OF SYMBOLS 1 ... Vacuum heat insulating material 10 ... Core material 100 ... 1st core material 1001 ... Outer end 101 ... Second core material 1010 ... Hole 1011 ... Outer end 11 ... Outer packaging material 12 ... space 13 ... bending space 2 ... refrigerator 6 ... refrigerator compartment door 7 ... freezer compartment door 8 ... freezer compartment door 9 ... vegetable compartment door 1A ...・ Comparative vacuum insulation

Claims (8)

孔を有する第二芯材を厚み方向に積層した芯材と、
樹脂層を含んで形成され、前記芯材を収納した外包材と、を有し、
前記外包材内部が大気圧未満の圧力であり、
前記芯材及び前記外包材で囲まれた減圧空間を有する真空断熱材。
A core material in which a second core material having holes is laminated in the thickness direction;
An outer packaging material that includes a resin layer and contains the core material;
The outer packaging material has a pressure below atmospheric pressure,
A vacuum heat insulating material having a decompression space surrounded by the core material and the outer packaging material.
前記外包材の上面視において、前記外包材のうち、前記外包材及び前記空間が重なっている部分が、前記外包材の他の部分及び前記芯材に対して離間していることを特徴とする請求項1に記載の真空断熱材。   In the top view of the outer packaging material, the portion of the outer packaging material where the outer packaging material and the space overlap is separated from the other portion of the outer packaging material and the core material. The vacuum heat insulating material according to claim 1. 前記外包材内の圧力下における前記芯材の厚みは、前記孔の寸法のうち最も長い方向の寸法の1/4以上であることを特徴とする請求項1又は2に記載の真空断熱材。   3. The vacuum heat insulating material according to claim 1, wherein a thickness of the core material under pressure in the outer packaging material is ¼ or more of a dimension in a longest direction among dimensions of the hole. 前記第二芯材に設けられた前記孔の総面積は、前記第二芯材が大気圧下にある状態で、前記第二芯材の面積及び前記孔の総面積の和に対して、50%以下の値であることを特徴とする請求項1乃至3何れか一項に記載の真空断熱材。   The total area of the holes provided in the second core material is 50 with respect to the sum of the area of the second core material and the total area of the holes in a state where the second core material is under atmospheric pressure. The vacuum heat insulating material according to any one of claims 1 to 3, wherein the vacuum heat insulating material has a value of% or less. 前記空間は、厚み方向の一方側及び他方側それぞれに設けられており、
該一方側及び他方側の空間の間に、シート状の第一芯材、又は、当該真空断熱材の上面視において前記空間と重なる部分以外の部分に孔を有する第二芯材を配したことを特徴とする請求項1乃至4何れか一項に記載の真空断熱材。
The space is provided on each of one side and the other side in the thickness direction,
Between the space on the one side and the other side, a sheet-shaped first core material, or a second core material having a hole in a portion other than a portion overlapping the space in a top view of the vacuum heat insulating material The vacuum heat insulating material as described in any one of Claims 1 thru | or 4 characterized by these.
前記一方側及び他方側の空間の間に設けた第一芯材又は第二芯材の目付は、当該真空断熱材のその他の部分の前記第一芯材及び第二芯材の目付よりも実質的に大きいことを特徴とする請求項5に記載の真空断熱材。   The basis weight of the first core member or the second core member provided between the space on the one side and the other side is substantially larger than the basis weight of the first core member and the second core member in the other part of the vacuum heat insulating material. The vacuum heat insulating material according to claim 5, wherein the vacuum heat insulating material is large. 前記孔の任意の方向の寸法が2mm以上であることを特徴とする請求項1乃至6何れか一項に記載の真空断熱材。   The vacuum heat insulating material according to any one of claims 1 to 6, wherein a dimension of the hole in an arbitrary direction is 2 mm or more. 請求項1乃至6何れか一項に記載の真空断熱材と、
該真空断熱材を取付ける取付部と、を有し、
前記真空断熱材は、シート状の第一芯材を略最外層に有し、該略最外層の側を前記取付部に取付けたことを特徴とする機器。
The vacuum heat insulating material according to any one of claims 1 to 6,
A mounting portion for mounting the vacuum heat insulating material,
The vacuum heat insulating material has a sheet-shaped first core material in a substantially outermost layer, and the substantially outermost layer side is attached to the attachment portion.
JP2015199041A 2015-10-07 2015-10-07 Vacuum heat insulating material and device using the same Pending JP2017072185A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015199041A JP2017072185A (en) 2015-10-07 2015-10-07 Vacuum heat insulating material and device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015199041A JP2017072185A (en) 2015-10-07 2015-10-07 Vacuum heat insulating material and device using the same

Publications (1)

Publication Number Publication Date
JP2017072185A true JP2017072185A (en) 2017-04-13

Family

ID=58539704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015199041A Pending JP2017072185A (en) 2015-10-07 2015-10-07 Vacuum heat insulating material and device using the same

Country Status (1)

Country Link
JP (1) JP2017072185A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113007956A (en) * 2019-12-20 2021-06-22 东芝生活电器株式会社 Heat insulating material, refrigerator, and method for producing heat insulating material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113007956A (en) * 2019-12-20 2021-06-22 东芝生活电器株式会社 Heat insulating material, refrigerator, and method for producing heat insulating material
CN113007956B (en) * 2019-12-20 2022-08-23 东芝生活电器株式会社 Heat insulating material, refrigerator, and method for producing heat insulating material

Similar Documents

Publication Publication Date Title
EP2462392B1 (en) Vacuum insulation member and method for fabricating vacuum insulation member
JP2009541112A (en) Vacuum insulation board for aircraft interior
JP2007056972A5 (en)
JP6073005B1 (en) Vacuum heat insulating material and method for manufacturing vacuum heat insulating material
JP4974861B2 (en) Vacuum insulation
JP5195494B2 (en) Vacuum heat insulating material and manufacturing method thereof
JP2017072185A (en) Vacuum heat insulating material and device using the same
JP2008248618A (en) Heat-insulating and sound-insulating material
JP2017072186A (en) Vacuum heat insulating material and device using the same
JP5646241B2 (en) refrigerator
JP2012225428A (en) Heat insulation sheet
JP4380607B2 (en) Thermal insulation panel
JP2010071303A (en) Vacuum heat insulating material
JP5245710B2 (en) Vacuum insulation
JP6641243B2 (en) Method for manufacturing composite heat insulator, method for manufacturing water heater, and composite heat insulator
JP2019168001A (en) Vacuum heat insulating material and refrigerator using vacuum heat insulating material
JP6359087B2 (en) Vacuum heat insulating material and heat insulator provided with the same
JP6917870B2 (en) Manufacturing method of vacuum heat insulating material and vacuum heat insulating material
JP2007016834A (en) Method of bending and cutting vacuum heat insulating material
JP2009074604A (en) Vacuum heat insulating material
US11091907B2 (en) Assembly with enhanced insulation
KR101477343B1 (en) Method for manufacturing vacuum insulation panel and vacuum insulation panel
JP2011236986A (en) Vacuum heat insulating material, mounting structure thereof and house having them
JP2015175501A (en) Vacuum adiabatic material and refrigerator using vacuum adiabatic material
US20170335563A1 (en) Insulation devices including vacuum-insulated capsules

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170119

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170125