JP2006125631A - Vacuum insulation material and manufacturing method thereof - Google Patents

Vacuum insulation material and manufacturing method thereof Download PDF

Info

Publication number
JP2006125631A
JP2006125631A JP2005287407A JP2005287407A JP2006125631A JP 2006125631 A JP2006125631 A JP 2006125631A JP 2005287407 A JP2005287407 A JP 2005287407A JP 2005287407 A JP2005287407 A JP 2005287407A JP 2006125631 A JP2006125631 A JP 2006125631A
Authority
JP
Japan
Prior art keywords
heat insulating
vacuum heat
insulating material
thickness
bag
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005287407A
Other languages
Japanese (ja)
Inventor
Daisuke Kondo
大介 近藤
Shinichi Ochiai
慎一 落合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Fiber Glass Co Ltd
Original Assignee
Asahi Fiber Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Fiber Glass Co Ltd filed Critical Asahi Fiber Glass Co Ltd
Priority to JP2005287407A priority Critical patent/JP2006125631A/en
Publication of JP2006125631A publication Critical patent/JP2006125631A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/06Arrangements using an air layer or vacuum
    • F16L59/065Arrangements using an air layer or vacuum using vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/101Glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/304Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2509/00Household appliances
    • B32B2509/10Refrigerators or refrigerating equipment

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vacuum insulation material having heat insulation property and surface smoothness in a small number of processes at a low cost. <P>SOLUTION: In this vacuum insulation material, a core material formed by stacking glass fibers is sheathed by a casing bag, and the interior of the casing bag is decompressed. A sheet-like material having a surface density of 20 to 400g/m<SP>2</SP>is inserted between at least one of both surfaces of the core material and the casing bag. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、表面平滑性および断熱性などに優れた真空断熱材およびその製造方法に関する。   The present invention relates to a vacuum heat insulating material excellent in surface smoothness and heat insulating properties and a method for producing the same.

従来より、冷蔵庫や低温コンテナ、住宅用建材などには種々の断熱材が用いられており、特に断熱性能に優れた断熱材として、断熱性の芯材を外被袋内に封入し、内部を真空排気した構成の真空断熱材が使用されている。これらの真空断熱材は、アルミ箔ラミネートフィルムなどの袋に発泡体を収容して袋の内部を真空にすると、発泡体に密着する袋の表面に、発泡体が有する凹凸形状がそのまま表れてしまい、表面の平滑性に劣るものとなる。表面の平滑性に劣る真空断熱材は、例えば、電気冷蔵庫の壁面に埋め込み、真空断熱材の周囲にさらにウレタン樹脂を流し込んで発泡させたときに、ウレタン樹脂の流れが悪くなり、真空断熱材の表面に空隙や隙間が生じてしまって性能が低下するという問題が発生する。また、真空断熱材を別の部材と貼り合わせて使用するときにも、貼り合わせ面に隙間や空隙が生じ易いといった問題を有しており、その問題を解決するために特許文献1に開示された方法が知られている。   Conventionally, various heat insulating materials have been used for refrigerators, low temperature containers, residential building materials, etc., and as a heat insulating material particularly excellent in heat insulating performance, a heat insulating core material is enclosed in a jacket bag, and the inside A vacuum heat insulating material having an evacuated structure is used. When these foams are housed in a bag such as an aluminum foil laminate film and the inside of the bag is evacuated, the uneven shape of the foam appears on the surface of the bag that is in close contact with the foam. The surface smoothness is inferior. The vacuum insulation material with poor surface smoothness, for example, is embedded in the wall surface of an electric refrigerator, and when urethane resin is further poured around the vacuum insulation material and foamed, the flow of the urethane resin deteriorates, A problem arises in that voids and gaps are formed on the surface and the performance is degraded. Further, even when the vacuum heat insulating material is bonded to another member, there is a problem that a gap or a gap is likely to be generated on the bonding surface, which is disclosed in Patent Document 1 in order to solve the problem. Methods are known.

さらに特許文献2には、ガラス繊維からなる芯材を樹脂フィルム製の内袋内に充填および脱気したものを真空断熱材用の外被袋内に封入して、表面平滑性に優れた真空断熱材とする技術が開示されている。
特開2000−283385公報 特開平4−337195号公報
Further, in Patent Document 2, a core material made of glass fiber is filled and degassed in an inner bag made of a resin film and sealed in a jacket bag for a vacuum heat insulating material, thereby providing a vacuum with excellent surface smoothness. A technique for making a heat insulating material is disclosed.
JP 2000-283385 A JP-A-4-337195

特許文献1に記載のように、真空断熱材用の芯材として樹脂発泡体を用いる場合、発泡体は成形が容易なため、比較的容易に真空断熱材の表面平滑性が得られる。一方、真空断熱材用の芯材としてガラス繊維などの無機繊維の積層体を使用すると、より優れた熱性能の真空断熱材が得られるため、無機繊維の積層体が広く採用されている。しかしながら、前記無機繊維の積層体を芯材とした場合、前記樹脂発泡体とは異なり、無機繊維の積層体は成形が容易ではないため、真空断熱材としたときに充分な表面平滑性が得られておらず、電気冷蔵庫などの筐体の壁面に埋め込んだ際、充分な熱性能が得られないといった問題を有していた。このため、真空断熱材の外被袋の厚みを厚くしたりすることで表面平滑性が得られるものの、外被袋は芯材全体を覆っており、真空断熱材の熱伝導性を低下させるため、結果として充分な熱性能を有する真空断熱材が得られないといった問題を有していた。   As described in Patent Document 1, when a resin foam is used as a core material for a vacuum heat insulating material, since the foam is easily molded, the surface smoothness of the vacuum heat insulating material can be obtained relatively easily. On the other hand, when a laminated body of inorganic fibers such as glass fibers is used as a core material for a vacuum heat insulating material, a vacuum heat insulating material with better thermal performance can be obtained, and therefore a laminated body of inorganic fibers is widely used. However, when the laminated body of inorganic fibers is used as a core material, unlike the resin foam, the laminated body of inorganic fibers is not easy to mold. However, when embedded in the wall surface of a housing such as an electric refrigerator, there is a problem that sufficient thermal performance cannot be obtained. For this reason, although the surface smoothness can be obtained by increasing the thickness of the envelope bag of the vacuum heat insulating material, the envelope bag covers the entire core material, so that the thermal conductivity of the vacuum heat insulating material is reduced. As a result, there has been a problem that a vacuum heat insulating material having sufficient thermal performance cannot be obtained.

また、特許文献2に記載の技術の場合には、得られる真空断熱材の表面平滑性は優れているものの、芯材の全ての表面を樹脂フィルムで被覆していることから、(1)断熱性が低下する、(2)真空断熱材用外被袋内にさらに樹脂フィルム製内袋が存在することから、真空断熱材の端部において撓みが発生する、(3)内袋内に芯材を挿入する作業、これを脱気する作業、さらに外被袋内に挿入する作業、外被袋内を脱気する作業のように、工程数が多くコスト高であるという課題がある。   Further, in the case of the technique described in Patent Document 2, although the surface smoothness of the obtained vacuum heat insulating material is excellent, since all surfaces of the core material are covered with a resin film, (1) heat insulation (2) Since a resin film inner bag is further present in the outer bag for vacuum heat insulating material, bending occurs at the end of the vacuum heat insulating material. (3) Core material in the inner bag There is a problem that the number of steps is large and the cost is high, such as an operation of inserting the bag, a process of degassing the bag, a process of inserting the bag into the jacket bag, and a task of degassing the jacket bag.

従って本発明は、少ない工程で断熱性および表面平滑性に優れた真空断熱材を低コストで提供することを目的とする。   Therefore, an object of this invention is to provide the vacuum heat insulating material excellent in heat insulation and surface smoothness with few processes at low cost.

上記目的は以下の本発明によって達成される。すなわち、本発明は、ガラス繊維が積層されてなる芯材が外被袋で包被され、かつ外被袋内が減圧されている真空断熱材であって、前記芯材の両表面の少なくとも一方の面と前記外被袋との間に、目付量20〜400g/m2のシート状物が挿入されていることを特徴とする真空断熱材を提供する。 The above object is achieved by the present invention described below. That is, the present invention is a vacuum heat insulating material in which a core material in which glass fibers are laminated is covered with an outer bag and the inner pressure of the outer bag is reduced, and at least one of both surfaces of the core material A vacuum heat insulating material is provided in which a sheet-like material with a basis weight of 20 to 400 g / m 2 is inserted between the surface of the outer bag and the outer bag.

また、本発明は、平均繊維径5μm以下のガラス繊維を積層して芯材とする工程、該芯材を80〜350℃で加熱する工程、前記芯材の両表面の少なくとも一方の面に目付量20〜400g/m2のシート状物を積層する工程、該積層物を真空断熱材用外被袋内に挿入する工程、および該外被袋内を減圧する工程を有することを特徴とする真空断熱材の製造方法を提供する。 The present invention also includes a step of laminating glass fibers having an average fiber diameter of 5 μm or less to form a core material, a step of heating the core material at 80 to 350 ° C., and at least one surface of both surfaces of the core material. The method includes a step of laminating a sheet-like material having an amount of 20 to 400 g / m 2 , a step of inserting the laminate into a jacket bag for a vacuum heat insulating material, and a step of decompressing the inside of the jacket bag. A method for producing a vacuum heat insulating material is provided.

上記本発明の真空断熱材においては、前記シート状物が厚さ0.02〜0.3mmの樹脂フィルムであること;前記シート状物が、厚さ0.5〜10mmの不織布または織布であること;および前記芯材が有機バインダーが付着した芯材であって、芯材における有機バインダーの付着量が、芯材の0.1〜3質量%であることが好ましい。   In the vacuum heat insulating material of the present invention, the sheet is a resin film having a thickness of 0.02 to 0.3 mm; the sheet is a non-woven fabric or a woven fabric having a thickness of 0.5 to 10 mm. It is preferable that the core material is a core material to which an organic binder is attached, and the amount of the organic binder attached to the core material is 0.1 to 3% by mass of the core material.

また、前記本発明の製造方法においては、前記ガラス繊維を積層して芯材とする工程が、前記ガラス繊維を積層する前または後にガラス繊維に有機バインダーを付着させた後、加熱してバインダーを硬化させて、芯材の0.1〜3質量%の有機バインダーが付着した芯材とすること;前記有機バインダーを付着させた芯材を240〜350℃に加熱すること;前記シート状物を50〜300℃で加熱した後、該シート状物を積層すること;前記ガラス繊維を、密度150〜500kg/m3に圧縮する工程を含むこと;前記シート状物が厚さ0.02〜0.3mmの樹脂フィルムであること;および前記シート状物が、厚さ0.5〜10mmの不織布または織布であることが好ましい。 In the production method of the present invention, the step of laminating the glass fibers to form a core material is performed by attaching an organic binder to the glass fibers before or after laminating the glass fibers, and then heating the binder. Curing to obtain a core material to which an organic binder of 0.1 to 3% by mass of the core material is adhered; heating the core material to which the organic binder is adhered to 240 to 350 ° C .; After heating at 50 to 300 ° C., laminating the sheet material; including a step of compressing the glass fiber to a density of 150 to 500 kg / m 3 ; the sheet material having a thickness of 0.02 to 0 It is preferable that the resin film has a thickness of 3 mm; and the sheet-like material is a nonwoven fabric or a woven fabric having a thickness of 0.5 to 10 mm.

本発明によれば、少ない工程で断熱性および表面平滑性に優れた真空断熱材を低コストで提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the vacuum heat insulating material excellent in heat insulation and surface smoothness can be provided at low cost with few processes.

次に発明を実施するための最良の形態を示す図面を参照して本発明をさらに詳しく説明する。
図4は、従来公知の真空断熱材の模式的断面図である。図4において、符号Aは真空断熱材の全体を、符号1は無機繊維マットからなる芯材が外被袋内に充填および圧縮された状態を、符号2はガスバリヤ性外被袋を、符号3は封止部を示している。図示の真空断熱材Aは、ガラス繊維などの無機繊維マットからなる芯材1を、アルミニウム蒸着ポリエチレンフィルムなどのガスバリア性外被袋2で覆い、外被袋内を真空(減圧)状態(例えば、1〜10Pa程度)に保持している。
Next, the present invention will be described in more detail with reference to the drawings showing the best mode for carrying out the invention.
FIG. 4 is a schematic cross-sectional view of a conventionally known vacuum heat insulating material. In FIG. 4, reference numeral A denotes the entire vacuum heat insulating material, reference numeral 1 denotes a state in which a core material made of an inorganic fiber mat is filled and compressed in the outer bag, reference numeral 2 denotes a gas barrier outer bag, and reference numeral 3. Indicates a sealing portion. In the illustrated vacuum heat insulating material A, a core material 1 made of an inorganic fiber mat such as glass fiber is covered with a gas barrier outer bag 2 such as an aluminum-deposited polyethylene film, and the inside of the outer bag is in a vacuum (reduced pressure) state (for example, 1 to 10 Pa).

上記真空断熱材Aは、無機繊維マットからなる芯材1を単に外被袋2により被覆していることから、芯材中の無機繊維の全てが真空断熱材の平面方向に水平になっておらず、そのために真空断熱材の断熱性が不十分であった。また、同様な理由で、真空断熱材とした時に外被袋2の表面の平滑性が劣り、冷蔵庫、パソコンなどの種々の断熱性が要求される用途において、該断熱材が収納される筐体内において筐体の内面に空間が生じ、これも断熱性不良の原因となっていた。   In the vacuum heat insulating material A, since the core material 1 made of an inorganic fiber mat is simply covered with the jacket bag 2, all of the inorganic fibers in the core material are horizontal in the plane direction of the vacuum heat insulating material. Therefore, the heat insulating property of the vacuum heat insulating material was insufficient. For the same reason, the surface of the outer bag 2 is inferior in smoothness when used as a vacuum heat insulating material, and in a case where various heat insulating properties such as a refrigerator and a personal computer are required, the case in which the heat insulating material is stored. In this case, a space was generated on the inner surface of the housing, which also caused poor heat insulation.

本発明の真空断熱材は、上記課題を解決するものであり、図1に示すように、前記芯材1の両表面の少なくとも一方の面と前記外被袋2との間に、目付量20〜400g/m2のシート状物Bが挿入されていることを特徴としている。本発明によれば、上記特徴によって真空断熱材の製造コストをアップさせることなく、真空断熱材の表面平滑性を顕著に改善することができる。 The vacuum heat insulating material of the present invention solves the above-described problem. As shown in FIG. 1, the weight per unit area 20 is between at least one surface of both surfaces of the core material 1 and the outer bag 2. It is characterized in that a sheet-like material B of ˜400 g / m 2 is inserted. According to the present invention, the surface smoothness of the vacuum heat insulating material can be remarkably improved without increasing the manufacturing cost of the vacuum heat insulating material due to the above features.

上記シート状物Bの目付量が20g/m2未満であると、結果として得られる真空断熱材の平面平滑性が充分に得られず好ましくなく、一方、上記シート状物Bの目付量が400g/m2を超えると、後述する樹脂フィルムを用いる場合には熱性能が劣り、不織布または織布を用いる場合には、それ以上の平面平滑性が期待できず、また、コスト高となる点で好ましくない。そのため、前記値は100〜250g/m2であることがより好ましい。 When the basis weight of the sheet-like material B is less than 20 g / m 2 , the resulting flat surface smoothness of the vacuum heat insulating material cannot be sufficiently obtained, and on the other hand, the basis weight of the sheet-like material B is 400 g. If it exceeds / m 2 , the thermal performance is inferior when using a resin film, which will be described later, and if a non-woven fabric or woven fabric is used, no more planar smoothness can be expected, and the cost increases. It is not preferable. Therefore, the value is more preferably 100 to 250 g / m 2 .

また、上記シート状物は、厚さ0.02〜0.3mmの樹脂フィルムであることが好ましい。厚さが0.02mm未満であると、結果として得られる真空断熱材の平面平滑性が充分に得られず好ましくなく、一方、上記厚さが0.3mmを超えると、真空断熱材の熱性能が劣り好ましくない。そのため、上記厚みは0.03〜0.1mmであることがより好ましい。樹脂の材質としては、ポリエチレンテレフタレート、ポリエチレン、ポリプロピレン、ポリカーボネート、ポリアミド、ポリビニルアルコールなどが挙げられる。上記樹脂フィルムは無孔フィルムであっても、多孔フィルムであってもよい。   The sheet-like material is preferably a resin film having a thickness of 0.02 to 0.3 mm. When the thickness is less than 0.02 mm, the resulting flat surface smoothness of the vacuum heat insulating material is not sufficiently obtained, and when the thickness exceeds 0.3 mm, the thermal performance of the vacuum heat insulating material is not preferable. Is inferior and is not preferred. Therefore, the thickness is more preferably 0.03 to 0.1 mm. Examples of the resin material include polyethylene terephthalate, polyethylene, polypropylene, polycarbonate, polyamide, and polyvinyl alcohol. The resin film may be a non-porous film or a porous film.

さらに前記シート状物としては、厚さ0.5〜10mmの不織布または織布も好適である。厚さが0.5mm未満であると、結果として得られる真空断熱材の平面平滑性が充分に得られず好ましくなく、一方、上記厚さが10mmを超えるとそれ以上の平面平滑性が期待できず、また、コスト高となる点で好ましくない。そのため、上記厚みは1〜5mmであることがより好ましい。不織布または織布の材質としては、ポリエチレンテレフタレート、ポリエチレン、ポリプロピレン、ポリカーボネート、ポリアミド、ポリビニルアルコール、ガラス繊維などが挙げられ、真空断熱の熱性能を良好にするために前記ガラス繊維を用いることがより好ましい。上記のシート状物Bのサイズは特に限定されないが、真空断熱材の芯材1と同一形状若しくはやや小さい相似形であることが好ましい。   Further, as the sheet-like material, a nonwoven fabric or a woven fabric having a thickness of 0.5 to 10 mm is also suitable. If the thickness is less than 0.5 mm, the resulting flat surface smoothness of the vacuum heat insulating material cannot be obtained sufficiently. On the other hand, if the thickness exceeds 10 mm, more flat smoothness can be expected. Moreover, it is not preferable in terms of high cost. Therefore, the thickness is more preferably 1 to 5 mm. Examples of the material of the nonwoven fabric or woven fabric include polyethylene terephthalate, polyethylene, polypropylene, polycarbonate, polyamide, polyvinyl alcohol, glass fiber, and the like, and it is more preferable to use the glass fiber in order to improve the thermal performance of vacuum insulation. . Although the size of said sheet-like material B is not specifically limited, It is preferable that it is the same shape as the core material 1 of a vacuum heat insulating material, or a somewhat small similar shape.

上記本発明の真空断熱材の他の構成および製造方法は特に限定されないが、以下に好ましい製造方法の1例を図2(A)〜(D)を参照して説明する。図2(A)は、圧縮前の複数枚の繊維マット4を積層した状態を示しており、図2(B)は、図2(A)に示す繊維マットの積層体を平板プレス機5により圧縮して積層繊維マットを圧縮した状態を示しており、図2(C)は、積層繊維マットをプレス機から解放して得られる圧縮マット、すなわち芯材1を形成した状態を示している。なお、プレス機5はバインダーが付与された無機繊維マットを用いる場合は、加熱機能が付与されていることが好ましい。本発明では、このようにして形成した芯材の両面または片面に、図2(D)に示すようにシート状物Bを載置する。シート状物Bの載置に際しては、接着剤などを使用しない単なる載置でもよいし、作業性をよくするために、少量の接着剤により点接着させておいてもよい。   Although the other structure and manufacturing method of the said vacuum heat insulating material of the said invention are not specifically limited, One example of a preferable manufacturing method is demonstrated with reference to FIG. 2 (A)-(D) below. FIG. 2 (A) shows a state in which a plurality of fiber mats 4 before compression are laminated, and FIG. 2 (B) shows a laminate of the fiber mats shown in FIG. FIG. 2 (C) shows a state where a compression mat obtained by releasing the laminated fiber mat from the press, that is, the core material 1 is formed. In addition, when using the inorganic fiber mat to which the press machine 5 was provided with the binder, it is preferable that the heating function is provided. In the present invention, the sheet-like material B is placed on both surfaces or one surface of the core material formed as described above as shown in FIG. When the sheet-like material B is placed, it may be simply placed without using an adhesive or the like, or may be point-bonded with a small amount of adhesive in order to improve workability.

本発明に使用する芯材1(図2(C))は、1例として、図2(A)および図2(B)に示す如き方法で得られる。すなわち、例えば、ガラス繊維を、連続的に溶融紡糸しながらベルトコンベア上に連続的に積層し、さらに必要に応じてこの積層する前後に有機バインダーまたは無機のバインダーを付与して加熱硬化させつつ、シート化してガラス繊維マットとし、該マットをロール状に巻取ったものから、ガラス繊維マット4の複数枚を裁断および積層し(図2(A))、この積層物を、密度が150〜500kg/m3となるように30秒間以上、例えば、平板加熱プレス機5などにより圧縮マットである芯材1を成形する(図2(C))ことによって得られる。 The core material 1 (FIG. 2 (C)) used in the present invention is obtained by a method as shown in FIGS. 2 (A) and 2 (B) as an example. That is, for example, glass fiber is continuously laminated on a belt conveyor while continuously melt spinning, and further, if necessary, before and after lamination, an organic binder or an inorganic binder is applied and cured by heating. A sheet is formed into a glass fiber mat, and a plurality of the glass fiber mats 4 are cut and laminated from a roll of the mat (FIG. 2 (A)), and the density of the laminate is 150 to 500 kg. It is obtained by molding the core material 1 as a compression mat with a flat plate heating press 5 or the like for 30 seconds or more so as to be / m 3 (FIG. 2 (C)).

上記芯材1を構成する、圧縮する前のガラス繊維マット4それ自体は公知であり、ガラス繊維を必要に応じて前記バインダーによってマット状に成形してなるものである。このようなガラス繊維マットは種々の密度のものが知られているが、本発明においては、ガラス繊維の平均繊維径は5μm以下であり、好ましくは3〜5μmである。また、圧縮する前のガラス繊維マットの密度が3kg/m3以上であり、該マットの1枚の厚みが10〜350mmであることが好適である。 The glass fiber mat 4 before compression which constitutes the core material 1 is known per se, and is formed by molding glass fibers into a mat shape with the binder as necessary. Such glass fiber mats are known to have various densities. In the present invention, the average fiber diameter of the glass fibers is 5 μm or less, preferably 3 to 5 μm. Moreover, it is preferable that the density of the glass fiber mat before compression is 3 kg / m 3 or more, and the thickness of one piece of the mat is 10 to 350 mm.

上記ガラス繊維の平均径が5μmを超える太さであると、得られる真空断熱材の熱性能が低下するなどの点で本発明の効果が十分には得られず、一方、3μm未満の太さのガラス繊維は製造自体が困難である。また、圧縮処理前のガラス繊維マット4の密度が3kg/m3未満であると、圧縮する際のハンドリング性が劣り好ましくない。また、上記マットの1枚の厚みが10mm未満であると、マットの生産性が劣り、また、多数枚のマットを要するなどの点で好ましくなく、一方、厚さが350mmを超えると圧縮する際のガラス繊維マットのハンドリング性が劣り好ましくない。 When the average diameter of the glass fiber is more than 5 μm, the effect of the present invention cannot be sufficiently obtained in that the thermal performance of the obtained vacuum heat insulating material is lowered, while the thickness is less than 3 μm. This glass fiber is difficult to manufacture. Further, if the density of the glass fiber mat 4 before the compression treatment is less than 3 kg / m 3 , the handling property at the time of compression is inferior. Further, if the thickness of one mat is less than 10 mm, the mat is inferior in productivity and requires many mats. On the other hand, if the thickness exceeds 350 mm, the mat is compressed. The handling property of the glass fiber mat is inferior.

また、本発明で必要に応じて使用するバインダー自体は従来公知のガラス繊維マットの製造に使用されているバインダーでよく、好ましくは、熱硬化性樹脂であるフェノール樹脂前駆体の水溶液などが使用できる。これらのバインダーは、バインダーの固形分が、該バインダーの固形分を含むガラス繊維の全量の0.1〜3.0質量%を占める範囲の使用量が好適であり、0.5〜2.0質量%が最も好ましい。これらのバインダーの付着量が0.1質量%未満であると、ガラス繊維マットが嵩張り、かつ該マットが柔軟性を有するため、該マットから製造した芯材を外被袋内に充填しにくいなど、ハンドリング性が劣るなど好ましくない場合がある。一方、上記付着量が3.0質量%を超えると、得られる真空断熱材の断熱性能が劣り好ましくない場合がある。また、本発明はバインダーが付与されていないホワイトウールと呼ばれるガラス繊維マットを使用することが可能であり、ホワイトウールはバインダーが付与されたものよりも柔軟であるため、特に充分な表面平滑性が得られないものの、本発明のシート状物Bを使用することで表面平滑性が飛躍的に向上するため、好適に採用される。   In addition, the binder itself used as necessary in the present invention may be a binder used in the production of a conventionally known glass fiber mat, and preferably an aqueous solution of a phenol resin precursor that is a thermosetting resin can be used. . These binders are preferably used in a range in which the solid content of the binder occupies 0.1 to 3.0% by mass of the total amount of the glass fiber including the solid content of the binder. Mass% is most preferred. When the adhesion amount of these binders is less than 0.1% by mass, the glass fiber mat is bulky and the mat has flexibility, so that it is difficult to fill the core bag manufactured from the mat into the outer bag. In some cases, such as poor handling properties. On the other hand, if the amount of adhesion exceeds 3.0% by mass, the heat insulating performance of the resulting vacuum heat insulating material may be inferior, which may be undesirable. In addition, the present invention can use a glass fiber mat called white wool to which a binder is not applied, and white wool is more flexible than that to which a binder is applied, and thus has particularly sufficient surface smoothness. Although not obtained, since the surface smoothness is remarkably improved by using the sheet-like material B of the present invention, it is preferably employed.

本発明では、ガラス繊維マットを単独または複数枚重ねて圧縮処理する。複数枚を重ねて圧縮処理する場合の積層する枚数は、上記ガラス繊維マットの密度、厚さおよび最終的に得られる真空断熱材に要求される厚さによって異なるが、例えば、密度が20〜100kg/m3で、厚みが10〜50mmのマットを2〜4枚を重ねて圧縮処理するか、または圧縮処理したものを2〜4枚重ねて使用することができる。 In the present invention, the glass fiber mat is compressed alone or in a plurality of layers. The number of sheets to be laminated when a plurality of sheets are compressed is different depending on the density and thickness of the glass fiber mat and the thickness required for the vacuum heat insulating material finally obtained. For example, the density is 20 to 100 kg. / M 3 and a mat having a thickness of 10 to 50 mm can be compressed by stacking 2 to 4 mats, or 2 to 4 mats having been compressed can be used.

また、圧縮条件は、積層されて圧縮されたマットの密度が、150〜500kg/m3で、好ましくは200〜400kg/m3となる条件であり、具体的には平板プレス機の上下間の圧力が150〜500kg/m2で、好ましくは200〜400kg/m2である。前記値が150kg/m3(密度)または150kg/m2(圧力)未満であると、得られる芯材を充填してなる真空断熱材の表面平滑性が充分に得られず、また、500kg/m3(密度)または500kg/m2(圧力)を超えると、ガラス繊維マットを圧縮するための設備が大掛かりとなり、また、ガラス繊維マット中のガラス繊維に必要以上に折れが生じてガラス繊維が粉状となり、最終的に得られる真空断熱材の充分な熱性能が得られず、好ましくない。また、圧縮時間は30秒間以上であり、前記プレス機で圧縮する場合は60〜360秒間が好ましい。 Further, the compression condition is a condition in which the density of the laminated and compressed mat is 150 to 500 kg / m 3 , preferably 200 to 400 kg / m 3 , specifically, between the upper and lower sides of the flat plate press. The pressure is 150 to 500 kg / m 2 , preferably 200 to 400 kg / m 2 . When the value is less than 150 kg / m 3 (density) or 150 kg / m 2 (pressure), the surface smoothness of the vacuum heat insulating material filled with the obtained core material cannot be obtained sufficiently, and 500 kg / When m 3 (density) or 500 kg / m 2 (pressure) is exceeded, the equipment for compressing the glass fiber mat becomes large, and the glass fiber in the glass fiber mat is bent more than necessary, and the glass fiber is Since it becomes powdery and sufficient thermal performance of the finally obtained vacuum heat insulating material cannot be obtained, it is not preferable. Moreover, the compression time is 30 seconds or more, and when compressing with the press machine, 60 to 360 seconds are preferable.

以上の如く圧縮処理されたガラス繊維マットは、圧縮処理後に圧力から解放されると、厚みが増して厚くなる(図2(B)→図2(C))。この状態での芯材の密度および厚みは特に限定されないが、一般的には、密度が45〜100kg/m3で、厚みが10〜70mmであることが好ましい。このような圧縮処理によって芯材を構成しているガラス繊維は、その平面方向に対して実質的に水平になり、芯材の表面平滑性が向上する。その結果、該圧縮処理された芯材を真空断熱材の芯材としてシート状物Bとともに使用することによって、断熱性、表面平滑性および作業性に優れた真空断熱材が得られる。 When the glass fiber mat compressed as described above is released from the pressure after the compression treatment, the thickness increases and becomes thicker (FIG. 2 (B) → FIG. 2 (C)). The density and thickness of the core material in this state are not particularly limited, but in general, the density is 45 to 100 kg / m 3 and the thickness is preferably 10 to 70 mm. The glass fiber which comprises the core material by such a compression process becomes substantially horizontal with respect to the plane direction, and the surface smoothness of the core material is improved. As a result, by using the compressed core material together with the sheet-like material B as the core material of the vacuum heat insulating material, a vacuum heat insulating material having excellent heat insulating properties, surface smoothness and workability can be obtained.

さらに、前記有機バインダーを用いた場合は、前記圧縮の前後、または圧縮と同時にガラス繊維マットを加熱処理することが好ましく、前記加熱処理は240〜350℃で加熱することが好ましい。前記加熱によっても、ガラス繊維マットにはバインダーが残存しているため、芯材自体の表面平滑性を損なわず、また芯材のハンドリグ性が良好であるばかりでなく、真空断熱材にしたときの断熱性に優れるため好ましい。また、前記加熱処理の時間は、加熱前のバインダーの付着量にもよるが加熱温度が350℃付近でも5分間以上の加熱が好ましく、また、加熱温度が240℃付近では30分間程度が好ましい。従って本発明においては、加熱温度が前記範囲の場合に5分〜30分間の加熱時間が好ましい。   Furthermore, when the said organic binder is used, it is preferable to heat-process a glass fiber mat before and behind the said compression, or simultaneously with compression, and it is preferable that the said heat processing is heated at 240-350 degreeC. Even with the heating, since the binder remains in the glass fiber mat, the surface smoothness of the core material itself is not impaired, and not only the hand rigging property of the core material is good, but also when the vacuum heat insulating material is used. Since it is excellent in heat insulation, it is preferable. Moreover, although the said heat processing time is based also on the adhesion amount of the binder before a heating, the heating for 5 minutes or more is preferable even if heating temperature is 350 degreeC vicinity, and about 30 minutes are preferable when heating temperature is 240 degreeC vicinity. Therefore, in the present invention, when the heating temperature is within the above range, a heating time of 5 minutes to 30 minutes is preferable.

前記加熱処理後の芯材のバインダー付着量は、バインダーの固形分が、該バインダーの固形分を含むガラス繊維の全量の0.1〜3.0質量%を占める範囲が好適であり、0.5〜2.0質量%が最も好ましい。また、加熱処理後のバインダー付着量は、加熱前のバインダー付着量に対し、10質量%以上減少していることが好ましい。加熱処理後の芯材のバインダーの付着量が0.1質量%未満であると、ガラス繊維マットが嵩張り、かつ該マットが柔軟性を有するため、該マットから製造した芯材を外被袋内に充填しにくいなど、ハンドリング性が劣るなど好ましくない場合がある。一方、上記付着量が3.0質量%を超えると、得られる真空断熱材の断熱性能が劣り好ましくない場合があるが、前記加熱処理をしているため、加熱処理をしていない同量のマットに比べ加熱処理をしたマットは熱性能が良好であり、比較的バインダーの付着量が多くすることが可能になるために、芯材自体の表面平滑性を良好にし、ガラス繊維マットの嵩張りを生じさせず、ハンドリング性を良好にすることが可能となる。   The binder adhesion amount of the core material after the heat treatment is preferably such that the solid content of the binder occupies 0.1 to 3.0% by mass of the total amount of the glass fiber including the solid content of the binder. 5-2.0 mass% is the most preferable. Moreover, it is preferable that the binder adhesion amount after heat processing has decreased 10 mass% or more with respect to the binder adhesion amount before a heating. When the adhesion amount of the binder of the core material after the heat treatment is less than 0.1% by mass, the glass fiber mat is bulky and the mat has flexibility. In some cases, it is difficult to fill the inside, such as poor handling properties. On the other hand, if the amount of adhesion exceeds 3.0% by mass, the heat insulating performance of the resulting vacuum heat insulating material may be inferior, which may not be preferable, but because the heat treatment is performed, the same amount of heat treatment is not performed. The heat-treated mat has better thermal performance than the mat, and the amount of binder attached can be relatively increased. Therefore, the surface smoothness of the core material itself is improved, and the bulk of the glass fiber mat is increased. It is possible to improve the handleability without causing the above.

前記図2(A)〜図2(D)を参照して説明した芯材の製造方法は好ましい1例であり、他の好ましい芯材の製造例を図3を参照して説明する。図中の符号6は、圧縮前の積層繊維マットを、符号7は加熱オーブンを、符号8は圧縮コンベアを、9、9’は上流側の一対のロールを、10、10’は下流側の一対のロールを、11は圧縮中の積層繊維マットを、1は圧縮して製造された積層マット(すなわち、芯材)を示している。   The manufacturing method of the core material described with reference to FIGS. 2A to 2D is a preferable example, and another preferable example of manufacturing the core material will be described with reference to FIG. In the figure, reference numeral 6 denotes a laminated fiber mat before compression, reference numeral 7 denotes a heating oven, reference numeral 8 denotes a compression conveyor, reference numerals 9 and 9 ′ denote a pair of upstream rolls, and reference numerals 10 and 10 ′ denote a downstream side. A pair of rolls, 11 is a laminated fiber mat being compressed, and 1 is a laminated mat (that is, a core material) manufactured by compression.

図示の芯材の製造方法では、連続的に溶融紡糸されているガラス繊維を、ベルトコンベアなどの不図示の搬送手段上に連続的に所定の密度で堆積しつつガラス繊維をマット化し、該マットをロール状に巻取ることなく(勿論、巻取ったものを連続的に巻き戻してもよい)、所定の枚数に積層して積層繊維マット6とし、該積層物6を、加熱オーブン7内で駆動されている圧縮コンベア8を構成している上流側の一対のロール9、9’および下流側の一対のロール10、10’により連続して圧縮し、所望の芯材1を連続生産できるために好ましい。   In the core material manufacturing method shown in the figure, glass fibers that are continuously melt-spun are continuously matted on a conveying means (not shown) such as a belt conveyor at a predetermined density, and the glass fibers are matted. Without being wound into a roll (of course, the wound ones may be continuously rewound) to form a laminated fiber mat 6 which is laminated in a heating oven 7. The desired core material 1 can be continuously produced by continuously compressing with a pair of upstream rolls 9 and 9 'and a pair of downstream rolls 10 and 10' constituting the driven compression conveyor 8. Is preferable.

前記コンベア8の長さはラインスピードにもよるが、10〜30mが好ましい。コンベア8の長さが10m未満であると圧縮が不十分となり、平滑な真空断熱材を与える芯材1を得ることができず、一方、コンベア8の長さが30mを超えると装置が大掛かりとなるので好ましくない。また、圧縮時間はコンベアで連続的に圧縮する場合、30秒間以上であり、60〜180秒間であることが好ましい。前記値が30秒間未満であると、圧縮が不十分となり、平滑な真空断熱材を与える芯材1を得ることができず、一方、180秒間を超えると生産効率が劣るか、装置が大掛かりとなるだけで、期待する以上の平滑性を有する真空断熱材が得られず、好ましくない。なお、この例における種々の好適な条件(圧縮条件や時間など)は、前記図2を参照した製造方法における条件と同様である。   Although the length of the conveyor 8 depends on the line speed, it is preferably 10 to 30 m. If the length of the conveyor 8 is less than 10 m, the compression becomes insufficient, and the core material 1 that gives a smooth vacuum heat insulating material cannot be obtained. On the other hand, if the length of the conveyor 8 exceeds 30 m, the apparatus is too large. This is not preferable. Moreover, when compressing continuously with a conveyor, it is 30 seconds or more, and it is preferable that it is 60 to 180 seconds. If the value is less than 30 seconds, the compression becomes insufficient and the core material 1 that gives a smooth vacuum heat insulating material cannot be obtained. On the other hand, if it exceeds 180 seconds, the production efficiency is inferior or the apparatus is large. This is not preferable because a vacuum heat insulating material having smoothness higher than expected cannot be obtained. Various suitable conditions (compression conditions, time, etc.) in this example are the same as those in the manufacturing method with reference to FIG.

本発明の製造方法では、真空断熱材の熱性能を向上させるために、前述の有機バインダーを用いた場合のガラス繊維マットを加熱処理する場合以外では、芯材1を外被袋内に被覆する、できるだけ直前に水分を減らす目的で、芯材1を80〜350℃に加熱することが特徴である。さらに、前記加熱は、本発明で使用するシート状物Bを併って加熱するか、シートを別途50〜300℃に加熱し、芯材と積層することが好ましい。   In the manufacturing method of the present invention, in order to improve the thermal performance of the vacuum heat insulating material, the core material 1 is coated in the outer bag except when the glass fiber mat in the case of using the organic binder described above is heat-treated. The core material 1 is characterized in that it is heated to 80 to 350 ° C. for the purpose of reducing moisture as soon as possible. Further, the heating is preferably performed by heating the sheet-like material B used in the present invention or by separately heating the sheet to 50 to 300 ° C. and laminating with the core material.

上記方法によって得られた芯材を用いて真空断熱材とする場合は、例えば、上記本発明によって得られた芯材をシート状物とともにガスバリア性外被袋で被覆し、該外被袋内を脱気することによって得られる。ガスバリア性外被袋としては、ポリエステル、ポリエチレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリスチレン、ポリプロピレンなどの樹脂フィルム、クラフト紙と上記フィルムをラミネートしたもの、上記フィルムにアルミニウム箔をラミネートしたもの、上記フィルムにアルミニウムを蒸着したものなどが好ましく用いられる。   When using the core material obtained by the above method as a vacuum heat insulating material, for example, the core material obtained by the present invention is covered with a sheet-like material with a gas barrier outer bag, and the inside of the outer bag is Obtained by degassing. Gas barrier jackets include polyester, polyethylene, polyvinyl chloride, polyvinylidene chloride, polystyrene, polypropylene and other resin films, kraft paper laminated with the above film, aluminum foil laminated with the above film, and the above film Those obtained by vapor-depositing aluminum are preferably used.

また、真空断熱材の製造に際し、前記芯材とシート状物とを使用することにより、真空断熱材の表面が平滑であることから、該断熱材を使用した際、該断熱材を収納する筐体の壁面との間に空間が残ることなく、従ってこの点からも断熱性が顕著に向上している。さらに、本発明の好ましい態様である、特定の範囲の密度に圧縮した芯材を用いることにより、真空断熱材の表面平滑性がより向上する。   Further, since the surface of the vacuum heat insulating material is smooth by using the core material and the sheet-like material in the manufacture of the vacuum heat insulating material, the housing for storing the heat insulating material when the heat insulating material is used. There is no space between the wall surface of the body and, therefore, the heat insulation is remarkably improved from this point. Furthermore, the surface smoothness of a vacuum heat insulating material improves more by using the core material compressed into the density of the specific range which is a preferable aspect of this invention.

次に実施例および比較例を挙げて本発明をさらに詳しく説明する。
[実施例1]
平均繊維径4μmのガラス繊維をマット状に積層し、バインダーを添加しないホワイトウールの状態でロール状に巻き取った(厚さ約40mm、密度30kg/m3)。このガラス繊維マットを2プライに積層し、平板プレス機で圧縮時密度約300kg/m3、圧縮時間約1分間の条件で圧縮した。さらにこのマットを恒温乾燥機で温度約200℃、乾燥時間約10分間の条件で加熱乾燥させた。さらにこのマットの両面を厚さ約0.1mm、目付量130g/m2のPET(ポリエチレンテレフタレート)フィルムで挟み込み、これをガスバリアー性の高い外被袋に入れ、真空シール装置にて袋内の圧力が1.0Paとなるように吸引した後に、外被袋の開口部を加熱融着させ、厚さ9mm、密度約260kg/m3の本発明の真空断熱材を得た。
Next, the present invention will be described in more detail with reference to examples and comparative examples.
[Example 1]
Glass fibers having an average fiber diameter of 4 μm were laminated in a mat shape, and wound in a roll shape in the form of white wool to which no binder was added (thickness: about 40 mm, density: 30 kg / m 3 ). This glass fiber mat was laminated on two plies, and was compressed with a flat plate press under conditions of a density of about 300 kg / m 3 during compression and a compression time of about 1 minute. Further, this mat was dried by heating in a constant temperature dryer under conditions of a temperature of about 200 ° C. and a drying time of about 10 minutes. Furthermore, both sides of this mat are sandwiched between PET (polyethylene terephthalate) films having a thickness of about 0.1 mm and a weight per unit area of 130 g / m 2 , and this is put into a jacket bag having a high gas barrier property. After sucking so that the pressure was 1.0 Pa, the opening of the outer bag was heat-sealed to obtain a vacuum heat insulating material of the present invention having a thickness of 9 mm and a density of about 260 kg / m 3 .

[実施例2]
平均繊維径4μmのガラス繊維をマット状に積層し、バインダーを添加しないホワイトウールの状態でロール状に巻き取った(厚さ約40mm、密度30kg/m3)。このガラス繊維マットを2プライに積層し、平板プレス機で圧縮時密度約300kg/m3、圧縮時間約1分間の条件で圧縮した。さらにこのマットを恒温乾燥機で温度約200℃、乾燥時間約10分間の条件で加熱乾燥させた。さらにこのマットの両面を厚さ約2.5mm、目付量260g/m2のガラス繊維不織布で挟み込み、これをガスバリアー性の高い外被袋に入れ、真空シール装置にて外被袋内の圧力が1.0Paとなるように吸引した後に、袋の開口部を加熱融着し、厚さ9mm、密度約260kg/m3の本発明の真空断熱材を得た。
[Example 2]
Glass fibers having an average fiber diameter of 4 μm were laminated in a mat shape, and wound in a roll shape in the form of white wool to which no binder was added (thickness: about 40 mm, density: 30 kg / m 3 ). This glass fiber mat was laminated on two plies, and was compressed with a flat plate press under conditions of a density of about 300 kg / m 3 during compression and a compression time of about 1 minute. Further, this mat was dried by heating in a constant temperature dryer under conditions of a temperature of about 200 ° C. and a drying time of about 10 minutes. Furthermore, both sides of this mat are sandwiched between glass fiber nonwoven fabrics having a thickness of about 2.5 mm and a weight per unit area of 260 g / m 2 , and this is put into a jacket bag having a high gas barrier property, and the pressure in the jacket bag is measured by a vacuum seal device. Then, the opening of the bag was heat-fused to obtain a vacuum heat insulating material of the present invention having a thickness of 9 mm and a density of about 260 kg / m 3 .

[実施例3]
PETフィルムの厚みを0.05mm、目付量70g/m2にした以外は、実施例1と同様にして、厚さ9mm、密度約260kg/m3の本発明の真空断熱材を得た。
[Example 3]
A vacuum heat insulating material of the present invention having a thickness of 9 mm and a density of about 260 kg / m 3 was obtained in the same manner as in Example 1 except that the thickness of the PET film was 0.05 mm and the basis weight was 70 g / m 2 .

[実施例4]
平均繊維径4μmのガラス繊維をマット状に積層し、バインダーを添加しないホワイトウールの状態でロール状に巻き取った(厚さ約40mm、密度30kg/m3)。このガラス繊維マットを2プライに積層し、恒温乾燥機で温度約200℃、乾燥時間約10分間の条件で加熱乾燥させた。さらにこのマットの両面に厚さ約2.5mm、目付量260g/m2のガラス繊維不織布で挟み込み、これをガスバリアー性の高い外被袋に入れ、真空シール装置にて袋内の圧力が1.0Paとなるように吸引した後に、袋の開口部を加熱融着し、厚さ9mm、密度約260kg/m3の本発明の真空断熱材を得た。
[Example 4]
Glass fibers having an average fiber diameter of 4 μm were laminated in a mat shape, and wound in a roll shape in the form of white wool to which no binder was added (thickness: about 40 mm, density: 30 kg / m 3 ). This glass fiber mat was laminated on two plies and dried by heating in a constant temperature dryer at a temperature of about 200 ° C. and a drying time of about 10 minutes. Further, the mat is sandwiched between both sides of a glass fiber non-woven fabric having a thickness of about 2.5 mm and a weight per unit area of 260 g / m 2 , and this is put in a jacket bag having a high gas barrier property. After suction to 0.0 Pa, the opening of the bag was heat-fused to obtain a vacuum heat insulating material of the present invention having a thickness of 9 mm and a density of about 260 kg / m 3 .

[実施例5]
平均繊維径4μmのガラス繊維にフェノールバインダーをイグロス(焼失減量)が1質量%となるように噴霧して得られたガラス繊維マット(厚さ約300mm、密度約4kg/m3)を熱風通過式オーブンにて、上下のコンベアーで挟み込みながら260℃、オーブン滞留時間約1.5分、圧縮時密度130kg/m3の条件で圧縮した。これにより、厚さ約25mm、密度約48kg/m3のガラス繊維マットを得た。さらにこのマットを2プライに積層し、恒温乾燥機で温度約250℃、約30分間の条件で加熱させた。さらにこのマットの両面に厚さ約0.1mm、目付量130g/m2のPETフィルムで挟み込み、これをガスバリアー性の高い外被袋に入れ、真空シール装置にて袋内の圧力が1.0Paとなるように吸引した後に、袋の開口部を加熱融着し、厚さ10mm、密度約240kg/m3の本発明の真空断熱材を得た。
[Example 5]
A glass fiber mat (thickness of about 300 mm, density of about 4 kg / m 3 ) obtained by spraying phenol binder on glass fibers having an average fiber diameter of 4 μm so that the gloss (loss by burning) is 1% by mass is passed through a hot air. While being sandwiched between upper and lower conveyors, the oven was compressed under the conditions of 260 ° C., oven residence time of about 1.5 minutes, and density at compression of 130 kg / m 3 . As a result, a glass fiber mat having a thickness of about 25 mm and a density of about 48 kg / m 3 was obtained. Further, this mat was laminated on two plies, and was heated by a constant temperature dryer at a temperature of about 250 ° C. for about 30 minutes. Further, the mat is sandwiched between both sides of a PET film having a thickness of about 0.1 mm and a basis weight of 130 g / m 2 , and this is put in an outer envelope bag having a high gas barrier property. After suctioning to 0 Pa, the opening of the bag was heat-fused to obtain a vacuum heat insulating material of the present invention having a thickness of 10 mm and a density of about 240 kg / m 3 .

[実施例6]
平均繊維径4μmのガラス繊維にフェノールバインダーをイグロス(焼失減量)が1質量%となるように噴霧して得られたガラス繊維マット(厚さ約300mm、密度約4kg/m3)を熱風通過式オーブンにて、上下のコンベアーで挟み込みながら260℃、オーブン滞留時間約1.5分、圧縮時密度130kg/m3の条件で圧縮した。これにより、厚さ約25mm、密度約48kg/m3のガラス繊維マットを得た。さらにこのマットを2プライに積層し、恒温乾燥機で温度約300℃、約30分間の条件で加熱させた。さらにこのマットの両面に厚さ約0.1mm、目付量130g/m2のPETフィルムで挟み込み、これをガスバリアー性の高い外被袋に入れ、真空シール装置にて袋内の圧力が1.0Paとなるように吸引した後に、袋の開口部を加熱融着し、厚さ10mm、密度約240kg/m3の本発明の真空断熱材を得た。
[Example 6]
A glass fiber mat (thickness of about 300 mm, density of about 4 kg / m 3 ) obtained by spraying phenol binder on glass fibers having an average fiber diameter of 4 μm so that the gloss (loss by burning) is 1% by mass is passed through a hot air. While being sandwiched between upper and lower conveyors, the oven was compressed under the conditions of 260 ° C., oven residence time of about 1.5 minutes, and density at compression of 130 kg / m 3 . As a result, a glass fiber mat having a thickness of about 25 mm and a density of about 48 kg / m 3 was obtained. Further, this mat was laminated on two plies, and was heated by a constant temperature dryer at a temperature of about 300 ° C. for about 30 minutes. Further, the mat is sandwiched between both sides of a PET film having a thickness of about 0.1 mm and a basis weight of 130 g / m 2 , and this is put in an outer envelope bag having a high gas barrier property. After suctioning to 0 Pa, the opening of the bag was heat-fused to obtain a vacuum heat insulating material of the present invention having a thickness of 10 mm and a density of about 240 kg / m 3 .

[実施例7]
さらにこのマットの両面に厚さ約0.1mm、目付量130g/m2のPETフィルムで挟み込む前に、PETフィルムを70℃10分で加熱した以外は実施例6と同様にして、厚さ9mm、密度約260kg/m3の本発明の真空断熱材を得た。
[Example 7]
Furthermore, the thickness of the mat was 9 mm in the same manner as in Example 6 except that the PET film was heated at 70 ° C. for 10 minutes before being sandwiched between the PET films having a thickness of about 0.1 mm and a basis weight of 130 g / m 2. A vacuum heat insulating material of the present invention having a density of about 260 kg / m 3 was obtained.

[比較例1]
平均繊維径4μmのガラス繊維をマット状に積層し、バインダーを添加しないホワイトウールの状態で、ロール状に巻き取った(厚さ約40mm、密度30kg/m3)。このガラス繊維マットを2プライに積層し、平板プレス機で圧縮時密度約300kg/m3、圧縮時間約1分間の条件で圧縮した。さらにこのマットを恒温乾燥機で温度約200℃、乾燥時間約10分間の条件で加熱乾燥させた。これをガスバリアー性の高い外被袋に入れ、真空シール装置にて袋内の圧力が1.0Paとなるように吸引した後に、袋の開口部を加熱融着し、厚さ9mm、密度約260kg/m3の比較例の真空断熱材を得た。
[Comparative Example 1]
Glass fibers having an average fiber diameter of 4 μm were laminated in a mat shape, and wound in a roll shape in the state of white wool to which no binder was added (thickness: about 40 mm, density: 30 kg / m 3 ). This glass fiber mat was laminated on two plies, and was compressed with a flat plate press under conditions of a density of about 300 kg / m 3 during compression and a compression time of about 1 minute. Further, this mat was dried by heating in a constant temperature dryer under conditions of a temperature of about 200 ° C. and a drying time of about 10 minutes. This is put into a jacket bag having a high gas barrier property, and sucked so that the pressure in the bag becomes 1.0 Pa with a vacuum sealing device, and then the opening portion of the bag is heated and fused, and the thickness is 9 mm, the density is about The vacuum heat insulating material of the comparative example of 260 kg / m < 3 > was obtained.

[比較例2]
平均繊維径4μmのガラス繊維をマット状に積層し、バインダーを添加しないホワイトウールの状態で、ロール状に巻き取った(厚さ約40mm、密度30kg/m3)。このガラス繊維マットを2プライに積層し、平板プレス機で圧縮時密度約130kg/m3、圧縮時間約5分間の条件で圧縮した。さらにこのマットを恒温乾燥機で温度約200℃、乾燥時間約10分間の条件で加熱乾燥させた。これをガスバリアー性の高い外被袋に入れ、真空シール装置にて袋内の圧力が1.0Paとなるように吸引した後に、袋の開口部を加熱融着し、厚さ11mm、密度約220kg/m3の比較例の真空断熱材を得た。
[Comparative Example 2]
Glass fibers having an average fiber diameter of 4 μm were laminated in a mat shape, and wound in a roll shape in the state of white wool to which no binder was added (thickness: about 40 mm, density: 30 kg / m 3 ). This glass fiber mat was laminated on two plies, and was compressed with a flat plate press under conditions of a density of about 130 kg / m 3 during compression and a compression time of about 5 minutes. Further, this mat was dried by heating in a constant temperature dryer under conditions of a temperature of about 200 ° C. and a drying time of about 10 minutes. This is put in a jacket bag having a high gas barrier property, and sucked so that the pressure in the bag becomes 1.0 Pa with a vacuum seal device, and then the opening of the bag is heat-fused, and has a thickness of 11 mm and a density of about A comparative vacuum heat insulating material of 220 kg / m 3 was obtained.

[比較例3]
平均繊維径4μmのガラス繊維をマット状に積層し、バインダーを添加しないホワイトウールの状態でロール状に巻き取った(厚さ約40mm、密度30kg/m3)。このガラス繊維マットを2プライに積層し、これを15mm厚のスペーサーと一緒にパンチングプレートにて挟み込み、治具にてスペーサーの厚みまで締込みホワイトウールを圧縮・固定する。これを、530℃の電気炉に10分間入れた。その後、治具、プレートを外し、繊維間が熱融着した芯材を得た。これをガスバリアー性の高い外被袋に入れ、真空シール装置にて袋内の圧力が1.0Paとなるように吸引した後に、袋の開口部を加熱融着し、厚さ10mm、密度約240kg/m3の比較例の真空断熱材を得た。
[Comparative Example 3]
Glass fibers having an average fiber diameter of 4 μm were laminated in a mat shape, and wound in a roll shape in the form of white wool to which no binder was added (thickness: about 40 mm, density: 30 kg / m 3 ). This glass fiber mat is laminated on two plies, and this is sandwiched with a punching plate together with a 15 mm thick spacer, and tightened to the thickness of the spacer with a jig to compress and fix white wool. This was placed in an electric furnace at 530 ° C. for 10 minutes. Then, the jig | tool and the plate were removed and the core material by which the fiber was heat-sealed was obtained. This is put into a jacket bag having a high gas barrier property, and sucked so that the pressure in the bag becomes 1.0 Pa with a vacuum sealing device, and then the opening of the bag is heat-fused, and the thickness is 10 mm, the density is about The vacuum heat insulating material of the comparative example of 240 kg / m < 3 > was obtained.

[比較例4]
平均繊維径4μmのガラス繊維にフェノールバインダーをイグロスが1質量%となるように噴霧して得られたガラス繊維マット(厚さ約300mm、密度約4kg/m3)を熱風通過式オーブンにて、上下のコンベアーで挟み込みながら260℃、オーブン滞留時間約1.5分、圧縮時密度130kg/m3の条件で圧縮した。これにより厚さ約25mm、密度約48kg/m3のガラス繊維マットを得た。さらにこのマットを2プライに積層し、恒温乾燥機で温度約250℃、約30分間の条件で加熱させた。これをガスバリアー性の高い外被袋に入れ、真空シール装置にて袋内の圧力が1.0Paとなるように吸引した後に、袋の開口部を加熱融着し、厚さ10mm、密度約240kg/m3の比較例の真空断熱材を得た。
[Comparative Example 4]
A glass fiber mat (thickness of about 300 mm, density of about 4 kg / m 3 ) obtained by spraying a phenol binder on glass fibers having an average fiber diameter of 4 μm so that the gloss is 1% by mass is heated in a hot air passing oven. While being sandwiched between the upper and lower conveyors, compression was performed under the conditions of 260 ° C., oven residence time of about 1.5 minutes, and compression density of 130 kg / m 3 . As a result, a glass fiber mat having a thickness of about 25 mm and a density of about 48 kg / m 3 was obtained. Further, this mat was laminated on two plies, and was heated by a constant temperature dryer at a temperature of about 250 ° C. for about 30 minutes. This is put into a jacket bag having a high gas barrier property, and sucked so that the pressure in the bag becomes 1.0 Pa with a vacuum sealing device, and then the opening of the bag is heat-fused, and the thickness is 10 mm, the density is about The vacuum heat insulating material of the comparative example of 240 kg / m < 3 > was obtained.

[比較例5]
平均繊維径4μmのガラス繊維にフェノールバインダーをイグロスが1質量%となるように噴霧して得られたガラス繊維マット(厚さ約300mm、密度約4kg/m3)を熱風通過式オーブンにて、上下のコンベアーで挟み込みながら260℃、オーブン滞留時間約1.5分、圧縮時密度130kg/m3の条件で圧縮した。これにより厚さ約25mm、密度約48kg/m3のガラス繊維マットを得た。さらにこのマットを2プライに積層し、恒温乾燥機で温度約300℃、約30分間の条件で加熱させた。これをガスバリアー性の高い外被袋に入れ、真空シール装置にて袋内の圧力が1.0Paとなるように吸引した後に、袋の開口部を加熱融着し、厚さ10mm、密度約240kg/m3の比較例の真空断熱材を得た。
[Comparative Example 5]
A glass fiber mat (thickness of about 300 mm, density of about 4 kg / m 3 ) obtained by spraying a phenol binder on glass fibers having an average fiber diameter of 4 μm so that the gloss is 1% by mass is heated in a hot air passing oven. While being sandwiched between the upper and lower conveyors, compression was performed under the conditions of 260 ° C., oven residence time of about 1.5 minutes, and compression density of 130 kg / m 3 . As a result, a glass fiber mat having a thickness of about 25 mm and a density of about 48 kg / m 3 was obtained. Further, this mat was laminated on two plies, and was heated by a constant temperature dryer at a temperature of about 300 ° C. for about 30 minutes. This is put into a jacket bag having a high gas barrier property, and sucked so that the pressure in the bag becomes 1.0 Pa with a vacuum sealing device, and then the opening of the bag is heat-fused, and the thickness is 10 mm, the density is about The vacuum heat insulating material of the comparative example of 240 kg / m < 3 > was obtained.

以上の実施例および比較例の製造条件を下記表1に示す。表中の「WW」はホワイトウールを意味し、「有機品」は有機バインダーの使用を示す。加熱前および加熱後のイグロスは、加熱前後のそれぞれの強熱減量を示す。   The production conditions of the above examples and comparative examples are shown in Table 1 below. “WW” in the table means white wool, and “organic product” indicates the use of an organic binder. The gloss before heating and after heating shows the respective ignition losses before and after heating.

[評価方法]
上記実施例および比較例の真空断熱材の表面平滑性および熱伝導率を下記の評価方法で評価して下記表2に記載の結果を得た。
[評価方法]
1.表面平滑性:
◎:凹凸が少なく、凹部の深さが1mm未満(実サンプルの外観写真を図5に
示す)
○:凹凸が僅かにあり、凹部の深さが1mm以上2mm未満(実サンプルの外
観写真を図6に示す)
△:○と×との中間レベル(実サンプルの外観写真を図7に示す)
×:凹凸が大きく、凹部の深さが2mm以上(実サンプルの外観写真を図8に
示す)
2.熱伝導率:
英弘精機製(HC−074−300)で測定
[Evaluation methods]
The surface smoothness and thermal conductivity of the vacuum heat insulating materials of the above Examples and Comparative Examples were evaluated by the following evaluation methods, and the results shown in Table 2 below were obtained.
[Evaluation methods]
1. Surface smoothness:
◎: Concavities and convexities are small, and the depth of the concavity is less than 1 mm (appearance photograph of actual sample is shown in Fig. 5)
○: There are slight irregularities, and the depth of the recess is 1 mm or more and less than 2 mm (appearance photograph of the actual sample is shown in FIG. 6).
Δ: Intermediate level between ○ and × (appearance photograph of actual sample is shown in FIG. 7)
×: Concavities and convexities are large, and the depth of the concavity is 2 mm or more (appearance photograph of actual sample is shown in FIG. 8)
2. Thermal conductivity:
Measured with Hidehiro Seiki (HC-074-300)

本発明によれば、少ない工程で断熱性および表面平滑性に優れた真空断熱材を低コストで提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the vacuum heat insulating material excellent in heat insulation and surface smoothness can be provided at low cost with few processes.

本発明の真空断熱材の構造を図解的に説明する図。The figure which illustrates the structure of the vacuum heat insulating material of this invention schematically. 芯材の製造方法を図解的に説明する図。The figure which illustrates the manufacturing method of a core material schematically. 芯材の製造方法の他の方法を図解的に説明する図。The figure which illustrates schematically the other method of the manufacturing method of a core material. 従来の真空断熱材の構造を図解的に説明する図。The figure which illustrates the structure of the conventional vacuum heat insulating material schematically. 表面平滑性の評価に用いた実サンプルの外観写真(評価◎)Appearance photograph of actual sample used for evaluation of surface smoothness (evaluation ◎) 表面平滑性の評価に用いた実サンプルの外観写真(評価○)Appearance photograph of an actual sample used for evaluation of surface smoothness (evaluation ○) 表面平滑性の評価に用いた実サンプルの外観写真(評価△)Appearance photograph of actual sample used for evaluation of surface smoothness (evaluation △) 表面平滑性の評価に用いた実サンプルの外観写真(評価×)Appearance photograph of actual sample used for evaluation of surface smoothness (evaluation x)

符号の説明Explanation of symbols

A:真空断熱材
B:シート状物
1:芯材
2:外被袋
3:封止部
4:圧縮前の積層繊維マット
5:平板プレス機
6:圧縮前の積層繊維マット
7:加熱オーブン
8:圧縮コンベア
9,9’:上流側の一対のロール
10,10’:下流側の一対のロール
11:圧縮中の積層繊維マット
A: Vacuum heat insulating material B: Sheet material 1: Core material 2: Jacket bag 3: Sealing portion 4: Laminated fiber mat before compression 5: Flat plate press 6: Laminated fiber mat before compression 7: Heating oven 8 : Compression conveyors 9, 9 ': A pair of upstream rolls 10, 10': A pair of downstream rolls 11: Laminated fiber mats during compression

Claims (11)

ガラス繊維が積層されてなる芯材が外被袋で包被され、かつ外被袋内が減圧されている真空断熱材であって、前記芯材の両表面の少なくとも一方の面と前記外被袋との間に、目付量20〜400g/m2のシート状物が挿入されていることを特徴とする真空断熱材。 A vacuum heat insulating material in which a core material formed by laminating glass fibers is covered with an outer bag, and the inner pressure of the outer bag is reduced, and at least one surface of both surfaces of the core member and the outer cover A vacuum heat insulating material, wherein a sheet-like material having a basis weight of 20 to 400 g / m 2 is inserted between the bag and the bag. 前記シート状物が、厚さ0.02〜0.3mmの樹脂フィルムである請求項1に記載の真空断熱材。   The vacuum heat insulating material according to claim 1, wherein the sheet-like material is a resin film having a thickness of 0.02 to 0.3 mm. 前記シート状物が、厚さ0.5〜10mmの不織布または織布である請求項1に記載の真空断熱材。   The vacuum heat insulating material according to claim 1, wherein the sheet-like material is a nonwoven fabric or a woven fabric having a thickness of 0.5 to 10 mm. 前記芯材が、有機バインダーが付着した芯材であって、芯材における有機バインダーの付着量が、芯材の0.1〜3質量%である請求項1〜3のいずれか1項に記載の真空断熱材。   The core material is a core material to which an organic binder is attached, and the amount of the organic binder attached to the core material is 0.1 to 3% by mass of the core material. Vacuum insulation material. 平均繊維径5μm以下のガラス繊維を積層して芯材とする工程、該芯材を80〜350℃で加熱する工程、前記芯材の両表面の少なくとも一方の面に目付量20〜400g/m2のシート状物を積層する工程、該積層物を真空断熱材用外被袋内に挿入する工程、および該外被袋内を減圧する工程を有することを特徴とする真空断熱材の製造方法。 A step of laminating glass fibers having an average fiber diameter of 5 μm or less to form a core, a step of heating the core at 80 to 350 ° C., and a basis weight of 20 to 400 g / m on at least one surface of both surfaces of the core 2. A method for producing a vacuum heat insulating material, comprising the step of laminating the sheet-like material of 2 , a step of inserting the laminated material into a jacket bag for a vacuum heat insulating material, and a step of depressurizing the inside of the outer bag. . 前記ガラス繊維を積層して芯材とする工程が、前記ガラス繊維を積層する前または後にガラス繊維に有機バインダーを付着させた後、加熱してバインダーを硬化させて、芯材の0.1〜3質量%の有機バインダーが付着した芯材とする請求項5に記載の真空断熱材の製造方法。   The step of laminating the glass fiber to form a core material is performed by attaching an organic binder to the glass fiber before or after laminating the glass fiber, and then heating to cure the binder, The manufacturing method of the vacuum heat insulating material of Claim 5 made into the core material which 3 mass% organic binder adhered. 前記有機バインダーを付着させた芯材を240〜350℃に加熱する請求項6に記載の真空断熱材の製造方法。   The manufacturing method of the vacuum heat insulating material of Claim 6 which heats the core material to which the said organic binder was adhered at 240-350 degreeC. 前記シート状物を50〜300℃で加熱した後、該シート状物を積層する請求項5に記載の真空断熱材の製造方法。   The manufacturing method of the vacuum heat insulating material of Claim 5 which laminates | stacks this sheet-like material after heating the said sheet-like material at 50-300 degreeC. 前記ガラス繊維を、密度150〜500kg/m3に圧縮する工程を含む請求項5に記載の真空断熱材の製造方法。 The manufacturing method of the vacuum heat insulating material of Claim 5 including the process of compressing the said glass fiber to a density of 150-500 kg / m < 3 >. 前記シート状物が、厚さ0.02〜0.3mmの樹脂フィルムである請求項5に記載の真空断熱材の製造方法。   The method for producing a vacuum heat insulating material according to claim 5, wherein the sheet-like material is a resin film having a thickness of 0.02 to 0.3 mm. 前記シート状物が、厚さ0.5〜10mmの不織布または織布である請求項5に記載の真空断熱材の製造方法。   The method for producing a vacuum heat insulating material according to claim 5, wherein the sheet-like material is a nonwoven fabric or a woven fabric having a thickness of 0.5 to 10 mm.
JP2005287407A 2004-10-01 2005-09-30 Vacuum insulation material and manufacturing method thereof Pending JP2006125631A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005287407A JP2006125631A (en) 2004-10-01 2005-09-30 Vacuum insulation material and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004290800 2004-10-01
JP2005287407A JP2006125631A (en) 2004-10-01 2005-09-30 Vacuum insulation material and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2006125631A true JP2006125631A (en) 2006-05-18

Family

ID=36720553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005287407A Pending JP2006125631A (en) 2004-10-01 2005-09-30 Vacuum insulation material and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2006125631A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010060048A (en) * 2008-09-03 2010-03-18 Panasonic Corp Vacuum heat insulating core material, vacuum heat insulating material using the same, and method of manufacturing the vacuum heat insulating core maerial
JP2010190257A (en) * 2009-02-16 2010-09-02 Mitsubishi Electric Corp Vacuum heat insulating material and method for manufacturing the same
WO2011045946A1 (en) * 2009-10-16 2011-04-21 三菱電機株式会社 Device for manufacturing core of vacuum heat insulation member and method for manufacturing vacuum heat insulation member, as well as vacuum heat insulation member and refrigerator
JP2011122727A (en) * 2011-01-26 2011-06-23 Sharp Corp Core material for vacuum heat insulating material, vacuum heat insulating material and manufacturing method for them
US20120201997A1 (en) 2009-10-16 2012-08-09 Mitsubishi Electric Corporation Vacuum heat insulating material and refrigerator
JP2013079665A (en) * 2011-10-03 2013-05-02 Ibiden Co Ltd Heat insulating material and method for manufacturing the same
JP2014025538A (en) * 2012-07-27 2014-02-06 Hitachi Appliances Inc Vacuum heat insulation material, refrigerator, and apparatus using vacuum heat insulation material
JP2014077478A (en) * 2012-10-10 2014-05-01 Mitsubishi Electric Corp Vacuum heat insulation material and heat insulation box comprising the same
WO2014112718A1 (en) * 2013-01-16 2014-07-24 (주)엘지하우시스 Core member for vacuum insulation material including glass fibers, manufacturing method thereof, and vacuum insulation material using same
US9074716B2 (en) 2008-12-26 2015-07-07 Mitsubishi Electric Corporation Vacuum heat insulating material, heat insulating box using vacuum heat insulating material, refrigerator, refrigerating/air-conditioning apparatus, water heater, equipments, and manufacturing method of vacuum heat insulating material
US9103482B2 (en) 2009-10-19 2015-08-11 Mitsubishi Electric Corporation Vacuum heat insulating material, heat insulating box, refrigerator, refrigerating/air-conditioning apparatus, water heater, appliance, and manufacturing method of vacuum heat insulating material
JP2016008694A (en) * 2014-06-26 2016-01-18 三菱電機株式会社 Method of forming fiber assembly, fiber assembly, vacuum heat insulation material and heat insulation box
WO2016013539A1 (en) * 2014-07-22 2016-01-28 旭ファイバーグラス株式会社 Inorganic fibrous insulating material
JP2017106636A (en) * 2017-03-24 2017-06-15 エア・ウォーター・プラントエンジニアリング株式会社 Vacuum heat insulation container for low temperature
EP3153760A4 (en) * 2015-01-15 2017-11-08 Panasonic Intellectual Property Management Co., Ltd. Vacuum thermal insulation material
CN107399426A (en) * 2017-07-21 2017-11-28 苏州市君悦新材料科技股份有限公司 A kind of aviation heat-insulation and heat-preservation module

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60165484A (en) * 1984-02-09 1985-08-28 松下冷機株式会社 Manufacture of heat-insulator pack
JP2000170991A (en) * 1998-12-08 2000-06-23 Toshiba Monofrax Co Ltd Heat-insulating member
JP2002310384A (en) * 2001-04-11 2002-10-23 Matsushita Refrig Co Ltd Vacuum heat insulation material, refrigerating appliance with vacuum heat insulation material, electric water heater, and oven-range
JP2004011707A (en) * 2002-06-05 2004-01-15 Matsushita Refrig Co Ltd Vacuum heat insulating material, refrigerator using vacuum heat insulating material, and manufacturing method of core material of vacuum heat insulating material
JP2004251304A (en) * 2003-02-18 2004-09-09 Matsushita Electric Ind Co Ltd Manufacturing method for vacuum insulator, vacuum insulator, insulating box body and insulation appliance using the vacuum insulator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60165484A (en) * 1984-02-09 1985-08-28 松下冷機株式会社 Manufacture of heat-insulator pack
JP2000170991A (en) * 1998-12-08 2000-06-23 Toshiba Monofrax Co Ltd Heat-insulating member
JP2002310384A (en) * 2001-04-11 2002-10-23 Matsushita Refrig Co Ltd Vacuum heat insulation material, refrigerating appliance with vacuum heat insulation material, electric water heater, and oven-range
JP2004011707A (en) * 2002-06-05 2004-01-15 Matsushita Refrig Co Ltd Vacuum heat insulating material, refrigerator using vacuum heat insulating material, and manufacturing method of core material of vacuum heat insulating material
JP2004251304A (en) * 2003-02-18 2004-09-09 Matsushita Electric Ind Co Ltd Manufacturing method for vacuum insulator, vacuum insulator, insulating box body and insulation appliance using the vacuum insulator

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010060048A (en) * 2008-09-03 2010-03-18 Panasonic Corp Vacuum heat insulating core material, vacuum heat insulating material using the same, and method of manufacturing the vacuum heat insulating core maerial
US9074717B2 (en) 2008-12-26 2015-07-07 Mitsubishi Electric Corporation Vacuum heat insulating material, heat insulating box using vacuum heat insulating material, refrigerator, refrigerating/air-conditioning apparatus, water heater, equipments, and manufacturing method of vacuum heat insulating material
US9074716B2 (en) 2008-12-26 2015-07-07 Mitsubishi Electric Corporation Vacuum heat insulating material, heat insulating box using vacuum heat insulating material, refrigerator, refrigerating/air-conditioning apparatus, water heater, equipments, and manufacturing method of vacuum heat insulating material
JP2010190257A (en) * 2009-02-16 2010-09-02 Mitsubishi Electric Corp Vacuum heat insulating material and method for manufacturing the same
US8920899B2 (en) 2009-10-16 2014-12-30 Mitsubishi Electric Corporation Vacuum heat insulating material and refrigerator
WO2011045946A1 (en) * 2009-10-16 2011-04-21 三菱電機株式会社 Device for manufacturing core of vacuum heat insulation member and method for manufacturing vacuum heat insulation member, as well as vacuum heat insulation member and refrigerator
CN102575804A (en) * 2009-10-16 2012-07-11 三菱电机株式会社 Device for manufacturing core of vacuum heat insulation member and method for manufacturing vacuum heat insulation member, as well as vacuum heat insulation member and refrigerator
US20120201997A1 (en) 2009-10-16 2012-08-09 Mitsubishi Electric Corporation Vacuum heat insulating material and refrigerator
JP5241925B2 (en) * 2009-10-16 2013-07-17 三菱電機株式会社 Vacuum heat insulating material manufacturing apparatus, vacuum heat insulating material manufacturing method, vacuum heat insulating material, refrigerator and equipment
US9068683B2 (en) 2009-10-16 2015-06-30 Mitsubishi Electric Corporation Manufacturing apparatus of core material of vacuum heat insulating material, manufacturing method of vacuum heat insulating material, vacuum heat insulating material, and refrigerator
US9103482B2 (en) 2009-10-19 2015-08-11 Mitsubishi Electric Corporation Vacuum heat insulating material, heat insulating box, refrigerator, refrigerating/air-conditioning apparatus, water heater, appliance, and manufacturing method of vacuum heat insulating material
JP2011122727A (en) * 2011-01-26 2011-06-23 Sharp Corp Core material for vacuum heat insulating material, vacuum heat insulating material and manufacturing method for them
JP2013079665A (en) * 2011-10-03 2013-05-02 Ibiden Co Ltd Heat insulating material and method for manufacturing the same
JP2014025538A (en) * 2012-07-27 2014-02-06 Hitachi Appliances Inc Vacuum heat insulation material, refrigerator, and apparatus using vacuum heat insulation material
JP2014077478A (en) * 2012-10-10 2014-05-01 Mitsubishi Electric Corp Vacuum heat insulation material and heat insulation box comprising the same
WO2014112718A1 (en) * 2013-01-16 2014-07-24 (주)엘지하우시스 Core member for vacuum insulation material including glass fibers, manufacturing method thereof, and vacuum insulation material using same
JP2016008694A (en) * 2014-06-26 2016-01-18 三菱電機株式会社 Method of forming fiber assembly, fiber assembly, vacuum heat insulation material and heat insulation box
WO2016013539A1 (en) * 2014-07-22 2016-01-28 旭ファイバーグラス株式会社 Inorganic fibrous insulating material
JP2016022681A (en) * 2014-07-22 2016-02-08 旭ファイバーグラス株式会社 Inorganic fiber thermal insulation material
EP3153760A4 (en) * 2015-01-15 2017-11-08 Panasonic Intellectual Property Management Co., Ltd. Vacuum thermal insulation material
EP3495708A1 (en) * 2015-01-15 2019-06-12 Panasonic Intellectual Property Management Co., Ltd. Vacuum thermal insulation material
JP2017106636A (en) * 2017-03-24 2017-06-15 エア・ウォーター・プラントエンジニアリング株式会社 Vacuum heat insulation container for low temperature
CN107399426A (en) * 2017-07-21 2017-11-28 苏州市君悦新材料科技股份有限公司 A kind of aviation heat-insulation and heat-preservation module

Similar Documents

Publication Publication Date Title
JP2006125631A (en) Vacuum insulation material and manufacturing method thereof
JP4703134B2 (en) Manufacturing method of vacuum insulation core material
TWI294502B (en)
RU2634774C2 (en) Segmented gel composites and rigid panels produced therefrom
CN107405858B (en) Vacuum insulation panel
JP2016517944A (en) Method for manufacturing a vacuum insulation panel
KR101264912B1 (en) Heat insulation film for high temperature molding, vacuum thermal insulator and process of fabricating vacuum thermal insulator using thereof
WO2010087039A1 (en) Vacuum insulation material and insulation box using the same
KR20090017645A (en) Vacuum heat insulation material
JP2013508652A (en) Vacuum insulation panel and method of manufacturing the same
US9151435B2 (en) Vacuum insulation material including an inner bag, and method for manufacturing same
JP2010060048A (en) Vacuum heat insulating core material, vacuum heat insulating material using the same, and method of manufacturing the vacuum heat insulating core maerial
JP2011074934A (en) Vacuum thermal insulator and thermally insulating box including the vacuum thermal insulator
JP2008232372A (en) Vacuum heat insulating material and heat insulating structure using the same
RU2680443C2 (en) Mineral fiber batting for manufacture of thermally insulation composite
JP6579740B2 (en) Manufacturing method of vacuum insulation
JP2005106090A (en) Vacuum insulating panel and its manufacturing method
JP2006017169A (en) Vacuum heat insulating material, core material for vacuum heat insulating material and its producing method
JP5245710B2 (en) Vacuum insulation
JP2005163212A (en) Method for producing inorganic fiber mat for vacuum heat insulating material
JP2014070710A (en) Vacuum heat insulating material
EP2985376B1 (en) Core material for vacuum insulator, comprising organic synthetic fiber, and vacuum insulator containing same
JP2001337681A (en) Sound absorption insulator and its manufacturing method
JP7454827B2 (en) vacuum insulation
CN113785154B (en) Vacuum heat insulating material and heat insulating box using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080724

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110426

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111108

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20120106

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20120112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120207

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120731