JP2010089998A - 炭化珪素単結晶の製造装置及び炭化珪素単結晶の製造方法 - Google Patents

炭化珪素単結晶の製造装置及び炭化珪素単結晶の製造方法 Download PDF

Info

Publication number
JP2010089998A
JP2010089998A JP2008262103A JP2008262103A JP2010089998A JP 2010089998 A JP2010089998 A JP 2010089998A JP 2008262103 A JP2008262103 A JP 2008262103A JP 2008262103 A JP2008262103 A JP 2008262103A JP 2010089998 A JP2010089998 A JP 2010089998A
Authority
JP
Japan
Prior art keywords
sublimation
raw material
silicon carbide
single crystal
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008262103A
Other languages
English (en)
Inventor
Hidetoshi Ishihara
秀俊 石原
Takeshi Motoyama
剛 元山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2008262103A priority Critical patent/JP2010089998A/ja
Publication of JP2010089998A publication Critical patent/JP2010089998A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

【課題】昇華用原料の利用率を向上させることができる炭化珪素単結晶の製造装置及び炭化珪素単結晶の製造方法を提供する。
【解決手段】炭化珪素単結晶の製造装置1では、黒鉛製坩堝10の上下方向の断面視において、黒鉛製坩堝10の上下方向の長さよりも誘導加熱コイル30を長くし、反応容器本体50の底部52を誘導加熱コイル30の中央部付近に配置することにより、誘導加熱コイル30によって自然に形成される温度分布における温度領域Stmax1を反応容器本体50の底部52に対応させるようにし、昇華用原料80が昇華するに連れて、黒鉛製坩堝10内における温度領域Stmax1を黒鉛製坩堝10の内部から外部に向けて拡大させる。これにより、昇華用原料底部での炭化珪素多結晶の析出による昇華用原料80の温度低下が防止できるので、原料の昇華が妨げられことなく進行する。
【選択図】図1

Description

本発明は、炭化珪素単結晶を昇華再結晶法により製造する炭化珪素単結晶の製造装置及び炭化珪素単結晶の製造方法に関する。
従来、炭化珪素によって形成された種結晶と、昇華用原料とが収容された坩堝を用いて炭化珪素単結晶(以下、単結晶と適宜省略する)を製造する炭化珪素単結晶の製造装置が広く用いられている。このような炭化珪素単結晶の製造装置では、粉体状の昇華用原料が坩堝内の底部に載置されるとともに、坩堝内の上部に単結晶の種結晶が配設される。また、坩堝の外側周囲には、坩堝を加熱する誘導加熱コイルが配設される。
このような構造を有する炭化珪素単結晶の製造装置において、昇華用原料の表面に炭化珪素の多結晶が析出することによる種結晶の成長阻害を抑制するため、昇華用原料の表面部の温度を昇華用原料の底部の温度よりも高くなるように誘導加熱コイルを制御する方法が知られている(例えば、特許文献1)。
特開2006−321678号公報(第7−8頁、第1図)
しかしながら、上述した従来の炭化珪素単結晶の製造装置には、次のような問題があった。すなわち、昇華用原料の上面部の温度を昇華用原料の底部の温度よりも高くなるように誘導加熱コイルを制御すると、相対的に昇華用原料の底部の温度が昇華用原料の表面部の温度よりも低くなる。このため、今度は昇華用原料の底部、つまり、坩堝の底部に多結晶が析出する問題がある。
また、坩堝の底部に析出した多結晶の熱伝導率は、昇華用原料の熱伝導率よりも高いため、坩堝の底部の温度を昇華用原料の底部に伝達し易くなる。そのため、昇華用原料の底部の温度が更に低下する。つまり、坩堝の底部への多結晶の析出が加速される問題もある。
このように、坩堝の底部への多結晶の析出が顕著になると、昇華用原料の温度が全体に亘って低下するために、昇華用原料の昇華が妨げられ、投入した昇華用原料が理論値通りに昇華されない。すなわち、昇華用原料の利用率が低下するという問題があった。
そこで、本発明は、このような状況に鑑みてなされたものであり、昇華用原料の利用率を向上させることができる炭化珪素単結晶の製造装置及び炭化珪素単結晶の製造方法の提供を目的とする。
上述した課題を解決するため、本発明は、次のような特徴を有している。まず、本発明の第1の特徴は、炭化珪素を含む種結晶(種結晶70)、及び前記種結晶の下方に配設され、前記種結晶の成長に用いられる昇華用原料(昇華用原料80)を収容する坩堝(黒鉛製坩堝10)と、前記坩堝の側部の周囲に配設され、前記坩堝を加熱する加熱部(誘導加熱コイル30)とを備える炭化珪素単結晶の製造装置であって、前記昇華用原料は、前記坩堝の底部に配設され、前記加熱部は、発熱量が調整可能であり、前記加熱部は、前記昇華用原料の昇華開始時において、前記坩堝の底部を少なくとも前記昇華用原料が昇華する温度に加熱し、前記昇華用原料が昇華するに連れて、前記発熱量を増加することを要旨とする。
本発明の特徴によれば、加熱部は、昇華用原料の昇華開始時において、坩堝の底部を少なくとも前記昇華用原料が昇華する温度に加熱する。
このように、本発明の特徴によれば、坩堝の底部が少なくとも前記昇華用原料が昇華する温度になるため、坩堝内側の底部の昇華用原料の温度低下を防止することができる。これにより、坩堝の底部に多結晶が析出するのを抑制することができる。また、昇華用原料の昇華温度が保持され、昇華用原料の昇華が妨げられることなく進行する。従って、昇華用原料の利用率を向上させることができる。
また、本発明の特徴によれば、昇華用原料が昇華するに連れて、加熱部の発熱量が増加する。これにより、坩堝の底部に形成される少なくとも前記昇華用原料が昇華する温度領域が坩堝の底部を中心として昇華用原料の上面側(上面部80a)に向けて拡大される。すなわち、昇華用原料が昇華するに連れて、昇華用原料の昇華位置が坩堝の底部から昇華用原料の上面部に向けて移動する。
従って、昇華用原料を効率よく昇華させることができる。また、昇華用原料の上面部にカーボン成分が昇華されずに残留することを防止することができる。これにより、単結晶の成長に連れて昇華ガスに含まれる珪素成分が減少するのを防ぐことができる。従って、単結晶の表面の炭化を防止することができる。
本発明の第2の特徴は、本発明の第1の特徴に係り、前記加熱部は、前記昇華用原料が昇華するに連れて、前記発熱量を段階的に増加することを要旨とする。
本発明の第3の特徴は、炭化珪素を含む種結晶と、前記種結晶の下方に配設され、前記種結晶の成長に用いられる昇華用原料とを収容する坩堝と、前記坩堝の側部の周囲に配設され、発熱量が可変とされており前記坩堝を加熱する加熱部とを備え、昇華再結晶法により炭化珪素単結晶を製造する炭化珪素単結晶の製造方法であって、前記昇華用原料が昇華する温度まで、前記坩堝が加熱される工程(工程S3)と、昇華した昇華用原料が種結晶上に再結晶する工程(工程S4)とを有し、前記昇華用原料が種結晶上に再結晶する工程では、前記加熱部は、前記昇華用原料の昇華開始時において、前記坩堝の底部を少なくとも前記昇華用原料が昇華する温度に加熱し、前記昇華用原料が昇華するに連れて、前記発熱量を増加することを要旨とする。
本発明の特徴によれば、昇華用原料の利用率を向上させることができる炭化珪素単結晶の製造装置及び炭化珪素単結晶の製造方法を提供することができる。
次に、本発明に係る炭化珪素単結晶の製造装置の実施形態について、図面を参照しながら説明する。具体的に、(1)第1実施形態、(2)第2実施形態、(3)炭化珪素単結晶の製造方法、(4)実施例、(5)作用・効果、(6)その他の実施形態について説明する。
なお、以下の図面の記載において、同一または類似の部分には、同一または類似の符号を付している。ただし、図面は模式的なものであり、各寸法の比率などは現実のものとは異なることに留意すべきである。
したがって、具体的な寸法などは以下の説明を参酌して判断すべきものである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。
(1)第1実施形態
具体的に、(1−1)炭化珪素単結晶の製造装置の概略構成について説明する。
(1−1)炭化珪素単結晶の製造装置の概略構成
図1を用いて、本発明の実施形態として示す炭化珪素単結晶の製造装置1を説明する。図1に示すように、炭化珪素単結晶の製造装置1は、黒鉛製坩堝10と、黒鉛製坩堝10の少なくとも側面を覆う石英管20と、石英管20の外周に配置された誘導加熱コイル30とを有する。加熱部としての誘導加熱コイル30の詳細は、後述する。
黒鉛製坩堝10は、支持棒40により、石英管20の内部に固定される。黒鉛製坩堝10は、断熱材(不図示)で覆われている。黒鉛製坩堝10は、反応容器本体50と、蓋部60とを有する。反応容器本体50は、炭化珪素を含む種結晶70と、種結晶70の成長に用いられる昇華用原料80とを収容する。
反応容器本体50は、少なくとも内部が円筒状である。反応容器本体50の内側には、種結晶70が配設される。具体的に、種結晶70は、蓋部60の内側表面61に接着される。蓋部60は、反応容器本体50に螺合により着脱自在に設けられる。
反応容器本体50の内部は、例えば、アルゴン等の不活性ガスが充填されて、不活性雰囲気になっている。反応容器本体50の内部の圧力及び温度は、変更可能である。
昇華用原料80は、炭化珪素を含む炭化珪素原料である。昇華用原料80は、黒鉛製坩堝10の底部51に配置される。昇華用原料80は、黒鉛製坩堝10の底部51の全体を覆っている。昇華用原料80は、黒鉛製坩堝10の内部が所定の温度条件及び圧力条件になると、昇華用原料80は、昇華し、種結晶70上に再結晶し、炭化珪素単結晶100を形成する。
炭化珪素単結晶100は、成長が進むにつれて、凸面100aを形成し、やがて、反応容器本体50の内部に従って成長し、円筒状の炭化珪素単結晶が形成される。
誘導加熱コイル30は、発熱量が調整可能とされている。誘導加熱コイル30は、昇華用原料80の昇華開始時において、黒鉛製坩堝10の底部51を黒鉛製坩堝10内において少なくとも昇華用原料80が昇華する温度に加熱する。すなわち、黒鉛製坩堝10の底部51は、黒鉛製坩堝10内において温度領域Stmax1になる。誘導加熱コイル30は、昇華用原料80が昇華するに連れて、発熱量を増加する。
これにより、黒鉛製坩堝10の底部51に形成される温度領域Stmax1が黒鉛製坩堝10の底部51を中心として、昇華用原料80の上面側に向けて拡大される。すなわち、昇華用原料80が昇華するに連れて、昇華用原料80の昇華位置が黒鉛製坩堝10の底部51から昇華用原料80の上面部80aに向けて移動する。誘導加熱コイル30は、昇華用原料80が昇華するに連れて、段階的に発熱量を増加させてもよい。
第1実施形態では、誘導加熱コイル30は、黒鉛製坩堝10の下端部(反応容器本体50の外側の底部52)よりも下方に向けて巻回されている。すなわち、黒鉛製坩堝10の上下方向の断面視において、誘導加熱コイル30の下端部は、反応容器本体50の外側の底部52の下方まで延びている。誘導加熱コイル30の上下方向の中央部分は、反応容器本体50の外側の底部52付近に位置している。
図2は、炭化珪素単結晶の製造装置1の誘導加熱コイル30による温度分布を説明する模式図である。誘導加熱コイル30によって、誘導加熱コイル30の内側(黒鉛製坩堝10の内側)に温度分布が形成される。
炭化珪素単結晶の製造装置1では、黒鉛製坩堝10の上下方向の断面視において、黒鉛製坩堝10の上下方向の長さよりも誘導加熱コイル30を長くし、反応容器本体50の底部52を誘導加熱コイル30の中央部付近に配置したことにより、誘導加熱コイル30によって自然に形成される温度分布における温度領域Stmax1を反応容器本体50の底部52に対応させている。
黒鉛製坩堝10の上下方向の断面視において、昇華開始時(t=t0)において、図2に示すように、温度領域Stmax1が形成される。なお、図2において、温度領域St3、St2、St1、Stmax1の温度T3、T2、T1、Tmaxの関係は、T3<T2<T1<Tmax1である。温度領域Stmax1とは、少なくとも昇華用原料80が昇華することができる昇華温度になっている領域を示す。また、温度領域Stmax1の周囲の領域においても昇華用原料80が昇華するように、温度領域Stmax1では、昇華用原料80の昇華温度よりも高温に設定されていてもよい。
炭化珪素単結晶の製造装置1では、昇華用原料80が昇華するに連れて、誘導加熱コイル30の発熱量が増加される。図3は、炭化珪素単結晶の製造装置1において、誘導加熱コイル30の発熱量が昇華開始時よりも増加され、昇華開始からt1後経過したときの温度分布を説明する模式図である。
誘導加熱コイル30の発熱量の増加に伴って、黒鉛製坩堝10内の温度があがる。黒鉛製坩堝10内の温度があがるに連れて、図3に示すように、温度領域Stmax1は、黒鉛製坩堝10の内側から外側に向けて拡大される。温度領域Stmax1が形成されていた領域は、更に高温の温度領域Stmax2になる。昇華開始からt1後には、温度領域Stmax2の周辺領域には、温度Tmax1の温度領域Stmax1が形成される。
ここで、温度領域Stmax1における温度Tmax1<温度領域Stmax2における温度Tmax2である。従って、温度領域Stmax1及び温度領域Stmax2における昇華が促進される。
(2)第2実施形態
次に、第2実施形態について説明する。具体的に、(2−1)炭化珪素単結晶の製造装置の概略構成について説明する。
(2−1)炭化珪素単結晶の製造装置の概略構成
第1実施形態の炭化珪素単結晶の製造装置1と同一の機能を有する構成については、同一の番号を付して詳細な説明を省略する。
図4に、第2実施形態にかかる炭化珪素単結晶の製造装置2の構成を示す。炭化珪素単結晶の製造装置2において、誘導加熱コイル31は、第1コイル32と、第2コイル33、第3コイル34を有する。第1コイル32、第2コイル33及び第3コイル34は、それぞれ独立して制御可能である。第1コイル32、第2コイル33及び第3コイル34は、出力を異ならせることによって、発熱量を変えることができる。第2実施形態では、黒鉛製坩堝10の下方に向かって徐々に温度が高くなるように、第1コイル32、第2コイル33及び第3コイル34の出力が制御されている。
誘導加熱コイル31は、全体としての発熱量が調整可能とされている。誘導加熱コイル31は、昇華用原料80の昇華開始時において、黒鉛製坩堝10の底部51を黒鉛製坩堝10内において少なくとも昇華用原料80が昇華する温度に加熱する。すなわち、黒鉛製坩堝10の底部51は、黒鉛製坩堝10内において温度領域Stmax1になる。誘導加熱コイル31は、昇華用原料80が昇華するに連れて、全体としての発熱量を増加する。
これにより、黒鉛製坩堝10の底部51に形成される温度領域Stmax1が黒鉛製坩堝10の底部51を中心として、上面部80aに向けて拡大される。すなわち、昇華用原料80が昇華するに連れて、昇華用原料80の昇華位置が黒鉛製坩堝10の底部51から昇華用原料80の上面部80aに向けて移動する。誘導加熱コイル31は、昇華用原料80が昇華するに連れて、段階的に発熱量を増加させてもよい。
図5は、炭化珪素単結晶の製造装置2の誘導加熱コイル31による温度分布を説明する模式図である。誘導加熱コイル31によって、誘導加熱コイル31の内側、すなわち、黒鉛製坩堝10内に温度分布が形成される。
炭化珪素単結晶の製造装置2では、黒鉛製坩堝10の上下方向の断面視において、黒鉛製坩堝10の上下方向の下方に位置するコイルほど、出力(発熱量)を高めることにより、反応容器本体50の底部52付近に温度領域Stmax1を形成している。
黒鉛製坩堝10の上下方向の断面視において、昇華開始時(t=t0)において、図5に示すように、温度領域Stmax1が形成される。なお、図5において、温度領域St3、St2、St1、Stmaxの温度T3、T2、T1、Tmax1の関係は、T3<T2<T1<Tmax1である。
炭化珪素単結晶の製造装置1では、昇華用原料80が昇華するに連れて、誘導加熱コイル31の発熱量が増加される。図6は、炭化珪素単結晶の製造装置1において、誘導加熱コイル31の発熱量が昇華開始時よりも増加され、昇華開始からt1後経過したときの温度分布を説明する模式図である。
誘導加熱コイル31の発熱量の増加に伴って、黒鉛製坩堝10内の温度があがる。黒鉛製坩堝10内の温度があがるに連れて、図6に示すように、温度領域Stmax1は、黒鉛製坩堝10の内側から外側に向けて拡大される。温度領域Stmax1が形成されていた領域は、更に高温の温度領域Stmax2になる。すなわち、昇華開始からt1後には、温度領域Stmax2の周辺領域には、温度Tmax1の温度領域Stmax1が形成される。
炭化珪素単結晶の製造装置2は、昇華用原料80が昇華するに連れて、黒鉛製坩堝10内における温度領域Stmax1を黒鉛製坩堝10の底部51から種結晶70と対向する昇華用原料80の上面部80aに向けて変化させる。
炭化珪素単結晶の製造装置2では、昇華用原料80が昇華するに連れて、第1コイル32、第2コイル33、及び第3コイル34の発熱量が連携して増加される。図6は、炭化珪素単結晶の製造装置2において、誘導加熱コイル31の発熱量が昇華開始時よりも増加され、昇華開始からt1後経過したときの温度分布を説明する模式図である。
誘導加熱コイル31の発熱量の増加に伴って、黒鉛製坩堝10内の温度があがる。黒鉛製坩堝10内の温度があがるに連れて、図6に示すように、温度領域Stmax1は、黒鉛製坩堝10の内側から外側に向けて拡大される。温度領域Stmax1が形成されていた領域は、更に高温の温度領域Stmax2になる。すなわち、昇華開始からt1後には、温度領域Stmax2の周辺領域には、温度Tmax1の温度領域Stmax1が形成される。
ここで、温度領域Stmax1における温度Tmax1<温度領域Stmax2における温度Tmax2である。従って、温度領域Stmax1及び温度領域Stmax2における昇華が促進される。
(3)炭化珪素単結晶の製造方法
次に、本実施形態に係る炭化珪素単結晶の製造方法について説明する。図7は、炭化珪素単結晶の製造方法を説明する図である。なお、第1実施形態及び第2実施形態の何れの装置を用いた場合であっても、図7に示すフローチャートを用いて製造方法の説明が可能である。
図7に示すように、本実施形態に係る炭化珪素単結晶の製造方法は、工程S1乃至工程S4を有する。なお、図7に示す工程S5及び工程S6を続けて行うことにより、半導体ウェハを製造することができる。
工程S1は、上述した昇華用原料80を準備する工程である。工程S2は、昇華用原料80、種結晶70等を製造装置に配置する工程である。
工程S3は、黒鉛製坩堝10を加熱し、昇華用原料80を昇華させる工程である。誘導加熱コイル30(または誘導加熱コイル31)に電流を通電させて、昇華用原料80を加熱する。誘導加熱コイル30(または誘導加熱コイル31)は、昇華用原料80の昇華開始時において、黒鉛製坩堝10の底部51を少なくとも昇華用原料80が昇華する温度に加熱する。すなわち、黒鉛製坩堝10の底部51は、黒鉛製坩堝10内における温度領域Stmax1になる。
工程S4は、種結晶70を元に炭化珪素単結晶を成長させる工程である。工程S4では、昇華用原料80が昇華するに連れて、誘導加熱コイル30(または誘導加熱コイル31)の発熱量を増加する。これにより、昇華用原料80の昇華位置が黒鉛製坩堝10の底部51から昇華用原料80の上面部80aに向けて移動する。
昇華した昇華用原料80は、蓋部60の内側表面61に配置された種結晶70上に再結晶する。すなわち、昇華用原料80から昇華した原料ガスは、種結晶70上に炭化珪素単結晶100を成長させる。
これにより、炭化珪素単結晶(単結晶インゴットという)が時間とともに、反応容器本体50の径方向に成長させることができる。上述の工程S1〜S4を行うことにより、単結晶インゴットを得ることができる。
工程S5は、所望とするサイズに成長した単結晶インゴットに外周研削加工等を施す工程である。工程S5では、単結晶インゴットに、結晶方位(例えば、Si面やC面)を示すオリエンテーションフラット(オリフラ)を形成するオリフラ形成加工を行ってもよい。工程S6は、単結晶インゴットから半導体ウェハを切り出す(スライス)工程である。
図8、図9は、工程S4において、温度領域Stmax1を拡大させる際における誘導加熱コイル30(または誘導加熱コイル31)の温度制御プロファイルの一例を説明する図である。図8に示すように、昇華が進むに連れて、誘導加熱コイル30(または誘導加熱コイル31)の加熱温度を徐々に上昇させてもよい。また、図9に示すように、昇華が進むに連れて、誘導加熱コイル30(または誘導加熱コイル31)の加熱温度を段階的に上昇させることもできる。
図7に示す製造方法によれば、誘導加熱コイル30(または誘導加熱コイル31)によって形成される温度領域Stmax1において加熱された昇華用原料80から原料ガスが効率よく昇華し、種結晶70上に再結晶化する。その結果、種結晶70上に炭化珪素単結晶100が成長する。
(4)実施例
上述の実施形態の炭化珪素単結晶の製造装置により、昇華用原料が昇華するに連れて、坩堝内における、少なくとも前記昇華用原料が昇華する温度を坩堝の底部から種結晶と対向する昇華用原料の上面部に向けて拡大させて炭化珪素単結晶を製造した。このときの、昇華用原料の使用量を比較した。
実施例1:昇華開始時に、加熱部(誘電加熱コイル)によって形成される温度分布において、少なくとも昇華用原料が昇華する温度を有する領域(昇華温度領域という)を昇華用原料の底部に設定し、昇華が進行するとともに、加熱部の出力をあげて、昇華温度領域を90時間かけて、坩堝の内部から外部に向けて拡大した。
比較例1:昇華開始時から終始、加熱部(誘電加熱コイル)によって形成される昇華温度領域を昇華用原料の上面部に設定し、昇華が進行するとともに、昇華温度領域を90時間かけて、昇華用原料の上面部から坩堝の底部に向けて移動させた。
実施例1では、昇華開始時の昇華用原料の底部の温度は2300℃であった。終了時の昇華用原料の底部の温度は2500℃であった。成長終了時点で、成長後の炭化珪素単結晶の表面及び反応後の昇華用原料の表面は、殆ど炭化していなかった。反応後の昇華用原料の底部に炭化珪素の多結晶は、殆ど析出していなかった。また、昇華用原料の昇華量は、投入量の85%であった。
比較例1では、成長終了時点で、成長後の炭化珪素単結晶の表面及び反応後の昇華用原料の表面が炭化していた。反応後の昇華用原料の底部に炭化珪素の多結晶の塊が形成されていた。また、昇華用原料の昇華量は、投入量の65%であった。
以上の結果から、昇華開始時に、加熱部(誘電加熱コイル)によって形成される昇華温度領域を昇華用原料の底部に設定し、昇華が進行するとともに、昇華温度領域を坩堝の内部から外部に向けて拡大することにより、昇華用原料を有効に利用できることが判った。
(5)作用・効果
炭化珪素単結晶の製造装置1,2によれば、誘導加熱コイル30または誘導加熱コイル31は、昇華用原料80の昇華開始時において、黒鉛製坩堝10の底部51を黒鉛製坩堝10内において少なくとも昇華用原料80が昇華する温度に加熱する。すなわち、黒鉛製坩堝10の底部51は、黒鉛製坩堝10内において温度領域Stmax1に設定される。
このように、炭化珪素単結晶の製造装置1,2によれば、黒鉛製坩堝10の底部51は温度領域Stmax1に設定されるため、黒鉛製坩堝10の底部51の昇華用原料80の温度低下を防止することができる。これにより、黒鉛製坩堝10の底部51に多結晶が析出するのを抑制することができる。また、昇華用原料80の昇華温度が保持され、昇華用原料80の昇華が妨げられることなく進行する。従って、昇華用原料80の利用率を向上させることができる。
また、炭化珪素単結晶の製造装置1,2によれば、昇華用原料80が昇華するに連れて、誘導加熱コイル30または誘導加熱コイル31の発熱量が増加する。これにより、黒鉛製坩堝10の底部51に形成される温度領域Stmax1が黒鉛製坩堝10の底部51を中心として外側に向けて拡大される。すなわち、昇華用原料80が昇華するに連れて、昇華用原料80の昇華位置が黒鉛製坩堝10の底部51から昇華用原料80の上面部に向けて移動する。
従って、昇華用原料80を効率よく昇華させることができる。また、昇華用原料80の上面部にカーボン成分が昇華されずに残留することを防止することができる。これにより、単結晶の成長に連れて昇華ガスに含まれる珪素成分が減少するのを防ぐことができる。従って、単結晶の表面の炭化を防止することができる。
炭化珪素単結晶の製造装置1,2では、温度は、少なくとも昇華用原料80が昇華する昇華温度である。従って、昇華開始時から黒鉛製坩堝10の底部51が昇華温度若しくは昇華温度以上になっているため、昇華用原料80を効率よく昇華させることができる。
(6)その他の実施形態
上述したように、本発明の実施形態を通じて本発明の内容を開示したが、この開示の一部をなす論述及び図面は、本発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかとなろう。
例えば、本発明の実施形態は、次のように変更することができる。上述した実施形態では、炭化珪素を含む種結晶70の下方に昇華用原料80が配置される場合について説明したが、炭化珪素を含む種結晶70を黒鉛製坩堝10の底部51に配置する場合でも適用可能である。この場合には、種結晶70の上方に配置される昇華用原料80の種結晶70よりも遠い端部から、種結晶70と対向する昇華用原料80の表面に向けて昇華温度領域を変化させるように制御する。
炭化珪素単結晶の製造装置1では、黒鉛製坩堝10の上下方向の長さよりも、誘導加熱コイル30を長くし、反応容器本体50の底部52を誘導加熱コイル30の中央部付近に配置させることにより、誘導加熱コイル30によって自然に形成される温度勾配を利用して、温度領域Stmax1が反応容器本体50の底部52に対応するようにした。
しかし、昇華開始時において、温度領域Stmax1が反応容器本体50の底部52に対応していればよく、誘導加熱コイル30の長さと黒鉛製坩堝10の上下方向の長さの関係は、必ずしも図1に示す関係になっていなくてもよい。誘導加熱コイル30の巻回数も図1に限定されない。
また、炭化珪素単結晶の製造装置2では、黒鉛製坩堝10の上下方向の断面視において、黒鉛製坩堝10の上下方向の下方に位置するコイルほど、出力を高めることにより、反応容器本体50の底部52付近に温度領域Stmax1が形成されるようにした。
しかし、昇華開始時において、温度領域Stmax1が反応容器本体50の底部52に対応していればよく、誘導加熱コイル31を構成するコイルの数、各コイルの巻回数、コイルの巻回密度などは、図3に限定されない。誘導加熱コイル30(または誘導加熱コイル31)によって、黒鉛製坩堝10内に温度領域Stmax1を有する温度分布が形成されればよく、適宜変更が可能である。
本発明は、反応容器本体50の底部52と温度領域Stmax1との相対的な位置関係が変化させることを規定するものであるため、誘導加熱コイル30(または誘導加熱コイル31)が固定され、黒鉛製坩堝10が移動する機構も本発明の概念に含まれる。
このように、本発明は、ここでは記載していない様々な実施の形態などを含むことは勿論である。したがって、本発明の技術的範囲は、上述の説明から妥当な特許請求の範囲に係る発明特定事項によってのみ定められるものである。
本発明の第1実施形態に係る炭化珪素単結晶の製造装置の概略を説明する構成図である。 本発明の第1実施形態に係る炭化珪素単結晶の製造装置の昇華開始時における誘電加熱コイルによる温度分布を説明する模式図である。 本発明の第1実施形態に係る炭化珪素単結晶の製造装置の昇華開始時からt1経過後の誘電加熱コイルによる温度分布を説明する模式図である。 本発明の第2実施形態に係る炭化珪素単結晶の製造装置の概略を説明する構成図である。 本発明の第2実施形態に係る炭化珪素単結晶の製造装置の昇華開始時における誘電加熱コイルによる温度分布を説明する模式図である。 本発明の第2実施形態に係る炭化珪素単結晶の製造装置の昇華開始時からt1経過後の誘電加熱コイルによる温度分布を説明する模式図である。 本発明の第1及び第2実施形態に係る炭化珪素単結晶の製造方法を説明するフローチャートである。 本実施形態に係る炭化珪素単結晶の製造方法の工程S4における温度制御プロファイルの一例を説明する図である。 本実施形態に係る炭化珪素単結晶の製造方法の工程S4における温度制御プロファイルの一例を説明する図である。
符号の説明
1,2…炭化珪素単結晶の製造装置、10…黒鉛製坩堝、20…石英管、30…誘電加熱コイル、31…誘電加熱コイル、32…第1コイル、33…第2コイル、34…第3コイル、40…支持棒、50…反応容器本体、51…内側の底部、52…底部、70…種結晶、60…蓋部、61…内側表面、80…昇華用原料、80a…上面部、100…炭化珪素単結晶、100a…凸面

Claims (3)

  1. 炭化珪素を含む種結晶、及び前記種結晶の下方に配設され、前記種結晶の成長に用いられる昇華用原料を収容する坩堝と、前記坩堝の側部の周囲に配設され、前記坩堝を加熱する加熱部とを備える炭化珪素単結晶の製造装置であって、
    前記昇華用原料は、前記坩堝の底部に配設され、
    前記加熱部は、発熱量が調整可能であり、
    前記加熱部は、前記昇華用原料の昇華開始時において、前記坩堝の底部を少なくとも前記昇華用原料が昇華する温度に加熱し、
    前記昇華用原料が昇華するに連れて、前記発熱量を増加する炭化珪素単結晶の製造装置。
  2. 前記加熱部は、前記昇華用原料が昇華するに連れて、前記発熱量を段階的に増加する請求項1に記載の炭化珪素単結晶の製造装置。
  3. 炭化珪素を含む種結晶と、前記種結晶の下方に配設され、前記種結晶の成長に用いられる昇華用原料とを収容する坩堝と、前記坩堝の側部の周囲に配設され、発熱量が可変とされており前記坩堝を加熱する加熱部とを備え、昇華再結晶法により炭化珪素単結晶を製造する炭化珪素単結晶の製造方法であって、
    前記昇華用原料が昇華する温度まで、前記坩堝が加熱される工程と、
    昇華した昇華用原料が種結晶上に再結晶する工程とを有し、
    前記昇華用原料が種結晶上に再結晶する工程では、
    前記加熱部は、前記昇華用原料の昇華開始時において、前記坩堝の底部を少なくとも前記昇華用原料が昇華する温度に加熱し、前記昇華用原料が昇華するに連れて、前記発熱量を増加する炭化珪素単結晶の製造方法。
JP2008262103A 2008-10-08 2008-10-08 炭化珪素単結晶の製造装置及び炭化珪素単結晶の製造方法 Pending JP2010089998A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008262103A JP2010089998A (ja) 2008-10-08 2008-10-08 炭化珪素単結晶の製造装置及び炭化珪素単結晶の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008262103A JP2010089998A (ja) 2008-10-08 2008-10-08 炭化珪素単結晶の製造装置及び炭化珪素単結晶の製造方法

Publications (1)

Publication Number Publication Date
JP2010089998A true JP2010089998A (ja) 2010-04-22

Family

ID=42253109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008262103A Pending JP2010089998A (ja) 2008-10-08 2008-10-08 炭化珪素単結晶の製造装置及び炭化珪素単結晶の製造方法

Country Status (1)

Country Link
JP (1) JP2010089998A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111793826A (zh) * 2020-07-27 2020-10-20 河北同光科技发展有限公司 一种高质量大直径SiC单晶的制备装置及方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111793826A (zh) * 2020-07-27 2020-10-20 河北同光科技发展有限公司 一种高质量大直径SiC单晶的制备装置及方法

Similar Documents

Publication Publication Date Title
JP5170127B2 (ja) SiC単結晶の製造方法
JP6111873B2 (ja) 炭化珪素単結晶インゴットの製造方法
JP5069657B2 (ja) 炭化珪素単結晶の製造装置及び炭化珪素単結晶の製造方法
WO2009139447A1 (ja) 単結晶の製造装置及び製造方法
CN110396723A (zh) 一种高纯半绝缘碳化硅单晶及其高效制备方法和应用
JP6338439B2 (ja) 炭化珪素単結晶インゴットの製造方法
JP2011098870A (ja) SiC単結晶の製造装置及び製造方法
JP6015397B2 (ja) 炭化珪素単結晶の製造方法及びその製造装置
JP2010076990A (ja) 炭化珪素単結晶の製造装置及び炭化珪素単結晶の製造方法
JP6910168B2 (ja) 炭化珪素単結晶インゴットの製造装置及び製造方法
JP2011157239A (ja) シリコン単結晶の製造方法およびシリコン単結晶のインゴット
JP6990383B2 (ja) 高性能Fe-Ga基合金単結晶製造方法
JP2012171812A (ja) 4h型炭化珪素単結晶の製造方法
JP5375783B2 (ja) 炭化珪素単結晶の製造方法
JP5392040B2 (ja) 単結晶製造装置及び単結晶製造方法
JP6223290B2 (ja) 単結晶の製造装置
JP2010089998A (ja) 炭化珪素単結晶の製造装置及び炭化珪素単結晶の製造方法
JP2006290685A (ja) 炭化ケイ素単結晶の製造方法
JP7056979B2 (ja) 炭化珪素インゴットの製造方法及び炭化珪素インゴット製造用システム
JP2004323247A (ja) SiC単結晶製造炉
JP2007308355A (ja) 炭化ケイ素単結晶の製造装置及びその製造方法
JP2013216549A (ja) 炭化珪素単結晶の製造装置及び炭化珪素単結晶の製造方法
JP5831339B2 (ja) 炭化珪素単結晶の製造方法
JP2010064920A (ja) 6h型炭化ケイ素単結晶の製造方法
JP2009227525A (ja) 炭化ケイ素単結晶の製造装置及び製造方法