JP2010083689A - Polycrystalline ceramic magnetic material, microwave magnetic substance, and non-reversible circuit component using the same - Google Patents

Polycrystalline ceramic magnetic material, microwave magnetic substance, and non-reversible circuit component using the same Download PDF

Info

Publication number
JP2010083689A
JP2010083689A JP2008252293A JP2008252293A JP2010083689A JP 2010083689 A JP2010083689 A JP 2010083689A JP 2008252293 A JP2008252293 A JP 2008252293A JP 2008252293 A JP2008252293 A JP 2008252293A JP 2010083689 A JP2010083689 A JP 2010083689A
Authority
JP
Japan
Prior art keywords
magnetic material
microwave
polycrystalline ceramic
terms
main component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008252293A
Other languages
Japanese (ja)
Other versions
JP5488954B2 (en
Inventor
Hirokazu Nakajima
広和 中島
Tokukazu Koyuhara
徳和 小湯原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2008252293A priority Critical patent/JP5488954B2/en
Publication of JP2010083689A publication Critical patent/JP2010083689A/en
Application granted granted Critical
Publication of JP5488954B2 publication Critical patent/JP5488954B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polycrystalline ceramic magnetic material which can be subjected to low temperature firing and co-firing with a metallic material of low resistance, has no formation of a hetero-phase even in a Bi-substituted type, and has a small ferromagnetic resonance half band width and a small dielectric loss, to provide a microwave magnetic substance, and to provide a non-reversible circuit component using the same. <P>SOLUTION: The polycrystalline ceramic magnetic material comprises a main component having a composition represented by the general formula (Y<SB>3.0-x-y-z</SB>Bi<SB>x</SB>Ca<SB>y</SB>Gd<SB>Z</SB>)(Fe<SB>5-α-β-γ</SB>In<SB>α</SB>Al<SB>β</SB>V<SB>γ</SB>)O<SB>12</SB>, wherein x, y and z satisfy 0.5≤x≤0.9, 0.5≤y≤0.9 and 0≤z≤0.4, respectively; and α, β and γ satisfy 0.05≤α≤0.4, 0≤β≤0.45 and 0.25≤γ≤0.45, and comprises Cu, Zr and Fe as accessory components, wherein the content of Cu expressed in terms of CuO is 0.1-0.5 wt.%, the content of Zr expressed in terms of ZrO<SB>2</SB>is 0.05-0.5 wt.% and the content of Fe expressed in terms of Fe<SB>2</SB>O<SB>3</SB>exceeds 0 and not larger than 1.0 wt.%, based on 100 wt.% of the main component. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、高周波回路部品に使用されるマイクロ波用磁性体材料であり、さらに銀や銅といった電極用材料との同時焼成が可能な多結晶セラミック磁性材料に関する。   The present invention relates to a magnetic material for microwaves used for high-frequency circuit components, and further relates to a polycrystalline ceramic magnetic material that can be simultaneously fired with electrode materials such as silver and copper.

近年、自動車電話、携帯電話、衛星放送など、マイクロ波領域の電磁波を利用する通信技術の進展に伴い、機器の小型化が要求されている。このためには、機器を構成する個々の部品の小型化、低背化の要求が益々増大している。   In recent years, miniaturization of devices has been demanded with the progress of communication technology using electromagnetic waves in the microwave region, such as car phones, mobile phones, and satellite broadcasts. For this purpose, there is an increasing demand for downsizing and low profile of individual parts constituting the equipment.

通信機器の分野において用いられる代表的な高周波回路部品として、たとえば、サーキュレータ、アイソレータなどのマイクロ波非可逆回路素子がある。一般にアイソレータは、信号の伝送方向にはほとんど減衰がなく、かつ逆方向には減衰が大きくなる様な機能を有しており、たとえばマイクロ波帯、UHF帯で使用される携帯電話、自動車電話等の移動体通信器の送受信回路に用いられている。   As typical high-frequency circuit components used in the field of communication equipment, for example, there are microwave nonreciprocal circuit elements such as circulators and isolators. In general, an isolator has a function such that there is almost no attenuation in the signal transmission direction and the attenuation is increased in the opposite direction. For example, a cellular phone, a car phone, etc. used in the microwave band and the UHF band. This is used in a transmission / reception circuit of a mobile communication device.

サーキュレータ、アイソレータなどの非可逆回路素子は、互いに絶縁された状態で配置した複数の電極ラインを有する中心導体と、これら中心導体に密接して配置されるマイクロ波用磁性体と、前記中心導体及び前記マイクロ波用磁性体からなる中心導体組立体に直流磁界を印可する永久磁石を備えた構成であって、中心導体とマイクロ波用磁性体は互いに別の部品として製造され、前記中心導体については、従来、銅箔をマイクロ波用磁性体に巻きつけたり、マイクロ波用磁性体に銀ペーストを印刷、焼結して一体的に形成するなど、様々な形態が提案されている。   Non-reciprocal circuit elements such as a circulator and an isolator include a central conductor having a plurality of electrode lines arranged in a state of being insulated from each other, a microwave magnetic body disposed in close contact with the central conductor, the central conductor and The central conductor assembly made of the magnetic material for microwaves includes a permanent magnet that applies a DC magnetic field, and the central conductor and the magnetic material for microwaves are manufactured as separate parts. Conventionally, various forms have been proposed, such as winding a copper foil around a microwave magnetic body, or printing and sintering a silver paste on the microwave magnetic body to form an integral body.

前述したような小型化の要求に応えるため、たとえば特許文献1に記載されるように、中心導体の材料として、パラジウムもしくは白金等の導電性粉末及び有機溶剤を混合してなる導電ペーストを用い、1300〜1600℃の温度で、マイクロ波用磁性体材料と中心導体とを一体焼成することが提案されている。
特開平6−61708号
In order to meet the demands for downsizing as described above, for example, as described in Patent Document 1, as a material for the central conductor, a conductive paste formed by mixing a conductive powder such as palladium or platinum and an organic solvent is used. It has been proposed that the microwave magnetic material and the central conductor are integrally fired at a temperature of 1300 to 1600 ° C.
JP-A-6-61708

上述したパラジウムまたは白金は、融点が1300℃以上と高く、ほとんどのマイクロ波用磁性体材料との一体焼成が容易であるという長所をもつ反面、比抵抗が高く、たとえばアイソレータ素子に使用した場合、挿入損失が大きくなるという欠点を有している。   The above-mentioned palladium or platinum has a high melting point of 1300 ° C. or higher and has an advantage that it can be easily fired integrally with most magnetic materials for microwaves, but has a high specific resistance. For example, when used for an isolator element, There is a disadvantage that the insertion loss is increased.

低抵抗の銀や銅を用いる場合、同時焼成可能なように、多結晶セラミック磁性材料にBiを置換したものを用いる場合がある。しかしながら、Biの酸化物は他の構成元素の酸化物に比べて低融点であり、結晶格子内に取り込まれずに粒界に異相として析出する場合があった。
一般に、ガーネットのように単相領域が狭いマイクロ波用磁性体材料は、異相の生成や空孔量の増加などが発生しやすいものであるが、Biは顕著であって、その異相の生成は、ガーネットの強磁性共鳴半値幅ΔHや誘電損失tanδの増大を招く。また異なる色調のため外観状態においても好ましくは無い。
When low resistance silver or copper is used, a polycrystalline ceramic magnetic material in which Bi is substituted may be used so that simultaneous firing is possible. However, Bi oxide has a lower melting point than oxides of other constituent elements, and sometimes precipitates as a heterogeneous phase at the grain boundary without being taken into the crystal lattice.
In general, a microwave magnetic material with a narrow single-phase region, such as garnet, is prone to generation of a different phase or an increase in the amount of vacancies, but Bi is prominent. Garnet's ferromagnetic resonance half width ΔH and dielectric loss tan δ are increased. Moreover, it is not preferable in the appearance state due to the different color tone.

またマイクロ波用非可逆回路素子では永久磁石と組み合わせて使用されるが、マイクロ波用磁性体材料の飽和磁化4πMsの温度特性が、永久磁石の温度特性を補償することが理想とされる。   Further, although the microwave non-reciprocal circuit element is used in combination with a permanent magnet, it is ideal that the temperature characteristic of the saturation magnetization 4πMs of the microwave magnetic material compensates the temperature characteristic of the permanent magnet.

そこで本発明は、上述したような問題を解決し、しかも860℃以上950℃未満の低温で焼成することができ、Bi置換型においても異相の生成を抑え、強磁性共鳴半値幅ΔHおよび誘電損失tanδが小さく、永久磁石の温度特性を補償するような温度係数αmおよび飽和磁化4πMsを有する多結晶セラミック磁性体材料と、マイクロ波磁性体及びこれを用いた非可逆回路素子を提供することを目的とする。   Therefore, the present invention solves the above-described problems and can be fired at a low temperature of 860 ° C. or higher and lower than 950 ° C., suppresses the generation of heterogeneous phases even in the Bi substitution type, and reduces the ferromagnetic resonance half width ΔH and dielectric loss. An object is to provide a polycrystalline ceramic magnetic material having a small tan δ and a temperature coefficient αm and a saturation magnetization of 4πMs so as to compensate for the temperature characteristics of a permanent magnet, a microwave magnetic material, and a nonreciprocal circuit device using the same. And

第1の発明は、主成分が、一般式(Y3.0−x−y−zBiCaGd)(Fe5−α−β−γInαAlβγ)O12で表される組成を有し、x、y、zの値が、0.5≦x≦0.9、0.5≦y≦0.9、0≦z≦0.4であり、α、β、γの値が、0.05≦α≦0.4、0≦β≦0.45、0.25≦γ≦0.45の範囲内にあって、副成分としてCuとZrとFeを含み、その含有量は、前記主成分100重量部に対して、CuをCuO換算で0.1重量%≦CuO≦0.5重量%、ZrをZrO換算で0.05重量%≦ZrO≦0.5重量%、FeをFe換算で0重量%<Fe≦1.0重量%でることを特徴とする多結晶セラミック磁性体材料である。 The first invention, the table in the main component is represented by the general formula (Y 3.0-x-y- z Bi x Ca y Gd z) (Fe 5-α-β-γ In α Al β V γ) O 12 And the values of x, y, z are 0.5 ≦ x ≦ 0.9, 0.5 ≦ y ≦ 0.9, 0 ≦ z ≦ 0.4, and α, β, The value of γ is in the range of 0.05 ≦ α ≦ 0.4, 0 ≦ β ≦ 0.45, 0.25 ≦ γ ≦ 0.45, and contains Cu, Zr and Fe as subcomponents, The content of Cu is 0.1 wt% ≦ CuO ≦ 0.5 wt% in terms of CuO and Zr is 0.05 wt% ≦ ZrO 2 ≦ 0 in terms of ZrO 2 with respect to 100 parts by weight of the main component. A polycrystalline ceramic magnetic material characterized by 0.5 wt% and Fe in terms of Fe 2 O 3 0 wt% <Fe 2 O 3 ≦ 1.0 wt%.

本発明に係る多結晶セラミック磁性体材料は、飽和磁化4πMsが70mT〜110mTであり、その温度係数αmが、−0.35%/℃〜−0.21%/℃であり、強磁性共鳴半値幅ΔHが8000A/m以下であることも特徴とする。   The polycrystalline ceramic magnetic material according to the present invention has a saturation magnetization 4πMs of 70 mT to 110 mT and a temperature coefficient αm of −0.35% / ° C. to −0.21% / ° C. It is also characterized in that the value width ΔH is 8000 A / m or less.

第2の発明は、第1の発明の多結晶セラミック磁性体材料と、Ag、Ag合金のいずれかを含む導体ペーストとを一体焼結してなるマイクロ波磁性体であって、前記マイクロ波磁性体の内部及び/又は表面に前記導体ペーストで形成された電極パターンを備えることを特徴とするマイクロ波磁性体である。   A second invention is a microwave magnetic body obtained by integrally sintering the polycrystalline ceramic magnetic material of the first invention and a conductor paste containing either Ag or an Ag alloy, and the microwave magnetism A microwave magnetic body comprising an electrode pattern formed of the conductive paste inside and / or on the surface of a body.

第3の発明は、第2の発明のマイクロ波磁性体に形成された電極パターンを中心導体とし、前記中心導体に接続するコンデンサと、前記マイクロ波磁性体に直流磁界を与えるフェライト磁石を備えたことを特徴とする非可逆回路素子である。   According to a third aspect of the present invention, there is provided a capacitor connected to the central conductor, the electrode pattern formed on the microwave magnetic body according to the second aspect of the invention, and a ferrite magnet that applies a DC magnetic field to the microwave magnetic body. This is a non-reciprocal circuit device.

前記フェライト磁石は、残留磁束密度Brが420mT以上であり、その温度係数が−0.15%/℃〜−0.25%/℃であることが好ましい。   The ferrite magnet preferably has a residual magnetic flux density Br of 420 mT or more and a temperature coefficient of −0.15% / ° C. to −0.25% / ° C.

本発明によれば、860℃以上950℃未満の低温で焼成することができ、銀や銅といった低抵抗の金属材料との同時焼成が可能で、Bi置換型においても異相の生成がなく、強磁性共鳴半値幅ΔHおよび誘電損失tanδが小さい多結晶セラミック磁性体材料と、マイクロ波磁性体及びこれを用いた非可逆回路素子を提供することが出来る。   According to the present invention, firing can be performed at a low temperature of 860 ° C. or more and less than 950 ° C., and simultaneous firing with a low-resistance metal material such as silver or copper is possible. A polycrystalline ceramic magnetic material having a small magnetic resonance half width ΔH and a dielectric loss tan δ, a microwave magnetic material, and a nonreciprocal circuit device using the same can be provided.

本発明の多結晶セラミック磁性体材料は、主成分が、一般式(Y3.0−x−y−zBiCaGd)(Fe5−α−β−γInαAlβγ)O12で表される組成を有し、x、y、zの値が、0.5≦x≦0.9、0.5≦y≦0.9、0≦z≦0.4であり、α、β、γの値が、0.05≦α≦0.4、0≦β≦0.45、0.25≦γ≦0.45の範囲内にあって、副成分としてCuとZrとFeを含み、その含有量は、前記主成分100重量部に対して、CuをCuO換算で0.1重量%≦CuO≦0.5重量%、ZrをZrO換算で0.05重量%≦ZrO≦0.5重量%であり、FeをFe換算で0重量%≦Fe≦1.0重量%の範囲内にあって、ガーネット構造を有する相を主成分とし、860℃以上950℃以下の温度で焼結することを特徴とする多結晶セラミック磁性体材料である。 Polycrystalline ceramic magnetic material of the present invention, the main component is represented by the general formula (Y 3.0-x-y- z Bi x Ca y Gd z) (Fe 5-α-β-γ In α Al β V γ ) has a composition represented by O 12, x, y, z values are located at 0.5 ≦ x ≦ 0.9,0.5 ≦ y ≦ 0.9,0 ≦ z ≦ 0.4 , Α, β, γ are in the range of 0.05 ≦ α ≦ 0.4, 0 ≦ β ≦ 0.45, 0.25 ≦ γ ≦ 0.45, and Cu and Zr as subcomponents And Fe, and the content of Cu is 0.1 wt% ≦ CuO ≦ 0.5 wt% in terms of CuO and Zr is 0.05 wt% in terms of ZrO 2 with respect to 100 parts by weight of the main component. ≦ ZrO a 2 ≦ 0.5% by weight, there the Fe in the range of 0 wt% ≦ Fe 2 O 3 ≦ 1.0% by weight calculated as Fe 2 O 3, a main component phase having a garnet structure , 8 At 0 ℃ above 950 ° C. temperature below a polycrystalline ceramic magnetic material, characterized by sintering.

焼結温度、強磁性共鳴半値幅ΔH、誘電損失tanδ、飽和磁化4πMs、飽和磁化4πMsの温度特性等は、多結晶セラミック磁性体材料の主成分組成により大きく影響され、主成分組成が上記の本発明の組成範囲から外れると以下のような不具合が生じる。   The temperature characteristics of the sintering temperature, the ferromagnetic resonance half width ΔH, the dielectric loss tan δ, the saturation magnetization 4πMs, the saturation magnetization 4πMs are greatly influenced by the main component composition of the polycrystalline ceramic magnetic material. If the composition falls outside the composition range of the invention, the following problems occur.

Biは低温焼結化に寄与する。xが、x<0.5であると、異相の生成は抑制されるが950℃未満での焼結が困難になる。また、x>0.9であると、860℃以上950℃未満での焼結は可能になるが、焼結体に異相が生じ易く誘電損失tanδがtanδ>10×10−4および強磁性共鳴半値幅ΔHがΔH>8000(A/m)と著しく大きくなる。このため、xは0.5≦x≦0.9であることが望ましい。好ましくは、0.55≦x≦0.75である。 Bi contributes to low temperature sintering. When x is x <0.5, the formation of heterogeneous phases is suppressed, but sintering at less than 950 ° C. becomes difficult. Further, when x> 0.9, sintering at 860 ° C. or more and less than 950 ° C. is possible, but a heterogeneous phase is likely to occur in the sintered body, and dielectric loss tan δ is tan δ> 10 × 10 −4 and ferromagnetic resonance. The half-value width ΔH is remarkably increased as ΔH> 8000 (A / m). For this reason, x is preferably 0.5 ≦ x ≦ 0.9. Preferably, 0.55 ≦ x ≦ 0.75.

Caは後述するVとともに加えられ、焼結時に低融点のVの蒸散を防ぐのに寄与する。このような効果を発揮させるには、yは0.5≦y≦0.9とするのが好ましい。   Ca is added together with V described later, and contributes to preventing the low melting point V from evaporating during sintering. In order to exhibit such an effect, y is preferably set to 0.5 ≦ y ≦ 0.9.

Gdは飽和磁化4πMsの温度係数αmの調整に寄与する。zが、0.4を超えると、−20から60℃までの飽和磁化4πMsの温度係数αmが、αm<−0.21(%/℃)となる場合があり、永久磁石との温度特性を補償することができない。また誘電損失tanδがtanδ≧10×10−4、および、強磁性共鳴半値幅ΔHがΔH>8000(A/m)と著しく大きくなる。このため、zは0≦z≦0.4であることが望ましい。 Gd contributes to the adjustment of the temperature coefficient αm of the saturation magnetization 4πMs. If z exceeds 0.4, the temperature coefficient αm of saturation magnetization 4πMs from −20 to 60 ° C. may be αm <−0.21 (% / ° C.), and the temperature characteristics with the permanent magnet It cannot be compensated. Further, the dielectric loss tan δ is remarkably increased as tan δ ≧ 10 × 10 −4 and the ferromagnetic resonance half width ΔH is ΔH> 8000 (A / m). For this reason, z is preferably 0 ≦ z ≦ 0.4.

In,Al,Vは飽和磁化4πMsの温度係数αmの調整、低温焼結化に寄与する。α、β、γの値を、それぞれ0.05≦α≦0.4、0≦β≦0.45、0.25≦γ≦0.45の範囲内とするのが好ましい。In,Al,Vが上記範囲よりも少ないと950℃未満での焼結が困難になる。また前記範囲よりも少ないと、飽和磁化4πMsが4πMs>110(mT)となり、所定の形状による永久磁石の磁力が不足してしまう。また誘電損失tanδがtanδ≧10×10−4、および、強磁性共鳴半値幅ΔHがΔH>8000(A/m)と著しく大きくなる。また多い場合には、飽和磁化4πMsが4πMs<70(mT)となり、永久磁石との温度特性を補償することができない。 In, Al, and V contribute to the adjustment of the temperature coefficient αm of the saturation magnetization 4πMs and the low-temperature sintering. The values of α, β, and γ are preferably set in the ranges of 0.05 ≦ α ≦ 0.4, 0 ≦ β ≦ 0.45, and 0.25 ≦ γ ≦ 0.45, respectively. When In, Al, and V are less than the above ranges, sintering at less than 950 ° C. becomes difficult. If the amount is less than the above range, the saturation magnetization 4πMs becomes 4πMs> 110 (mT), and the magnetic force of the permanent magnet having a predetermined shape is insufficient. Further, the dielectric loss tan δ is remarkably increased as tan δ ≧ 10 × 10 −4 and the ferromagnetic resonance half width ΔH is ΔH> 8000 (A / m). In many cases, the saturation magnetization 4πMs is 4πMs <70 (mT), and the temperature characteristics with the permanent magnet cannot be compensated.

また、本発明の多結晶セラミック磁性体材料における副成分は、異相の抑制、低温焼結化に寄与するが、組成が上記の本発明の組成範囲から外れると、以下のような不具合が生じる。   Further, the subcomponent in the polycrystalline ceramic magnetic material of the present invention contributes to the suppression of heterogeneous phase and low temperature sintering, but the following problems occur when the composition is out of the composition range of the present invention.

まず、CuOが主成分に対して0.5重量%より大きいと、低温での焼結は可能になるが誘電損失tanδがtanδ≧10×10−4、および、強磁性共鳴半値幅ΔHがΔH>8000(A/m)と著しく大きくなる。0重量%であると950℃未満での焼結が困難になる。このため、CuOは主成分に対して0.1重量%≦CuO≦0.5重量%であることが望ましい。好ましくは、0.2重量%≦CuO≦0.4重量%である。 First, when CuO is larger than 0.5% by weight with respect to the main component, sintering at low temperature becomes possible, but dielectric loss tan δ is tan δ ≧ 10 × 10 −4 , and ferromagnetic resonance half width ΔH is ΔH. > 8000 (A / m). If it is 0% by weight, sintering at less than 950 ° C. becomes difficult. For this reason, it is desirable that CuO is 0.1 wt% ≦ CuO ≦ 0.5 wt% with respect to the main component. Preferably, 0.2 wt% ≦ CuO ≦ 0.4 wt%.

また、ZrOが主成分に対して0.50重量%より大きいと、焼結体に異相を生じやすく強磁性共鳴半値幅ΔHがΔH>8000(A/m)と著しく大きくなる。0重量%であると誘電損失tanδがtanδ≧10×10−4、および、強磁性共鳴半値幅ΔHがΔH>8000(A/m)と大きくなる。このため、ZrOは主成分に対して0.05重量%≦ZrO≦0.50重量%であることが望ましい。好ましくは、0.07重量%≦ZrO≦0.20重量%である。 Further, ZrO 2 is larger than 0.50 wt% with respect to the main component, prone to different phase in the sintered body ferromagnetic resonance half-width [Delta] H is significantly larger and ΔH> 8000 (A / m) . When the content is 0% by weight, the dielectric loss tan δ increases as tan δ ≧ 10 × 10 −4 , and the ferromagnetic resonance half width ΔH increases as ΔH> 8000 (A / m). For this reason, it is desirable that ZrO 2 is 0.05 wt% ≦ ZrO 2 ≦ 0.50 wt% with respect to the main component. Preferably, 0.07 wt% ≦ ZrO 2 ≦ 0.20 wt%.

また、Feが主成分に対して1.0重量%より大きいと、低温での焼結は可能になるが強磁性共鳴半値幅ΔHがΔH>8000(A/m)と著しく大きくなる。またイットリウム(Y)サイトのBiによる異相の生成は抑制されるが、鉄(Fe)サイトの異相が発生しやすくΔH>8000(A/m)と著しく大きくなる。 On the other hand, if Fe 2 O 3 is larger than 1.0% by weight with respect to the main component, sintering at a low temperature becomes possible, but the ferromagnetic resonance half width ΔH becomes remarkably large as ΔH> 8000 (A / m). . Further, although the generation of a heterogeneous phase due to Bi at the yttrium (Y) site is suppressed, the heterogeneous phase at the iron (Fe) site is likely to occur, and ΔH> 8000 (A / m) is significantly increased.

上記の成分組成により、860℃以上950℃以下の低温で焼結することができ、飽和磁化4πMsが70mT〜110mTであり、その温度係数αmが、−0.35%/℃〜−0.21%/℃であり、強磁性共鳴半値幅ΔHが8000A/m以下の多結晶セラミック磁性体材料を得ることができる。
従って、本発明の多結晶セラミック磁性体材料は、銀や銅といった高い導電率を有する金属材料を内部電極として用い、一体焼結を行うことができる。よって、磁性体材料の有する高いQ値と、内部電極の電気抵抗による損失を抑え、極めて損失の小さいマイクロ波磁性体を構成することができる。これにより、アイソレータ、サーキュレータなどのマイクロ波非可逆回路素子に応用して、優れたマイクロ波特性と低損失を実現することができる。
With the above component composition, sintering can be performed at a low temperature of 860 ° C. or more and 950 ° C. or less, the saturation magnetization 4πMs is 70 mT to 110 mT, and the temperature coefficient αm is −0.35% / ° C. to −0.21. % / ° C., and a polycrystalline ceramic magnetic material having a ferromagnetic resonance half width ΔH of 8000 A / m or less can be obtained.
Therefore, the polycrystalline ceramic magnetic material of the present invention can be integrally sintered using a metal material having a high conductivity such as silver or copper as an internal electrode. Therefore, it is possible to suppress a loss due to the high Q value of the magnetic material and the electric resistance of the internal electrode, and to construct a microwave magnetic body with extremely small loss. As a result, it can be applied to microwave nonreciprocal circuit elements such as isolators and circulators to achieve excellent microwave characteristics and low loss.

以下、実施例について詳細に説明する。
出発原料として純度99.0%以上の酸化ガドリニウム(Gd)、酸化イットリウム(Y)、炭酸カルシウム(CaCO)、酸化ビスマス(Bi)、酸化鉄(Fe)、酸化インジウム(In)、酸化バナジウム(V)および酸化アルミニウム(Al)を用意し、これらを表1に示す組成比率になるように秤量し、スラリー濃度40%となるようにイオン交換水を加え、ボールミルにて25時間から45時間湿式混合し、その後、乾燥した。この乾燥した粉末に対して800℃から875℃の温度で1.5時間から2時間保持して仮焼を行った。なお仮焼は、後工程である焼結工程での焼結温度よりも40℃〜70℃低温に設定される。
Hereinafter, examples will be described in detail.
Starting materials of gadolinium oxide (Gd 2 O 3 ), yttrium oxide (Y 2 O 3 ), calcium carbonate (CaCO 3 ), bismuth oxide (Bi 2 O 3 ), iron oxide (Fe 2 O) having a purity of 99.0% or more 3 ), indium oxide (In 2 O 3 ), vanadium oxide (V 2 O 5 ), and aluminum oxide (Al 2 O 3 ) were prepared and weighed so that the composition ratios shown in Table 1 were obtained, and the slurry concentration Ion exchange water was added so that it might become 40%, and it wet-mixed with the ball mill for 25 to 45 hours, and dried after that. The dried powder was calcined by holding at a temperature of 800 ° C. to 875 ° C. for 1.5 hours to 2 hours. In addition, calcination is set to 40 to 70 degreeC low temperature rather than the sintering temperature in the sintering process which is a post process.

次に、副成分として酸化銅(CuO)、酸化ジルコニウム(ZrO)、酸化鉄(Fe)を用意し、上記のようにして得た母材粉末に対して、これらを表1に示す組成比率になるように秤量し加え、スラリー濃度40%となるようにイオン交換水を加え、ボールミルにて20から30時間湿式粉砕し、その後、乾燥して磁性体磁器組成物を得た。なお上記のようにして得られた粉末の平均粒径は0.25μmから1.5μmとなるように調整した。副成分の添加は、主成分秤量時に添加しても同様の効果が得られた。 Next, copper oxide (CuO), zirconium oxide (ZrO 2 ), and iron oxide (Fe 2 O 3 ) are prepared as subcomponents, and these are shown in Table 1 for the base material powder obtained as described above. Weighed and added to the composition ratio shown, added ion-exchanged water to a slurry concentration of 40%, wet crushed with a ball mill for 20 to 30 hours, and then dried to obtain a magnetic ceramic composition. The average particle size of the powder obtained as described above was adjusted to 0.25 μm to 1.5 μm. Even when the auxiliary component was added at the time of weighing the main component, the same effect was obtained.

次に、上記のようにして得られた磁性体磁器組成物にバインダー水溶液を添加混錬して得た造粒粉末を、1ton/cmから2ton/cmの圧力で加圧して成形体とした。これを空気中において表1に示す焼成温度で5時間焼成し、焼結体を得た。 Then, the granulated powder obtained by adding and kneading a binder solution in the magnetic ceramic composition obtained as described above, the molded body under pressure at a pressure from 1 ton / cm 2 of 2 ton / cm 2 did. This was fired in air at the firing temperature shown in Table 1 for 5 hours to obtain a sintered body.

次に、得られた焼結体を用いて誘電体円柱共振器を作製し、ハッキ・コールマン法により、誘電損失tanδを測定した。また、評価用試料の飽和磁化Msは振動型磁力計を用いて測定した。さらに得られた焼結体を0.15mmから0.25mmの厚さに薄円板状に加工し、短絡同軸線路法により強磁性共鳴半値幅ΔHを測定した。この結果を表1に示す。なお焼成温度は焼結体が緻密化した温度であって、焼結体密度と焼成温度との関係において、焼結体密度が焼成温度に対して実質的に変化を示さなくなる温度である。   Next, a dielectric cylindrical resonator was fabricated using the obtained sintered body, and dielectric loss tan δ was measured by the Hack-Coleman method. Moreover, the saturation magnetization Ms of the sample for evaluation was measured using a vibration type magnetometer. Further, the obtained sintered body was processed into a thin disc shape with a thickness of 0.15 mm to 0.25 mm, and the ferromagnetic resonance half width ΔH was measured by a short-circuited coaxial line method. The results are shown in Table 1. The firing temperature is a temperature at which the sintered body is densified, and is a temperature at which the sintered body density does not substantially change with respect to the firing temperature in the relationship between the sintered body density and the firing temperature.

Figure 2010083689
Figure 2010083689

表1に示される*印はこの発明範囲外の比較例であり、それ以外はすべてこの発明範囲内の実施例である。表1に示すとおり、試料No.1では異相の生成は抑制されたが0.5≦x≦0.90の範囲から外れるために950℃未満の焼成温度では、緻密な焼結体を得ることができなかった。試料No.2、3、4では、副成分であるCuとZrとFeがそれぞれCuをCuO換算で0.1重量%≦CuO≦0.5重量%、ZrをZrO換算で0.05重量%≦ZrO≦0.5重量%、FeをFe換算で0重量%<Fe≦1.0重量%の範囲から外れるために、イットリウム(Y)サイトのBiによる異相が生成され、誘電損失tanδが10×10−4を超えるとともに、磁性共鳴半値幅ΔHが8000A/mを超えた。試料No.8、12では、副成分であるFeがFe換算で0重量%≦Fe≦1.0重量%の範囲から外れるために、鉄(Fe)サイトの異相が発生し、磁性共鳴半値幅ΔHが8000A/mを超えた。 The asterisks shown in Table 1 are comparative examples outside the scope of the invention, and all other examples are examples within the scope of the invention. As shown in Table 1, Sample No. In Example 1, the generation of heterogeneous phases was suppressed, but out of the range of 0.5 ≦ x ≦ 0.90, so that a dense sintered body could not be obtained at a firing temperature of less than 950 ° C. Sample No. In 2, 3, and 4, the subcomponents Cu, Zr and Fe are each 0.1% by weight ≦ CuO ≦ 0.5% by weight in terms of CuO and Zr is 0.05% by weight ≦ ZrO in terms of ZrO 2. 2 ≦ 0.5 wt%, 0 wt% of Fe in terms of Fe 2 O 3 <to deviate from Fe 2 O 3 ≦ 1.0 wt% range, different phase by Bi yttrium (Y) sites is generated, The dielectric loss tan δ exceeded 10 × 10 −4 and the magnetic resonance half width ΔH exceeded 8000 A / m. Sample No. In 8, 12 to a by-component Fe is out of 0 wt% ≦ Fe 2 O 3 ≦ 1.0% by weight in the range in terms of Fe 2 O 3, heterogeneous phase occurs in the iron (Fe) site, magnetic The resonance half width ΔH exceeded 8000 A / m.

本発明の範囲内の実施例においては、共に860℃以上950℃未満の温度で緻密な焼結体を得ることができ、かつ誘電損失tanδがtanδ≦10×10−4および強磁性共鳴半値幅ΔHがΔH<8000(A/m)となる。また、−20から60℃までの飽和磁化4πMsの温度係数αmが、−0.35%/℃〜−0.21%/℃となり、永久磁石との温度特性を補償することができる。また、副成分としてFeがFe換算で0重量%<Fe≦1.0重量%添加されることで、イットリウム(Y)サイトのBiによる異相の生成が抑制される。 In the examples within the scope of the present invention, a dense sintered body can be obtained at a temperature of 860 ° C. or more and less than 950 ° C., and the dielectric loss tan δ is tan δ ≦ 10 × 10 −4 and the ferromagnetic resonance half width. ΔH is ΔH <8000 (A / m). Further, the temperature coefficient αm of the saturation magnetization 4πMs from −20 to 60 ° C. becomes −0.35% / ° C. to −0.21% / ° C., and the temperature characteristics with the permanent magnet can be compensated. Further, the addition of 0% by weight <Fe 2 O 3 ≦ 1.0% by weight in terms of Fe 2 O 3 as an accessory component suppresses the generation of a heterogeneous phase due to Bi at the yttrium (Y) site.

本発明に係る多結晶セラミック磁性体材料からなるマイクロ波磁性体と、それを用いた非可逆回路素子について説明する。図1は、この発明の一実施例に用いたマイクロ波磁性体(中心導体組立体)の外観を示す斜視図である。図2は前記中心導体組立体の分解斜視図であり、図3は本発明の一実施例に係る非可逆回路素子の分解斜視図である。
この非可逆回路素子の基本構成としては、中心導体組立体4、中央部の透孔の中に前記中心導体組立体4を組み込むようになしたコンデンサ積層体5、このコンデンサ積層体5に組み入れられるチップあるいは抵抗膜で形成した抵抗体90、中心導体組立体4に直流磁界を印加する永久磁石3、磁性ヨークを兼ねる金属製の上ケース1と同じく下ケース2とからなっている。コンデンサ積層体5と下ケース2との間に、実装基板との接続端子を備え、中心導体組立体4とコンデンサ積層体5を接続する接続電極を備えた樹脂ベース6を配置している。
A microwave magnetic material made of a polycrystalline ceramic magnetic material according to the present invention and a nonreciprocal circuit device using the same will be described. FIG. 1 is a perspective view showing the appearance of a microwave magnetic body (central conductor assembly) used in one embodiment of the present invention. FIG. 2 is an exploded perspective view of the central conductor assembly, and FIG. 3 is an exploded perspective view of a non-reciprocal circuit device according to an embodiment of the present invention.
As the basic configuration of the nonreciprocal circuit element, a central conductor assembly 4, a capacitor multilayer body 5 in which the central conductor assembly 4 is incorporated in a central through hole, and the capacitor multilayer body 5 are incorporated. A resistor 90 formed of a chip or a resistive film, a permanent magnet 3 for applying a DC magnetic field to the central conductor assembly 4, and a metal upper case 1 that also serves as a magnetic yoke, as well as a lower case 2. Between the capacitor multilayer body 5 and the lower case 2, a resin base 6 having a connection terminal to the mounting substrate and a connection electrode for connecting the central conductor assembly 4 and the capacitor multilayer body 5 is disposed.

前記中心導体組立体4は、相対向する第1および第2の主面と当該主面間を連結する側面を備えた矩形状のマイクロ波磁性体に中心導体を積層配置するものである。
この中心導体組立体4の作製工程は次の通りである。まず、Bi、Y、CaCO、Fe、In、Vを出発原料として、主成分が一般式(Y1.53Bi0.65Ca0.82)(Fe4.03In0.26Al0.300.41)O12(原子%)(試料No.9)となるように秤量し、前記出発原料をボールミルにて湿式混合し、得られたスラリーを乾燥した後、850℃の温度で仮焼し、ボールミルにて湿式粉砕した。
次に、副成分として酸化銅(CuO)、酸化ジルコニウム(ZrO)、酸化鉄(Fe)を用意し、上記のようにして得た母材粉末100重量部に対して、CuO 0.20重量%、ZrO 0.10重量%、Fe 0.30重量%になるように秤量し加え、スラリー濃度40%となるようにイオン交換水を加え、ボールミルにて20から30時間湿式粉砕し、その後、乾燥して多結晶セラミック磁性体材料を得た。なお上記のようにして得られた粉末の平均粒径は0.25μmから1.5μmとなるように調整した。
この磁性材料粉末と有機バインダー、可塑材、および、有機溶剤をボールミルにて混合し粘度を調整した後、ドクターブレード法にて40μm〜150μmの磁性体セラミックグリーンシートを作製した。
The central conductor assembly 4 is formed by laminating and arranging a central conductor on a rectangular microwave magnetic body having first and second main surfaces facing each other and side surfaces connecting the main surfaces.
The manufacturing process of the central conductor assembly 4 is as follows. First, Bi 2 O 3 , Y 2 O 3 , CaCO 3 , Fe 2 O 3 , In 2 O 3 , V 2 O 5 are used as starting materials, and the main component is represented by the general formula (Y 1.53 Bi 0.65 Ca 0 .82 ) (Fe 4.03 In 0.26 Al 0.30 V 0.41 ) O 12 (atomic%) (Sample No. 9) and weighed the starting materials in a ball mill. The obtained slurry was dried, calcined at a temperature of 850 ° C., and wet pulverized with a ball mill.
Next, copper oxide (CuO), zirconium oxide (ZrO 2 ), and iron oxide (Fe 2 O 3 ) were prepared as subcomponents, and CuO 0 with respect to 100 parts by weight of the base material powder obtained as described above. .20 wt%, ZrO 2 0.10 wt%, Fe 2 O 3 0.30 were weighed in a weight% was added, the ion-exchanged water so that the slurry concentration of 40% was added, the 20 ball mill 30 Wet milled for a period of time and then dried to obtain a polycrystalline ceramic magnetic material. The average particle size of the powder obtained as described above was adjusted to 0.25 μm to 1.5 μm.
The magnetic material powder, an organic binder, a plasticizer, and an organic solvent were mixed by a ball mill to adjust the viscosity, and then a magnetic ceramic green sheet having a thickness of 40 μm to 150 μm was prepared by a doctor blade method.

得られたセラミックグリーンシートに、φ0.1〜φ0.4のビアホール(図中、黒丸で表示)をレーザ加工にて形成し、中心導体となる導電性ペーストを印刷し、さらにグリーンシートを重ねて80℃に加熱して12MPaの圧力で熱圧着して積層体とした後、所定の大きさ、形状となるように、例えばダイシングソーや鋼刃で前記積層体を切断した後、920℃で、8時間焼成した。前記ビアホールには、Ag導体が充填されており、各中心導体44a〜44cとグランド電極Gnd、入出力電極In、Out、Loadを接続している。このようにして、中心導体44a〜44cが互いに絶縁を保って等角度で交差し、第2の主面43fにグランド電極GNDと入出力電極In、Out、LoadをLGA(Land Grid Array)として備える中心導体組立体4を得た。   Via holes of φ0.1 to φ0.4 (indicated by black circles in the figure) are formed by laser processing on the obtained ceramic green sheet, and a conductive paste serving as a central conductor is printed, and the green sheets are further stacked. After heating to 80 ° C. and thermocompression bonding at a pressure of 12 MPa to form a laminate, after cutting the laminate with, for example, a dicing saw or steel blade so as to have a predetermined size and shape, at 920 ° C., Baked for 8 hours. The via hole is filled with an Ag conductor, and the center conductors 44a to 44c are connected to the ground electrode Gnd and the input / output electrodes In, Out, and Load. In this way, the central conductors 44a to 44c cross each other at an equal angle while keeping insulation from each other, and the ground electrode GND and the input / output electrodes In, Out, and Load are provided as an LGA (Land Grid Array) on the second main surface 43f. A central conductor assembly 4 was obtained.

前記コンデンサ積層体5は、その上面および積層体内部には整合容量を形成するための入力容量電極C1、出力容量電極C2、ロード容量電極C3と、終端抵抗90が配置されるグランド電極Gndが形成されている。また、コンデンサ積層体5の裏面には樹脂ベース6に対して電気的に接続するための入出力電極In、Out、Load、グランド電極Gndがそれぞれ設けられている。   The capacitor laminate 5 has an input capacitance electrode C1, an output capacitance electrode C2, a load capacitance electrode C3 for forming a matching capacitance, and a ground electrode Gnd on which a termination resistor 90 is disposed on the upper surface and inside the laminate. Has been. In addition, input / output electrodes In, Out, Load, and a ground electrode Gnd for electrical connection to the resin base 6 are provided on the back surface of the capacitor laminate 5.

前記樹脂ベース6は、例えば0.1mm厚さの銅板を用い、射出成形によりこの銅板と液晶ポリマーを一体成形して製造される。この樹脂ベース6の上面、すなわちコンデンサ積層体5との接続面側には、接続電極In、Out、Load、GNDが導体板で形成され、樹脂部分を含めて平面状に構成されている。しかも、接続電極In、Out、Load、GNDは同一平面上に形成され、接続電極GND、Loadと端子G、接続電極In、Outは端子電極P1、P2と、それぞれ同一の導体板で構成され、電気的に接続している。   The resin base 6 is manufactured by, for example, using a copper plate having a thickness of 0.1 mm and integrally molding the copper plate and the liquid crystal polymer by injection molding. On the upper surface of the resin base 6, that is, on the connection surface side with the capacitor laminate 5, connection electrodes In, Out, Load, and GND are formed of a conductor plate, and are configured in a planar shape including the resin portion. In addition, the connection electrodes In, Out, Load, GND are formed on the same plane, the connection electrodes GND, Load and the terminal G, and the connection electrodes In, Out are configured by the same conductor plate, respectively, as the terminal electrodes P1, P2. Electrically connected.

永久磁石は、日立金属株式会社製のLa−Co置換フェライト磁石YBM−9BEを方形に形成したものを用いた。この永久磁石は、残留磁束が430mTから450mTであり、残留磁束密度の温度係数が−0.20%〜−0.18%である。なお、永久磁石の形状については。円盤状、六角形など任意の形状のものを採用し得る。このことは、ガーネットの形状についても同様である。   As the permanent magnet, a La-Co substituted ferrite magnet YBM-9BE manufactured by Hitachi Metals, Ltd., which was formed in a square shape was used. This permanent magnet has a residual magnetic flux of 430 mT to 450 mT and a temperature coefficient of the residual magnetic flux density of −0.20% to −0.18%. About the shape of the permanent magnet. Arbitrary shapes such as a disk shape and a hexagonal shape can be adopted. The same applies to the shape of the garnet.

得られた中心導体組立体4をコンデンサ積層体5の透孔内に配置した後、樹脂ベース6の接続電極を介して接続し、中心導体組立体4の上側に永久磁石3を配置し、これらを上ケース1と下ケース2で覆って非可逆回路素子とした。本発明の非可逆回路素子の挿入損失について温度特性を評価したが、温度変化にともなう挿入損失が最小となる周波数の変動が小さく、優れた温度特性を備えた非可逆回路素子が得られた。   After the obtained center conductor assembly 4 is placed in the through hole of the capacitor multilayer body 5, it is connected via the connection electrode of the resin base 6, and the permanent magnet 3 is placed on the upper side of the center conductor assembly 4. Was covered with an upper case 1 and a lower case 2 to form a nonreciprocal circuit device. The temperature characteristics of the non-reciprocal circuit element of the present invention were evaluated for the insertion loss. However, the non-reciprocal circuit element having excellent temperature characteristics was obtained with a small variation in frequency at which the insertion loss accompanying temperature change was minimized.

本発明によれば、860℃以上950℃未満の低温で焼成することができ、銀や銅といった低抵抗の金属材料との同時焼成が可能で、Bi置換型においても異相の生成がなく強磁性共鳴半値幅ΔHおよび誘電損失tanδが小さい多結晶セラミック磁性体材料と、マイクロ波磁性体及びこれを用いた非可逆回路素子を提供することが出来る。これにより、サーキュレータ、アイソレータなどのマイクロ波非可逆回路素子に応用して、優れたマイクロ波特性と低損失を実現することができる。   According to the present invention, firing can be performed at a low temperature of 860 ° C. or more and less than 950 ° C., and simultaneous firing with a low-resistance metal material such as silver or copper is possible. A polycrystalline ceramic magnetic material having a small resonance half width ΔH and dielectric loss tan δ, a microwave magnetic material, and a nonreciprocal circuit device using the same can be provided. As a result, it can be applied to microwave nonreciprocal circuit elements such as circulators and isolators to realize excellent microwave characteristics and low loss.

本発明の一実施例に係る非可逆回路素子のマイクロ波磁性体(中心導体組立体)の外観を示す斜視図である。It is a perspective view which shows the external appearance of the microwave magnetic body (center conductor assembly) of the nonreciprocal circuit device based on one Example of this invention. 本発明の一実施例に係る非可逆回路素子のマイクロ波磁性体(中心導体組立体)の分解斜視図である。It is a disassembled perspective view of the microwave magnetic body (center conductor assembly) of the nonreciprocal circuit device based on one Example of this invention. 本発明の一実施例に係る非可逆回路素子の分解斜視図である。1 is an exploded perspective view of a non-reciprocal circuit device according to one embodiment of the present invention.

符号の説明Explanation of symbols

1 上ケース
2 下ケース
3 永久磁石
4 中心導体組立体
5 コンデンサ積層体
6 樹脂ベース
44a〜44c 中心導体
DESCRIPTION OF SYMBOLS 1 Upper case 2 Lower case 3 Permanent magnet 4 Center conductor assembly 5 Capacitor laminated body 6 Resin bases 44a-44c Center conductor

Claims (5)

主成分が、一般式(Y3.0−x−y−zBiCaGd)(Fe5−α−β−γInαAlβγ)O12で表される組成を有し、
x、y、zの値が、0.5≦x≦0.9、0.5≦y≦0.9、0≦z≦0.4であり、
α、β、γの値が、0.05≦α≦0.4、0≦β≦0.45、0.25≦γ≦0.45の範囲内にあって、副成分としてCuとZrとFeを含み、その含有量は、前記主成分100重量部に対して、CuをCuO換算で0.1重量%≦CuO≦0.5重量%、ZrをZrO換算で0.05重量%≦ZrO≦0.5重量%、FeをFe換算で0重量%<Fe≦1.0重量%であることを特徴とする多結晶セラミック磁性体材料。
Main component, the general formula (Y 3.0-x-y- z Bi x Ca y Gd z) (Fe 5-α-β-γ In α Al β V γ) has a composition represented by O 12 ,
the values of x, y, z are 0.5 ≦ x ≦ 0.9, 0.5 ≦ y ≦ 0.9, 0 ≦ z ≦ 0.4,
The values of α, β, and γ are in the range of 0.05 ≦ α ≦ 0.4, 0 ≦ β ≦ 0.45, 0.25 ≦ γ ≦ 0.45, and Cu and Zr as subcomponents Fe is included, and the content thereof is 0.1 wt% ≦ CuO ≦ 0.5 wt% in terms of CuO, and 0.05 wt% ≦ Zr in terms of ZrO 2 with respect to 100 parts by weight of the main component. polycrystalline ceramic magnetic material, characterized in that ZrO 2 ≦ 0.5 wt%, 0 wt% of Fe in terms of Fe 2 O 3 <Fe 2 O 3 ≦ 1.0% by weight.
飽和磁化4πMsが70mT〜110mTであり、その温度係数αmが、−0.35%/℃〜−0.21%/℃であり、強磁性共鳴半値幅ΔHが8000A/m未満であることを特徴とする請求項1に記載の多結晶セラミック磁性体材料。   The saturation magnetization 4πMs is 70 mT to 110 mT, the temperature coefficient αm is −0.35% / ° C. to −0.21% / ° C., and the ferromagnetic resonance half width ΔH is less than 8000 A / m. The polycrystalline ceramic magnetic material according to claim 1. 請求項1又は2に記載の多結晶セラミック磁性体材料と、Ag、Cu、Ag合金、Cu合金のいずれかを含む導体ペーストとを一体焼結してなるマイクロ波磁性体であって、前記マイクロ波磁性体の内部及び/又は表面に前記導体ペーストで形成された電極パターンを備えることを特徴とするマイクロ波磁性体。   A microwave magnetic body obtained by integrally sintering the polycrystalline ceramic magnetic material according to claim 1 and a conductor paste containing any one of Ag, Cu, an Ag alloy, and a Cu alloy, A microwave magnetic body comprising an electrode pattern formed of the conductive paste inside and / or on the surface of a wave magnetic body. 請求項3に記載のマイクロ波磁性体に形成された電極パターンを中心導体とし、前記中心導体に接続するコンデンサと、前記マイクロ波磁性体に直流磁界を与えるフェライト磁石を備えたことを特徴とする非可逆回路素子。   An electrode pattern formed on the microwave magnetic body according to claim 3 is used as a central conductor, and a capacitor connected to the central conductor and a ferrite magnet that applies a DC magnetic field to the microwave magnetic body are provided. Non-reciprocal circuit element. 前記フェライト磁石は、残留磁束密度Brが420mT以上であり、その温度係数が−0.15%/℃〜−0.25%/℃であることを特徴とする請求項4に記載の非可逆回路素子。   The nonreciprocal circuit according to claim 4, wherein the ferrite magnet has a residual magnetic flux density Br of 420 mT or more and a temperature coefficient of -0.15% / ° C to -0.25% / ° C. element.
JP2008252293A 2008-09-30 2008-09-30 Polycrystalline ceramic magnetic material, microwave magnetic material, and non-reciprocal circuit device using the same Active JP5488954B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008252293A JP5488954B2 (en) 2008-09-30 2008-09-30 Polycrystalline ceramic magnetic material, microwave magnetic material, and non-reciprocal circuit device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008252293A JP5488954B2 (en) 2008-09-30 2008-09-30 Polycrystalline ceramic magnetic material, microwave magnetic material, and non-reciprocal circuit device using the same

Publications (2)

Publication Number Publication Date
JP2010083689A true JP2010083689A (en) 2010-04-15
JP5488954B2 JP5488954B2 (en) 2014-05-14

Family

ID=42248022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008252293A Active JP5488954B2 (en) 2008-09-30 2008-09-30 Polycrystalline ceramic magnetic material, microwave magnetic material, and non-reciprocal circuit device using the same

Country Status (1)

Country Link
JP (1) JP5488954B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2851354A1 (en) * 2013-09-20 2015-03-25 Skyworks Solutions, Inc. Materials, devices and methods related to below-resonance radio-frequency circulators and isolators
JP2018150234A (en) * 2011-06-06 2018-09-27 スカイワークス ソリューションズ,インコーポレイテッドSkyworks Solutions,Inc. Rare-earth reduction garnet system, and related microwave application example
CN110981461A (en) * 2019-12-26 2020-04-10 南京大成材料科技有限公司 Yttrium iron garnet ferrite material and preparation method thereof
CN111825441A (en) * 2020-07-27 2020-10-27 中国电子科技集团公司第九研究所 Garnet ferrite material with high dielectric constant and high saturation magnetization, and preparation method and application thereof
CN112661503A (en) * 2020-12-25 2021-04-16 苏州工业园区凯艺精密科技有限公司 Garnet ferrite material and preparation method and application thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003168902A (en) * 2001-12-03 2003-06-13 Matsushita Electric Ind Co Ltd Non-reciprocative circuit element, and wireless terminal using the same
JP2005183409A (en) * 2003-12-15 2005-07-07 Murata Mfg Co Ltd High frequency magnetic material and high frequency circuit component
WO2007052809A1 (en) * 2005-11-07 2007-05-10 Hitachi Metals, Ltd. Polycrystalline ceramic magnetic material, microwave magnetic components, and irreversible circuit devices made by using the same
JP2007145705A (en) * 2005-11-07 2007-06-14 Hitachi Metals Ltd Polycrystalline ceramic magnetic material, microwave magnetic substance, and non-reciprocal circuit component using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003168902A (en) * 2001-12-03 2003-06-13 Matsushita Electric Ind Co Ltd Non-reciprocative circuit element, and wireless terminal using the same
JP2005183409A (en) * 2003-12-15 2005-07-07 Murata Mfg Co Ltd High frequency magnetic material and high frequency circuit component
WO2007052809A1 (en) * 2005-11-07 2007-05-10 Hitachi Metals, Ltd. Polycrystalline ceramic magnetic material, microwave magnetic components, and irreversible circuit devices made by using the same
JP2007145705A (en) * 2005-11-07 2007-06-14 Hitachi Metals Ltd Polycrystalline ceramic magnetic material, microwave magnetic substance, and non-reciprocal circuit component using the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018150234A (en) * 2011-06-06 2018-09-27 スカイワークス ソリューションズ,インコーポレイテッドSkyworks Solutions,Inc. Rare-earth reduction garnet system, and related microwave application example
EP2851354A1 (en) * 2013-09-20 2015-03-25 Skyworks Solutions, Inc. Materials, devices and methods related to below-resonance radio-frequency circulators and isolators
US9552917B2 (en) 2013-09-20 2017-01-24 Skyworks Solutions, Inc. Materials, devices and methods related to below-resonance radio-frequency circulators and isolators
CN110981461A (en) * 2019-12-26 2020-04-10 南京大成材料科技有限公司 Yttrium iron garnet ferrite material and preparation method thereof
CN111825441A (en) * 2020-07-27 2020-10-27 中国电子科技集团公司第九研究所 Garnet ferrite material with high dielectric constant and high saturation magnetization, and preparation method and application thereof
CN112661503A (en) * 2020-12-25 2021-04-16 苏州工业园区凯艺精密科技有限公司 Garnet ferrite material and preparation method and application thereof

Also Published As

Publication number Publication date
JP5488954B2 (en) 2014-05-14

Similar Documents

Publication Publication Date Title
JP5092750B2 (en) Polycrystalline ceramic magnetic material, microwave magnetic component, and nonreciprocal circuit device using the same
JP2011073937A (en) Polycrystal magnetic ceramic, microwave magnetic substance, and irreversible circuit element using the same
JP5365967B2 (en) Polycrystalline ceramic magnetic material, microwave magnetic material, and non-reciprocal circuit device using the same
JP5488954B2 (en) Polycrystalline ceramic magnetic material, microwave magnetic material, and non-reciprocal circuit device using the same
JP5126616B2 (en) Magnetic ceramic, ceramic electronic component, and method of manufacturing ceramic electronic component
US6624713B2 (en) Magnetic material for high frequencies and high-frequency circuit component
US7382211B2 (en) Non-reciprocal circuit device
JP2002141215A (en) Oxide magnetic material, its manufacturing method, and laminated chip inductor
JPH11283821A (en) Nonreversible circuit element
EP0853321B1 (en) Multilayer ceramic part using a conductor paste
US6235221B1 (en) Multilayer ceramic part
JP3523363B2 (en) Manufacturing method of magnetic sintered body of polycrystalline ceramics and high frequency circuit component using magnetic body obtained by the method
JP3405013B2 (en) Method for producing magnetic material and high-frequency circuit component using the same
JP4081734B2 (en) High frequency circuit components
JP3627329B2 (en) Method for producing polycrystalline ceramic magnetic material and high-frequency nonreciprocal circuit device
Liu et al. Low‐Temperature Co‐Fired Magnetoceramics for RF Applications
JP5556102B2 (en) Magnetic material for high frequency, non-reciprocal circuit element component, and non-reciprocal circuit element
JPH09171918A (en) Magnetic material for microwave and high frequency circuit component employing it
JP2004143042A (en) Magnetic material for micro wave, manufacturing method therefor, and high-frequency circuit parts
JP2002260912A (en) Sintered magnetic oxide and high-frequency circuit part using the same
JP3412607B2 (en) Method of manufacturing magnetic material for high frequency and high frequency circuit component
JP2006020051A (en) Non-reversible circuit element
JP2007037087A (en) Non-reciprocal circuit element
JP2002338340A (en) Magnetic material porcelain composition for high frequency and nonreversible circuit element
JPH09121103A (en) High frequency circuit element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110810

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121003

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130806

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140213

R150 Certificate of patent or registration of utility model

Ref document number: 5488954

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350