JP3627329B2 - Method for producing polycrystalline ceramic magnetic material and high-frequency nonreciprocal circuit device - Google Patents

Method for producing polycrystalline ceramic magnetic material and high-frequency nonreciprocal circuit device Download PDF

Info

Publication number
JP3627329B2
JP3627329B2 JP33143595A JP33143595A JP3627329B2 JP 3627329 B2 JP3627329 B2 JP 3627329B2 JP 33143595 A JP33143595 A JP 33143595A JP 33143595 A JP33143595 A JP 33143595A JP 3627329 B2 JP3627329 B2 JP 3627329B2
Authority
JP
Japan
Prior art keywords
magnetic
magnetic material
temperature
polycrystalline ceramic
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33143595A
Other languages
Japanese (ja)
Other versions
JPH09169561A (en
Inventor
裕高 古川
利文 佐藤
修 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP33143595A priority Critical patent/JP3627329B2/en
Priority to US08/629,101 priority patent/US5709811A/en
Priority to EP96105648A priority patent/EP0737987B1/en
Priority to DE69613745T priority patent/DE69613745T2/en
Publication of JPH09169561A publication Critical patent/JPH09169561A/en
Application granted granted Critical
Publication of JP3627329B2 publication Critical patent/JP3627329B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/342Oxides
    • H01F1/344Ferrites, e.g. having a cubic spinel structure (X2+O)(Y23+O3), e.g. magnetite Fe3O4
    • H01F1/346[(TO4) 3] with T= Si, Al, Fe, Ga

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Soft Magnetic Materials (AREA)
  • Magnetic Ceramics (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高周波回路部品用に使用される、マイクロ波用磁性体材料およびこれを用いて作製した高周波用インダクタ素子および非可逆回路素子である。
【0002】
【従来の技術】
近年、衛星通信や移動体通信の市場拡大に見られるように、情報・通信分野の高速・高密度化が進展し、使用周波数の高周波数化が進んでいる。このような高周波で使用される磁性体として、電気抵抗率が高く、高周波における損失が小さい、ガーネット系磁性体が注目されている。また、高周波信号処理用として、磁性体のジャイロ磁気効果を利用した、サーキュレータ、アイソレータ、ジャイレータ等の非可逆回路素子があり、この場合にも主にガーネット系磁性体が利用されている。非可逆回路素子の代表として、サーキュレータを取り上げると、一般的な分布定数型Yストリップラインタイプのものでは、ストリップラインの上下にガーネット円盤を配し、これを上下より永久磁石ではさむ構造となっている。この時の最小挿入損失を与える磁性体円盤の直径dは、次式で与えられる。
d=a/(f・(μ’・ε’)0.5
ここでaは定数、fは周波数、μ’ は比透磁率の実数成分、ε’ は比誘電率の実数成分である。従って、磁性体のμ’ が高いほど磁性体円盤の直径が小さくなり、サーキュレータを小型化できる。この場合のμ’ は、強磁性共鳴による順方向透磁率μ+’であり、外部直流磁場の強さに依存する。強磁性共鳴直下となる外部磁場下でμ+’は最大となるが、損失成分μ” も大きくなり、挿入損失が大きくなるため、通常は共鳴点よりもやや大きい外部磁場をかけ、μ” があまり大きくない状態で用いるのが一般的である。同じμ” で用いる場合、材料の磁気共鳴半値幅ΔHが小さいほど、μ+’が大きくなり、小型化が可能となる。
こうした事情は、より小型の集中定数型でも、またアイソレーターでも同様である。
【0003】
ガーネット系磁性体材料は、通常単結晶薄膜か、あるいは多結晶焼結体として利用されている。単結晶の作製は、引き上げ法で作製されるGGG(ガドリニウム・ガリウム・ガーネット)単結晶を基板として、LPE(Liquid Phase Epitaxy)法で900℃程度の温度で薄膜として作製されるのが一般的である。この方法で作製された試料は、磁気共鳴半値幅ΔHが小さいが、アイソレータ等で使用されるような厚みのある試料の作製には時間がかかりすぎ、また高価な点が欠点である。一方、多結晶は、通常のセラミックス焼結体として作製されるため、ΔHは単結晶より一桁程度大きいものの、任意のサイズの試料が容易に作製でき、かつ単結晶に比べてはるかに安価であり、サーキュレータやアイソレータ用としては、この多結晶焼結体が用いられていた。
【0004】
【発明が解決しようとする課題】
しかしながら、一般的なYIG(イットリウム鉄ガーネット)や、その飽和磁束密度や温度特性を調整するために、YをGd等で、またFeをAlやGa等で置換したものでは、焼成温度が1400℃以上の高温になり、特殊な炉が必要となるといった欠点があった。
【0005】
また高周波インダクタとして使用する場合に、小型で高いインダクタンス値を得るためには、電極材料を内蔵して閉磁路構成とする必要があるが(工業調査会刊、「マイクロ磁気デバイスのすべて」P176−177)、焼成温度が1400℃では、内部電極として融点の高いパラジウム等を用いる必要があり、パラジウムが高価でかつ比較的電気抵抗率が高いため、高コスト・低Qとなるといった問題点があった。
【0006】
また前述したサーキュレータの構造においても、容易に推測されるように、ストリップラインに電流を流す事によって生じる磁束が、磁性体とその隙間を交互に通り、開磁路構成となる。このためみかけの透磁率は、空隙部分(μ’ =1)の影響を受け、磁性体本来の透磁率より低下してしまうという欠点があった。この欠点を防ぐためにはインダクタと同じく閉磁路構成とする必要があり、導体を磁性体に埋め込んで、同時に焼成する方法も考案されている(信学技報、MW94−14、P17(1994))。しかしながらこの方法でも、前述のインダクタと同様の問題があり、高コスト・高挿入損失となるといった問題点があった。
【0007】
【課題を解決するための手段】
上記の課題を解決するために、本発明は、主組成が化学式 Y3−x−yBi Fe α Al β Ga γ 12(ここで、RはLa、Nd、Sm、Eu、Gd、Tb、Dyより選ばれる一種類以上の稀土類金属元素)で表され、x,yが、0<x≦1.5+ay、0<x+y≦3(RがLaのときにはa=1.3で、0<y≦0.4、Ndのときはa=1.0で、0<y≦0.6、Smのときa=0.8、Euのときa=0.6、Gdのときa=0.4、Tbのときa=0.2、Dyのときa=0.1、α+β+γ=1、0<α≦1)の範囲内にある、ガーネット構造を有する相を主成分とし、850℃以上900℃以下の温度で、相対密度90%以上に焼結する、多結晶セラミックス磁性体材料の製造方法である。また、主組成が化学式 Y3−xBi Fe α Al β Ga γ 5−yIn12で表され、x,yが、0<x≦1.5+1.3yかつ0<y<0.5の範囲内にあり、α+β+γ=1、0<α≦1である、ガーネット構造を有する相を主成分とし、850℃以上900℃以下の温度で、相対密度90%以上に焼結する、多結晶セラミックス磁性体材料の製造方法である。またこれらの主組成を100重量部として、副組成として
0重量%<V≦1重量%、 0重量%<CuO≦1重量%、
0.02重量%<MoO≦1重量%、0.02重量%<WO≦1重量%、
0.05重量%<PbO≦1重量%、 0.1重量%<B≦5重量%
の1種類以上を含み、800℃以上900℃以下の温度で、相対密度90%以上に焼結する、多結晶セラミックス磁性体材料の製造方法である。また、本発明の高周波インダクタは、前記の磁性体を用い、閉磁路構成となるように、磁性体中に導体が埋め込まれた構造を有する、高周波インダクタ素子である。また本発明の非可逆回路素子は、前記の磁性体を用い、閉磁路構成となるように、磁性体中に導体が埋め込まれた構造を有する、高周波非可逆回路素子である。この素子においては、磁性体中の導体としては、Agを主成分とする事が望ましい。
【0008】
【発明の実施の形態】
本発明では、Feを含むガーネットの成分の一部をBiと置換する事により、AgあるいはCuの融点以下の温度で焼成可能な、セラミックス磁性体材料が得られる。YIGの格子に対してイオン半径の大きいBiを多量に置換するために、イオン半径の大きな稀土類金属元素やInを単体、あるいは組み合わせて、Biと同時に置換し、またV、Cu、B、Mo、W、Pbを添加する。この材料を用いて、閉磁路構成となるように、磁性体中に導体を埋め込むと、小型のインダクタ素子あるいは非可逆回路素子が得られる。
【0009】
本発明の材料を用いた素子では、磁性体が低温焼成可能であるため、導体としてAgを主成分とする事ができ、小型で高Qのインダクタ、あるいは挿入損失が小さいサーキュレーターやアイソレーター素子とする事ができる。
【0010】
以下、ガーネットの代表として主にYIGを例として説明するが、本発明はこれに拘束される物ではなく、ガーネット材料でよく行われるように、その飽和磁束密度や温度特性を調整するために、FeをAlやGaで置換したものでも、全く同様の効果が認められた。また、本発明は相互に組み合わせて用いてもよい。また非可逆回路素子の代表としてYストリップライン型アイソレーターを例として説明するが、本発明はこれに拘束される物ではなく、他のタイプのアイソレータやサーキュレーター等の他種の非可逆回路素子においても、全く同様の効果が得られる物である。
【0011】
(実施例1)
出発原料として、純度99.9%以上のY、Bi、R(R=La、Nd、Sm、Eu、Gd、Tb、Dy)、α−Fe粉末を用いた。これらの粉末を、焼結体の最終組成が、(Y+Bi+R):Fe=3:5のmol比となり、YとBiとRのmol比が(表1)の値となり、合計重量が300gとなるようにボールミルにて混合し、700℃で各2時間仮焼した後、再度ボールミルで粉砕した。この仮焼粉末を成形後、50℃きざみで各10時間焼成し、相対密度が90%以上になる最低温度を求めた。また、焼結体を粉砕し、X線回折(XRD)により単一ガーネット相となっているかどうかを確認するとともに格子定数を求めた。それらの結果を(表1)に示した。
【0012】
【表1】

Figure 0003627329
【0013】
XRDの結果は、単相であったものは○、単相でなかったものは×で示してある。(表1)のNo.0〜3より明らかなように、Rを含まない組成では、YをBiに置換していくと、焼成温度が下がるが、さらに焼結温度を下げるため、Bi置換量を1.5モルより多くするとXRDの結果に第2相が現れてきて単一相とならない。しかし、本発明の磁性体では、No.4〜12にみられるように、YをLaに置換していくに従い、Biはより多く固溶することができ、最大La0.4モルに対しBi2.0モルまで固溶することが確認された。このときの焼結温度はLa置換を行わないBi=1.5のときよりもさらに低下した。また、No.13〜30にみられるように、他の稀土類金属元素を置換しても、1.5モル以上のBiを固溶させることができ、低温で焼結した。置換量の上限は、No.12、19にみられるように、La,Ndに存在し、La量は0.5以上、Nd量は0.7以上になると、ガーネット構造単相ではなくなった。この上限は、No.25、28にみられるように、Sm、Gdなどの単独でも鉄ガーネットを構成できる元素には存在しなかった。
【0014】
さらに、Y形状のストリップラインの上下に、これらの仮焼粉を外径25mmφ、厚さ1.5mmの円板状に焼結した試料を置き、さらに上下からSrフェライト円板ではさみ、磁性金属ケースに納め、ストリップラインの一つの端部にターミネータ用抵抗を接続して、分布定数型Yストリップラインアイソレータを構成した。得られたアイソレータの逆方向最大アイソレーションとそれが得られた周波数における正方向挿入損失を測定した。その結果、これらの磁性体は、アイソレーション20dB以上、挿入損失0.5dB以下で、アイソレーターとして使用可能であった。
【0015】
(実施例2)
出発原料として、純度99.9%以上のY、Bi、La、α−Fe、V、CuO、MoO、WO、PbO、B粉末を用いた。これらの粉末を、焼結体の最終組成が、Y:Bi:La:Fe=1.3:1.6:0.1:5.0のmol比となり、合計重量が300gとなるように配合し、添加物としてV、CuO、MoO、WO、PbO、B粉末を(表2)に示した割合で添加してボールミルにて混合し、700℃で2時間仮焼した後、再度ボールミルで粉砕した。この仮焼粉末を成形後、50℃きざみで各10時間焼成し、相対密度が90%以上になる最低温度を求めた。また、焼結体を粉砕し、X線回折(XRD)により単一ガーネット相となっているかどうかを確認した。それらの結果を(表2)に示した。
【0016】
【表2】
Figure 0003627329
【0017】
(表2)より明らかなように、本発明の磁性体は、V、CuO、MoO、WO、PbO、Bのいずれかを添加することにより、より低温で緻密化した。V、CuO、MoO、WO、PbOを添加した場合、添加量2.0wt%以上で、Bを添加した場合、添加量7.0wt%以上では、ガーネット単相とならず、第2相が出現した。これらの添加物にはそれぞれ効果がみられるが、特にV、CuO、Bは800℃で焼成可能であり、より効果的であった。なお、添加物は仮焼後に添加しても同様の効果が得られた。
【0018】
さらに、Y形状のストリップラインの上下にこれらの仮焼粉を外径25mmφ、厚さ1.5mmの円板状に焼結した試料を置き、さらに上下からSrフェライト円板ではさみ、磁性金属ケースに納め、ストリップラインの一つの端部にターミネータ用抵抗を接続して、分布定数型Yストリップラインアイソレータを構成した。得られたアイソレータの逆方向最大アイソレーションとそれが得られた周波数における正方向挿入損失を測定した。その結果、これらの磁性体は、アイソレーション20dB以上、挿入損失0.5dB以下で、アイソレーターとして使用可能であった。
【0019】
(実施例3)
出発原料として、純度99.9%以上のY、Bi、In、α−Fe粉末を用いた。これらの粉末を、焼結体の最終組成が、(Y+Bi):(Fe+In)=3:5のmol比となり、YとBiとFeとInのmol比が(表3)の値となり、合計重量が300gとなるようにボールミルにて混合し、700℃で各2時間仮焼した後、再度ボールミルで粉砕した。この仮焼粉末を成形後、50℃きざみで各10時間焼成し、相対密度が90%以上になる最低温度を求めた。また、焼結体を粉砕し、X線回折(XRD)により単一ガーネット相となっているかどうかを確認するとともに格子定数を求めた。それらの結果を(表3)に示した。
【0020】
【表3】
Figure 0003627329
【0021】
XRDの結果は、単相であったものは○、単相でなかったものは×で示してある。(表3)のNo.0〜3より明らかなように、Inを含まない組成では、YをBiに置換していくと、焼成温度が下がるが、さらに焼結温度を下げるため、Bi置換量を1.5モルより多くするとXRDの結果に第2相が現れてきて単一相とならない。しかし、本発明の磁性体では、No.4〜11にみられるように、FeをInに置換していくに従い、Biはより多く固溶することができ、最大In0.4モルに対しBi2.0モルまで固溶することが確認された。このときの焼結温度はIn置換を行わないBi=1.5のときよりもさらに低下した。置換量の上限は、No.12にみられるように、In量が0.5以上になると、ガーネット構造単相ではなくなった。
【0022】
さらに、Y形状のストリップラインの上下に、これらの仮焼粉を外径25mmφ、厚さ1.5mmの円板状に焼結した試料を置き、さらに上下からSrフェライト円板ではさみ、磁性金属ケースに納め、ストリップラインの一つの端部にターミネータ用抵抗を接続して、分布定数型Yストリップラインアイソレータを構成した。得られたアイソレータの逆方向最大アイソレーションとそれが得られた周波数における正方向挿入損失を測定した。その結果、これらの磁性体は、アイソレーション20dB以上、挿入損失0.5dB以下で、アイソレーターとして使用可能であった。
【0023】
(実施例4)
出発原料として、純度99.9%以上のY、Bi、In、α−Fe、V、CuO、MoO、WO、PbO、B粉末を用いた。これらの粉末を、焼結体の最終組成が、Y:Bi:Fe:In=1.2:1.8:4.7:0.3のmol比となり、合計重量が300gとなるように配合し、添加物としてV、CuO、MoO、WO、PbO、B粉末を(表4)に示した割合で添加してボールミルにて混合し、700℃で2時間仮焼した後、再度ボールミルで粉砕した。この仮焼粉末を成形後、50℃きざみで各10時間焼成し、相対密度が90%以上になる最低温度を求めた。また、焼結体を粉砕し、X線回折(XRD)により単一ガーネット相となっているかどうかを確認した。それらの結果を(表4)に示した。
【0024】
【表4】
Figure 0003627329
【0025】
(表4)より明らかなように、本発明の磁性体は、V、CuO、MoO、WO、PbO、Bのいずれかを添加することにより、より低温で緻密化した。V、CuO、MoO、WO、PbOを添加した場合、添加量2.0wt%以上で、B2O5を添加した場合、添加量7.0wt%以上では、ガーネット単相とならず、第2相が出現した。これらの添加物にはそれぞれ効果がみられるが、特にV、CuO、Bは800℃で焼成可能であり、より効果的であった。なお、添加物は仮焼後に添加しても同様の効果が得られた。
【0026】
さらに、Y形状のストリップラインの上下にこれらの仮焼粉を外径25mmφ、厚さ1.5mmの円板状に焼結した試料を置き、さらに上下からSrフェライト円板ではさみ、磁性金属ケースに納め、ストリップラインの一つの端部にターミネータ用抵抗を接続して、分布定数型Yストリップラインアイソレータを構成した。得られたアイソレータの逆方向最大アイソレーションとそれが得られた周波数における正方向挿入損失を測定した。その結果、これらの磁性体は、アイソレーション20dB以上、挿入損失0.5dB以下で、アイソレーターとして使用可能であった。
【0027】
(実施例5)
実施例2と同様の方法で、焼結体最終組成が、Y:Bi:La:Fe=1.3:1.6:0.1:5.0のmol比となり、合計重量が300gとなるように配合し、添加物としてV粉末を0.1重量%加えてボールミルにて混合し、700℃にて2時間仮焼した後、再度ボールミルで粉砕した。この仮焼粉末に有機バインダを混合し、ドクターブレード方式により均一なグリーンシートを形成した後、上記グリーンシートを切断した。他方、Agにビビクルを混合してなる導伝ペーストを用意し、先のグリーンシート上にコイル状に印刷した。その上にさらに1枚のグリーンシートを重ねて、厚み方向に圧力を加えて圧着し、磁性体に電極がサンドイッチされたグリーンシート積層体を作製した。これを920℃で3hr焼成し、焼結体の側面の内部導体の位置にAgペーストを塗布し、700℃で10分間焼き付ける事により外部電極を形成した。得られたインダクタのL値は200nH、Q値は100MHzで30であった。また、他の稀土類金属元素で置換した場合や、実施例4と同様の方法で、焼結体最終組成が、Y:Bi:Fe:In=1.2:1.8::4.7:0.3のmol比とした場合にも同等の結果が得られた。
【0028】
(実施例6)
実施例2と同様の方法で、焼結体最終組成が、Y:Bi:La:Fe=1.3:1.6:0.1:5.0のmol比となり、合計重量が300gとなるように配合し、添加物としてV粉末を0.1重量%加えてボールミルにて混合し、700℃にて2時間仮焼した後、再度ボールミルで粉砕した。この仮焼粉末に有機バインダを混合し、リバース・ロールコータ方式により均一なグリーンシートを形成した後、上記グリーンシートを円形に切断した。他方、Agにビビクルを混合してなる導伝ペーストを用意し、先のグリーンシート上にストリップラインとして印刷した。同じ物を3枚用意し、ストリップラインがお互いに120度の角度で交わるように重ね、その上にさらに1枚のグリーンシートを重ねて、厚み方向に圧力を加えて圧着し、磁性体4層に導体が3層サンドイッチされたグリーンシート積層体を作製した。これを(表5)に示す温度で3hr焼成して閉磁路構成をとるようにし、その焼結体の側面の内部導体の位置6ヶ所にAgペーストを塗布し、700℃で10分間焼き付ける事により外部電極を形成した。この積層体の6ヶ所の電極のうち、互いに120度離れた3ヶ所を接地し、他の3ヶ所の内、1ヶ所は、整合抵抗を介して接地してターミネートし、他の2ヶ所に端子と適当な負荷容量を設け、さらに上下よりSrフェライトではさみ、磁性金属ケースにおさめて、1.9GHz用集中定数型アイソレータを作製した。
【0029】
また、同様の方法で、(表5)に示すガーネット組成と電極材料を用いた集中定数型アイソレータを作製した。さらに比較のため、従来どうりの、磁性体と電極を別々に配した、開磁路構成集中定数型アイソレータも作製した。なお、磁性体サイズは、どちらも同じとした。得られたアイソレータのアイソレーション比帯域(20dB以上のアイソレーションが得られる周波数帯域幅/最大アイソレーション周波数)と挿入損失を測定した。結果を(表5)に示した。
【0030】
【表5】
Figure 0003627329
【0031】
(表5)より明らかなように、閉磁路構成では、比帯域が広くなった。本発明のBiとLaを含む磁性体では、900℃で焼成可能であるため、Agを内部電極として同時焼成/閉磁路構成とする事が可能であり、その結果、広い比帯域、低い挿入損失が得られた。Biを含んでいても、Laを含まなかったり、電極材料として、Ag以外の、Pd、Ag−Pd、RuO2等を利用した場合は、挿入損失が若干大きくなった。これは、Laを含まない場合には、900℃焼成では、焼結体の緻密化が充分でないために損失が大きく、また、Ag以外の電極は、抵抗率が大きいためと考えられる。
【0032】
一方、Bi、Laを含まない通常のYIGの場合、Ag内部電極同時焼成/閉磁路構成では、アイソレータとならなかった。これは、温度が低いとYIGが十分緻密化せず、一方温度が高くなると、YIGは緻密化するが、Agの融点を大幅に越えるために、電極が切れてしまったためと考えられる。この場合、Pdを内部電極として1400℃で焼成すれば、かなり良好な特性のものが得られるが、Pdが高価、高温焼成が必要、若干挿入損失が大といった欠点があった。
【0033】
なお、他の稀土類金属元素を用いた場合や、実施例2と同様な方法で、焼結体最終組成が、Y:Bi:Fe:In=1.2:1.8:4.7:0.3のmol比となるようにして行った場合にも同様の結果が得られた。
【0034】
【発明の効果】
以上説明した通り、本発明は、低温で焼成可能なマイクロ波用ガーネットフェライト焼結体である。また、これを用いた高周波インダクタ素子および非可逆回路素子である。本発明により、高周波用ガーネットが容易に製造可能となり、また、900℃以下で焼成可能であるために、電極材料や、例えば誘電体材料等とも同時焼成が可能で、より高性能・小型の高周波用素子が得られる。[0001]
BACKGROUND OF THE INVENTION
The present invention is a magnetic material for microwaves used for high-frequency circuit components, and a high-frequency inductor element and non-reciprocal circuit element manufactured using the same.
[0002]
[Prior art]
In recent years, as seen in the market expansion of satellite communication and mobile communication, high speed and high density in the information / communication field have progressed, and the use frequency has been increased. As a magnetic material used at such a high frequency, a garnet-based magnetic material having a high electrical resistivity and a small loss at a high frequency has been attracting attention. For high-frequency signal processing, there are non-reciprocal circuit elements such as circulators, isolators, and gyrators that use the gyromagnetic effect of magnetic materials. In this case as well, garnet-based magnetic materials are mainly used. Taking a circulator as a representative non-reciprocal circuit element, a general distributed constant type Y stripline type has a structure in which a garnet disk is arranged above and below the stripline and sandwiched by permanent magnets from above and below. Yes. The diameter d of the magnetic disk that gives the minimum insertion loss at this time is given by the following equation.
d = a / (f · (μ ′ · ε ′) 0.5 )
Here, a is a constant, f is a frequency, μ ′ is a real component of relative permeability, and ε ′ is a real component of relative permittivity. Therefore, the higher the μ ′ of the magnetic material, the smaller the diameter of the magnetic material disk and the smaller the circulator. In this case, μ ′ is the forward permeability μ + ′ due to ferromagnetic resonance and depends on the strength of the external DC magnetic field. Μ + 'is maximized under an external magnetic field directly below the ferromagnetic resonance, but the loss component μ "increases and the insertion loss increases. Usually, an external magnetic field slightly larger than the resonance point is applied, and μ" is not much. It is common to use it in a not large state. In the case of using the same μ ″, the smaller the magnetic resonance half width ΔH of the material, the larger μ + ′ and the miniaturization becomes possible.
This situation is the same for the smaller lumped constant type and the isolator.
[0003]
The garnet-based magnetic material is usually used as a single crystal thin film or a polycrystalline sintered body. A single crystal is generally manufactured as a thin film at a temperature of about 900 ° C. by a LPE (Liquid Phase Epitaxy) method using a GGG (gadolinium gallium garnet) single crystal produced by a pulling method as a substrate. is there. Although the sample produced by this method has a small magnetic resonance half width ΔH, it takes a long time to produce a thick sample used in an isolator or the like, and is disadvantageous in that it is expensive. On the other hand, since polycrystals are produced as ordinary ceramic sintered bodies, ΔH is about an order of magnitude larger than single crystals, but samples of any size can be easily produced and are much cheaper than single crystals. Yes, this polycrystalline sintered body has been used for circulators and isolators.
[0004]
[Problems to be solved by the invention]
However, in order to adjust general YIG (yttrium iron garnet) and its saturation magnetic flux density and temperature characteristics, Y is replaced with Gd or the like, and Fe is replaced with Al or Ga or the like, the firing temperature is 1400 ° C. There was a disadvantage that the temperature became higher and a special furnace was required.
[0005]
In addition, in order to obtain a small and high inductance value when used as a high-frequency inductor, it is necessary to have a built-in electrode material and a closed magnetic circuit configuration (published by Industrial Research Council, “All of Micro Magnetic Devices” P176- 177) When the firing temperature is 1400 ° C., it is necessary to use palladium or the like having a high melting point as the internal electrode, and since palladium is expensive and has a relatively high electrical resistivity, there is a problem of high cost and low Q. It was.
[0006]
Also in the circulator structure described above, as easily estimated, the magnetic flux generated by passing a current through the strip line alternately passes through the magnetic material and the gaps to form an open magnetic circuit configuration. For this reason, the apparent magnetic permeability is affected by the gap portion (μ ′ = 1), and has a disadvantage that it is lower than the magnetic permeability inherent in the magnetic material. In order to prevent this drawback, it is necessary to have a closed magnetic circuit configuration like the inductor, and a method of embedding a conductor in a magnetic material and firing it at the same time has been devised (Shingaku Technical Review, MW94-14, P17 (1994)). . However, this method also has the same problem as the above-described inductor, and has a problem of high cost and high insertion loss.
[0007]
[Means for Solving the Problems]
In order to solve the above problems, the present invention mainly composition formula Y 3-x-y Bi x R y (Fe α Al β Ga γ) 5 O 12 ( wherein, R represents La, Nd, Sm, One or more rare earth metal elements selected from Eu, Gd, Tb, and Dy), and x and y are 0 <x ≦ 1.5 + ay, 0 <x + y ≦ 3 (a = 1 when R is La) .3, 0 <y ≦ 0.4, when Nd, a = 1.0, 0 <y ≦ 0.6, when Sm, a = 0.8, when Eu, a = 0.6, Gd A = 0.4 when Tb, a = 0.2 when Tb, a = 0.1 when Dy , α + β + γ = 1, 0 <α ≦ 1 ) And a method of producing a polycrystalline ceramic magnetic material that is sintered at a temperature of 850 ° C. to 900 ° C. to a relative density of 90% or more . The main composition represented by the chemical formula Y 3-x Bi x (Fe α Al β Ga γ) 5-y In y O 12, x, y are, 0 <x ≦ 1.5 + 1.3y and 0 <y < Ri near the range of 0.5, α + β + γ = 1,0 < Ru alpha ≦ 1 der, as a main component phase having a garnet structure, at a temperature of 850 ° C. or higher 900 ° C., a relative density of 90% or more A method for producing a polycrystalline ceramic magnetic material to be sintered . Further, assuming that the main composition is 100 parts by weight, 0% by weight <V 2 O 5 ≦ 1% by weight, 0% by weight <CuO ≦ 1% by weight,
0.02 wt% <MoO 3 ≦ 1 wt%, 0.02 wt% <WO 3 ≦ 1 wt%,
0.05 wt% <PbO ≦ 1 wt%, 0.1 wt% <B 2 O 3 ≦ 5 wt%
Look containing one or more, at a temperature of 800 ° C. or higher 900 ° C. or less, sintering the relative density of 90% or more, a method for producing polycrystalline ceramic magnetic material. The high-frequency inductor according to the present invention is a high-frequency inductor element having a structure in which a conductor is embedded in a magnetic body so as to have a closed magnetic circuit configuration using the magnetic body. The non-reciprocal circuit element of the present invention is a high-frequency non-reciprocal circuit element having a structure in which a conductor is embedded in a magnetic material so as to have a closed magnetic circuit configuration using the magnetic material. In this element, it is desirable that Ag is a main component as a conductor in the magnetic material.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, a ceramic magnetic material that can be fired at a temperature equal to or lower than the melting point of Ag or Cu can be obtained by replacing a part of the garnet component containing Fe with Bi. In order to replace a large amount of Bi having a large ionic radius with respect to the YIG lattice, a rare earth metal element or In having a large ionic radius is replaced alone or in combination with Bi, and V, Cu, B, Mo , W and Pb are added. When a conductor is embedded in a magnetic material so as to have a closed magnetic circuit configuration using this material, a small inductor element or nonreciprocal circuit element can be obtained.
[0009]
In the element using the material of the present invention, since the magnetic material can be fired at a low temperature, Ag can be a main component as a conductor, and a small and high Q inductor, or a circulator or isolator element with low insertion loss can be obtained. I can do things.
[0010]
Hereinafter, YIG is mainly described as an example of garnet as a representative, but the present invention is not restricted to this, and in order to adjust the saturation magnetic flux density and temperature characteristics so that it is often performed with garnet material, Even when Fe was replaced by Al or Ga, the same effect was observed. The present invention may be used in combination with each other. Further, a Y stripline type isolator will be described as an example of a non-reciprocal circuit element, but the present invention is not limited thereto, and other types of non-reciprocal circuit elements such as other types of isolators and circulators are also used. The same effect can be obtained.
[0011]
(Example 1)
As starting materials, Y 2 O 3 , Bi 2 O 3 , R 2 O 3 (R = La, Nd, Sm, Eu, Gd, Tb, Dy) having a purity of 99.9% or more, α-Fe 2 O 3 powder Was used. With these powders, the final composition of the sintered body is a molar ratio of (Y + Bi + R): Fe = 3: 5, the molar ratio of Y, Bi, and R is the value of (Table 1), and the total weight is 300 g. The mixture was mixed with a ball mill, calcined at 700 ° C. for 2 hours, and then ground again with a ball mill. After the calcined powder was molded, it was fired at 50 ° C. for 10 hours, and the minimum temperature at which the relative density was 90% or more was determined. In addition, the sintered body was pulverized, and it was confirmed by X-ray diffraction (XRD) whether it was a single garnet phase, and the lattice constant was determined. The results are shown in (Table 1).
[0012]
[Table 1]
Figure 0003627329
[0013]
The results of XRD are indicated by ◯ for those that were single phase and by × for those that were not single phase. No. of (Table 1). As is clear from 0 to 3, in the composition containing no R, when Y is replaced with Bi, the firing temperature is lowered, but in order to further lower the sintering temperature, the amount of Bi substitution is more than 1.5 mol. Then, the second phase appears in the XRD result and does not become a single phase. However, in the magnetic body of the present invention, No. As can be seen from 4 to 12, it was confirmed that as Y was replaced with La, Bi was able to be more solid-dissolved, and it was confirmed that it was solid-dissolved up to 2.0 mol Bi relative to 0.4 mol maximum La. . The sintering temperature at this time was further lowered as compared with Bi = 1.5 in which La substitution was not performed. No. As seen in 13 to 30, even when other rare earth metal elements were substituted, 1.5 mol or more of Bi could be dissolved and sintered at a low temperature. The upper limit of the substitution amount is No. 12 and 19, when it is present in La and Nd, the La amount is 0.5 or more and the Nd amount is 0.7 or more, it is no longer a garnet structure single phase. This upper limit is No. As seen in 25 and 28, Sm, Gd, etc. alone did not exist in the elements that can constitute iron garnet.
[0014]
Furthermore, a sample obtained by sintering these calcined powders into a disk shape having an outer diameter of 25 mmφ and a thickness of 1.5 mm is placed above and below the Y-shaped strip line, and further sandwiched between Sr ferrite disks from above and below, and magnetic metal A distributed constant Y stripline isolator was constructed by placing it in a case and connecting a terminator resistor to one end of the stripline. The reverse maximum isolation of the obtained isolator and the forward insertion loss at the frequency where it was obtained were measured. As a result, these magnetic materials were able to be used as an isolator with an isolation of 20 dB or more and an insertion loss of 0.5 dB or less.
[0015]
(Example 2)
As starting materials, Y 2 O 3 , Bi 2 O 3 , La 2 O 3 , α-Fe 2 O 3 , V 2 O 5 , CuO, MoO 3 , WO 3 , PbO, B 2 with a purity of 99.9% or more. O 3 powder was used. These powders are blended so that the final composition of the sintered body is a molar ratio of Y: Bi: La: Fe = 1.3: 1.6: 0.1: 5.0 and the total weight is 300 g. Then, V 2 O 5 , CuO, MoO 3 , WO 3 , PbO, B 2 O 3 powders were added in the proportions shown in (Table 2) and mixed by a ball mill, and temporarily added at 700 ° C. for 2 hours. After baking, it was ground again with a ball mill. After the calcined powder was molded, it was fired at 50 ° C. for 10 hours, and the minimum temperature at which the relative density was 90% or more was determined. Moreover, the sintered compact was grind | pulverized and it was confirmed whether it was a single garnet phase by X-ray diffraction (XRD). The results are shown in (Table 2).
[0016]
[Table 2]
Figure 0003627329
[0017]
As apparent from (Table 2), the magnetic body of the present invention is densified at a lower temperature by adding any of V 2 O 5 , CuO, MoO 3 , WO 3 , PbO, and B 2 O 3 . did. When V 2 O 5 , CuO, MoO 3 , WO 3 , PbO is added, the addition amount is 2.0 wt% or more, and when B 2 O 5 is added, if the addition amount is 7.0 wt% or more, Rather, the second phase appeared. Each of these additives has an effect. In particular, V 2 O 5 , CuO, and B 2 O 5 can be fired at 800 ° C. and are more effective. Even if the additive was added after calcination, the same effect was obtained.
[0018]
Further, a sample obtained by sintering these calcined powders into a disk shape having an outer diameter of 25 mmφ and a thickness of 1.5 mm is placed above and below the Y-shaped strip line, and further sandwiched by Sr ferrite disks from above and below to form a magnetic metal case. The distributed constant type Y stripline isolator was constructed by connecting a terminator resistor to one end of the stripline. The reverse maximum isolation of the obtained isolator and the forward insertion loss at the frequency where it was obtained were measured. As a result, these magnetic materials were able to be used as an isolator with an isolation of 20 dB or more and an insertion loss of 0.5 dB or less.
[0019]
(Example 3)
Y 2 O 3 , Bi 2 O 3 , In 2 O 3 , α-Fe 2 O 3 powder having a purity of 99.9% or more was used as a starting material. With these powders, the final composition of the sintered body was a molar ratio of (Y + Bi) :( Fe + In) = 3: 5, and the molar ratio of Y, Bi, Fe and In was the value of (Table 3), and the total weight The mixture was mixed in a ball mill so as to be 300 g, calcined at 700 ° C. for 2 hours each, and then pulverized again in the ball mill. After the calcined powder was molded, it was fired at 50 ° C. for 10 hours, and the minimum temperature at which the relative density was 90% or more was determined. In addition, the sintered body was pulverized, and it was confirmed by X-ray diffraction (XRD) whether it was a single garnet phase, and the lattice constant was determined. The results are shown in (Table 3).
[0020]
[Table 3]
Figure 0003627329
[0021]
The results of XRD are indicated by ◯ for those that were single phase and by × for those that were not single phase. No. in Table 3 As is clear from 0 to 3, in the composition not containing In, when Y is replaced with Bi, the firing temperature is lowered, but in order to further lower the sintering temperature, the amount of Bi substitution is more than 1.5 mol. Then, the second phase appears in the XRD result and does not become a single phase. However, in the magnetic body of the present invention, No. As can be seen from 4 to 11, it was confirmed that as Fe was replaced with In, Bi could be more solid-dissolved, and up to Bi 2.0 mol relative to the maximum In 0.4 mol. . The sintering temperature at this time was further lowered as compared with Bi = 1.5 in which In substitution was not performed. The upper limit of the substitution amount is No. As shown in FIG. 12, when the In amount was 0.5 or more, the garnet structure was not a single phase.
[0022]
Furthermore, a sample obtained by sintering these calcined powders into a disk shape having an outer diameter of 25 mmφ and a thickness of 1.5 mm is placed above and below the Y-shaped strip line, and further sandwiched between Sr ferrite disks from above and below, and magnetic metal A distributed constant Y stripline isolator was constructed by placing it in a case and connecting a terminator resistor to one end of the stripline. The reverse maximum isolation of the obtained isolator and the forward insertion loss at the frequency where it was obtained were measured. As a result, these magnetic materials were able to be used as an isolator with an isolation of 20 dB or more and an insertion loss of 0.5 dB or less.
[0023]
(Example 4)
As starting materials, Y 2 O 3 , Bi 2 O 3 , In 2 O 3 , α-Fe 2 O 3 , V 2 O 5 , CuO, MoO 3 , WO 3 , PbO, B 2 with a purity of 99.9% or more. O 3 powder was used. These powders are blended so that the final composition of the sintered body is a molar ratio of Y: Bi: Fe: In = 1.2: 1.8: 4.7: 0.3, and the total weight is 300 g. Then, V 2 O 5 , CuO, MoO 3 , WO 3 , PbO, B 2 O 3 powders were added as additives in the proportions shown in (Table 4), mixed in a ball mill, and temporarily added at 700 ° C. for 2 hours. After baking, it was ground again with a ball mill. After the calcined powder was molded, it was fired at 50 ° C. for 10 hours, and the minimum temperature at which the relative density was 90% or more was determined. Moreover, the sintered compact was grind | pulverized and it was confirmed whether it was a single garnet phase by X-ray diffraction (XRD). The results are shown in (Table 4).
[0024]
[Table 4]
Figure 0003627329
[0025]
As apparent from (Table 4), the magnetic substance of the present invention is densified at a lower temperature by adding any of V 2 O 5 , CuO, MoO 3 , WO 3 , PbO, and B 2 O 3 . did. When V 2 O 5 , CuO, MoO 3 , WO 3 , PbO is added, the addition amount is 2.0 wt% or more, and when B 2 O 5 is added, if the addition amount is 7.0 wt% or more, it does not become a garnet single phase, A second phase has appeared. Each of these additives has an effect. In particular, V 2 O 5 , CuO, and B 2 O 5 can be fired at 800 ° C. and are more effective. Even if the additive was added after calcination, the same effect was obtained.
[0026]
Further, a sample obtained by sintering these calcined powders into a disk shape having an outer diameter of 25 mmφ and a thickness of 1.5 mm is placed above and below the Y-shaped strip line, and further sandwiched by Sr ferrite disks from above and below to form a magnetic metal case. The distributed constant type Y stripline isolator was constructed by connecting a terminator resistor to one end of the stripline. The reverse maximum isolation of the obtained isolator and the forward insertion loss at the frequency where it was obtained were measured. As a result, these magnetic materials were able to be used as an isolator with an isolation of 20 dB or more and an insertion loss of 0.5 dB or less.
[0027]
(Example 5)
In the same manner as in Example 2, the final composition of the sintered body is a molar ratio of Y: Bi: La: Fe = 1.3: 1.6: 0.1: 5.0, and the total weight is 300 g. Then, 0.1% by weight of V 2 O 5 powder was added as an additive, mixed by a ball mill, calcined at 700 ° C. for 2 hours, and then pulverized again by a ball mill. An organic binder was mixed with the calcined powder to form a uniform green sheet by a doctor blade method, and then the green sheet was cut. On the other hand, a conductive paste obtained by mixing a vehicle with Ag was prepared and printed on the green sheet in a coil shape. One green sheet was further stacked thereon, and pressure was applied in the thickness direction for pressure bonding to produce a green sheet laminate in which electrodes were sandwiched between magnetic bodies. This was fired at 920 ° C. for 3 hours, an Ag paste was applied to the position of the inner conductor on the side surface of the sintered body, and baked at 700 ° C. for 10 minutes to form an external electrode. The obtained inductor had an L value of 200 nH and a Q value of 30 at 100 MHz. Moreover, when it substitutes with another rare earth metal element, or by the method similar to Example 4, the sintered compact final composition is Y: Bi: Fe: In = 1.2: 1.8 :: 4.7. : The same result was obtained when the molar ratio was 0.3.
[0028]
(Example 6)
In the same manner as in Example 2, the final composition of the sintered body is a molar ratio of Y: Bi: La: Fe = 1.3: 1.6: 0.1: 5.0, and the total weight is 300 g. Then, 0.1% by weight of V 2 O 5 powder was added as an additive, mixed by a ball mill, calcined at 700 ° C. for 2 hours, and then pulverized again by a ball mill. The calcined powder was mixed with an organic binder to form a uniform green sheet by a reverse roll coater method, and then the green sheet was cut into a circle. On the other hand, a conductive paste made by mixing a vehicle with Ag was prepared and printed as a strip line on the green sheet. Three sheets of the same material are prepared, so that the strip lines cross each other at an angle of 120 degrees, and another green sheet is stacked on top of each other. A green sheet laminate in which three layers of conductors were sandwiched was prepared. This was fired for 3 hours at the temperature shown in (Table 5) so as to have a closed magnetic circuit configuration, Ag paste was applied to 6 positions of the inner conductor on the side surface of the sintered body, and baked at 700 ° C. for 10 minutes. External electrodes were formed. Of the six electrodes of this laminate, ground three points that are 120 degrees apart from each other, and one of the other three points to ground through a matching resistor and terminate, and the other two terminals have terminals A 1.9 GHz lumped constant isolator was fabricated by placing a suitable load capacity, sandwiching it with Sr ferrite from above and below, and placing it in a magnetic metal case.
[0029]
Further, a lumped constant isolator using a garnet composition and an electrode material shown in (Table 5) was produced by the same method. For comparison, an open magnetic circuit configuration lumped constant type isolator in which a magnetic material and an electrode are separately provided was also manufactured. The magnetic material sizes were the same for both. The isolation ratio band of the obtained isolator (frequency bandwidth / maximum isolation frequency at which isolation of 20 dB or more is obtained) and insertion loss were measured. The results are shown in (Table 5).
[0030]
[Table 5]
Figure 0003627329
[0031]
As is clear from (Table 5), in the closed magnetic circuit configuration, the specific band is widened. Since the magnetic material containing Bi and La of the present invention can be fired at 900 ° C., it is possible to have a simultaneous firing / closed magnetic circuit configuration using Ag as an internal electrode, and as a result, a wide specific bandwidth and low insertion loss. was gotten. Even when Bi was included, insertion loss was slightly increased when La was not included or when Pd, Ag-Pd, RuO2 or the like other than Ag was used as the electrode material. This is presumably because, when La is not contained, the 900 ° C. firing has a large loss because the sintered body is not sufficiently densified, and the electrodes other than Ag have a high resistivity.
[0032]
On the other hand, in the case of normal YIG not including Bi and La, the Ag internal electrode simultaneous firing / closed magnetic circuit configuration did not form an isolator. This is probably because YIG is not sufficiently densified when the temperature is low, while YIG is densified when the temperature is high, but the electrode is cut off because the melting point of Ag is greatly exceeded. In this case, if Pd is fired at 1400 ° C. using the internal electrode, a product with considerably good characteristics can be obtained. However, Pd is expensive, high temperature firing is required, and insertion loss is slightly large.
[0033]
In addition, when other rare earth metal elements are used or in the same manner as in Example 2, the final composition of the sintered body is Y: Bi: Fe: In = 1.2: 1.8: 4.7: Similar results were also obtained when the molar ratio was 0.3.
[0034]
【The invention's effect】
As described above, the present invention is a microwave garnet ferrite sintered body that can be fired at a low temperature. Also, a high-frequency inductor element and a nonreciprocal circuit element using the same. According to the present invention, a high-frequency garnet can be easily manufactured, and since it can be fired at 900 ° C. or less, it can be fired simultaneously with an electrode material, for example, a dielectric material, etc. An element for use is obtained.

Claims (7)

主組成が化学式 Y3−x−yBi(FeαAlβGaγ12(ここで、RはLa、Nd、Sm、Eu、Gd、Tb、Dyより選ばれる一種類以上の稀土類金属元素)で表され、x,yが、0<x≦1.5+ay、0<x+y≦3(RがLaのときにはa=1.3で、0<y≦0.4、Ndのときはa=1.0で、0<y≦0.6、Smのときa=0.8、Euのときa=0.6、Gdのときa=0.4、Tbのときa=0.2、Dyのときa=0.1、α+β+γ=1、0<α≦1)の範囲内にある、ガーネット構造を有する相を主成分とし、850℃以上900℃以下の温度で、相対密度90%以上に焼結する、多結晶セラミックス磁性体材料の製造方法。The main composition formula Y 3-x-y Bi x R y (Fe α Al β Ga γ) 5 O 12 ( wherein, R represents La, Nd, Sm, Eu, Gd, Tb, from one or more selected Dy X and y are 0 <x ≦ 1.5 + ay, 0 <x + y ≦ 3 (when R is La, a = 1.3, 0 <y ≦ 0.4, Nd A = 1.0 when 0 <y ≦ 0.6, a = 0.8 when Sm, a = 0.6 when Eu, a = 0.4 when Gd, a = when Tb 0.2, when Dy a = 0.1, α + β + γ = 1, 0 <α ≦ 1), the phase having a garnet structure as a main component, at a temperature of 850 ° C. to 900 ° C. A method for producing a polycrystalline ceramic magnetic material that is sintered to a density of 90% or more. 主組成が化学式 Y3−xBi(FeαAlβGaγ5−yIn12で表され、x,yが、0<x≦1.5+1.3yかつ0<y<0.5の範囲内にあり、α+β+γ=1、0<α≦1である、ガーネット構造を有する相を主成分とし、850℃以上900℃以下の温度で、相対密度90%以上に焼結する、多結晶セラミックス磁性体材料の製造方法。The main composition represented by the chemical formula Y 3-x Bi x (Fe α Al β Ga γ) 5-y In y O 12, x, y are, 0 <x ≦ 1.5 + 1.3y and 0 <y <0. The main component is a phase having a garnet structure and α + β + γ = 1, 0 <α ≦ 1, and the sintering is performed at a temperature of 850 ° C. to 900 ° C. to a relative density of 90% or more. A method for producing a crystalline ceramic magnetic material. 請求項1または2記載の主組成を100重量部として、副組成として
0重量%<V≦1重量%、 0重量%<CuO≦1重量%、
0.02重量%<MoO≦1重量%、0.02重量%<WO≦1重量%、
0.05重量%<PbO≦1重量%、 0.1重量%<B≦5重量%
の1種類以上を含み、800℃以上900℃以下の温度で、相対密度90%以上に焼結する、多結晶セラミックス磁性体材料の製造方法。
100 parts by weight of the main composition according to claim 1 or 2, 0% by weight <V 2 O 5 ≦ 1% by weight, 0% by weight <CuO ≦ 1% by weight,
0.02 wt% <MoO 3 ≦ 1 wt%, 0.02 wt% <WO 3 ≦ 1 wt%,
0.05 wt% <PbO ≦ 1 wt%, 0.1 wt% <B 2 O 3 ≦ 5 wt%
A method for producing a polycrystalline ceramic magnetic material, comprising sintering at a relative density of 90% or more at a temperature of 800 ° C. or higher and 900 ° C. or lower.
請求項1〜3の何れかに記載の多結晶セラミックス磁性体材料の製造方法によって製造された磁性体を用い、閉磁路構成となるように、磁性体中に導体が埋め込まれた構造を有する、高周波インダクタ素子。Using the magnetic body manufactured by the method for manufacturing a polycrystalline ceramic magnetic material according to any one of claims 1 to 3, having a structure in which a conductor is embedded in the magnetic body so as to have a closed magnetic circuit configuration, High frequency inductor element. 請求項1〜3の何れかに記載の多結晶セラミックス磁性体材料の製造方法によって製造された磁性体を用い、閉磁路構成となるように、磁性体中に導体が埋め込まれた構造を有する、高周波非可逆回路素子。Using the magnetic body manufactured by the method for manufacturing a polycrystalline ceramic magnetic material according to any one of claims 1 to 3, having a structure in which a conductor is embedded in the magnetic body so as to have a closed magnetic circuit configuration, High frequency nonreciprocal circuit element. 磁性体中の導体が、Agを主成分とする事を特徴とする、請求項4に記載の高周波インダクタ素子 The high-frequency inductor element according to claim 4, wherein the conductor in the magnetic body contains Ag as a main component. 磁性体中の導体が、Agを主成分とする事を特徴とする、請求項5に記載の高周波非可逆回路素子。The high-frequency nonreciprocal circuit device according to claim 5, wherein the conductor in the magnetic body contains Ag as a main component.
JP33143595A 1995-04-11 1995-12-20 Method for producing polycrystalline ceramic magnetic material and high-frequency nonreciprocal circuit device Expired - Fee Related JP3627329B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP33143595A JP3627329B2 (en) 1995-12-20 1995-12-20 Method for producing polycrystalline ceramic magnetic material and high-frequency nonreciprocal circuit device
US08/629,101 US5709811A (en) 1995-04-11 1996-04-08 Magnetic material for microwave and high-frequency circuit component using the same
EP96105648A EP0737987B1 (en) 1995-04-11 1996-04-10 Magnetic material for microwave and high-frequency circuit component using the same
DE69613745T DE69613745T2 (en) 1995-04-11 1996-04-10 Magnetic microwave material and high frequency circuit device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33143595A JP3627329B2 (en) 1995-12-20 1995-12-20 Method for producing polycrystalline ceramic magnetic material and high-frequency nonreciprocal circuit device

Publications (2)

Publication Number Publication Date
JPH09169561A JPH09169561A (en) 1997-06-30
JP3627329B2 true JP3627329B2 (en) 2005-03-09

Family

ID=18243640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33143595A Expired - Fee Related JP3627329B2 (en) 1995-04-11 1995-12-20 Method for producing polycrystalline ceramic magnetic material and high-frequency nonreciprocal circuit device

Country Status (1)

Country Link
JP (1) JP3627329B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103649384B (en) * 2011-06-06 2017-03-22 天工方案公司 Rare earth reduced garnet systems and related microwave applications
CN114057479B (en) * 2022-01-06 2023-05-05 西南应用磁学研究所(中国电子科技集团公司第九研究所) YIG microwave ferrite material with ultrahigh Curie temperature and preparation method thereof
CN115947595B (en) * 2022-12-23 2024-01-30 上海阖煦微波技术有限公司 Microwave ferrite material and preparation method and application thereof

Also Published As

Publication number Publication date
JPH09169561A (en) 1997-06-30

Similar Documents

Publication Publication Date Title
JP3693398B2 (en) Ceramic magnetic material and high frequency circuit component using the same
KR101904269B1 (en) Effective substitutions for rare earth metals in compositions and materials for electronic applications
KR101273283B1 (en) Polycrystalline ceramic magnetic material, microwave magnetic components, and irreversible circuit devices made by using the same
US5709811A (en) Magnetic material for microwave and high-frequency circuit component using the same
JP2011073937A (en) Polycrystal magnetic ceramic, microwave magnetic substance, and irreversible circuit element using the same
US20090321677A1 (en) Low microwave loss ferrite material and manufacturing process
US6780344B2 (en) Garnet ferrite for low-insertion-loss non-reciprocal circuit, method for preparing the same, and non-reciprocal circuit device including the same
JP2009001476A (en) Ferrite sintered magnet, method for producing the same and magnet roll and non-reciprocal circuit element using the same
JP5365967B2 (en) Polycrystalline ceramic magnetic material, microwave magnetic material, and non-reciprocal circuit device using the same
JP5488954B2 (en) Polycrystalline ceramic magnetic material, microwave magnetic material, and non-reciprocal circuit device using the same
JP3772963B2 (en) Manufacturing method of magnetic material for high frequency
JP3627329B2 (en) Method for producing polycrystalline ceramic magnetic material and high-frequency nonreciprocal circuit device
JP3405030B2 (en) Method for producing magnetic material for microwave and high frequency circuit component using the same
EP0853321B1 (en) Multilayer ceramic part using a conductor paste
JP3523363B2 (en) Manufacturing method of magnetic sintered body of polycrystalline ceramics and high frequency circuit component using magnetic body obtained by the method
JP3405013B2 (en) Method for producing magnetic material and high-frequency circuit component using the same
JP4803415B2 (en) Ferrite porcelain composition for nonreciprocal circuit element, nonreciprocal circuit element, and wireless device
JP2005184088A (en) Non-reciprocative circuit element and communication equipment
JP3598596B2 (en) Method of manufacturing magnetic material for microwave, and high-frequency circuit component using magnetic material obtained by the method
JP2004075503A (en) Magnetic body ceramic for high frequency and high frequency circuit component
JPH10233308A (en) Polycrystalline magnetic ceramic material preparation thereof, and nonrevesible circuit element using the same
JP4183190B2 (en) Non-reciprocal circuit element
Kishan Microwave lithium ferrites
JP2004143042A (en) Magnetic material for micro wave, manufacturing method therefor, and high-frequency circuit parts
JP4305787B2 (en) Magnet and manufacturing method thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041129

LAPS Cancellation because of no payment of annual fees