JP5365967B2 - Polycrystalline ceramic magnetic material, microwave magnetic material, and non-reciprocal circuit device using the same - Google Patents

Polycrystalline ceramic magnetic material, microwave magnetic material, and non-reciprocal circuit device using the same Download PDF

Info

Publication number
JP5365967B2
JP5365967B2 JP2006301473A JP2006301473A JP5365967B2 JP 5365967 B2 JP5365967 B2 JP 5365967B2 JP 2006301473 A JP2006301473 A JP 2006301473A JP 2006301473 A JP2006301473 A JP 2006301473A JP 5365967 B2 JP5365967 B2 JP 5365967B2
Authority
JP
Japan
Prior art keywords
magnetic material
microwave
polycrystalline ceramic
temperature
main component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006301473A
Other languages
Japanese (ja)
Other versions
JP2007145705A (en
Inventor
広和 中島
博之 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2006301473A priority Critical patent/JP5365967B2/en
Publication of JP2007145705A publication Critical patent/JP2007145705A/en
Application granted granted Critical
Publication of JP5365967B2 publication Critical patent/JP5365967B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、高周波回路部品に使用されるマイクロ波用磁性体材料であり、さらに銀や銅といった電極用材料との同時焼成が可能な多結晶セラミック磁性材料に関する。   The present invention relates to a magnetic material for microwaves used for high-frequency circuit components, and further relates to a polycrystalline ceramic magnetic material that can be simultaneously fired with electrode materials such as silver and copper.

近年、自動車電話、携帯電話、衛星放送など、マイクロ波領域の電磁波を利用する通信技術の進展に伴い、機器の小型化が要求されている。このためには、機器を構成する個々の部品の小型化、低背化の要求が益々増大している。   In recent years, miniaturization of devices has been demanded with the progress of communication technology using electromagnetic waves in the microwave region, such as car phones, mobile phones, and satellite broadcasts. For this purpose, there is an increasing demand for downsizing and low profile of individual parts constituting the equipment.

通信機器の分野において用いられる代表的な高周波回路部品として、たとえば、サーキュレータ、アイソレータなどのマイクロ波非可逆回路素子がある。一般にアイソレータは、信号の伝送方向にはほとんど減衰がなく、かつ逆方向には減衰が大きくなる様な機能を有しており、たとえばマイクロ波帯、UHF帯で使用される携帯電話、自動車電話等の移動体通信器の送受信回路に用いられている。   As typical high-frequency circuit components used in the field of communication equipment, for example, there are microwave nonreciprocal circuit elements such as circulators and isolators. In general, an isolator has a function such that there is almost no attenuation in the signal transmission direction and the attenuation is increased in the opposite direction. For example, a cellular phone, a car phone, etc. used in the microwave band and the UHF band. This is used in a transmission / reception circuit of a mobile communication device.

サーキュレータ、アイソレータなどの非可逆回路素子は、互いに絶縁された状態で配置した複数の電極ラインを有する中心導体と、これら中心導体に密接して配置されるマイクロ波用磁性体と、前記中心導体及び前記マイクロ波用磁性体からなる中心導体組立体に直流磁界を印可する永久磁石を備えた構成であって、中心導体とマイクロ波用磁性体は互いに別の部品として製造され、前記中心導体については、従来、銅箔をマイクロ波用磁性体に巻きつけたり、マイクロ波用磁性体に銀ペーストを印刷、焼結して一体的に形成するなど、様々な形態が提案されている。   Non-reciprocal circuit elements such as a circulator and an isolator include a central conductor having a plurality of electrode lines arranged in a state of being insulated from each other, a microwave magnetic body disposed in close contact with the central conductor, the central conductor and The central conductor assembly made of the magnetic material for microwaves includes a permanent magnet that applies a DC magnetic field, and the central conductor and the magnetic material for microwaves are manufactured as separate parts. Conventionally, various forms have been proposed, such as winding a copper foil around a microwave magnetic body, or printing and sintering a silver paste on the microwave magnetic body to form an integral body.

前述したような小型化の要求に応えるため、たとえば特許文献1に記載されるように、中心導体の材料として、パラジウムもしくは白金等の導電性粉末及び有機溶剤を混合してなる導電ペーストを用い、1300〜1600℃の温度で、マイクロ波用磁性体材料と中心導体とを一体焼成することが提案されている。
特開平6−61708号
In order to meet the demands for downsizing as described above, for example, as described in Patent Document 1, as a material for the central conductor, a conductive paste formed by mixing a conductive powder such as palladium or platinum and an organic solvent is used. It has been proposed that the microwave magnetic material and the central conductor are integrally fired at a temperature of 1300 to 1600 ° C.
JP-A-6-61708

上述したパラジウムまたは白金は、融点が1300℃以上と高く、ほとんどのマイクロ波用磁性体材料との一体焼成が容易であるという長所をもつ反面、比抵抗が高く、たとえばアイソレータ素子に使用した場合、挿入損失が大きくなるという欠点を有している。   The above-mentioned palladium or platinum has a high melting point of 1300 ° C. or higher and has an advantage that it can be easily fired integrally with most magnetic materials for microwaves, but has a high specific resistance. For example, when used for an isolator element, There is a disadvantage that the insertion loss is increased.

低抵抗の銀や銅を用いる場合、同時焼成において十分な焼結体を得るために、多結晶セラミック磁性材料にBiを置換したものを用いたり、低融点ガラスを添加したりすることが考えられるが、単相領域が狭いマイクロ波用磁性体材料においては異相の生成や空孔量の増加などが発生しやすく、低損失のマイクロ波用磁性体とすることができなかった。   In the case of using low resistance silver or copper, in order to obtain a sufficient sintered body in simultaneous firing, it is conceivable to use a polycrystalline ceramic magnetic material substituted with Bi or to add a low melting point glass. However, a microwave magnetic material with a narrow single-phase region is liable to generate a different phase or increase the amount of pores, and thus cannot be a low-loss microwave magnetic material.

また、このようなマイクロ波用非可逆回路素子では、永久磁石と組み合わせて使用されるが、そのマイクロ波用磁性体材料の飽和磁化4πMsの温度特性が、永久磁石の温度特性を補償することが理想とされる。   Further, in such a microwave non-reciprocal circuit element, a combination with a permanent magnet is used, but the temperature characteristic of the saturation magnetization 4πMs of the microwave magnetic material compensates for the temperature characteristic of the permanent magnet. It is considered ideal.

そこで本発明は、上述したような問題を解決し、しかも850℃以上920℃以下の低温で焼成することができ、Bi置換型においても異相の生成を抑え、強磁性共鳴半値幅ΔHおよび誘電損失tanδが小さく、永久磁石の温度特性を補償するような温度係数αmおよび飽和磁化4πMsを有する多結晶セラミック磁性体材料と、マイクロ波磁性体及びこれを用いた非可逆回路素子を提供することを目的とする。 Therefore, the present invention solves the above-described problems and can be fired at a low temperature of 850 ° C. or more and 920 ° C. or less , suppresses the generation of heterogeneous even in the Bi substitution type, and reduces the ferromagnetic resonance half width ΔH and dielectric loss. An object is to provide a polycrystalline ceramic magnetic material having a small tan δ and a temperature coefficient αm and a saturation magnetization of 4πMs so as to compensate for the temperature characteristics of a permanent magnet, a microwave magnetic material, and a nonreciprocal circuit device using the same. And

第1の発明は、主成分が、一般式(Y3.0−x−yBiCa)(Fe5−α−β−γInαAlβVγ)O12で表される組成を有し、x、yの値が、0.4<x≦0.9、0.5≦y≦1.2であり、α、β、γの値が、0≦α≦0.4、0≦β≦0.45、0.25≦γ≦0.6、ただし0.1≦α+β≦0.75の範囲内にあって、副成分としてCu及びZrを含み、その含有量は、前記主成分100重量部に対して、CuをCuO換算でCuO≦0.8重量%、ZrをZrO換算でZrO≦0.8重量%であり、ガーネット構造を有する相を主成分とし、850℃以上920℃以下の温度で焼結することを特徴とする多結晶セラミック磁性体材料である。 The first invention is a main component of the general formula (Y 3.0-x-y Bi x Ca y) (Fe 5-α-β-γ In α Al β Vγ) have a composition represented by O 12 X, y are 0.4 <x ≦ 0.9, 0.5 ≦ y ≦ 1.2, and α, β, γ are 0 ≦ α ≦ 0.4, 0 ≦ β ≦ 0.45,0.25 ≦ γ ≦ 0.6, but be in the range of 0.1 ≦ α + β ≦ 0.75, wherein the Cu及beauty Z r as a sub-component, the content of the With respect to 100 parts by weight of the main component, Cu is CuO ≦ 0.8 wt% in terms of CuO, Zr is Z rO 2 ≦ 0.8 wt% in terms of ZrO 2 , and a phase having a garnet structure is the main component. A polycrystalline ceramic magnetic material characterized by sintering at a temperature of 850 ° C. or higher and 920 ° C. or lower .

本発明に係る多結晶セラミック磁性体材料は、飽和磁化4πMsが60mT〜130mTであり、その温度係数αmが、−0.38%/℃〜−0.2%/℃であり、強磁性共鳴半値幅ΔHが8200A/m以下であることも特徴とする。 The polycrystalline ceramic magnetic material according to the present invention has a saturation magnetization 4πMs of 60 mT to 130 mT and a temperature coefficient αm of −0.38% / ° C. to −0.2% / ° C. It is also characterized in that the value width ΔH is 8200 A / m or less.

第2の発明は、第1の発明の多結晶セラミック磁性体材料と、Ag、Ag合金のいずれかを含む導体ペーストとを一体焼結してなるマイクロ波磁性体であって、前記マイクロ波磁性体の内部及び/又は表面に前記導体ペーストで形成された電極パターンを備えることを特徴とするマイクロ波磁性体である。   A second invention is a microwave magnetic body obtained by integrally sintering the polycrystalline ceramic magnetic material of the first invention and a conductor paste containing either Ag or an Ag alloy, and the microwave magnetism A microwave magnetic body comprising an electrode pattern formed of the conductive paste inside and / or on the surface of a body.

第3の発明は、第2の発明のマイクロ波磁性体に形成された電極パターンを中心導体とし、前記中心導体に接続するコンデンサと、前記マイクロ波磁性体に直流磁界を与えるフェライト磁石を備えたことを特徴とする非可逆回路素子である。   According to a third aspect of the present invention, there is provided a capacitor connected to the central conductor, the electrode pattern formed on the microwave magnetic body according to the second aspect of the invention, and a ferrite magnet that applies a DC magnetic field to the microwave magnetic body. This is a non-reciprocal circuit device.

前記フェライト磁石は、残留磁束密度Brが420mT以上であり、その温度係数が−0.15%/℃〜−0.25%/℃であることが好ましい。   The ferrite magnet preferably has a residual magnetic flux density Br of 420 mT or more and a temperature coefficient of −0.15% / ° C. to −0.25% / ° C.

本発明によれば、850℃以上920℃以下の低温で焼成することができ、低抵抗の金属材料との同時焼成が可能でBi置換型においても異相の生成がなく、強磁性共鳴半値幅ΔHおよび誘電損失tanδが小さい多結晶セラミック磁性体材料と、マイクロ波磁性体及びこれを用いた非可逆回路素子を提供することが出来る。 According to the present invention, can be fired at a low temperature of 850 ° C. or higher 920 ° C. or less, can be simultaneously fired with the low-resistance metal material, no secondary phase of the product also in Bi-substituted, ferromagnetic resonance half-width A polycrystalline ceramic magnetic material having a small ΔH and dielectric loss tan δ, a microwave magnetic material, and a nonreciprocal circuit device using the same can be provided.

本発明の多結晶セラミック磁性体材料は、主成分が、一般式(Y3.0−x−yBiCa)(Fe5−α−β−γInαAlβVγ)O12で表される組成を有し、x、yの値が、0.4<x≦0.9、0.5≦y≦1.2であり、α、β、γの値が、0≦α≦0.4、0≦β≦0.45、0.25≦γ≦0.6、ただし0.1≦α+β≦0.75の範囲内にあって、副成分としてCu及びZrを含み、その含有量は、前記主成分100重量部に対して、CuをCuO換算でCuO≦0.8重量%、ZrをZrO換算でZrO≦0.8重量%であり、ガーネット構造を有する相を主成分とし、850℃以上920℃以下の温度で焼結する多結晶セラミック磁性体材料である。 Polycrystalline ceramic magnetic material of the present invention, the table main component, in general formula (Y 3.0-x-y Bi x Ca y) (Fe 5-α-β-γ In α Al β Vγ) O 12 And the values of x, y are 0.4 <x ≦ 0.9, 0.5 ≦ y ≦ 1.2, and the values of α, β, γ are 0 ≦ α ≦ 0. .4,0 ≦ β ≦ 0.45,0.25 ≦ γ ≦ 0.6, but be in the range of 0.1 ≦ α + β ≦ 0.75, wherein the Cu及beauty Z r as a sub-component, its The content of Cu is CuO ≦ 0.8 wt% in terms of CuO and Zr is Z rO 2 ≦ 0.8 wt% in terms of ZrO 2 with respect to 100 parts by weight of the main component, and has a garnet structure. It is a polycrystalline ceramic magnetic material that has a phase as a main component and is sintered at a temperature of 850 ° C. or higher and 920 ° C. or lower .

焼結温度、強磁性共鳴半値幅ΔH、誘電損失tanδ、飽和磁化4πMs、飽和磁化4πMsの温度特性等は、多結晶セラミック磁性体材料の主成分組成により大きく影響され、主成分組成が上記の本発明の組成範囲から外れると以下のような不具合が生じる。   The temperature characteristics of the sintering temperature, the ferromagnetic resonance half width ΔH, the dielectric loss tan δ, the saturation magnetization 4πMs, the saturation magnetization 4πMs are greatly influenced by the main component composition of the polycrystalline ceramic magnetic material. If the composition falls outside the composition range of the invention, the following problems occur.

Biは低温焼結化に寄与する。xが、x=0.4であると、980℃未満での焼結が困難になる。また、x>1.5であると、850℃以上980℃未満での焼結は可能になるが、焼結体に異相が生じ易く誘電損失tanδがtanδ>15×10−4および強磁性共鳴半値幅ΔHがΔH>10000(A/m)と著しく大きくなる。このため、xは0.4<x≦1.5であることが望ましい。好ましくは、0.5≦x≦0.9である。 Bi contributes to low temperature sintering. When x is x = 0.4, sintering at less than 980 ° C. becomes difficult. Further, when x> 1.5, sintering at 850 ° C. or more and less than 980 ° C. is possible, but a heterogeneous phase is likely to occur in the sintered body, and dielectric loss tan δ is tan δ> 15 × 10 −4 and ferromagnetic resonance. The half-value width ΔH is remarkably increased as ΔH> 10000 (A / m). For this reason, x is preferably 0.4 <x ≦ 1.5. Preferably, 0.5 ≦ x ≦ 0.9.

Caは後述するVとともに加えられ、焼結時に低融点のVの蒸散を防ぐのに寄与する。このような効果を発揮させるには、yは0.5≦y≦1.2とするのが好ましい。   Ca is added together with V described later, and contributes to preventing the low melting point V from evaporating during sintering. In order to exert such an effect, y is preferably 0.5 ≦ y ≦ 1.2.

In,Al,Vは飽和磁化4πMsの温度係数αmの調整、低温焼結化に寄与する。α、β、γの値を、それぞれ0≦α≦0.4、0≦β≦0.45、0.25≦γ≦0.6、ただし0.1≦α+β≦0.75の範囲内とするのが好ましい。In,Al,Vが上記範囲よりも少ないと980℃未満での焼結が困難になる。また前記範囲よりも少ないと、飽和磁化4πMsが4πMs>130(mT)となり、所定の形状による永久磁石の磁力が不足してしまう。また多い場合には、飽和磁化4πMsが4πMs<60(mT)となり、永久磁石との温度特性を補償することができない。
また、In,Alは、合せて0.1≦α+β≦0.75とするのが好ましい。α+β<0.1であると、誘電損失tanδがtanδ≧15×10−4、および、強磁性共鳴半値幅ΔHがΔH>10000(A/m)と著しく大きくなる。さらに0.75<α+βであると、飽和磁化4πMsの温度係数がαm<−0.38(%/℃)と、温度係数αmの絶対値が大きくなり、永久磁石との温度特性を補償することができない。
In, Al, and V contribute to the adjustment of the temperature coefficient αm of the saturation magnetization 4πMs and the low-temperature sintering. The values of α, β, and γ are within the range of 0 ≦ α ≦ 0.4, 0 ≦ β ≦ 0.45, 0.25 ≦ γ ≦ 0.6, and 0.1 ≦ α + β ≦ 0.75, respectively. It is preferable to do this. When In, Al, and V are less than the above range, sintering at less than 980 ° C. becomes difficult. If it is less than the above range, the saturation magnetization 4πMs becomes 4πMs> 130 (mT), and the magnetic force of the permanent magnet having a predetermined shape is insufficient. In many cases, the saturation magnetization 4πMs becomes 4πMs <60 (mT), and the temperature characteristics with the permanent magnet cannot be compensated.
In addition, In and Al are preferably 0.1 ≦ α + β ≦ 0.75 in total. When α + β < 0.1 , the dielectric loss tan δ is remarkably increased as tan δ ≧ 15 × 10 −4 and the ferromagnetic resonance half width ΔH is ΔH> 10000 (A / m). Furthermore, if 0.75 <α + β, the temperature coefficient of saturation magnetization 4πMs is αm <−0.38 (% / ° C.), and the absolute value of the temperature coefficient αm is large, so that the temperature characteristics with the permanent magnet are compensated. I can't.

また、本発明の多結晶セラミック磁性体材料における副成分は、低温焼結化に寄与するが、組成が上記の本発明の組成範囲から外れると、以下のような不具合が生じる。   Further, the subcomponent in the polycrystalline ceramic magnetic material of the present invention contributes to low-temperature sintering, but if the composition is out of the composition range of the present invention, the following problems occur.

まず、CuOが主成分に対して0.8重量%より多いと、低温での焼結は可能になるが焼結体に異相を生じ易く誘電損失tanδがtanδ≧15×10−4、および、強磁性共鳴半値幅ΔHがΔH>10000(A/m)と著しく大きくなる。このため、CuOは主成分に対してCuO≦0.8重量%であることが望ましい。好ましくは、0.2重量%≦CuO≦0.5重量%である。 First, when CuO is more than 0.8% by weight based on the main component, sintering at a low temperature becomes possible, but a heterogeneous phase is easily generated in the sintered body, and dielectric loss tan δ is tan δ ≧ 15 × 10 −4 , and The ferromagnetic resonance half width ΔH is remarkably increased as ΔH> 10000 (A / m). Therefore, it is desirable CuO is C uO ≦ 0.8% by weight with respect to the main component. Preferably, 0.2 wt% ≦ CuO ≦ 0.5 wt%.

また、ZrOが主成分に対して0.80重量%より大きいと、焼結体に異相を生じやすく強磁性共鳴半値幅ΔHがΔH>10000(A/m)と大きくなる。このため、ZrOは主成分に対してZrO≦0.80重量%であることが望ましい。好ましくは、0.05重量%≦ZrO≦0.30重量%である。 On the other hand, if ZrO 2 is larger than 0.80% by weight with respect to the main component, a heterogeneous phase is likely to occur in the sintered body, and the ferromagnetic resonance half width ΔH increases as ΔH> 10000 (A / m). Therefore, it is desirable ZrO 2 is Z rO 2 ≦ 0.80% by weight with respect to the main component. Preferably, 0.05 wt% ≦ ZrO 2 ≦ 0.30 wt%.

上記の成分組成により、850℃以上920℃以下の低温で焼結することができ、飽和磁化4πMsが60mT〜130mTであり、その温度係数αmが、−0.38%/℃〜−0.2%/℃であり、強磁性共鳴半値幅ΔHが8200A/m以下の多結晶セラミック磁性体材料を得ることができる。
従って、本発明の多結晶セラミック磁性体材料は、銀などの高い導電率を有する金属材料を内部電極として用い、一体焼結を行うことができる。よって、磁性体材料の有する高いQ値と、内部電極の電気抵抗による損失を抑え、極めて損失の小さいマイクロ波磁性体を構成することができる。これにより、アイソレータ、サーキュレータなどのマイクロ波非可逆回路素子に応用して、優れたマイクロ波特性と低損失を実現することができる。
With the above component composition, sintering can be performed at a low temperature of 850 ° C. or more and 920 ° C. or less, the saturation magnetization 4πMs is 60 mT to 130 mT, and the temperature coefficient αm is −0.38% / ° C. to −0.2. It is possible to obtain a polycrystalline ceramic magnetic material having a ferromagnetic resonance half-value width ΔH of 8200 A / m or less.
Therefore, the polycrystalline ceramic magnetic material of the present invention can be integrally sintered using a metal material having high conductivity such as silver as an internal electrode. Therefore, it is possible to suppress a loss due to the high Q value of the magnetic material and the electric resistance of the internal electrode, and to construct a microwave magnetic body with extremely small loss. As a result, it can be applied to microwave nonreciprocal circuit elements such as isolators and circulators to achieve excellent microwave characteristics and low loss.

以下、実施例について詳細に説明する。
出発原料として純度99.0%以上の酸化イットリウム(Y)、炭酸カルシウム(CaCO)、酸化ビスマス(Bi)、酸化鉄(Fe)、酸化インジウム(In)、酸化バナジウム(V)および酸化アルミニウム(Al)を用意し、これらを表1に示す組成比率になるように秤量し、スラリー濃度40%となるようにイオン交換水を加え、ボールミルにて20時間から50時間湿式混合し、その後、乾燥した。この乾燥した粉末に対して800℃から900℃の温度で1.5時間から2時間保持して仮焼を行った。なお仮焼は、後工程である焼結工程での焼結温度よりも50℃〜80℃低温に設定される。
Hereinafter, examples will be described in detail.
As starting materials, yttrium oxide (Y 2 O 3 ) having a purity of 99.0% or more, calcium carbonate (CaCO 3 ), bismuth oxide (Bi 2 O 3 ), iron oxide (Fe 2 O 3 ), indium oxide (In 2 O) 3 ), vanadium oxide (V 2 O 5 ) and aluminum oxide (Al 2 O 3 ) were prepared, and these were weighed so as to have the composition ratio shown in Table 1, and ion-exchanged water so that the slurry concentration was 40%. And wet mixed in a ball mill for 20 to 50 hours, and then dried. The dried powder was calcined by holding at a temperature of 800 ° C. to 900 ° C. for 1.5 hours to 2 hours. In addition, calcination is set to a temperature lower by 50 ° C. to 80 ° C. than the sintering temperature in the subsequent sintering step.

次に、副成分として酸化銅(CuO)、酸化ジルコニウム(ZrO)を用意し、上記のようにして得た母材粉末に対して、これらを表1に示す組成比率になるように秤量し加え、スラリー濃度40%となるようにイオン交換水を加え、ボールミルにて20から30時間湿式粉砕し、その後、乾燥して磁性体磁器組成物を得た。なお上記のようにして得られた粉末の平均粒径は0.5から2.0μmに調整した。副成分の添加は、主成分秤量時に添加しても同様の効果が得られた。 Next, copper oxide (CuO) and zirconium oxide (ZrO 2 ) are prepared as auxiliary components, and these are weighed so as to have the composition ratio shown in Table 1 with respect to the base material powder obtained as described above. In addition, ion-exchanged water was added to a slurry concentration of 40%, wet pulverized for 20 to 30 hours with a ball mill, and then dried to obtain a magnetic ceramic composition. The average particle size of the powder obtained as described above was adjusted to 0.5 to 2.0 μm. Even when the auxiliary component was added at the time of weighing the main component, the same effect was obtained.

次に、上記のようにして得られた磁性体磁器組成物にバインダー水溶液を添加混錬して得た造粒粉末を、1ton/cmから2ton/cmの圧力で加圧して成形体とした。これを空気中において、900℃から980℃の温度で8時間焼成し、焼結体を得た。 Then, the granulated powder obtained by adding and kneading a binder solution in the magnetic ceramic composition obtained as described above, the molded body under pressure at a pressure from 1 ton / cm 2 of 2 ton / cm 2 did. This was fired in the air at a temperature of 900 ° C. to 980 ° C. for 8 hours to obtain a sintered body.

次に、得られた焼結体を用いて誘電体円柱共振器を作製し、ハッキ・コールマン法により、誘電損失tanδを測定した。また、評価用試料の飽和磁化Msは振動型磁力計を用いて測定した。さらに得られた焼結体を0.15mmから0.25mmの厚さに薄円板状に加工し、短絡同軸線路法により強磁性共鳴半値幅ΔHを測定した。この結果を表1に示す。   Next, a dielectric cylindrical resonator was fabricated using the obtained sintered body, and dielectric loss tan δ was measured by the Hack-Coleman method. Moreover, the saturation magnetization Ms of the sample for evaluation was measured using a vibration type magnetometer. Further, the obtained sintered body was processed into a thin disc shape with a thickness of 0.15 mm to 0.25 mm, and the ferromagnetic resonance half width ΔH was measured by a short-circuited coaxial line method. The results are shown in Table 1.

Figure 0005365967
Figure 0005365967

表1に示される*印はこの発明範囲外の比較例であり、それ以外はすべてこの発明範囲内の実施例である。表1に示すとおり、試料No.1では副成分を含まないため、焼成温度が980℃と高い。また、試料No.2、3は、副成分であるCuOが範囲から外れるため、強磁性共鳴半値幅ΔHがΔH>10000(A/m)と大きくなる。また、焼結体に異相を生じ易く誘電損失tanδがtanδ≧15と大きくなる。また、試料No.4,5では副成分であるZrO が範囲から外れるため、強磁性共鳴半値幅ΔHがΔH>10000(A/m)と大きくなる。本発明の範囲内の実施例においては、焼結体に異相を生じることなく誘電損失tanδがtanδ≦15×10−4、強磁性共鳴半値幅ΔHがΔH≦10000(A/m)となる。 The asterisks shown in Table 1 are comparative examples outside the scope of the invention, and all other examples are examples within the scope of the invention. As shown in Table 1, Sample No. No. 1 does not contain subcomponents, so the firing temperature is as high as 980 ° C. Sample No. 2 and 3, CuO is subcomponent since departing from the scope, the ferromagnetic resonance half-width [Delta] H is increased and ΔH> 10000 (A / m) . Further, a heterogeneous phase is likely to occur in the sintered body, and the dielectric loss tan δ increases as tan δ ≧ 15. Sample No. Since ZrO 2 in a subcomponent 4,5 is out of range, the ferromagnetic resonance half-width [Delta] H is increased and ΔH> 10000 (A / m) . In the examples within the scope of the present invention, the dielectric loss tan δ is tan δ ≦ 15 × 10 −4 and the ferromagnetic resonance half-value width ΔH is ΔH ≦ 10000 (A / m) without causing a heterogeneous phase in the sintered body.

本発明の範囲内の実施例においては、共に850℃以上920℃以下の温度で緻密な焼結体を得ることができ、かつ誘電損失tanδがtanδ≦15×10−4および強磁性共鳴半値幅ΔHがΔH<10000(A/m)となる。また、−20から60℃までの飽和磁化4πMsの温度係数αmが、−0.38%/℃〜−0.2%/℃となり、永久磁石との温度特性を補償することができる。 In the examples within the scope of the present invention, a dense sintered body can be obtained at a temperature of 850 ° C. or more and 920 ° C. or less , and the dielectric loss tan δ is tan δ ≦ 15 × 10 −4 and the ferromagnetic resonance half width. ΔH is ΔH <10000 (A / m). Further, the temperature coefficient αm of saturation magnetization 4πMs from −20 ° C. to 60 ° C. becomes −0.38% / ° C. to −0.2% / ° C., and the temperature characteristics with the permanent magnet can be compensated.

本発明に係る多結晶セラミック磁性体材料からなるマイクロ波磁性体と、それを用いた非可逆回路素子について説明する。図1は、この発明の一実施例に用いたマイクロ波磁性体(中心導体組立体)の外観を示す斜視図である。図2は前記中心導体組立体の分解斜視図であり、図3は本発明の一実施例に係る非可逆回路素子の分解斜視図である。
この非可逆回路素子の基本構成としては、中心導体組立体4、中央部の透孔の中に前記中心導体組立体4を組み込むようになしたコンデンサ積層体5、このコンデンサ積層体5に組み入れられるチップあるいは抵抗膜で形成した抵抗体90、中心導体組立体4に直流磁界を印加する永久磁石3、磁性ヨークを兼ねる金属製の上ケース1と同じく下ケース2とからなっている。コンデンサ積層体5と下ケース2との間に、実装基板との接続端子を備え、中心導体組立体4とコンデンサ積層体5を接続する接続電極を備えた樹脂ベース6を配置している。
A microwave magnetic material made of a polycrystalline ceramic magnetic material according to the present invention and a nonreciprocal circuit device using the same will be described. FIG. 1 is a perspective view showing the appearance of a microwave magnetic body (central conductor assembly) used in one embodiment of the present invention. FIG. 2 is an exploded perspective view of the central conductor assembly, and FIG. 3 is an exploded perspective view of a non-reciprocal circuit device according to an embodiment of the present invention.
As the basic configuration of the nonreciprocal circuit element, a central conductor assembly 4, a capacitor multilayer body 5 in which the central conductor assembly 4 is incorporated in a central through hole, and the capacitor multilayer body 5 are incorporated. A resistor 90 formed of a chip or a resistive film, a permanent magnet 3 for applying a DC magnetic field to the central conductor assembly 4, and a metal upper case 1 that also serves as a magnetic yoke, as well as a lower case 2. Between the capacitor multilayer body 5 and the lower case 2, a resin base 6 having a connection terminal to the mounting substrate and a connection electrode for connecting the central conductor assembly 4 and the capacitor multilayer body 5 is disposed.

前記中心導体組立体4は、相対向する第1および第2の主面と当該主面間を連結する側面を備えた矩形状のマイクロ波磁性体に中心導体を積層配置するものである。
この中心導体組立体4の作製工程は次の通りである。まず、Bi、Y、CaCO、Fe、In、Vを出発原料として、主成分が一般式(Y1.55Bi0.55Ca0.9)(Fe3.95In0.3Al0.30.45)O12(原子%)(試料No.16)となるように秤量し、前記出発原料をボールミルにて湿式混合し、得られたスラリーを乾燥した後、850℃の温度で仮焼し、ボールミルにて湿式粉砕した。
次に、副成分として酸化銅(CuO)、酸化ジルコニウム(ZrO)を用意し、上記のようにして得た母材粉末100重量部に対して、CuO 0.35重量%、ZrO 0.1重量%になるように秤量し加え、スラリー濃度40%となるようにイオン交換水を加え、ボールミルにて20から30時間湿式粉砕し、その後、乾燥して多結晶セラミック磁性体材料を得た。なお上記のようにして得られた粉末の平均粒径は0.5から2.0μmに調整した。
この磁性材料粉末と有機バインダー、可塑材、および、有機溶剤をボールミルにて混合し粘度を調整した後、ドクターブレード法にて40μm〜250μmの磁性体セラミックグリーンシートを作製した。
The central conductor assembly 4 is formed by laminating and arranging a central conductor on a rectangular microwave magnetic body having first and second main surfaces facing each other and side surfaces connecting the main surfaces.
The manufacturing process of the central conductor assembly 4 is as follows. First, Bi 2 O 3 , Y 2 O 3 , CaCO 3 , Fe 2 O 3 , In 2 O 3 , V 2 O 5 are used as starting materials, and the main components are represented by the general formula (Y 1.55 Bi 0.55 Ca 0 .9 ) (Fe 3.95 In 0.3 Al 0.3 V 0.45 ) O 12 (Atom%) (Sample No. 16) and weighed the starting materials in a ball mill. The obtained slurry was dried, calcined at a temperature of 850 ° C., and wet pulverized with a ball mill.
Next, copper oxide (CuO) and zirconium oxide (ZrO 2 ) were prepared as subcomponents, and 0.35% by weight of CuO, 0.35% by weight of ZrO 2 with respect to 100 parts by weight of the base material powder obtained as described above. Weighed to 1% by weight, added ion exchanged water to a slurry concentration of 40%, wet crushed with a ball mill for 20 to 30 hours, and then dried to obtain a polycrystalline ceramic magnetic material. . The average particle size of the powder obtained as described above was adjusted to 0.5 to 2.0 μm.
The magnetic material powder, an organic binder, a plasticizer, and an organic solvent were mixed by a ball mill to adjust the viscosity, and then a magnetic ceramic green sheet having a thickness of 40 μm to 250 μm was prepared by a doctor blade method.

得られたセラミックグリーンシートに、φ0.2〜φ0.4のビアホール(図中、黒丸で表示)をレーザ加工にて形成し、中心導体となる導電性ペーストを印刷し、さらにのグリーンシートを重ねて80℃に加熱して12MPaの圧力で熱圧着して積層体とした後、所定の大きさ、形状となるように、例えばダイシングソーや鋼刃で前記積層体を切断した後、980で、2時間焼成した。前記ビアホールには、Ag導体が充填されており、各中心導体44a〜44cとグランド電極Gnd、入出力電極In、Out、Loadを接続している。このようにして、中心導体44a〜44cが互いに絶縁を保って等角度で交差し、第2の主面43fにグランド電極GNDと入出力電極In、Out、LoadをLGA(Land Grid Array)として備える中心導体組立体4を得た。   Via holes of φ0.2 to φ0.4 (indicated by black circles in the figure) are formed by laser processing on the obtained ceramic green sheet, and the conductive paste that becomes the central conductor is printed, and further green sheets are stacked. After heating to 80 ° C. and thermocompression bonding at a pressure of 12 MPa to form a laminate, after cutting the laminate with a dicing saw or steel blade, for example, to a predetermined size and shape, at 980, Baked for 2 hours. The via hole is filled with an Ag conductor, and the center conductors 44a to 44c are connected to the ground electrode Gnd and the input / output electrodes In, Out, and Load. In this way, the central conductors 44a to 44c cross each other at an equal angle while keeping insulation from each other, and the ground electrode GND and the input / output electrodes In, Out, and Load are provided as an LGA (Land Grid Array) on the second main surface 43f. A central conductor assembly 4 was obtained.

前記コンデンサ積層体5は、その上面および積層体内部には整合容量を形成するための入力容量電極C1、出力容量電極C2、ロード容量電極C3と、終端抵抗90が配置されるグランド電極Gndが形成されている。また、コンデンサ積層体5の裏面には樹脂ベース6に対して電気的に接続するための入出力電極In、Out、Load、グランド電極Gndがそれぞれ設けられている。   The capacitor laminate 5 has an input capacitance electrode C1, an output capacitance electrode C2, a load capacitance electrode C3 for forming a matching capacitance, and a ground electrode Gnd on which a termination resistor 90 is disposed on the upper surface and inside the laminate. Has been. In addition, input / output electrodes In, Out, Load, and a ground electrode Gnd for electrical connection to the resin base 6 are provided on the back surface of the capacitor laminate 5.

前記樹脂ベース6は、例えば0.1mm厚さの銅板を用い、射出成形によりこの銅板と液晶ポリマーを一体成形して製造される。この樹脂ベース6の上面、すなわちコンデンサ積層体5との接続面側には、接続電極In、Out、Load、GNDが導体板で形成され、樹脂部分を含めて平面状に構成されている。しかも、接続電極In、Out、Load、GNDは同一平面上に形成され、接続電極GND、Loadと端子G、接続電極In、Outは端子電極P1、P2と、それぞれ同一の導体板で構成され、電気的に接続している。   The resin base 6 is manufactured by, for example, using a copper plate having a thickness of 0.1 mm and integrally molding the copper plate and the liquid crystal polymer by injection molding. On the upper surface of the resin base 6, that is, on the connection surface side with the capacitor laminate 5, connection electrodes In, Out, Load, and GND are formed of a conductor plate, and are configured in a planar shape including the resin portion. In addition, the connection electrodes In, Out, Load, GND are formed on the same plane, the connection electrodes GND, Load and the terminal G, and the connection electrodes In, Out are configured by the same conductor plate, respectively, as the terminal electrodes P1, P2. Electrically connected.

永久磁石は、日立金属株式会社製のLa−Co置換フェライト磁石YBM−9BEを方形に形成したものを用いた。この永久磁石は、残留磁束が430mTから450mTであり、残留磁束密度の温度係数が−0.20%〜−0.18%である。なお、永久磁石の形状については。円盤状、六角形など任意の形状のものを採用し得る。このことは、ガーネットの形状についても同様である。   As the permanent magnet, a La-Co substituted ferrite magnet YBM-9BE manufactured by Hitachi Metals, Ltd., which was formed in a square shape was used. This permanent magnet has a residual magnetic flux of 430 mT to 450 mT and a temperature coefficient of the residual magnetic flux density of −0.20% to −0.18%. About the shape of the permanent magnet. Arbitrary shapes such as a disk shape and a hexagonal shape can be adopted. The same applies to the shape of the garnet.

得られた中心導体組立体4をコンデンサ積層体5の透孔内に配置した後、樹脂ベース6の接続電極を介して接続し、中心導体組立体4の上側に永久磁石3を配置し、これらを上ケース1と下ケース2で覆って非可逆回路素子とした。本発明の非可逆回路素子の挿入損失について温度特性を評価したが、温度変化にともなう挿入損失が最小となる周波数の変動が小さく、優れた温度特性を備えた非可逆回路素子が得られた。   After the obtained center conductor assembly 4 is placed in the through hole of the capacitor multilayer body 5, it is connected via the connection electrode of the resin base 6, and the permanent magnet 3 is placed on the upper side of the center conductor assembly 4. Was covered with an upper case 1 and a lower case 2 to form a nonreciprocal circuit device. The temperature characteristics of the non-reciprocal circuit element of the present invention were evaluated for the insertion loss. However, the non-reciprocal circuit element having excellent temperature characteristics was obtained with a small variation in frequency at which the insertion loss accompanying temperature change was minimized.

本発明によれば、850℃以上920℃以下の低温で焼成することができ、低抵抗の金属材料との同時焼成が可能で。Bi置換型においても異相の生成がなく強磁性共鳴半値幅ΔHおよび誘電損失tanδが小さい多結晶セラミック磁性体材料と、マイクロ波磁性体及びこれを用いた非可逆回路素子を提供することが出来る。これにより、サーキュレータ、アイソレータなどのマイクロ波非可逆回路素子に応用して、優れたマイクロ波特性と低損失を実現することができる。 According to the present invention, firing can be performed at a low temperature of 850 ° C. or more and 920 ° C. or less , and simultaneous firing with a low- resistance metal material is possible. It is possible to provide a polycrystalline ceramic magnetic material, a microwave magnetic material, and a nonreciprocal circuit device using the same, in which a Bi substitution type does not generate a different phase and has a small ferromagnetic resonance half width ΔH and a small dielectric loss tan δ. As a result, it can be applied to microwave nonreciprocal circuit elements such as circulators and isolators to realize excellent microwave characteristics and low loss.

本発明の一実施例に係る非可逆回路素子のマイクロ波磁性体(中心導体組立体)の外観を示す斜視図である。It is a perspective view which shows the external appearance of the microwave magnetic body (center conductor assembly) of the nonreciprocal circuit device based on one Example of this invention. 本発明の一実施例に係る非可逆回路素子のマイクロ波磁性体(中心導体組立体)の分解斜視図である。It is a disassembled perspective view of the microwave magnetic body (center conductor assembly) of the nonreciprocal circuit device based on one Example of this invention. 本発明の一実施例に係る非可逆回路素子の分解斜視図である。1 is an exploded perspective view of a non-reciprocal circuit device according to one embodiment of the present invention.

符号の説明Explanation of symbols

1 上ケース
2 下ケース
3 永久磁石
4 中心導体組立体
5 コンデンサ積層体
6 樹脂ベース
44a〜44c 中心導体
DESCRIPTION OF SYMBOLS 1 Upper case 2 Lower case 3 Permanent magnet 4 Center conductor assembly 5 Capacitor laminated body 6 Resin bases 44a-44c Center conductor

Claims (5)

主成分が、一般式(Y3.0−x−yBiCa)(Fe5−α−β−γInαAlβVγ)O12で表される組成を有し、
x、yの値が、0.4<x≦0.9、0.5≦y≦1.2であり、
α、β、γの値が、0≦α≦0.4、0≦β≦0.45、0.25≦γ≦0.6、ただし0.1≦α+β≦0.75の範囲内にあって、
副成分としてCu及びZrを含み、その含有量は、前記主成分100重量部に対して、CuをCuO換算でCuO≦0.8重量%、ZrをZrO換算でZrO≦0.8重量%であり、ガーネット構造を有する相を主成分とし、850℃以上920℃以下の温度で焼結することを特徴とする多結晶セラミック磁性体材料。
Main component has a composition represented by the general formula (Y 3.0-x-y Bi x Ca y) (Fe 5-α-β-γ In α Al β Vγ) O 12,
the values of x and y are 0.4 <x ≦ 0.9, 0.5 ≦ y ≦ 1.2,
The values of α, β, and γ are in the range of 0 ≦ α ≦ 0.4, 0 ≦ β ≦ 0.45, 0.25 ≦ γ ≦ 0.6, but 0.1 ≦ α + β ≦ 0.75. And
Include Cu及beauty Z r as a sub-component, the content thereof is, with respect to the main component as 100 parts by weight, C uO ≦ 0.8 wt% of Cu in terms of CuO, Z and rO 2 ≦ a Zr in terms of ZrO 2 A polycrystalline ceramic magnetic material characterized by comprising 0.8% by weight of a phase having a garnet structure as a main component and sintering at a temperature of 850 ° C. or higher and 920 ° C. or lower .
飽和磁化4πMsが60mT〜130mTであり、その温度係数αmが、−0.38%/℃〜−0.2%/℃であり、強磁性共鳴半値幅ΔHが8200A/m以下であることを特徴とする請求項1に記載の多結晶セラミック磁性体材料。 The saturation magnetization 4πMs is 60 mT to 130 mT, the temperature coefficient αm is −0.38% / ° C. to −0.2% / ° C., and the ferromagnetic resonance half width ΔH is 8200 A / m or less. The polycrystalline ceramic magnetic material according to claim 1. 請求項1又は2に記載の多結晶セラミック磁性体材料と、Ag、Ag合金のいずれかを含む導体ペーストとを一体焼結してなるマイクロ波磁性体であって、前記マイクロ波磁性体の内部及び/又は表面に前記導体ペーストで形成された電極パターンを備えることを特徴とするマイクロ波磁性体。   A microwave magnetic body obtained by integrally sintering the polycrystalline ceramic magnetic material according to claim 1 and a conductor paste containing either Ag or an Ag alloy, wherein the inside of the microwave magnetic body And / or an electrode pattern formed of the conductive paste on a surface thereof. 請求項3に記載のマイクロ波磁性体に形成された電極パターンを中心導体とし、前記中心導体に接続するコンデンサと、前記マイクロ波磁性体に直流磁界を与えるフェライト磁石を備えたことを特徴とする非可逆回路素子。   An electrode pattern formed on the microwave magnetic body according to claim 3 is used as a central conductor, and a capacitor connected to the central conductor and a ferrite magnet that applies a DC magnetic field to the microwave magnetic body are provided. Non-reciprocal circuit element. 前記フェライト磁石は、残留磁束密度Brが420mT以上であり、その温度係数が−0.15%/℃〜−0.25%/℃であることを特徴とする請求項4に記載の非可逆回路素子。   The nonreciprocal circuit according to claim 4, wherein the ferrite magnet has a residual magnetic flux density Br of 420 mT or more and a temperature coefficient of -0.15% / ° C to -0.25% / ° C. element.
JP2006301473A 2005-11-07 2006-11-07 Polycrystalline ceramic magnetic material, microwave magnetic material, and non-reciprocal circuit device using the same Active JP5365967B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006301473A JP5365967B2 (en) 2005-11-07 2006-11-07 Polycrystalline ceramic magnetic material, microwave magnetic material, and non-reciprocal circuit device using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005321941 2005-11-07
JP2005321941 2005-11-07
JP2006301473A JP5365967B2 (en) 2005-11-07 2006-11-07 Polycrystalline ceramic magnetic material, microwave magnetic material, and non-reciprocal circuit device using the same

Publications (2)

Publication Number Publication Date
JP2007145705A JP2007145705A (en) 2007-06-14
JP5365967B2 true JP5365967B2 (en) 2013-12-11

Family

ID=38207552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006301473A Active JP5365967B2 (en) 2005-11-07 2006-11-07 Polycrystalline ceramic magnetic material, microwave magnetic material, and non-reciprocal circuit device using the same

Country Status (1)

Country Link
JP (1) JP5365967B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5488954B2 (en) * 2008-09-30 2014-05-14 日立金属株式会社 Polycrystalline ceramic magnetic material, microwave magnetic material, and non-reciprocal circuit device using the same
JP5126616B2 (en) * 2009-05-26 2013-01-23 株式会社村田製作所 Magnetic ceramic, ceramic electronic component, and method of manufacturing ceramic electronic component
JP2011073937A (en) * 2009-09-30 2011-04-14 Hitachi Metals Ltd Polycrystal magnetic ceramic, microwave magnetic substance, and irreversible circuit element using the same
US8696925B2 (en) * 2010-11-30 2014-04-15 Skyworks Solutions, Inc. Effective substitutions for rare earth metals in compositions and materials for electronic applications
KR20140043123A (en) 2011-07-05 2014-04-08 파나소닉 주식회사 Rare-earth aluminum garnet type fluorescent substance and light-emitting device obtained using same
US9552917B2 (en) * 2013-09-20 2017-01-24 Skyworks Solutions, Inc. Materials, devices and methods related to below-resonance radio-frequency circulators and isolators
CN112960977B (en) * 2021-03-04 2022-08-16 苏州工业园区凯艺精密科技有限公司 High-dielectric-constant microwave ferrite material and preparation method and application thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3405030B2 (en) * 1995-12-19 2003-05-12 松下電器産業株式会社 Method for producing magnetic material for microwave and high frequency circuit component using the same
JP2001358504A (en) * 2000-06-14 2001-12-26 Murata Mfg Co Ltd Non-reciprocal circuit element and communication apparatus
JP3772963B2 (en) * 2000-08-18 2006-05-10 株式会社村田製作所 Manufacturing method of magnetic material for high frequency
JP2003168902A (en) * 2001-12-03 2003-06-13 Matsushita Electric Ind Co Ltd Non-reciprocative circuit element, and wireless terminal using the same
JP4106650B2 (en) * 2002-02-19 2008-06-25 日立金属株式会社 Non-reciprocal circuit element

Also Published As

Publication number Publication date
JP2007145705A (en) 2007-06-14

Similar Documents

Publication Publication Date Title
JP5092750B2 (en) Polycrystalline ceramic magnetic material, microwave magnetic component, and nonreciprocal circuit device using the same
JP5365967B2 (en) Polycrystalline ceramic magnetic material, microwave magnetic material, and non-reciprocal circuit device using the same
JP2011073937A (en) Polycrystal magnetic ceramic, microwave magnetic substance, and irreversible circuit element using the same
JP5082858B2 (en) Non-reciprocal circuit element
JP5488954B2 (en) Polycrystalline ceramic magnetic material, microwave magnetic material, and non-reciprocal circuit device using the same
US7382211B2 (en) Non-reciprocal circuit device
US6624713B2 (en) Magnetic material for high frequencies and high-frequency circuit component
JP4947289B2 (en) Non-reciprocal circuit element
JPH11283821A (en) Nonreversible circuit element
US6235221B1 (en) Multilayer ceramic part
JP3997520B2 (en) Non-reciprocal circuit element
JP4081734B2 (en) High frequency circuit components
JP4423619B2 (en) Non-reciprocal circuit element
JP5556102B2 (en) Magnetic material for high frequency, non-reciprocal circuit element component, and non-reciprocal circuit element
JP3405013B2 (en) Method for producing magnetic material and high-frequency circuit component using the same
JPH08288116A (en) Polycrystalline ceramic magnetic material and high frequency circuit component made of the material
Liu et al. Low‐Temperature Co‐Fired Magnetoceramics for RF Applications
JP4348698B2 (en) Non-reciprocal circuit element
JP5240140B2 (en) Magnetic material for high frequency, non-reciprocal circuit element component, and non-reciprocal circuit element
JP4650995B2 (en) Lumped constant type nonreciprocal circuit device
JP4650996B2 (en) Lumped constant nonreciprocal circuit device and mobile communication device using the same
JP2007037087A (en) Non-reciprocal circuit element
JP2007267052A (en) Non-reversible circuit element
JP2000223911A (en) Lumped constant irreversible circuit element
JPH09121103A (en) High frequency circuit element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091016

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120907

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121106

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130614

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130819

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130901

R150 Certificate of patent or registration of utility model

Ref document number: 5365967

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350