JP2002260912A - Sintered magnetic oxide and high-frequency circuit part using the same - Google Patents

Sintered magnetic oxide and high-frequency circuit part using the same

Info

Publication number
JP2002260912A
JP2002260912A JP2001056153A JP2001056153A JP2002260912A JP 2002260912 A JP2002260912 A JP 2002260912A JP 2001056153 A JP2001056153 A JP 2001056153A JP 2001056153 A JP2001056153 A JP 2001056153A JP 2002260912 A JP2002260912 A JP 2002260912A
Authority
JP
Japan
Prior art keywords
mol
sintered body
terms
magnetic oxide
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001056153A
Other languages
Japanese (ja)
Other versions
JP4074438B2 (en
Inventor
Hidenobu Umeda
秀信 梅田
Migaku Murase
琢 村瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2001056153A priority Critical patent/JP4074438B2/en
Application filed by TDK Corp filed Critical TDK Corp
Priority to KR10-2001-7016331A priority patent/KR100423961B1/en
Priority to US10/070,706 priority patent/US6660179B2/en
Priority to EP01954432A priority patent/EP1364927B1/en
Priority to DE60136223T priority patent/DE60136223D1/en
Priority to CNB018087744A priority patent/CN1232471C/en
Priority to PCT/JP2001/006691 priority patent/WO2002070432A1/en
Priority to TW90119381A priority patent/TW572864B/en
Publication of JP2002260912A publication Critical patent/JP2002260912A/en
Application granted granted Critical
Publication of JP4074438B2 publication Critical patent/JP4074438B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/342Oxides
    • H01F1/344Ferrites, e.g. having a cubic spinel structure (X2+O)(Y23+O3), e.g. magnetite Fe3O4
    • H01F1/348Hexaferrites with decreased hardness or anisotropy, i.e. with increased permeability in the microwave (GHz) range, e.g. having a hexagonal crystallographic structure

Abstract

PROBLEM TO BE SOLVED: To provide a sintered magnetic oxide which can be baked at 1000 deg.C or below, especially around 900 deg.C, is high in electric resistivity, low in permittivity, and contains Y-type hexagonal ferrite as the main component ferrite and a high-frequency circuit part using the same. SOLUTION: This sintered magnetic oxide contains Y-type hexagonal ferrite of 80% or above. The sintered magnetic oxide contains 3 to 15 mol% cobalt oxide in terms of CoO, 5 to 17 mol% copper oxide in terms of CuO, 57 to 61 mol% iron oxide in terms of Fe2 O3 , and residual mol% AO (AO is either BaO or SrO) as main components and 0.6 to 7 wt.% borosilicate glass, boron zinc silicate glass, or bismuth glass oxide as an auxiliary component.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高周波回路部品用
に使用される磁性酸化物焼結体およびそれを用いた高周
波回路部品に関する。
The present invention relates to a magnetic oxide sintered body used for high-frequency circuit components and a high-frequency circuit component using the same.

【0002】[0002]

【従来の技術】近年、電子機器の小型化や高周波化に伴
い、高周波帯域において高いインダクタンス、インピー
ダンスを持つ電子部品の需要が高まっている。小型で高
いインダクタンス、インピーダンスを得るためには、い
わゆる印刷工法やシート工法によって磁性体中に導体を
内蔵した積層構造のコイルを作製することが望ましい。
積層構造とすることでコイルの巻数を多くすることがで
き、構造も閉磁路となるため高いインダクタンス、イン
ピーダンスが得られる。
2. Description of the Related Art In recent years, demands for electronic components having high inductance and impedance in a high frequency band have been increasing along with miniaturization and higher frequency of electronic devices. In order to obtain a small size and high inductance and impedance, it is desirable to produce a coil having a laminated structure in which a conductor is built in a magnetic material by a so-called printing method or sheet method.
With the laminated structure, the number of turns of the coil can be increased, and the structure also becomes a closed magnetic circuit, so that high inductance and impedance can be obtained.

【0003】焼結体に内蔵される導体材料としては、電
気抵抗率、融点、コストの面から一般に銀(Ag)が多
く用いられている。銀の融点は1000℃以下であるた
め,積層構造用の磁性体材料としては、従来より一般
に、900℃の焼成でも高い焼結密度が得られるNiZ
n系フェライトが用いられてきた。
[0003] As a conductive material incorporated in a sintered body, silver (Ag) is generally widely used in view of electric resistivity, melting point and cost. Since the melting point of silver is 1000 ° C. or lower, NiZ which can obtain a high sintered density even at 900 ° C. is generally used as a magnetic material for a laminated structure.
N-based ferrites have been used.

【0004】しかしながら、NiZn系フェライトは磁
気異方性が低いために数百MHzの周波数で自然共鳴を
起こしてしまい、GHzの周波数帯域で使用することが
できなかった。
[0004] However, NiZn-based ferrite has a low magnetic anisotropy, causing natural resonance at a frequency of several hundred MHz, and cannot be used in a frequency band of GHz.

【0005】高周波仕様として、非磁性体を用いた空心
コイルが用いられることもあるが、非磁性体を用いると
高いインダクタンスやインピーダンスを得ることが困難
になる。
[0005] An air-core coil using a non-magnetic material may be used as a high-frequency specification. However, if a non-magnetic material is used, it is difficult to obtain high inductance and impedance.

【0006】この一方で六方晶フェライトは、六角板状
結晶の面内方向とこの面に垂直な方向の磁気的異方性が
異なっているため、自然共鳴を起こしにくく、GHzの
周波数帯域まで高い透磁率を持つという特徴をもってい
る。しかしながら、このものは、所望の焼結密度や磁気
特性を得るためには、焼成温度を高くする必要があっ
た。
On the other hand, hexagonal ferrite is unlikely to cause spontaneous resonance due to the difference in magnetic anisotropy between the in-plane direction of the hexagonal plate-like crystal and the direction perpendicular to this plane, and is high up to the GHz frequency band. It has the characteristic of having magnetic permeability. However, in this case, it was necessary to raise the firing temperature in order to obtain desired sintered density and magnetic properties.

【0007】また、従来のいわゆるY型六方晶フェライ
トの電気抵抗率は、高くてもせいぜい1×105Ω・m
程度までであり、また高特性を得るためにCuやZnな
どで置換したものについては、その電気抵抗率が1×1
4Ω・m程度であり、これらの値は、電子部品材料に
求められる電気抵抗率1×105Ω・mを超える値と比
べると低いといわざるを得ない。
The electrical resistivity of the conventional so-called Y-type hexagonal ferrite is at most 1 × 10 5 Ω · m at most.
And the electric resistivity of the material substituted with Cu, Zn or the like in order to obtain high characteristics is 1 × 1
0 is about 4 Omega · m, these values must be said as compared with a value greater than the electrical resistivity of 1 × 10 5 Ω · m which is required for electronic component materials low.

【0008】さらに、六方晶フェライトはスピネル型フ
ェライトに比べて誘電率が高いため、インダクタに発生
する寄生容量が大きくなってしまい、インダクタが自己
共振を起こしやすく、インダクタンスおよびインピーダ
ンスが低くなってしまうなどの問題があった。
Further, since hexagonal ferrite has a higher dielectric constant than spinel type ferrite, the parasitic capacitance generated in the inductor increases, the inductor easily causes self-resonance, and the inductance and impedance decrease. There was a problem.

【0009】[0009]

【発明が解決しようとする課題】このような実状のもと
に本発明は創案されたものであり、その目的は、上記の
課題を解決し、1000℃以下特に、900℃付近で焼
成可能であり、電気抵抗率が高く、誘電率が低い、Y型
六方晶フェライトを主成分フェライトとする磁性酸化物
焼結体およびこれを用いた高周波回路部品を提供するこ
とにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and an object of the present invention is to solve the above-mentioned problems and to make it possible to bake at 1000 ° C. or lower, especially around 900 ° C. It is an object of the present invention to provide a magnetic oxide sintered body having a high electric resistivity and a low dielectric constant and containing Y-type hexagonal ferrite as a main component ferrite, and a high-frequency circuit component using the same.

【0010】[0010]

【課題を解決するための手段】このような課題を解決す
るために、本発明は、Y型六方晶フェライトで80%以
上占有されてなる磁性酸化物焼結体であって、該磁性酸
化物焼結体は、主成分として酸化コバルトをCoO換算
で3〜15モル%、酸化銅をCuO換算で5〜17モル
%、酸化鉄をFe23換算で57〜61モル%、残部を
AO(AOは、BaOまたはSrOの少なくとも1種)
として含み、副成分として硼珪酸ガラス、硼珪酸亜鉛ガ
ラスまたはビスマスガラスを0.6〜7wt%含有して
なるように構成される。
In order to solve such problems, the present invention relates to a magnetic oxide sintered body occupied by 80% or more of Y-type hexagonal ferrite. In the sintered body, cobalt oxide is 3 to 15 mol% in terms of CoO, copper oxide is 5 to 17 mol% in terms of CuO, iron oxide is 57 to 61 mol% in terms of Fe 2 O 3 , and the remainder is AO as a main component. (AO is at least one of BaO and SrO)
And a borosilicate glass, a zinc borosilicate glass or a bismuth glass as an auxiliary component is contained in an amount of 0.6 to 7 wt%.

【0011】また、本発明は、磁性酸化物焼結体中に導
電体が埋設された構造を備える高周波回路部品であっ
て、前記磁性酸化物焼結体は、Y型六方晶フェライトで
80%以上占有され、かつ、該磁性酸化物焼結体は、主
成分として酸化コバルトをCoO換算で3〜15モル
%、酸化銅をCuO換算で5〜17モル%、酸化鉄をF
23換算で57〜61モル%、残部をAO(AOは、
BaOまたはSrOの少なくとも1種)として含み、副
成分として硼珪酸ガラス、硼珪酸亜鉛ガラスまたはビス
マスガラスを0.6〜7wt%含有してなるように構成
される。
[0011] The present invention also relates to a magnetic oxide sintered body.
A high-frequency circuit component with a structure in which
The magnetic oxide sintered body is a Y-type hexagonal ferrite.
80% or more, and the magnetic oxide sintered body mainly
Cobalt oxide as a component is 3 to 15 mol in terms of CoO
%, Copper oxide is 5 to 17 mol% in terms of CuO, and iron oxide is F
e TwoOThree57-61 mol% in conversion, the remainder is AO (AO is
BaO or SrO).
Borosilicate glass, zinc borosilicate glass or bis
Constructed to contain 0.6-7 wt% of mass glass
Is done.

【0012】また、本発明の好ましい態様として、前記
磁性酸化物焼結体の製造における仮焼温度は、850℃
〜1000℃として構成される。
In a preferred embodiment of the present invention, the calcination temperature in the production of the magnetic oxide sintered body is 850 ° C.
と し て 1000 ° C.

【0013】また、本発明の高周波回路部品の好ましい
態様として、前記導電体は、銀(Ag)を主成分として
なるように構成される。
In a preferred embodiment of the high-frequency circuit component according to the present invention, the conductor is constituted so that silver (Ag) is a main component.

【0014】[0014]

【発明の実施の形態】以下、本発明の磁性酸化物焼結体
について詳細に説明する。本発明の磁性酸化物焼結体は
セラミック焼結体であるために通常のセラミック作製プ
ロセスで製造することができる。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, will be described in detail magnetic oxide sintered body of the present invention. Since the magnetic oxide sintered body of the present invention is a ceramic sintered body, it can be manufactured by an ordinary ceramic manufacturing process.

【0015】本発明の磁性酸化物焼結体は、主成分とし
て酸化コバルトをCoO換算で3〜15モル%(好まし
くは、3〜5モル%)、酸化銅をCuO換算で5〜17
モル%(好ましくは、5.5〜10モル%)、酸化鉄を
Fe23換算で57〜61モル%(好ましくは、59〜
60モル%)、残部をAO(AOは、BaOまたはSr
Oの少なくとも1種)として含んでいる。AOの形態
は、BaOあるいはSrOの単独形態、またはBaOと
SrOの混在形態である。
In the magnetic oxide sintered body of the present invention, as a main component, cobalt oxide is 3 to 15 mol% (preferably 3 to 5 mol%) in terms of CoO, and copper oxide is 5 to 17 mol% in terms of CuO.
Mol% (preferably 5.5 to 10 mol%), the iron oxide 57-61 mole% calculated as Fe 2 O 3 (preferably, 59 to
AO (AO is BaO or Sr
O at least one). The form of AO is a single form of BaO or SrO, or a mixed form of BaO and SrO.

【0016】また、本発明の磁性酸化物焼結体は、副成
分として硼珪酸ガラス、硼珪酸亜鉛ガラスまたはビスマ
スガラスを0.6〜7wt%(好ましくは0.6〜5w
t%)、含有している。
Further, the magnetic oxide sintered body of the present invention contains borosilicate glass, zinc borosilicate glass or bismuth glass as an auxiliary component in an amount of 0.6 to 7 wt% (preferably 0.6 to 5 watts).
t%).

【0017】硼珪酸ガラスとは、一般にB23、SiO
2を含むガラスを示し、硼珪酸亜鉛ガラスとは、一般に
23、SiO2、ZnOを含むガラスを示し、ビスマ
スガラスとは、一般にBi23を含むガラスを示す。こ
れらの各ガラスの定義において上記の各成分が主成分で
ある必要はない。
[0017] The borosilicate glass generally B 2 O 3, SiO
2 indicates a glass containing zinc borosilicate glass generally indicates a glass containing B 2 O 3 , SiO 2 and ZnO, and a bismuth glass generally indicates a glass containing Bi 2 O 3 . In the definition of each of these glasses, each of the above components need not be the main component.

【0018】これらの副成分のガラスの含有形態として
は、硼珪酸ガラス、硼珪酸亜鉛ガラスおよびビスマスガ
ラスの中の1種を単独で用いても良いし、また、これら
の中の2種または3種を混合して用いてもよい。2種以
上を混合して用いる場合には、混合した総計重量%が上
記の範囲に入るようにすればよい。
As a form of containing the glass of these subcomponents, one of borosilicate glass, zinc borosilicate glass and bismuth glass may be used alone, or two or three of these may be used. Seeds may be used in combination. When two or more kinds are used as a mixture, the total weight% of the mixture may be within the above range.

【0019】このようなガラスを添加することにより、
高電気抵抗率化(電気抵抗率を高くすること)および低
誘電率化(誘電率を低くすること)を得ることができ
る。従って、このような本願所定のガラスの添加によ
り、高周波回路部品としての例えば、積層部品材料に必
要な1×105Ω・m以上の電気抵抗率が得られる。さ
らに、本願所定のガラスの添加により、誘電率を低減さ
せる効果も発現し、本発明焼結体を高周波部品として用
いた場合、高い周波数において高いインピーダンスを得
ることや、インピーダンスの広帯域化に効果がある。
By adding such a glass,
It is possible to obtain high electric resistivity (high electric resistivity) and low dielectric constant (low dielectric constant). Therefore, by the addition of the glass specified in the present application, for example, an electrical resistivity of 1 × 10 5 Ω · m or more required for a laminated component material as a high frequency circuit component can be obtained. Furthermore, the addition of the prescribed glass of the present application also exerts an effect of reducing the dielectric constant, and when the sintered body of the present invention is used as a high-frequency component, it is possible to obtain a high impedance at a high frequency and to broaden the impedance. is there.

【0020】なお、これらのガラス添加は添加時におけ
る状態がガラスであることが必要である。焼成後、用い
たガラス成分は、ガラス状態の有無を問わず焼成体の中
に存在する。
The addition of these glasses requires that the state at the time of addition be glass. After firing, the glass components used are present in the fired body, whether or not in a glassy state.

【0021】これらのガラスの中では、特に、硼珪酸亜
鉛ガラスや硼珪酸ガラスが高電気抵抗率、低誘電率をよ
り効果的に実現させるために好ましい。また、同じガラ
ス添加量で比較した場合、90%以上の相対密度が得ら
れる温度を下げることができるという観点からは、特
に、ビスマスガラスが好ましい。
Among these glasses, zinc borosilicate glass and borosilicate glass are particularly preferable for realizing a high electric resistivity and a low dielectric constant more effectively. In addition, when compared with the same glass addition amount, bismuth glass is particularly preferable from the viewpoint that the temperature at which a relative density of 90% or more can be obtained can be reduced.

【0022】上記主成分の含有割合において、CoOが
3モル%未満となると、例えば2GHzにおける透磁率
が低下する(例えば2.0未満)という不都合が生じる
傾向にあり、CoOが15モル%を超えると、例えば5
00MHzにおける透磁率が低下する(例えば2.0未
満)という不都合が生じる傾向にある。
When the content of the main component is less than 3 mol%, there is a tendency that, for example, the magnetic permeability at 2 GHz decreases (for example, less than 2.0), and the content of CoO exceeds 15 mol%. And, for example, 5
There is a tendency that the magnetic permeability at 00 MHz decreases (for example, less than 2.0).

【0023】また、CuOが5モル%未満となると、仮
焼き温度が1000℃を超えるという不都合が生じる傾
向にあり、CuOが17モル%を超えると、透磁率が低
下する(例えば2.0以下)という不都合が生じる傾向
にある。
If the CuO content is less than 5 mol%, the calcination temperature tends to exceed 1000 ° C., and if the CuO content exceeds 17 mol%, the magnetic permeability decreases (for example, 2.0 or less). ) Tends to occur.

【0024】また、Fe23が57モル%未満となった
り、Fe23が61モル%を超えたりすると透磁率が低
下するという不都合が生じる傾向にある。
If Fe 2 O 3 is less than 57 mol% or Fe 2 O 3 is more than 61 mol%, the magnetic permeability tends to be disadvantageously reduced.

【0025】上記の副成分の含有割合において、上記所
定のガラスの含有量が0.6wt%未満となると、10
00℃以下の焼成で理論密度の90%以上が得られなく
なるという不都合が生じる傾向にあり、上記ガラスの含
有量が7wt%を超えると、透磁率が低下するという不
都合が生じる傾向にある。
When the content of the predetermined glass is less than 0.6 wt% in the content ratio of the subcomponent, 10%
When firing at a temperature of 00 ° C. or less, there is a tendency that 90% or more of the theoretical density cannot be obtained. When the content of the glass exceeds 7 wt%, a problem that the magnetic permeability tends to decrease tends to occur.

【0026】このようなガラス副成分の添加は、特に、
上記のCuO量の含有と相俟って低温焼結を顕著に実現
させることができる。焼成温度が低くなると、安価で電
気抵抗の低いAgのような低融点の電極材料を内蔵した
形で同時焼成し、電極一体型の閉磁路構成の素子を容易
に製造できる。このようにして製造された素子は、例え
ば、小型でかつ高いQ値を持つインダクタ、あるいは小
型で高周波帯の特に特定周波数でのインピーダンスが大
きいノイズフィルター等の高周波素子(高周波回路部
品)として利用される。
The addition of such glass sub-components is, in particular,
Low temperature sintering can be remarkably realized in combination with the above-mentioned content of CuO. When the firing temperature is lowered, co-firing is performed with a low-melting-point electrode material such as Ag, which is inexpensive and has low electric resistance, and an element having an electrode-integrated closed magnetic circuit configuration can be easily manufactured. The element manufactured in this manner is used, for example, as a small-sized inductor having a high Q value or a small-sized high-frequency element (high-frequency circuit component) such as a noise filter having a large impedance in a high-frequency band, particularly at a specific frequency. You.

【0027】さらに本発明における磁性酸化物焼結体
は、その80%以上、特に好ましくは、90%以上がY
型六方晶フェライトで形成されている。ここに言う
「%」は、エックス線回折強度のメインピーク比から算
出したものである。
Further, the magnetic oxide sintered body of the present invention has a Y content of 80% or more, particularly preferably 90% or more.
It is made of type hexagonal ferrite. Here, “%” is calculated from the main peak ratio of the X-ray diffraction intensity.

【0028】銀(Ag)のような低融点電極材料と同時
焼成する場合、本焼成温度が低くなるため、焼結後のY
型六方晶フェライトを80%以上とするためには、仮焼
時にY型六方晶フェライトを80%以上生成しておく必
要がある。組成によって異なるが、850℃付近からB
aFe1219およびBaFe24の分解が始まり、Y型
六方晶フェライトの生成が始まる。しかしながら、Ba
Fe1219およびBaFe24の分解が十分に進まなけ
ればY型六方晶フェライトの生成が進まない。従って、
Y型六方晶フェライトを80%以上とするために、仮焼
温度を850℃以上,特に、850℃〜1000℃とす
る必要がある。さらに、CuO量を好ましくは5.5〜
17モル%含有させる必要がある。仮焼温度が850℃
未満となったり、CuO量が所定量存在しないと、80
%を超えるY型六方晶フェライトの生成が困難となる。
また仮焼温度が1000℃を超えて高くなりすぎると、
細かい粉砕粉が得られない。細かい粉砕粉の作製は、低
温焼成には極めて重要な技術である。
When co-firing with a low-melting-point electrode material such as silver (Ag), the firing temperature becomes low, so that the sintered Y
In order to make the type hexagonal ferrite 80% or more, it is necessary to generate the Y type hexagonal ferrite 80% or more at the time of calcination. Depending on the composition, B
The decomposition of aFe 12 O 19 and BaFe 2 O 4 starts, and the formation of Y-type hexagonal ferrite starts. However, Ba
If the decomposition of Fe 12 O 19 and BaFe 2 O 4 does not proceed sufficiently, the formation of Y-type hexagonal ferrite does not proceed. Therefore,
In order to make the Y-type hexagonal ferrite 80% or more, the calcination temperature needs to be 850 ° C or more, particularly, 850 ° C to 1000 ° C. Further, the amount of CuO is preferably adjusted to 5.5 to 5.5.
It is necessary to contain 17 mol%. Calcination temperature is 850 ℃
If the amount is less than or less than the predetermined amount,
% Of Y-type hexagonal ferrite is difficult to form.
Also, if the calcination temperature is higher than 1000 ° C.,
Fine ground powder cannot be obtained. Production of fine ground powder is a very important technique for low-temperature firing.

【0029】このような観点から、上述のごとく仮焼温
度を850〜1000℃において、Y型六方晶フェライ
トの生成率を高くするためには、主成分としての前記C
uO量を好ましくは5.5〜17モル%含有させること
が必要となる。
From such a viewpoint, in order to increase the yield of Y-type hexagonal ferrite at a calcination temperature of 850 to 1000 ° C. as described above, the above-mentioned C as a main component is required.
It is necessary to contain the uO amount preferably at 5.5 to 17 mol%.

【0030】このような本発明における磁性酸化焼結体
は、磁性酸化物焼結体中に導電体が埋設された構造を備
える高周波回路部品、例えば、例えば、インピーダ、イ
ンダクタとして用いられる。
The magnetic oxide sintered body according to the present invention is used as a high-frequency circuit component having a structure in which a conductor is embedded in a magnetic oxide sintered body, for example, as an impedance or an inductor.

【0031】[0031]

【実施例】以下、具体的実施例を挙げて本発明をさらに
詳細に説明する。
The present invention will be described below in further detail with reference to specific examples.

【0032】[実験例I] (実施例および比較例サンプルの作製)焼結後の組成が
下記表1に示すような組成となるように各原料を秤量
し、鋼鉄製ボールミルで15時間湿式混合した。次に、
この混合粉を大気中、表1に記載された温度で2時間仮
焼きした。次いで、表1に示されるごとく所定のガラス
を所定量添加した後、鉄鋼製ボールミルで15時間粉砕
した。
[Experimental Example I] (Preparation of Samples of Examples and Comparative Examples) Each raw material was weighed so that the composition after sintering had the composition shown in Table 1 below, and was wet-mixed for 15 hours using a steel ball mill. did. next,
This mixed powder was calcined in the air at the temperature shown in Table 1 for 2 hours. Next, as shown in Table 1, a predetermined amount of a predetermined glass was added, and the mixture was pulverized with a steel ball mill for 15 hours.

【0033】このようにして得られた六方晶フェライト
粉を造粒して、100MPaの圧力で所望の形状に成形
した。
The hexagonal ferrite powder thus obtained was granulated and formed into a desired shape at a pressure of 100 MPa.

【0034】この成形体を大気中、表1に示される温度
で2時間焼結した。六方晶フェライト焼結体の組成は下
記表1に示すとおりであり、これらの各サンプルについ
て、25℃における周波数500MHzおよび2GHz
の透磁率、並びに電気抵抗率、誘電率、をそれぞれ測定
して表1に示した。透磁率は周波数500MHzおよび
2GHzの周波数において、2.0以上の値を目標とし
ている。また、電気抵抗率は1×105Ω・mの値を目
標としている。誘電率は低ければ低いほど良い。ちなみ
に、後述の実験結果より、電気抵抗率が1×105Ω・
mの値を超えていれば誘電率は30以下の低い値を示し
ている。
The compact was sintered in air at the temperature shown in Table 1 for 2 hours. The composition of the hexagonal ferrite sintered body is as shown in Table 1 below. For each of these samples, the frequency at 25 ° C. was 500 MHz and 2 GHz.
Table 1 shows the measured magnetic permeability, electrical resistivity, and dielectric constant. The permeability aims at a value of 2.0 or more at the frequencies of 500 MHz and 2 GHz. The electric resistivity is targeted at a value of 1 × 10 5 Ω · m. The lower the dielectric constant, the better. Incidentally, from the experimental results described later, the electric resistivity is 1 × 10 5 Ω ·
If it exceeds the value of m, the dielectric constant shows a low value of 30 or less.

【0035】なお、Y型六方晶フェライトによる占有率
は、焼結体の粉砕粉を用いて、X線回折ピークの強度比
より算出した。
The occupancy by the Y-type hexagonal ferrite was calculated from the intensity ratio of X-ray diffraction peaks using the pulverized powder of the sintered body.

【0036】[0036]

【表1】 [Table 1]

【0037】[0037]

【表2】 [Table 2]

【0038】[実験例II]上記実験例Iにおける実施例I
−6サンプルの主成分において、添加成分の種類および
添加量を下記表2に示すとおり変えて種々のサンプルを
作製した。これらのサンプルについて、90%以上の相
対密度(理論密度100に対して)が得られる温度を測
定した。
[Experimental Example II] Example I in Experimental Example I above
With respect to the main components of -6 samples, various samples were prepared by changing the types and amounts of the added components as shown in Table 2 below. For these samples, the temperature at which a relative density of 90% or more (with respect to a theoretical density of 100) was obtained was measured.

【0039】結果を下記表2に示した。The results are shown in Table 2 below.

【0040】[0040]

【表3】 [Table 3]

【0041】[実験例III]次に、本発明の磁性体を用い
てインダクタンス素子を作製した。すなわち、焼結後の
組成が上記表1の実施例I−6サンプルの主成分に示さ
れるような組成となるように各原料を秤量し、鋼鉄製ボ
ールミルで15時間湿式混合した。次に、この混合粉を
大気中、950℃で2時間仮焼きした。次いで、副成分
としてビスマスガラスを5wt%添加した後、鉄鋼製ボ
ールミルで15時間粉砕した。
[Experimental Example III] Next, an inductance element was manufactured using the magnetic material of the present invention. That is, each raw material was weighed so that the composition after sintering had a composition as shown in the main component of the sample of Example I-6 in Table 1 above, and was wet-mixed for 15 hours with a steel ball mill. Next, this mixed powder was calcined in the air at 950 ° C. for 2 hours. Next, after adding 5 wt% of bismuth glass as a sub-component, the mixture was pulverized with a steel ball mill for 15 hours.

【0042】この仮焼き粉末に有機バインダーを混合
し、ドクターブレード法により均一なグリーンシートを
形成した。
An organic binder was mixed with the calcined powder, and a uniform green sheet was formed by a doctor blade method.

【0043】比較のためにNiZn系スピネルフェライ
ト粉末(NiO=45モル%、CuO=5モル%、Zn
O=1.5モル%、Fe23=48モル%、CoO=
0.5モル%)を用いて作製したグリーンシートも準備
した。
For comparison, NiZn-based spinel ferrite powder (NiO = 45 mol%, CuO = 5 mol%, ZnO
O = 1.5 mol%, Fe 2 O 3 = 48 mol%, CoO =
(0.5 mol%) was also prepared.

【0044】この一方で、銀を混合してなる導電性ペー
ストを用意し、先のグリーンシート上にコイルをスパイ
ラル状となるように積層した。厚み方向に圧力を加えて
圧着し、磁性体に電極がサンドイッチされたグリーンシ
ート積層体を作製した。これを930℃で2時間焼成し
た。得られた焼結体の側面の内部導電体の位置に銀ペー
ストを塗布し、外部電極を焼き付け、図1に概略的に示
されるインピーダンス素子(高周波回路部品)とした。
なお、図1は素子内部構造の理解を容易にするためにモ
デル図として描かれている。図1において、符号11は
インナーコンダクタ(Agコイル)であり、符号10は
ターミナルコンダクタであり、符号20はフェライトを
示している。
[0044] In the other hand, silver prepared conductive paste obtained by mixing, was laminated coil on the previous green sheets so that the spiral shape. Pressure was applied in the thickness direction to perform compression bonding to produce a green sheet laminate in which electrodes were sandwiched between magnetic materials. This was fired at 930 ° C. for 2 hours. A silver paste was applied to the position of the internal conductor on the side surface of the obtained sintered body, and an external electrode was baked to obtain an impedance element (high-frequency circuit component) schematically shown in FIG.
FIG. 1 is drawn as a model diagram to facilitate understanding of the internal structure of the device. In FIG. 1, reference numeral 11 denotes an inner conductor (Ag coil), reference numeral 10 denotes a terminal conductor, and reference numeral 20 denotes a ferrite.

【0045】得られたインダクタンス素子のインピーダ
ンスおよび透磁率を2GHzで測定したところ、本発明
のものではインピーダンスが208Ω(透磁率は3.
7)が得られた。ちなみに、NiCuZnフェライトの
インピーダンスは135Ω(透磁率1.2)であった。
When the impedance and the magnetic permeability of the obtained inductance element were measured at 2 GHz, the impedance of the present invention was 208Ω (the magnetic permeability was 3.
7) was obtained. Incidentally, the impedance of the NiCuZn ferrite was 135Ω (permeability 1.2).

【0046】[0046]

【発明の効果】上記の結果より本発明の効果は明らかで
ある。すなわち、本発明は、Y型六方晶フェライトで8
0%以上占有されてなる磁性酸化物焼結体であって、該
磁性酸化物焼結体は、主成分として酸化コバルトをCo
O換算で3〜15モル%、酸化銅をCuO換算で5〜1
7モル%、酸化鉄をFe23換算で57〜61モル%、
残部をAO(AOは、BaOまたはSrOの少なくとも
1種)として含み、副成分として硼珪酸ガラス、硼珪酸
亜鉛ガラスまたはビスマスガラスを0.6〜7wt%含
有してなるように構成されているので、1000℃以下
特に、900℃付近で焼成可能であり、電気抵抗率が高
く、誘電率が低い、Y型六方晶フェライトを主成分フェ
ライトとする磁性酸化物焼結体およびこれを用いた高周
波回路部品を提供するができる。
The effects of the present invention are clear from the above results. That is, the present invention relates to a Y-type hexagonal ferrite,
A magnetic oxide sintered body occupied by 0% or more, wherein the magnetic oxide sintered body contains cobalt oxide as a main component in Co.
3 to 15 mol% in terms of O, and copper oxide in an amount of 5 to 1 in terms of CuO
7 mol%, iron oxide is 57 to 61 mol% in terms of Fe 2 O 3 ,
Since the remainder is contained as AO (AO is at least one of BaO and SrO), and 0.6 to 7 wt% of borosilicate glass, zinc borosilicate glass or bismuth glass is contained as an auxiliary component. , 1000 ° C. or lower, especially a magnetic oxide sintered body which can be fired at around 900 ° C., has a high electric resistivity and a low dielectric constant, and has a Y-type hexagonal ferrite as a main component ferrite, and a high-frequency circuit using the same Parts can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例で用いたインダクタンス素子(高周波回
路部品)の概略図面である。
FIG. 1 is a schematic drawing of an inductance element (high-frequency circuit component) used in an example.

【符号の説明】[Explanation of symbols]

10…ターミナルコンダクタ 11…インナーコンダクタ 20…フェライト 10 terminal conductor 11 inner conductor 20 ferrite

フロントページの続き Fターム(参考) 4G018 AA01 AA09 AA10 AA22 AA24 AA25 AA27 AA31 AA37 AB03 AC16 5E041 AA06 AA19 BD01 CA01 HB01 NN01 NN02 NN06 NN18 Continued on the front page F term (reference) 4G018 AA01 AA09 AA10 AA22 AA24 AA25 AA27 AA31 AA37 AB03 AC16 5E041 AA06 AA19 BD01 CA01 HB01 NN01 NN02 NN06 NN18

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 Y型六方晶フェライトで80%以上占有
されてなる磁性酸化物焼結体であって、 該磁性酸化物焼結体は、主成分として酸化コバルトをC
oO換算で3〜15モル%、酸化銅をCuO換算で5〜
17モル%、酸化鉄をFe23換算で57〜61モル
%、残部をAO(AOは、BaOまたはSrOの少なく
とも1種)として含み、 副成分として硼珪酸ガラス、硼珪酸亜鉛ガラスまたはビ
スマスガラスを0.6〜7wt%含有してなることを特
徴とする磁性酸化物焼結体。
1. A magnetic oxide sintered body occupied by 80% or more of a Y-type hexagonal ferrite, wherein the magnetic oxide sintered body contains cobalt oxide as a main component.
3 to 15 mol% in terms of oO, copper oxide in 5 to 5 in terms of CuO
17 mol%, iron oxide 57-61 mol% in terms of Fe 2 O 3 , the balance being AO (AO is at least one of BaO and SrO), and borosilicate glass, zinc borosilicate glass or bismuth as a sub-component A magnetic oxide sintered body comprising 0.6 to 7% by weight of glass.
【請求項2】 前記磁性酸化物焼結体の製造における仮
焼温度が850℃〜1000℃である請求項1に記載の
磁性酸化物焼結体。
2. The magnetic oxide sintered body according to claim 1, wherein a calcination temperature in the production of the magnetic oxide sintered body is 850 ° C. to 1000 ° C.
【請求項3】 磁性酸化物焼結体中に導電体が埋設され
た構造を備える高周波回路部品であって、 前記磁性酸化物焼結体は、Y型六方晶フェライトで80
%以上占有され、かつ、 該磁性酸化物焼結体は、主成分として酸化コバルトをC
oO換算で3〜15モル%、酸化銅をCuO換算で5〜
17モル%、酸化鉄をFe23換算で57〜61モル
%、残部をAO(AOは、BaOまたはSrOの少なく
とも1種)として含み、 副成分として硼珪酸ガラス、硼珪酸亜鉛ガラスまたはビ
スマスガラスを0.6〜7wt%含有してなることを特
徴とする高周波回路部品。
3. A high-frequency circuit component having a structure in which a conductor is embedded in a magnetic oxide sintered body, wherein the magnetic oxide sintered body is a Y-type hexagonal ferrite.
% Or more, and the magnetic oxide sintered body contains cobalt oxide as a main component.
3 to 15 mol% in terms of oO, copper oxide in 5 to 5 in terms of CuO
17 mol%, iron oxide 57-61 mol% in terms of Fe 2 O 3 , the balance being AO (AO is at least one of BaO and SrO), and borosilicate glass, zinc borosilicate glass or bismuth as a sub-component A high frequency circuit component comprising 0.6 to 7% by weight of glass.
【請求項4】 前記磁性酸化物焼結体の製造における仮
焼温度が850℃〜1000℃である請求項3に記載の
高周波回路部品。
4. The high-frequency circuit component according to claim 3, wherein a calcination temperature in the production of the magnetic oxide sintered body is 850 ° C. to 1000 ° C.
【請求項5】 前記導電体が銀(Ag)を主成分とする
請求項3または請求項4に記載の高周波回路部品。
5. The high-frequency circuit component according to claim 3, wherein the conductor is mainly composed of silver (Ag).
JP2001056153A 2001-03-01 2001-03-01 Magnetic oxide sintered body and high-frequency circuit component using the same Expired - Fee Related JP4074438B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2001056153A JP4074438B2 (en) 2001-03-01 2001-03-01 Magnetic oxide sintered body and high-frequency circuit component using the same
US10/070,706 US6660179B2 (en) 2001-03-01 2001-08-03 Sintered body and high-frequency circuit component
EP01954432A EP1364927B1 (en) 2001-03-01 2001-08-03 Magnetic oxide sinter and high-frequency circuit part employing the same
DE60136223T DE60136223D1 (en) 2001-03-01 2001-08-03 SINTERED MAGNETIC OXIDE AND HIGH FREQUENCY CIRCUIT UNIT USING THIS
KR10-2001-7016331A KR100423961B1 (en) 2001-03-01 2001-08-03 Sintered body and high-frequency circuit component
CNB018087744A CN1232471C (en) 2001-03-01 2001-08-03 Magnetic oxide sinter and high frequency circuit part employing same
PCT/JP2001/006691 WO2002070432A1 (en) 2001-03-01 2001-08-03 Magnetic oxide sinter and high-frequency circuit part employing the same
TW90119381A TW572864B (en) 2001-03-01 2001-08-08 Magnetic oxide sinter and high-frequency circuit part employing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001056153A JP4074438B2 (en) 2001-03-01 2001-03-01 Magnetic oxide sintered body and high-frequency circuit component using the same

Publications (2)

Publication Number Publication Date
JP2002260912A true JP2002260912A (en) 2002-09-13
JP4074438B2 JP4074438B2 (en) 2008-04-09

Family

ID=18916220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001056153A Expired - Fee Related JP4074438B2 (en) 2001-03-01 2001-03-01 Magnetic oxide sintered body and high-frequency circuit component using the same

Country Status (1)

Country Link
JP (1) JP4074438B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7163667B2 (en) 2002-01-21 2007-01-16 Sanyo Electric Co., Ltd. Production process for oxide magnetic material and oxide magnetic material
WO2007148438A1 (en) * 2006-06-21 2007-12-27 Hitachi Metals, Ltd. Magnetic material antenna and ferrite sinter
US7651626B2 (en) 2004-12-17 2010-01-26 Hitachi Metals, Ltd. Hexagonal ferrite, antenna using the same and communication apparatus
US20110025572A1 (en) * 2009-07-28 2011-02-03 Samsung Electronics Co. Ltd. Y-type hexagonal ferrite, fabrication method thereof, and antenna apparatus using the same

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05226139A (en) * 1992-02-14 1993-09-03 Murata Mfg Co Ltd Oxide magnetic material
JPH08148338A (en) * 1994-11-18 1996-06-07 Taiyo Yuden Co Ltd Multilayer chip inductor and production thereof
JPH09129433A (en) * 1995-10-31 1997-05-16 Tokin Corp Soft magnetic hexagonal ferrite
JPH09167703A (en) * 1995-12-15 1997-06-24 Matsushita Electric Ind Co Ltd Magnetic material for microwave and high frequency circuit parts using the material
JPH09246031A (en) * 1996-03-11 1997-09-19 Osamu Kimura Magnetic material for high frequency
JP2691715B2 (en) * 1987-07-01 1997-12-17 ティーディーケイ株式会社 Ferrite sintered body, chip inductor and LC composite parts
JPH10163018A (en) * 1996-11-30 1998-06-19 Samsung Electro Mech Co Ltd Soft-magnetic material for inductor and manufacture of inductor using the same
JPH10335133A (en) * 1997-05-30 1998-12-18 Osamu Kimura Magnetic material for high frequency
JPH11243006A (en) * 1998-02-25 1999-09-07 Murata Mfg Co Ltd Magnetic ceramic compound and inductor component using the same
JP2000208316A (en) * 1999-01-11 2000-07-28 Tdk Corp Magnetic ferrite material, laminated chip ferrite component, and composite laminated component
JP2000272961A (en) * 1999-01-18 2000-10-03 Osamu Kimura Magnetic material for high-frequency use
JP2000323320A (en) * 1999-03-09 2000-11-24 Tdk Corp Manufacture of soft magnetic ferrite powder and manufacture of laminated chip inductor
JP2001006915A (en) * 1999-06-23 2001-01-12 Osamu Kimura Magnetic material for high frequency
JP2002015913A (en) * 2000-04-28 2002-01-18 Tdk Corp Magnetic ferrite powder, magnetic ferrite sintered body, laminated ferrite part and its manufacturing method
JP2002068830A (en) * 2000-09-01 2002-03-08 Murata Mfg Co Ltd Hexagonal y type oxide magnetic material and inductor element
JP2002246224A (en) * 2001-02-14 2002-08-30 Toda Kogyo Corp Soft magnetic sheet
JP2002252109A (en) * 2001-02-23 2002-09-06 Tdk Corp Magnetic ferrite material and laminated ferrite parts
JP2004143042A (en) * 2003-12-16 2004-05-20 Matsushita Electric Ind Co Ltd Magnetic material for micro wave, manufacturing method therefor, and high-frequency circuit parts

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2691715B2 (en) * 1987-07-01 1997-12-17 ティーディーケイ株式会社 Ferrite sintered body, chip inductor and LC composite parts
JPH05226139A (en) * 1992-02-14 1993-09-03 Murata Mfg Co Ltd Oxide magnetic material
JPH08148338A (en) * 1994-11-18 1996-06-07 Taiyo Yuden Co Ltd Multilayer chip inductor and production thereof
JPH09129433A (en) * 1995-10-31 1997-05-16 Tokin Corp Soft magnetic hexagonal ferrite
JPH09167703A (en) * 1995-12-15 1997-06-24 Matsushita Electric Ind Co Ltd Magnetic material for microwave and high frequency circuit parts using the material
JPH09246031A (en) * 1996-03-11 1997-09-19 Osamu Kimura Magnetic material for high frequency
JPH10163018A (en) * 1996-11-30 1998-06-19 Samsung Electro Mech Co Ltd Soft-magnetic material for inductor and manufacture of inductor using the same
JPH10335133A (en) * 1997-05-30 1998-12-18 Osamu Kimura Magnetic material for high frequency
JPH11243006A (en) * 1998-02-25 1999-09-07 Murata Mfg Co Ltd Magnetic ceramic compound and inductor component using the same
JP2000208316A (en) * 1999-01-11 2000-07-28 Tdk Corp Magnetic ferrite material, laminated chip ferrite component, and composite laminated component
JP2000272961A (en) * 1999-01-18 2000-10-03 Osamu Kimura Magnetic material for high-frequency use
JP2000323320A (en) * 1999-03-09 2000-11-24 Tdk Corp Manufacture of soft magnetic ferrite powder and manufacture of laminated chip inductor
JP2001006915A (en) * 1999-06-23 2001-01-12 Osamu Kimura Magnetic material for high frequency
JP2002015913A (en) * 2000-04-28 2002-01-18 Tdk Corp Magnetic ferrite powder, magnetic ferrite sintered body, laminated ferrite part and its manufacturing method
JP2002068830A (en) * 2000-09-01 2002-03-08 Murata Mfg Co Ltd Hexagonal y type oxide magnetic material and inductor element
JP2002246224A (en) * 2001-02-14 2002-08-30 Toda Kogyo Corp Soft magnetic sheet
JP2002252109A (en) * 2001-02-23 2002-09-06 Tdk Corp Magnetic ferrite material and laminated ferrite parts
JP2004143042A (en) * 2003-12-16 2004-05-20 Matsushita Electric Ind Co Ltd Magnetic material for micro wave, manufacturing method therefor, and high-frequency circuit parts

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7163667B2 (en) 2002-01-21 2007-01-16 Sanyo Electric Co., Ltd. Production process for oxide magnetic material and oxide magnetic material
US7651626B2 (en) 2004-12-17 2010-01-26 Hitachi Metals, Ltd. Hexagonal ferrite, antenna using the same and communication apparatus
WO2007148438A1 (en) * 2006-06-21 2007-12-27 Hitachi Metals, Ltd. Magnetic material antenna and ferrite sinter
US8154464B2 (en) 2006-06-21 2012-04-10 Hitachi Metals, Ltd. Magnetic material antenna and ferrite sintered body
US20110025572A1 (en) * 2009-07-28 2011-02-03 Samsung Electronics Co. Ltd. Y-type hexagonal ferrite, fabrication method thereof, and antenna apparatus using the same
US8564493B2 (en) * 2009-07-28 2013-10-22 Samsung Electronics Co, Ltd. Y-type hexagonal ferrite, fabrication method thereof, and antenna apparatus using the same

Also Published As

Publication number Publication date
JP4074438B2 (en) 2008-04-09

Similar Documents

Publication Publication Date Title
KR101210772B1 (en) Hexagonal ferrite, and antenna and communication equipment using the same
JP3693398B2 (en) Ceramic magnetic material and high frequency circuit component using the same
KR101543752B1 (en) Composite ferrite composition and electronic device
KR100423961B1 (en) Sintered body and high-frequency circuit component
WO1997002221A1 (en) Dielectric porcelain, process for production thereof, and electronic parts produced therefrom
JP2691715B2 (en) Ferrite sintered body, chip inductor and LC composite parts
JP6983382B2 (en) Multilayer coil parts
JP2002141215A (en) Oxide magnetic material, its manufacturing method, and laminated chip inductor
JP3343813B2 (en) Magnetic ferrite materials, multilayer chip ferrite parts and composite multilayer parts
JP2002015913A (en) Magnetic ferrite powder, magnetic ferrite sintered body, laminated ferrite part and its manufacturing method
JP4069284B2 (en) Magnetic ferrite materials and multilayer ferrite parts
JP3975051B2 (en) Method for manufacturing magnetic ferrite, method for manufacturing multilayer chip ferrite component, and method for manufacturing LC composite multilayer component
WO2005005341A1 (en) Magnetic ferrite and magnetic device using same
JP4074440B2 (en) Magnetic oxide sintered body and high-frequency circuit component using the same
CN111986876A (en) Laminated coil component
JP2002260912A (en) Sintered magnetic oxide and high-frequency circuit part using the same
JP2004262682A (en) Magnetic oxide sintered compact and high-frequency circuit part using the same
JPH0891919A (en) Magnetic oxide material composition, its production and inductor, laminated chip inductor and composite laminated part
JP2001010820A (en) Ferrite composition, ferrite sintered compact laminate- type electronic part and production thereof
JPH1092624A (en) Sintered body of hexagonal z-type magnetic oxide, its manufacture, and impedance element
JP4074437B2 (en) Magnetic oxide sintered body and high-frequency circuit component using the same
JP4449091B2 (en) Magnetic ferrite materials, multilayer chip ferrite components, composite multilayer components and magnetic cores
JP4074439B2 (en) Magnetic oxide sintered body and high-frequency circuit component using the same
WO2004074208A1 (en) Sintered magnetic oxide and high-frequency circuit component therefrom
JP4556668B2 (en) Ferrite material and inductor element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080125

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110201

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110201

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120201

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120201

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130201

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140201

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees