JP4074438B2 - Magnetic oxide sintered body and high-frequency circuit component using the same - Google Patents

Magnetic oxide sintered body and high-frequency circuit component using the same Download PDF

Info

Publication number
JP4074438B2
JP4074438B2 JP2001056153A JP2001056153A JP4074438B2 JP 4074438 B2 JP4074438 B2 JP 4074438B2 JP 2001056153 A JP2001056153 A JP 2001056153A JP 2001056153 A JP2001056153 A JP 2001056153A JP 4074438 B2 JP4074438 B2 JP 4074438B2
Authority
JP
Japan
Prior art keywords
sintered body
mol
magnetic
oxide sintered
magnetic oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001056153A
Other languages
Japanese (ja)
Other versions
JP2002260912A (en
Inventor
秀信 梅田
琢 村瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2001056153A priority Critical patent/JP4074438B2/en
Application filed by TDK Corp filed Critical TDK Corp
Priority to US10/070,706 priority patent/US6660179B2/en
Priority to CNB018087744A priority patent/CN1232471C/en
Priority to DE60136223T priority patent/DE60136223D1/en
Priority to KR10-2001-7016331A priority patent/KR100423961B1/en
Priority to EP01954432A priority patent/EP1364927B1/en
Priority to PCT/JP2001/006691 priority patent/WO2002070432A1/en
Priority to TW90119381A priority patent/TW572864B/en
Publication of JP2002260912A publication Critical patent/JP2002260912A/en
Application granted granted Critical
Publication of JP4074438B2 publication Critical patent/JP4074438B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/342Oxides
    • H01F1/344Ferrites, e.g. having a cubic spinel structure (X2+O)(Y23+O3), e.g. magnetite Fe3O4
    • H01F1/348Hexaferrites with decreased hardness or anisotropy, i.e. with increased permeability in the microwave (GHz) range, e.g. having a hexagonal crystallographic structure

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Magnetic Ceramics (AREA)
  • Soft Magnetic Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高周波回路部品用に使用される磁性酸化物焼結体およびそれを用いた高周波回路部品に関する。
【0002】
【従来の技術】
近年、電子機器の小型化や高周波化に伴い、高周波帯域において高いインダクタンス、インピーダンスを持つ電子部品の需要が高まっている。小型で高いインダクタンス、インピーダンスを得るためには、いわゆる印刷工法やシート工法によって磁性体中に導体を内蔵した積層構造のコイルを作製することが望ましい。
積層構造とすることでコイルの巻数を多くすることができ、構造も閉磁路となるため高いインダクタンス、インピーダンスが得られる。
【0003】
焼結体に内蔵される導体材料としては、電気抵抗率、融点、コストの面から一般に銀(Ag)が多く用いられている。銀の融点は1000℃以下であるため,積層構造用の磁性体材料としては、従来より一般に、900℃の焼成でも高い焼結密度が得られるNiZn系フェライトが用いられてきた。
【0004】
しかしながら、NiZn系フェライトは磁気異方性が低いために数百MHzの周波数で自然共鳴を起こしてしまい、GHzの周波数帯域で使用することができなかった。
【0005】
高周波仕様として、非磁性体を用いた空心コイルが用いられることもあるが、非磁性体を用いると高いインダクタンスやインピーダンスを得ることが困難になる。
【0006】
この一方で六方晶フェライトは、六角板状結晶の面内方向とこの面に垂直な方向の磁気的異方性が異なっているため、自然共鳴を起こしにくく、GHzの周波数帯域まで高い透磁率を持つという特徴をもっている。しかしながら、このものは、所望の焼結密度や磁気特性を得るためには、焼成温度を高くする必要があった。
【0007】
また、従来のいわゆるY型六方晶フェライトの電気抵抗率は、高くてもせいぜい1×105Ω・m程度までであり、また高特性を得るためにCuやZnなどで置換したものについては、その電気抵抗率が1×104Ω・m程度であり、これらの値は、電子部品材料に求められる電気抵抗率1×105Ω・mを超える値と比べると低いといわざるを得ない。
【0008】
さらに、六方晶フェライトはスピネル型フェライトに比べて誘電率が高いため、インダクタに発生する寄生容量が大きくなってしまい、インダクタが自己共振を起こしやすく、インダクタンスおよびインピーダンスが低くなってしまうなどの問題があった。
【0009】
【発明が解決しようとする課題】
このような実状のもとに本発明は創案されたものであり、その目的は、上記の課題を解決し、1000℃以下特に、900℃付近で焼成可能であり、電気抵抗率が高く、誘電率が低い、Y型六方晶フェライトを主成分フェライトとする磁性酸化物焼結体およびこれを用いた高周波回路部品を提供することにある。
【0010】
【課題を解決するための手段】
このような課題を解決するために、本発明は、Y型六方晶フェライトで80%以上占有されてなる磁性酸化物焼結体であって、該磁性酸化物焼結体は、主成分として酸化コバルトをCoO換算で3〜15モル%、酸化銅をCuO換算で5〜17モル%、酸化鉄をFe23換算で57〜61モル%、残部をAO(AOは、BaOまたはSrOの少なくとも1種)として含み、副成分として硼珪酸ガラス、硼珪酸亜鉛ガラスまたはビスマスガラスを0.6〜7wt%含有し、500MHzおよび2GHzの周波数における透磁率が2.0以上の物性を備え、かつ電気抵抗率が1×10 5 Ω・m以上の物性を備えてなるように構成される。
【0011】
また、本発明は、磁性酸化物焼結体中に導電体が埋設された構造を備える高周波回路部品であって、前記磁性酸化物焼結体は、Y型六方晶フェライトで80%以上占有され、かつ、該磁性酸化物焼結体は、主成分として酸化コバルトをCoO換算で3〜15モル%、酸化銅をCuO換算で5〜17モル%、酸化鉄をFe23換算で57〜61モル%、残部をAO(AOは、BaOまたはSrOの少なくとも1種)として含み、副成分として硼珪酸ガラス、硼珪酸亜鉛ガラスまたはビスマスガラスを0.6〜7wt%含有し、500MHzおよび2GHzの周波数における透磁率が2.0以上の物性を備え、かつ電気抵抗率が1×10 5 Ω・m以上の物性を備えてなるように構成される。
【0012】
また、本発明の好ましい態様として、前記磁性酸化物焼結体の製造における仮焼温度は、850℃〜1000℃として構成される。
【0013】
また、本発明の高周波回路部品の好ましい態様として、前記導電体は、銀(Ag)を主成分としてなるように構成される。
【0014】
【発明の実施の形態】
以下、本発明の磁性酸化物焼結体について詳細に説明する。
本発明の磁性酸化物焼結体はセラミック焼結体であるために通常のセラミック作製プロセスで製造することができる。
【0015】
本発明の磁性酸化物焼結体は、主成分として酸化コバルトをCoO換算で3〜15モル%(好ましくは、3〜5モル%)、酸化銅をCuO換算で5〜17モル%(好ましくは、5.5〜10モル%)、酸化鉄をFe23換算で57〜61モル%(好ましくは、59〜60モル%)、残部をAO(AOは、BaOまたはSrOの少なくとも1種)として含んでいる。AOの形態は、BaOあるいはSrOの単独形態、またはBaOとSrOの混在形態である。
【0016】
また、本発明の磁性酸化物焼結体は、副成分として硼珪酸ガラス、硼珪酸亜鉛ガラスまたはビスマスガラスを0.6〜7wt%(好ましくは0.6〜5wt%)、含有している。
【0017】
硼珪酸ガラスとは、一般にB23、SiO2を含むガラスを示し、硼珪酸亜鉛ガラスとは、一般にB23、SiO2、ZnOを含むガラスを示し、ビスマスガラスとは、一般にBi23を含むガラスを示す。これらの各ガラスの定義において上記の各成分が主成分である必要はない。
【0018】
これらの副成分のガラスの含有形態としては、硼珪酸ガラス、硼珪酸亜鉛ガラスおよびビスマスガラスの中の1種を単独で用いても良いし、また、これらの中の2種または3種を混合して用いてもよい。2種以上を混合して用いる場合には、混合した総計重量%が上記の範囲に入るようにすればよい。
【0019】
このようなガラスを添加することにより、高電気抵抗率化(電気抵抗率を高くすること)および低誘電率化(誘電率を低くすること)を得ることができる。従って、このような本願所定のガラスの添加により、高周波回路部品としての例えば、積層部品材料に必要な1×105Ω・m以上の電気抵抗率が得られる。さらに、本願所定のガラスの添加により、誘電率を低減させる効果も発現し、本発明焼結体を高周波部品として用いた場合、高い周波数において高いインピーダンスを得ることや、インピーダンスの広帯域化に効果がある。
【0020】
なお、これらのガラス添加は添加時における状態がガラスであることが必要である。焼成後、用いたガラス成分は、ガラス状態の有無を問わず焼成体の中に存在する。
【0021】
これらのガラスの中では、特に、硼珪酸亜鉛ガラスや硼珪酸ガラスが高電気抵抗率、低誘電率をより効果的に実現させるために好ましい。また、同じガラス添加量で比較した場合、90%以上の相対密度が得られる温度を下げることができるという観点からは、特に、ビスマスガラスが好ましい。
【0022】
上記主成分の含有割合において、CoOが3モル%未満となると、例えば2GHzにおける透磁率が低下する(例えば2.0未満)という不都合が生じる傾向にあり、CoOが15モル%を超えると、例えば500MHzにおける透磁率が低下する(例えば2.0未満)という不都合が生じる傾向にある。
【0023】
また、CuOが5モル%未満となると、仮焼き温度が1000℃を超えるという不都合が生じる傾向にあり、CuOが17モル%を超えると、透磁率が低下する(例えば2.0以下)という不都合が生じる傾向にある。
【0024】
また、Fe23が57モル%未満となったり、Fe23が61モル%を超えたりすると透磁率が低下するという不都合が生じる傾向にある。
【0025】
上記の副成分の含有割合において、上記所定のガラスの含有量が0.6wt%未満となると、1000℃以下の焼成で理論密度の90%以上が得られなくなるという不都合が生じる傾向にあり、上記ガラスの含有量が7wt%を超えると、透磁率が低下するという不都合が生じる傾向にある。
【0026】
このようなガラス副成分の添加は、特に、上記のCuO量の含有と相俟って低温焼結を顕著に実現させることができる。焼成温度が低くなると、安価で電気抵抗の低いAgのような低融点の電極材料を内蔵した形で同時焼成し、電極一体型の閉磁路構成の素子を容易に製造できる。このようにして製造された素子は、例えば、小型でかつ高いQ値を持つインダクタ、あるいは小型で高周波帯の特に特定周波数でのインピーダンスが大きいノイズフィルター等の高周波素子(高周波回路部品)として利用される。
【0027】
さらに本発明における磁性酸化物焼結体は、その80%以上、特に好ましくは、90%以上がY型六方晶フェライトで形成されている。ここに言う「%」は、エックス線回折強度のメインピーク比から算出したものである。
【0028】
銀(Ag)のような低融点電極材料と同時焼成する場合、本焼成温度が低くなるため、焼結後のY型六方晶フェライトを80%以上とするためには、仮焼時にY型六方晶フェライトを80%以上生成しておく必要がある。組成によって異なるが、850℃付近からBaFe1219およびBaFe24の分解が始まり、Y型六方晶フェライトの生成が始まる。しかしながら、BaFe1219およびBaFe24の分解が十分に進まなければY型六方晶フェライトの生成が進まない。従って、Y型六方晶フェライトを80%以上とするために、仮焼温度を850℃以上,特に、850℃〜1000℃とする必要がある。さらに、CuO量を好ましくは5.5〜17モル%含有させる必要がある。仮焼温度が850℃未満となったり、CuO量が所定量存在しないと、80%を超えるY型六方晶フェライトの生成が困難となる。また仮焼温度が1000℃を超えて高くなりすぎると、細かい粉砕粉が得られない。細かい粉砕粉の作製は、低温焼成には極めて重要な技術である。
【0029】
このような観点から、上述のごとく仮焼温度を850〜1000℃において、Y型六方晶フェライトの生成率を高くするためには、主成分としての前記CuO量を好ましくは5.5〜17モル%含有させることが必要となる。
【0030】
このような本発明における磁性酸化焼結体は、磁性酸化物焼結体中に導電体が埋設された構造を備える高周波回路部品、例えば、例えば、インピーダ、インダクタとして用いられる。
【0031】
【実施例】
以下、具体的実施例を挙げて本発明をさらに詳細に説明する。
【0032】
[実験例I]
(実施例および比較例サンプルの作製)
焼結後の組成が下記表1に示すような組成となるように各原料を秤量し、鋼鉄製ボールミルで15時間湿式混合した。次に、この混合粉を大気中、表1に記載された温度で2時間仮焼きした。次いで、表1に示されるごとく所定のガラスを所定量添加した後、鉄鋼製ボールミルで15時間粉砕した。
【0033】
このようにして得られた六方晶フェライト粉を造粒して、100MPaの圧力で所望の形状に成形した。
【0034】
この成形体を大気中、表1に示される温度で2時間焼結した。六方晶フェライト焼結体の組成は下記表1に示すとおりであり、これらの各サンプルについて、25℃における周波数500MHzおよび2GHzの透磁率、並びに電気抵抗率、誘電率、をそれぞれ測定して表1に示した。透磁率は周波数500MHzおよび2GHzの周波数において、2.0以上の値を目標としている。また、電気抵抗率は1×105Ω・mの値を目標としている。誘電率は低ければ低いほど良い。ちなみに、後述の実験結果より、電気抵抗率が1×105Ω・mの値を超えていれば誘電率は30以下の低い値を示している。
【0035】
なお、Y型六方晶フェライトによる占有率は、焼結体の粉砕粉を用いて、X線回折ピークの強度比より算出した。
【0036】
【表1】

Figure 0004074438
【0037】
【表2】
Figure 0004074438
【0038】
[実験例II]
上記実験例Iにおける実施例I−6サンプルの主成分において、添加成分の種類および添加量を下記表2に示すとおり変えて種々のサンプルを作製した。これらのサンプルについて、90%以上の相対密度(理論密度100に対して)が得られる温度を測定した。
【0039】
結果を下記表2に示した。
【0040】
【表3】
Figure 0004074438
【0041】
[実験例III]
次に、本発明の磁性体を用いてインダクタンス素子を作製した。すなわち、焼結後の組成が上記表1の実施例I−6サンプルの主成分に示されるような組成となるように各原料を秤量し、鋼鉄製ボールミルで15時間湿式混合した。次に、この混合粉を大気中、950℃で2時間仮焼きした。次いで、副成分としてビスマスガラスを5wt%添加した後、鉄鋼製ボールミルで15時間粉砕した。
【0042】
この仮焼き粉末に有機バインダーを混合し、ドクターブレード法により均一なグリーンシートを形成した。
【0043】
比較のためにNiZn系スピネルフェライト粉末(NiO=45モル%、CuO=5モル%、ZnO=1.5モル%、Fe23=48モル%、CoO=0.5モル%)を用いて作製したグリーンシートも準備した。
【0044】
この一方で、銀を混合してなる導電性ペーストを用意し、先のグリーンシート上にコイルをスパイラル状となるように積層した。厚み方向に圧力を加えて圧着し、磁性体に電極がサンドイッチされたグリーンシート積層体を作製した。これを930℃で2時間焼成した。得られた焼結体の側面の内部導電体の位置に銀ペーストを塗布し、外部電極を焼き付け、図1に概略的に示されるインピーダンス素子(高周波回路部品)とした。なお、図1は素子内部構造の理解を容易にするためにモデル図として描かれている。図1において、符号11はインナーコンダクタ(Agコイル)であり、符号10はターミナルコンダクタであり、符号20はフェライトを示している。
【0045】
得られたインダクタンス素子のインピーダンスおよび透磁率を2GHzで測定したところ、本発明のものではインピーダンスが208Ω(透磁率は3.7)が得られた。ちなみに、NiCuZnフェライトのインピーダンスは135Ω(透磁率1.2)であった。
【0046】
【発明の効果】
上記の結果より本発明の効果は明らかである。すなわち、本発明は、Y型六方晶フェライトで80%以上占有されてなる磁性酸化物焼結体であって、該磁性酸化物焼結体は、主成分として酸化コバルトをCoO換算で3〜15モル%、酸化銅をCuO換算で5〜17モル%、酸化鉄をFe23換算で57〜61モル%、残部をAO(AOは、BaOまたはSrOの少なくとも1種)として含み、副成分として硼珪酸ガラス、硼珪酸亜鉛ガラスまたはビスマスガラスを0.6〜7wt%含有してなるように構成されているので、1000℃以下特に、900℃付近で焼成可能であり、電気抵抗率が高く、誘電率が低い、Y型六方晶フェライトを主成分フェライトとする磁性酸化物焼結体およびこれを用いた高周波回路部品を提供するができる。
【図面の簡単な説明】
【図1】実施例で用いたインダクタンス素子(高周波回路部品)の概略図面である。
【符号の説明】
10…ターミナルコンダクタ
11…インナーコンダクタ
20…フェライト[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a magnetic oxide sintered body used for a high-frequency circuit component and a high-frequency circuit component using the same.
[0002]
[Prior art]
In recent years, with the miniaturization and high frequency of electronic devices, there is an increasing demand for electronic components having high inductance and impedance in a high frequency band. In order to obtain a small and high inductance and impedance, it is desirable to produce a coil having a laminated structure in which a conductor is incorporated in a magnetic material by a so-called printing method or sheet method.
With the laminated structure, the number of turns of the coil can be increased, and the structure also becomes a closed magnetic circuit, so that high inductance and impedance can be obtained.
[0003]
In general, silver (Ag) is often used as a conductor material incorporated in the sintered body in terms of electrical resistivity, melting point, and cost. Since the melting point of silver is 1000 ° C. or lower, NiZn-based ferrite that can obtain a high sintered density even when fired at 900 ° C. has been generally used as a magnetic material for a laminated structure.
[0004]
However, since NiZn ferrite has low magnetic anisotropy, it causes natural resonance at a frequency of several hundred MHz and cannot be used in the GHz frequency band.
[0005]
As a high-frequency specification, an air-core coil using a nonmagnetic material may be used. However, when a nonmagnetic material is used, it is difficult to obtain high inductance and impedance.
[0006]
On the other hand, hexagonal ferrite has a different magnetic anisotropy in the in-plane direction of the hexagonal plate crystal and in the direction perpendicular to the hexagonal plate-like crystal, so that it does not easily cause natural resonance and has a high magnetic permeability up to the GHz frequency band. It has the characteristic of having. However, in order to obtain a desired sintered density and magnetic properties, it has been necessary to increase the firing temperature.
[0007]
In addition, the electrical resistivity of the conventional so-called Y-type hexagonal ferrite is at most about 1 × 10 5 Ω · m, and the one substituted with Cu or Zn to obtain high characteristics is as follows: The electrical resistivity is about 1 × 10 4 Ω · m, and these values are inevitably low compared to values exceeding 1 × 10 5 Ω · m required for electronic component materials. .
[0008]
Furthermore, since hexagonal ferrite has a higher dielectric constant than spinel ferrite, the parasitic capacitance generated in the inductor increases, the inductor tends to cause self-resonance, and inductance and impedance are reduced. there were.
[0009]
[Problems to be solved by the invention]
The present invention has been devised based on such a situation. The object of the present invention is to solve the above-mentioned problems, and it can be fired at 1000 ° C. or less, particularly near 900 ° C., has a high electrical resistivity, and has a dielectric property. An object of the present invention is to provide a magnetic oxide sintered body having a low rate of Y-type hexagonal ferrite as a main component ferrite and a high-frequency circuit component using the same.
[0010]
[Means for Solving the Problems]
In order to solve such problems, the present invention provides a magnetic oxide sintered body that is occupied by 80% or more of Y-type hexagonal ferrite, and the magnetic oxide sintered body is oxidized as a main component. cobalt 3-15 mol% in terms of CoO, 5 to 17 mol% of copper oxide in terms of CuO, 57 to 61 mol% of iron oxide calculated as Fe 2 O 3, the remainder AO (AO is at least of BaO or SrO 1 type), containing 0.6 to 7 wt% of borosilicate glass, zinc borosilicate glass or bismuth glass as an auxiliary component , and having a physical property of 2.0 or more at frequencies of 500 MHz and 2 GHz, and electric The resistivity is configured to have physical properties of 1 × 10 5 Ω · m or more .
[0011]
The present invention is a high-frequency circuit component having a structure in which a conductor is embedded in a magnetic oxide sintered body, and the magnetic oxide sintered body is occupied by Y-type hexagonal ferrite by 80% or more. and magnetic sintered oxide, 3 to 15 mol% of cobalt oxide in terms of CoO as a primary component, 5 to 17 mol% of copper oxide in terms of CuO, an iron oxide in terms of Fe 2 O 3 57 to 61 mol%, the balance containing AO (AO is at least one of BaO or SrO), containing 0.6-7 wt% of borosilicate glass, zinc borosilicate glass or bismuth glass as an accessory component , 500 MHz and 2 GHz The magnetic permeability at the frequency is 2.0 or more, and the electrical resistivity is 1 × 10 5 Ω · m or more .
[0012]
As a preferred embodiment of the present invention, the calcining temperature in the production of the magnetic oxide sintered body is configured as 850 ° C. to 1000 ° C.
[0013]
Moreover, as a preferable aspect of the high-frequency circuit component of the present invention, the conductor is configured to have silver (Ag) as a main component.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the magnetic oxide sintered body of the present invention will be described in detail.
Since the magnetic oxide sintered body of the present invention is a ceramic sintered body, it can be produced by an ordinary ceramic production process.
[0015]
In the magnetic oxide sintered body of the present invention, cobalt oxide as a main component is 3 to 15 mol% (preferably 3 to 5 mol%) in terms of CoO, and copper oxide is 5 to 17 mol% (preferably in terms of CuO). 5.5-10 mol%), iron oxide 57-61 mol% (preferably 59-60 mol%) in terms of Fe 2 O 3 , and the balance AO (AO is at least one of BaO or SrO) Includes as. The form of AO is a single form of BaO or SrO, or a mixed form of BaO and SrO.
[0016]
Moreover, the magnetic oxide sintered body of the present invention contains 0.6 to 7 wt% (preferably 0.6 to 5 wt%) of borosilicate glass, zinc borosilicate glass or bismuth glass as an auxiliary component.
[0017]
Borosilicate glass generally refers to glass containing B 2 O 3 and SiO 2 , borosilicate glass generally refers to glass including B 2 O 3 , SiO 2 , and ZnO, and bismuth glass generally refers to Bi. The glass containing 2 O 3 is shown. In the definition of each glass, it is not necessary that each of the above components is a main component.
[0018]
As the content of the glass of these subcomponents, one of borosilicate glass, zinc borosilicate glass and bismuth glass may be used alone, or two or three of them may be mixed. May be used. When two or more kinds are mixed and used, the total weight% mixed may be within the above range.
[0019]
By adding such glass, it is possible to obtain high electrical resistivity (increase electrical resistivity) and low dielectric constant (lower dielectric constant). Therefore, the addition of the predetermined glass of the present application can provide an electrical resistivity of 1 × 10 5 Ω · m or more necessary for, for example, a laminated component material as a high-frequency circuit component. Furthermore, the addition of the prescribed glass of the present application also has the effect of reducing the dielectric constant. When the sintered body of the present invention is used as a high-frequency component, it is effective to obtain a high impedance at a high frequency or to widen the impedance. is there.
[0020]
In addition, these glass additions require that the state at the time of addition is glass. After firing, the glass component used is present in the fired body regardless of the presence or absence of the glass state.
[0021]
Among these glasses, zinc borosilicate glass and borosilicate glass are particularly preferable in order to realize a high electrical resistivity and a low dielectric constant more effectively. Moreover, when compared with the same glass addition amount, bismuth glass is particularly preferable from the viewpoint that the temperature at which a relative density of 90% or more can be obtained can be lowered.
[0022]
If the CoO content is less than 3 mol% in the content ratio of the main component, there is a tendency that, for example, the permeability at 2 GHz is reduced (for example, less than 2.0), and when CoO exceeds 15 mol%, for example, There is a tendency for the inconvenience that the magnetic permeability at 500 MHz decreases (for example, less than 2.0).
[0023]
Moreover, when CuO is less than 5 mol%, there is a tendency that the calcining temperature exceeds 1000 ° C., and when CuO exceeds 17 mol%, the magnetic permeability decreases (for example, 2.0 or less). Tend to occur.
[0024]
Further, when Fe 2 O 3 is less than 57 mol% or Fe 2 O 3 exceeds 61 mol%, there is a tendency that the magnetic permeability is lowered.
[0025]
When the content of the predetermined glass is less than 0.6 wt% in the content ratio of the subcomponent, there is a tendency that 90% or more of the theoretical density cannot be obtained by firing at 1000 ° C. or lower, If the glass content exceeds 7 wt%, there is a tendency for the inconvenience that the magnetic permeability is lowered.
[0026]
Addition of such a glass subcomponent can realize remarkably low temperature sintering especially in combination with the content of CuO. When the firing temperature is lowered, it is possible to easily produce an element with an integrated electrode and a closed magnetic circuit structure by simultaneously firing in a form incorporating a low melting point electrode material such as Ag having low electric resistance. The element manufactured in this way is used as, for example, a high-frequency element (high-frequency circuit component) such as a small-sized inductor having a high Q value, or a noise filter having a small impedance and high impedance in a specific frequency in a high-frequency band. The
[0027]
Further, 80% or more, particularly preferably 90% or more, of the magnetic oxide sintered body in the present invention is formed of Y-type hexagonal ferrite. Here, “%” is calculated from the main peak ratio of X-ray diffraction intensity.
[0028]
In the case of co-firing with a low melting point electrode material such as silver (Ag), the main firing temperature is lowered. Therefore, in order to make the Y-type hexagonal ferrite after sintering 80% or more, It is necessary to produce 80% or more of crystal ferrite. Although it depends on the composition, decomposition of BaFe 12 O 19 and BaFe 2 O 4 starts from around 850 ° C., and generation of Y-type hexagonal ferrite begins. However, if the decomposition of BaFe 12 O 19 and BaFe 2 O 4 does not proceed sufficiently, the production of Y-type hexagonal ferrite will not proceed. Therefore, in order to make the Y-type hexagonal ferrite 80% or more, the calcining temperature needs to be 850 ° C. or more, particularly 850 ° C. to 1000 ° C. Furthermore, it is necessary to contain CuO amount preferably 5.5 to 17 mol%. If the calcining temperature is less than 850 ° C. or the predetermined amount of CuO is not present, it is difficult to produce Y-type hexagonal ferrite exceeding 80%. On the other hand, if the calcining temperature exceeds 1000 ° C. and becomes too high, fine pulverized powder cannot be obtained. Production of fine pulverized powder is an extremely important technique for low-temperature firing.
[0029]
From such a point of view, the CuO content as the main component is preferably 5.5 to 17 mol in order to increase the yield of Y-type hexagonal ferrite at a calcining temperature of 850 to 1000 ° C. as described above. % Content is required.
[0030]
Such a magnetic oxidation sintered body according to the present invention is used as a high-frequency circuit component having a structure in which a conductor is embedded in a magnetic oxide sintered body, for example, an impedancer or an inductor.
[0031]
【Example】
Hereinafter, the present invention will be described in more detail with reference to specific examples.
[0032]
[Experimental Example I]
(Production of Examples and Comparative Examples)
Each raw material was weighed so that the composition after sintering was as shown in Table 1 below, and wet mixed in a steel ball mill for 15 hours. Next, this mixed powder was calcined in the atmosphere at the temperature described in Table 1 for 2 hours. Next, as shown in Table 1, after adding a predetermined amount of a predetermined glass, it was pulverized with a steel ball mill for 15 hours.
[0033]
The hexagonal ferrite powder thus obtained was granulated and formed into a desired shape at a pressure of 100 MPa.
[0034]
The molded body was sintered in the atmosphere at the temperature shown in Table 1 for 2 hours. The composition of the hexagonal ferrite sintered body is as shown in Table 1 below. For these samples, the magnetic permeability at frequencies of 500 MHz and 2 GHz at 25 ° C., the electrical resistivity, and the dielectric constant were measured, respectively. It was shown to. The magnetic permeability targets a value of 2.0 or more at frequencies of 500 MHz and 2 GHz. The electrical resistivity is targeted at 1 × 10 5 Ω · m. The lower the dielectric constant, the better. Incidentally, from the experimental results described later, if the electrical resistivity exceeds a value of 1 × 10 5 Ω · m, the dielectric constant shows a low value of 30 or less.
[0035]
In addition, the occupation rate by the Y-type hexagonal ferrite was calculated from the intensity ratio of the X-ray diffraction peak using the pulverized powder of the sintered body.
[0036]
[Table 1]
Figure 0004074438
[0037]
[Table 2]
Figure 0004074438
[0038]
[Experimental example II]
In the main component of the sample of Example I-6 in Experimental Example I, various samples were prepared by changing the type and amount of the additive component as shown in Table 2 below. For these samples, the temperature at which a relative density of 90% or more (relative to the theoretical density of 100) was obtained was measured.
[0039]
The results are shown in Table 2 below.
[0040]
[Table 3]
Figure 0004074438
[0041]
[Experimental Example III]
Next, an inductance element was produced using the magnetic material of the present invention. That is, each raw material was weighed so that the composition after sintering would be the composition shown in the main component of Example I-6 sample in Table 1 above, and wet mixed in a steel ball mill for 15 hours. Next, this mixed powder was calcined at 950 ° C. for 2 hours in the air. Next, 5% by weight of bismuth glass was added as an accessory component, and then pulverized with a steel ball mill for 15 hours.
[0042]
An organic binder was mixed with the calcined powder, and a uniform green sheet was formed by a doctor blade method.
[0043]
For comparison, NiZn spinel ferrite powder (NiO = 45 mol%, CuO = 5 mol%, ZnO = 1.5 mol%, Fe 2 O 3 = 48 mol%, CoO = 0.5 mol%) was used. A prepared green sheet was also prepared.
[0044]
On the other hand, a conductive paste formed by mixing silver was prepared, and the coil was laminated on the previous green sheet so as to have a spiral shape. Pressure was applied in the thickness direction and pressure bonded to produce a green sheet laminate in which electrodes were sandwiched between magnetic materials. This was calcined at 930 ° C. for 2 hours. Silver paste was applied to the position of the internal conductor on the side surface of the obtained sintered body, and the external electrode was baked to obtain an impedance element (high-frequency circuit component) schematically shown in FIG. FIG. 1 is drawn as a model diagram for easy understanding of the internal structure of the element. In FIG. 1, reference numeral 11 denotes an inner conductor (Ag coil), reference numeral 10 denotes a terminal conductor, and reference numeral 20 denotes ferrite.
[0045]
When the impedance and magnetic permeability of the obtained inductance element were measured at 2 GHz, the impedance of the present invention was 208Ω (the magnetic permeability was 3.7). Incidentally, the impedance of NiCuZn ferrite was 135Ω (magnetic permeability 1.2).
[0046]
【The invention's effect】
The effects of the present invention are clear from the above results. That is, the present invention is a magnetic oxide sintered body that is 80% or more occupied by Y-type hexagonal ferrite, and the magnetic oxide sintered body contains cobalt oxide as a main component in an amount of 3 to 15 in terms of CoO. mol%, 5 to 17 mol% of copper oxide in terms of CuO, 57 to 61 mol% of iron oxide calculated as Fe 2 O 3, AO (AO is at least one of BaO or SrO) the remainder comprising as a sub-component As borosilicate glass, zinc borosilicate glass or bismuth glass is contained in an amount of 0.6 to 7 wt%, so that it can be fired at 1000 ° C. or less, particularly near 900 ° C., and has high electrical resistivity. Further, it is possible to provide a magnetic oxide sintered body having a low dielectric constant and having Y-type hexagonal ferrite as a main component ferrite and a high-frequency circuit component using the same.
[Brief description of the drawings]
FIG. 1 is a schematic drawing of an inductance element (high frequency circuit component) used in an example.
[Explanation of symbols]
10 ... Terminal conductor 11 ... Inner conductor 20 ... Ferrite

Claims (5)

Y型六方晶フェライトで80%以上占有されてなる磁性酸化物焼結体であって、
該磁性酸化物焼結体は、主成分として酸化コバルトをCoO換算で3〜15モル%、酸化銅をCuO換算で5〜17モル%、酸化鉄をFe23換算で57〜61モル%、残部をAO(AOは、BaOまたはSrOの少なくとも1種)として含み、
副成分として硼珪酸ガラス、硼珪酸亜鉛ガラスまたはビスマスガラスを0.6〜7wt%含有し
500MHzおよび2GHzの周波数における透磁率が2.0以上の物性を備え、かつ電気抵抗率が1×10 5 Ω・m以上の物性を備えてなることを特徴とする磁性酸化物焼結体。
A magnetic oxide sintered body occupied by 80% or more of Y-type hexagonal ferrite,
The magnetic oxide sintered body comprises 3 to 15 mol% of cobalt oxide as a main component, 5 to 17 mol% of copper oxide in terms of CuO, and 57 to 61 mol% of iron oxide in terms of Fe 2 O 3. And the remainder as AO (AO is at least one of BaO or SrO),
Containing 0.6 to 7 wt% of borosilicate glass, zinc borosilicate glass or bismuth glass as an auxiliary component ,
A magnetic oxide sintered body having physical properties of a magnetic permeability of 2.0 or more at frequencies of 500 MHz and 2 GHz and a physical property of 1 × 10 5 Ω · m or more .
前記磁性酸化物焼結体の製造における仮焼温度が850℃〜1000℃である請求項1に記載の磁性酸化物焼結体。  The magnetic oxide sintered body according to claim 1, wherein a calcining temperature in the production of the magnetic oxide sintered body is 850C to 1000C. 磁性酸化物焼結体中に導電体が埋設された構造を備える高周波回路部品であって、
前記磁性酸化物焼結体は、Y型六方晶フェライトで80%以上占有され、かつ、
該磁性酸化物焼結体は、主成分として酸化コバルトをCoO換算で3〜15モル%、酸化銅をCuO換算で5〜17モル%、酸化鉄をFe23換算で57〜61モル%、残部をAO(AOは、BaOまたはSrOの少なくとも1種)として含み、
副成分として硼珪酸ガラス、硼珪酸亜鉛ガラスまたはビスマスガラスを0.6〜7wt%含有し
500MHzおよび2GHzの周波数における透磁率が2.0以上の物性を備え、かつ電気抵抗率が1×10 5 Ω・m以上の物性を備えてなることを特徴とする高周波回路部品。
A high-frequency circuit component having a structure in which a conductor is embedded in a magnetic oxide sintered body,
The magnetic oxide sintered body is occupied by 80% or more of Y-type hexagonal ferrite, and
The magnetic oxide sintered body comprises 3 to 15 mol% of cobalt oxide as a main component, 5 to 17 mol% of copper oxide in terms of CuO, and 57 to 61 mol% of iron oxide in terms of Fe 2 O 3. And the remainder as AO (AO is at least one of BaO or SrO),
Containing 0.6 to 7 wt% of borosilicate glass, zinc borosilicate glass or bismuth glass as an auxiliary component ,
A high-frequency circuit component having physical properties of a magnetic permeability of 2.0 or more at frequencies of 500 MHz and 2 GHz and a physical property of 1 × 10 5 Ω · m or more .
前記磁性酸化物焼結体の製造における仮焼温度が850℃〜1000℃である請求項3に記載の高周波回路部品。  The high-frequency circuit component according to claim 3, wherein a calcining temperature in manufacturing the magnetic oxide sintered body is 850 ° C. to 1000 ° C. 5. 前記導電体が銀(Ag)を主成分とする請求項3または請求項4に記載の高周波回路部品。  The high frequency circuit component according to claim 3 or 4, wherein the conductor is mainly composed of silver (Ag).
JP2001056153A 2001-03-01 2001-03-01 Magnetic oxide sintered body and high-frequency circuit component using the same Expired - Fee Related JP4074438B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2001056153A JP4074438B2 (en) 2001-03-01 2001-03-01 Magnetic oxide sintered body and high-frequency circuit component using the same
CNB018087744A CN1232471C (en) 2001-03-01 2001-08-03 Magnetic oxide sinter and high frequency circuit part employing same
DE60136223T DE60136223D1 (en) 2001-03-01 2001-08-03 SINTERED MAGNETIC OXIDE AND HIGH FREQUENCY CIRCUIT UNIT USING THIS
KR10-2001-7016331A KR100423961B1 (en) 2001-03-01 2001-08-03 Sintered body and high-frequency circuit component
US10/070,706 US6660179B2 (en) 2001-03-01 2001-08-03 Sintered body and high-frequency circuit component
EP01954432A EP1364927B1 (en) 2001-03-01 2001-08-03 Magnetic oxide sinter and high-frequency circuit part employing the same
PCT/JP2001/006691 WO2002070432A1 (en) 2001-03-01 2001-08-03 Magnetic oxide sinter and high-frequency circuit part employing the same
TW90119381A TW572864B (en) 2001-03-01 2001-08-08 Magnetic oxide sinter and high-frequency circuit part employing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001056153A JP4074438B2 (en) 2001-03-01 2001-03-01 Magnetic oxide sintered body and high-frequency circuit component using the same

Publications (2)

Publication Number Publication Date
JP2002260912A JP2002260912A (en) 2002-09-13
JP4074438B2 true JP4074438B2 (en) 2008-04-09

Family

ID=18916220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001056153A Expired - Fee Related JP4074438B2 (en) 2001-03-01 2001-03-01 Magnetic oxide sintered body and high-frequency circuit component using the same

Country Status (1)

Country Link
JP (1) JP4074438B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4204329B2 (en) 2002-01-21 2009-01-07 三洋電機株式会社 Method for producing oxide magnetic material
JP5256612B2 (en) 2004-12-17 2013-08-07 日立金属株式会社 Hexagonal ferrite and antenna and communication equipment using the same
US8154464B2 (en) 2006-06-21 2012-04-10 Hitachi Metals, Ltd. Magnetic material antenna and ferrite sintered body
KR101620307B1 (en) * 2009-07-28 2016-05-13 삼성전자주식회사 Y-type hexagonal ferrite, antenna apparatus therewith, and method for manufacturing the same

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2691715B2 (en) * 1987-07-01 1997-12-17 ティーディーケイ株式会社 Ferrite sintered body, chip inductor and LC composite parts
JP3127550B2 (en) * 1992-02-14 2001-01-29 株式会社村田製作所 Oxide magnetic material
JPH08148338A (en) * 1994-11-18 1996-06-07 Taiyo Yuden Co Ltd Multilayer chip inductor and production thereof
JPH09129433A (en) * 1995-10-31 1997-05-16 Tokin Corp Soft magnetic hexagonal ferrite
JP3693398B2 (en) * 1995-12-15 2005-09-07 松下電器産業株式会社 Ceramic magnetic material and high frequency circuit component using the same
JPH09246031A (en) * 1996-03-11 1997-09-19 Osamu Kimura Magnetic material for high frequency
KR100222757B1 (en) * 1996-11-30 1999-10-01 이형도 A soft magnetic material for inductor and a method for manufacturing therewith
JP3683680B2 (en) * 1997-05-30 2005-08-17 東光株式会社 Magnetic material for high frequency multilayer inductors
JPH11243006A (en) * 1998-02-25 1999-09-07 Murata Mfg Co Ltd Magnetic ceramic compound and inductor component using the same
JP3343813B2 (en) * 1999-01-11 2002-11-11 ティーディーケイ株式会社 Magnetic ferrite materials, multilayer chip ferrite parts and composite multilayer parts
JP3939476B2 (en) * 1999-01-18 2007-07-04 東光株式会社 High frequency magnetic materials
JP3735228B2 (en) * 1999-03-09 2006-01-18 Tdk株式会社 Method for producing soft magnetic ferrite powder and method for producing multilayer chip inductor
JP3457576B2 (en) * 1999-06-23 2003-10-20 修 木村 Magnetic material for high frequency
JP2002015913A (en) * 2000-04-28 2002-01-18 Tdk Corp Magnetic ferrite powder, magnetic ferrite sintered body, laminated ferrite part and its manufacturing method
JP4069284B2 (en) * 2001-02-23 2008-04-02 Tdk株式会社 Magnetic ferrite materials and multilayer ferrite parts
JP2002068830A (en) * 2000-09-01 2002-03-08 Murata Mfg Co Ltd Hexagonal y type oxide magnetic material and inductor element
JP4683174B2 (en) * 2001-02-14 2011-05-11 戸田工業株式会社 Soft magnetic sheet
JP2004143042A (en) * 2003-12-16 2004-05-20 Matsushita Electric Ind Co Ltd Magnetic material for micro wave, manufacturing method therefor, and high-frequency circuit parts

Also Published As

Publication number Publication date
JP2002260912A (en) 2002-09-13

Similar Documents

Publication Publication Date Title
KR101543752B1 (en) Composite ferrite composition and electronic device
JP5256612B2 (en) Hexagonal ferrite and antenna and communication equipment using the same
JP3693398B2 (en) Ceramic magnetic material and high frequency circuit component using the same
JP2010018482A (en) Ferrite, and manufacturing method thereof
KR20090118003A (en) Dielectric ceramic composition, multilayer complex electronic device, multilayer common mode filter, multilayer ceramic coil and multilayer ceramic capacitor
KR100423961B1 (en) Sintered body and high-frequency circuit component
JP2010235324A (en) Ferrite composition, ferrite sintered body, composite lamination type electronic component, and method for manufacturing ferrite sintered body
JP2002141215A (en) Oxide magnetic material, its manufacturing method, and laminated chip inductor
JP4074440B2 (en) Magnetic oxide sintered body and high-frequency circuit component using the same
JP4736311B2 (en) Magnetic ferrite and magnetic element using the same
JP3975051B2 (en) Method for manufacturing magnetic ferrite, method for manufacturing multilayer chip ferrite component, and method for manufacturing LC composite multilayer component
JP4074438B2 (en) Magnetic oxide sintered body and high-frequency circuit component using the same
JPH0891919A (en) Magnetic oxide material composition, its production and inductor, laminated chip inductor and composite laminated part
JP2004262682A (en) Magnetic oxide sintered compact and high-frequency circuit part using the same
JP4074437B2 (en) Magnetic oxide sintered body and high-frequency circuit component using the same
JP4074439B2 (en) Magnetic oxide sintered body and high-frequency circuit component using the same
JP4556668B2 (en) Ferrite material and inductor element
JPH1092624A (en) Sintered body of hexagonal z-type magnetic oxide, its manufacture, and impedance element
WO2004074208A1 (en) Sintered magnetic oxide and high-frequency circuit component therefrom
CN110556226A (en) Composite magnetic material and electronic component using the same
JP3606127B2 (en) Method for producing ferrite sintered body
JP4449091B2 (en) Magnetic ferrite materials, multilayer chip ferrite components, composite multilayer components and magnetic cores
JP2004262683A (en) Magnetic oxide sintered compact and high-frequency circuit part using the same
JP2004143042A (en) Magnetic material for micro wave, manufacturing method therefor, and high-frequency circuit parts
JP2004339016A (en) Nonmagnetic ferrite and multilayer electronic component using it

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080125

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110201

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110201

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120201

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120201

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130201

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140201

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees