JP2002141215A - Oxide magnetic material, its manufacturing method, and laminated chip inductor - Google Patents

Oxide magnetic material, its manufacturing method, and laminated chip inductor

Info

Publication number
JP2002141215A
JP2002141215A JP2000338844A JP2000338844A JP2002141215A JP 2002141215 A JP2002141215 A JP 2002141215A JP 2000338844 A JP2000338844 A JP 2000338844A JP 2000338844 A JP2000338844 A JP 2000338844A JP 2002141215 A JP2002141215 A JP 2002141215A
Authority
JP
Japan
Prior art keywords
ferrite
mol
magnetic material
mass
oxide magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000338844A
Other languages
Japanese (ja)
Inventor
Osamu Kanda
修 神田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2000338844A priority Critical patent/JP2002141215A/en
Publication of JP2002141215A publication Critical patent/JP2002141215A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/342Oxides
    • H01F1/344Ferrites, e.g. having a cubic spinel structure (X2+O)(Y23+O3), e.g. magnetite Fe3O4

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Soft Magnetic Materials (AREA)
  • Coils Or Transformers For Communication (AREA)
  • Compounds Of Iron (AREA)
  • Magnetic Ceramics (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide oxide magnetic material which is superior in high-frequency performance, high in volume resistivity, can be burned at low temperatures, and restrains an inner conductor from disappearing due to diffusion of Ag, its manufacturing method, and to provide a laminated chip inductor formed of the material. SOLUTION: An oxide magnetic material includes 43.0 to 51.0 mol.% Fe2O3, 5.0 to 12.0 mol.% CuO, 8.0 to 39.0 mol.% NiO, and the residual mol.% ZnO as main components and 0.05 to 2.0 pts.mass Bi2O3, 0.2 to 2.0 pts.mass TiO2, and 0.1 to 1.0 pts.mass one or more elements from among MnO2, MoO2, RuO2, SnO2, TeO2, WO2 or IrO2 as auxiliary components with respect to 100 pts.mass main components. A laminated chip inductor has an inner conductor of Ag and a soft ferrite of the above oxide magnetic material.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】本発明は、小型の電子機器な
どにおいて、電磁波干渉ノイズ対策のためなどに使用さ
れるチップインダクタ用のソフトフェライトすなわち高
透磁率酸化物磁性材料、その製造方法、およびそれら酸
化物磁性材料を用いた積層チップインダクタに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a soft ferrite for a chip inductor, that is, a high-permeability oxide magnetic material used in a small electronic device or the like for measures against electromagnetic interference noise, a method for producing the same, and a method for manufacturing the same The present invention relates to a multilayer chip inductor using an oxide magnetic material.

【0002】[0002]

【従来の技術】パーソナルコンピュータや携帯電話等に
代表される小型のOA機器あるいは移動通信機器の発達
に伴い、これらの機器に搭載される電子部品において
も、小型化、高性能化、低価格化などが強く要望されて
いる。それらの部品の一つにEMIノイズフィルターが
あり、それに用いられる素子として積層チップインダク
タがある。
2. Description of the Related Art With the development of small OA equipment and mobile communication equipment typified by personal computers and mobile phones, electronic components mounted on these equipment have also been reduced in size, performance and price. Are strongly desired. One of those components is an EMI noise filter, and a multilayer chip inductor is used as an element for the EMI noise filter.

【0003】インダクタとは、空芯または軟質磁性材料
を芯材とするような巻線の要素に対応するもので、その
インダクタンスに基づく抵抗値、すなわちインピーダン
スは周波数が高くなるほど増加する特性を有する。した
がって、必要な信号は通過させるが、その信号より高い
周波数の不要信号やノイズは阻止するというローパスフ
ィルタの機能があり、電子機器間の電磁波干渉や、外部
からのノイズの侵入による誤作動防止に活用される。
[0003] An inductor corresponds to a winding element having an air core or a soft magnetic material as a core material, and has a characteristic that the resistance value based on the inductance, that is, the impedance, increases as the frequency increases. Therefore, it has the function of a low-pass filter that allows necessary signals to pass, but blocks unnecessary signals and noise at a higher frequency than the signals, preventing electromagnetic interference between electronic devices and malfunctions due to external noise. Be utilized.

【0004】近年、情報量の増大や信号処理速度の上昇
から、パーソナルコンピュータ、ネットワーク機器、A
V機器など電子機器の取り扱う周波数が高くなってお
り、またデジタル化も進み、より高い周波数域のノイズ
抑止の必要性が増してきている。一方、これら高い周波
数の信号は、他の相対的に低い周波数域で作動する機器
においてはノイズであるため、外部からのノイズの侵入
を防止するとともに、外部に信号が漏れないようにしな
ければならない。このような状況から、より高い周波数
域において有効に作動するインダクタが必要になってい
る。
In recent years, personal computers, network devices, A
The frequency handled by electronic devices such as V devices is increasing, and digitalization is progressing, and the necessity of suppressing noise in higher frequency ranges is increasing. On the other hand, since these high-frequency signals are noise in other devices operating in a relatively low frequency range, it is necessary to prevent the intrusion of noise from the outside and prevent the signal from leaking to the outside. . Under such circumstances, there is a need for an inductor that operates effectively in a higher frequency range.

【0005】インダクタを小型化しかつ高性能化して、
電子回路部品に適応させたものが積層チップインダクタ
である。図1にその内部構造例を模式的に示すが、直方
体形状のソフトフェライト1の内部に、導電体3の巻き
線状の線路が形成されており、両対向面が入出力端部電
極2となっている。これはソフトフェライトのグリーン
シート上に導電体ペーストの線路を印刷し、このシート
を各シートの導電体線路が接続されるよう、図ではスル
ーホール5を設けて中に導電体ペーストを充填して積み
重ね、一体化焼成して製造される。内部の導電体は接続
部分4により入出力端部電極2に接続されている。
[0005] By reducing the size and performance of inductors,
What is applied to electronic circuit components is a multilayer chip inductor. FIG. 1 schematically shows an example of the internal structure. A winding line of a conductor 3 is formed inside a soft ferrite 1 having a rectangular parallelepiped shape. Has become. In this method, conductor paste lines are printed on a green sheet of soft ferrite, and this sheet is provided with through holes 5 in the figure and filled with conductor paste so that the conductor lines of each sheet are connected. It is manufactured by stacking and firing. The internal conductor is connected to the input / output end electrode 2 by a connection portion 4.

【0006】このようなインダクタの性能は、用いられ
るソフトフェライトすなわち軟質酸化物磁性材料(以下
単にフェライトと略称する)の特性に大きく支配され
る。このソフトフェライトに要求される特性は、高周波
数帯域で十分高い透磁率を有することはいうまでもない
が、それに加えて(1)低い焼成温度で十分な焼結密度
が得られること、および(2)高い体積抵抗率を有する
ことが重要であると考えられる。
[0006] The performance of such an inductor is largely governed by the characteristics of the soft ferrite used, that is, a soft oxide magnetic material (hereinafter simply referred to as ferrite). Needless to say, the properties required for this soft ferrite are that it has a sufficiently high magnetic permeability in a high frequency band, but in addition, (1) a sufficient sintered density can be obtained at a low firing temperature, and ( 2) It is considered important to have a high volume resistivity.

【0007】フェライトは、一般的にX−Fe24の形
で表される組成のXがMn、Fe、Co、Ni、Cu、
Zn等の一種、あるいはこれらの元素の混合物であるス
ピネル型酸化物の固溶体である。積層インダクタの素子
寸法や内部導体形状が同じなら、フェライトのの透磁率
が高いほど大きなインダクタンスが得られる。たとえ
ば、XがMnとZnで構成されたフェライトは、きわめ
て高い透磁率を示す。しかし、このMnZnフェライト
は電気絶縁抵抗が高くない上に、低周波域ではすぐれて
いても高周波域では透磁率が減少するので、高周波域の
ノイズ対策を目的とするチップインダクタには適用でき
ない。これに対し、高周波帯域に使用可能なフェライト
として、NiZnフェライトやCuNiZnフェライト
がある。
[0007] Ferrite is generally composed of X-Fe 2 O 4 where X is Mn, Fe, Co, Ni, Cu,
It is a solid solution of a spinel oxide, which is a kind of Zn or a mixture of these elements. If the element size and the internal conductor shape of the laminated inductor are the same, the higher the magnetic permeability of the ferrite, the higher the inductance can be obtained. For example, a ferrite in which X is composed of Mn and Zn exhibits extremely high magnetic permeability. However, this MnZn ferrite does not have a high electric insulation resistance, and even if it is excellent in a low frequency range, its magnetic permeability decreases in a high frequency range. On the other hand, there are NiZn ferrite and CuNiZn ferrite as ferrites that can be used in a high frequency band.

【0008】通常、透磁率の高い緻密なフェライトを得
るためには、酸化物の素材を十分に混合し、700〜1000
℃にて仮焼合成したものを粉砕して原料粉とし、バイン
ダー(結合材)を加えて混練して所定形状に圧縮成形
後、1000℃を超える高温で焼成する。積層インダクタの
場合は、焼成前のグリーンシート上に内部導体となる導
体素材を印刷し、このシ−トを積層成形してからフェラ
イトと導体とを同時に焼成して一体化する。このため焼
成温度が高すぎると、内部導体は流れ出たりフェライト
内部へ拡散したりして導体の断面積減少や消失を来すよ
うになる。
Usually, in order to obtain a dense ferrite having a high magnetic permeability, the oxide material is sufficiently mixed, and
The material calcined and synthesized at ℃ is pulverized into a raw material powder, a binder (a binder) is added, kneaded, compression-molded into a predetermined shape, and baked at a high temperature exceeding 1000 ° C. In the case of a laminated inductor, a conductor material serving as an internal conductor is printed on a green sheet before firing, and the sheet is laminated and formed, and then the ferrite and the conductor are simultaneously fired and integrated. For this reason, if the firing temperature is too high, the internal conductor flows out or diffuses into the ferrite, resulting in a reduction or disappearance of the conductor cross-sectional area.

【0009】これに対し、内部導体としてAg−Pd合
金が多く採用される。AgにPdを含有させると融点が
上昇するので、溶融や拡散を抑止でき、その上焼結後の
フェライトとの熱収縮差を低減できる効果もある。しか
し、AgはPdなど他金属元素が添加されると電気抵抗
が増し、インダクタの内部抵抗が増加する。内部抵抗の
増加はインダクタの挿入損失の増大、すなわち品質指標
であるQ値を大きく低下させる。さらにノイズ対策用積
層チップインダクタの場合、大電流部位への採用が急増
しており、使用時の発熱も問題となってくる。
On the other hand, an Ag-Pd alloy is often used as the internal conductor. When Pd is contained in Ag, the melting point increases, so that melting and diffusion can be suppressed, and further, there is an effect that the difference in heat shrinkage from ferrite after sintering can be reduced. However, when other metal elements such as Pd are added to Ag, the electrical resistance increases, and the internal resistance of the inductor increases. The increase in the internal resistance greatly increases the insertion loss of the inductor, that is, greatly reduces the Q value which is a quality index. Furthermore, in the case of a multilayer chip inductor for noise suppression, its use in a large current area is rapidly increasing, and heat generation during use becomes a problem.

【0010】積層インダクタの内部抵抗は、このような
点からできる限り小さいことが望ましく、内部導体とし
ては、Pdなど他金属元素を低く抑えたAg、可能なら
Ag単体の適用が最良である。しかしAgの融点は961
℃と低く、Ag単体を内部導体に用いるためには、積層
インダクタないしはフェライトの焼成温度を900℃以下
に抑えるべきであり、このような低温で十分焼結可能な
フェライト材が必要である。
[0010] The internal resistance of the laminated inductor is desirably as small as possible in view of the above point. As the internal conductor, it is best to use Ag in which other metal elements such as Pd are kept low, and if possible, Ag alone. However, the melting point of Ag is 961
In order to use Ag alone as the internal conductor, the firing temperature of the laminated inductor or ferrite should be suppressed to 900 ° C. or less, and a ferrite material that can be sufficiently sintered at such a low temperature is required.

【0011】たとえば、特公平7-87149号公報には、A
gを内部導体とし、CuNiZnフェライトを主成分と
して、これにBi23、V25または珪酸鉛ガラスの少
なくとも一種を第二成分として加えた積層チップインピ
ーダンスの発明が提示されている。ただし、Ag導電体
を用い焼成温度を900℃とすることにより、許容電流が
増加したことは示されているが、各成分の組成範囲、許
容電流以外の諸性能は示されていない。
For example, in Japanese Patent Publication No. 7-87149, A
The g as an internal conductor, as a main component CuNiZn ferrite, the invention of the laminated chip impedance is presented to which was added at least one Bi 2 O 3, V 2 O 5 or lead silicate glass as the second component. However, although it is shown that the allowable current was increased by setting the firing temperature to 900 ° C. using the Ag conductor, various performances other than the composition range of each component and the allowable current were not shown.

【0012】積層インダクタでは、フェライトに直接導
体が接して一体化されている。このためフェライトの電
気抵抗値が十分高くない場合は漏洩電流が増し、インダ
クタとしての効果がいちじるしく減少する。また、信号
通過によってフェライト内に渦電流が発生し、挿入損失
の増大を招く結果となる。したがって、絶縁体としての
フェライトの電気抵抗は、できるだけ高くなければなら
ない。
In the multilayer inductor, the conductor is directly in contact with the ferrite and integrated. Therefore, when the electric resistance value of the ferrite is not sufficiently high, the leakage current increases, and the effect as an inductor is significantly reduced. In addition, an eddy current is generated in the ferrite due to the passage of a signal, which results in an increase in insertion loss. Therefore, the electric resistance of ferrite as an insulator must be as high as possible.

【0013】このフェライトの電気抵抗は、その組成に
大きく依存する。前述のように、MnZnフェライトは
きわめて高い透磁率を示すが、電気絶縁抵抗が高くない
ため、高周波用にはNiZnフェライトやより低温で焼
結が可能なCuNiZnフェライトが適用される。
[0013] The electric resistance of this ferrite greatly depends on its composition. As described above, MnZn ferrite shows extremely high magnetic permeability, but does not have high electric insulation resistance. For high frequency, NiZn ferrite or CuNiZn ferrite which can be sintered at lower temperature is applied.

【0014】CuNiZnフェライトを用い、とくに電
気抵抗が高いことを配慮した例として、特開平6-295811
号公報の発明がある。この発明はMoO3を少量添加し
て透磁率の向上を図ったものであるが、とくにFe23
の量を48〜50モル%の範囲に限定し、体積抵抗率(比抵
抗)の向上を図っている。また、特開平11-219812号公
報に開示された発明は、CuNiZnフェライトにMn
Oを含有させたもので、この場合もFe23の量を48〜
49.5モル%のせまい範囲に管理し、高い体積抵抗率を実
現させているようである。
Japanese Patent Application Laid-Open No. 6-295811 discloses an example in which CuNiZn ferrite is used and the electric resistance is particularly high.
Patent Publication No. This invention was improved in permeability by adding a small amount of MoO 3, in particular Fe 2 O 3
Is limited to the range of 48 to 50 mol% to improve the volume resistivity (specific resistance). Further, the invention disclosed in Japanese Patent Application Laid-Open No. H11-219812 discloses that Mn is added to CuNiZn ferrite.
O in which was contained, 48 to the amount of Fe 2 O 3 Again
It seems that a high volume resistivity is realized by controlling to a narrow range of 49.5 mol%.

【0015】これら2つの発明は、焼結密度は十分高
く、体積抵抗率も1×1010Ω-cm以上のものも提示されて
おり、すぐれたフェライトが得られていると思われる。
しかしながら、いずれの場合も950〜1300℃の温度で焼
成をおこなっており、このような温度での焼成でなけれ
ば十分な特性が発現されないとすれば、Agを内部導体
とする積層インダクタには用いることができない。
In these two inventions, those having a sufficiently high sintering density and a volume resistivity of 1 × 10 10 Ω-cm or more are proposed, and it is considered that excellent ferrite is obtained.
However, in each case, firing is performed at a temperature of 950 to 1300 ° C. If sufficient characteristics are not exhibited unless firing at such a temperature, it is used for a multilayer inductor having Ag as an internal conductor. Can not do.

【0016】[0016]

【発明が解決しようとする課題】本発明は、内部導体に
Agを用いることのできる範囲の温度での焼結にて、高
周波域における高い透磁率と高い体積抵抗率が得られる
酸化物磁性材料、およびその製造方法を提供するもので
あって、内部抵抗が低く大電流仕様に適応できる高性能
のチップインダクタを得ることを目的とする。
SUMMARY OF THE INVENTION The present invention relates to an oxide magnetic material capable of obtaining high magnetic permeability and high volume resistivity in a high frequency range by sintering at a temperature within a range where Ag can be used for the internal conductor. And a method of manufacturing the same, and an object thereof is to obtain a high-performance chip inductor having low internal resistance and adaptable to a large current specification.

【0017】[0017]

【課題を解決するための手段】積層チップインダクタの
内部導体は、ペースト状の素材の形でフェライトのグリ
ーンシート上に印刷され、乾燥後シートを積層圧着成形
して一体化焼成される際に、フェライトとともにその焼
結がおこなわれる。
The internal conductor of the multilayer chip inductor is printed on a ferrite green sheet in the form of a paste-like material, and after drying, the sheet is laminated and pressed to be integrally fired. The sintering is performed together with the ferrite.

【0018】この内部導体について、電気抵抗をできる
だけ小さくするためにAgの単一体を用いることを目標
とし、まずAgペーストの所要焼成温度を調査した。そ
の結果、グリーンシート上のAg素材の焼結が十分進行
し、導体の抵抗値が最小となる焼成温度は830〜900℃で
あることが確認された。この温度範囲より高くなると、
Ag導体は拡散や反応を起こしやすくなって、断面積の
減少や他元素の侵入などが発生し、低くなると焼結不十
分になって、いずれの場合もインダクタ内部導体として
の電気抵抗値が増加してくる。
For this internal conductor, the required firing temperature of the Ag paste was investigated first, with the aim of using a single body of Ag in order to minimize the electrical resistance. As a result, it was confirmed that the sintering of the Ag material on the green sheet sufficiently proceeded, and the firing temperature at which the resistance value of the conductor was minimized was 830 to 900 ° C. If the temperature rises above this range,
Ag conductors are prone to diffusion and reactions, resulting in a decrease in cross-sectional area and intrusion of other elements. When the conductors are low, sintering becomes insufficient, and in any case, the electrical resistance value as the conductor inside the inductor increases. Will come.

【0019】フェライトの素材としては、このAg導体
の最適焼結温度範囲にて十分緻密に焼結が進行して高透
磁率となり、その上で、できるだけ高い体積抵抗率の得
られることが必要である。このような性能のフェライト
を得るための組成に関して種々検討をおこなった。その
際に、焼成後のフェライトの性能としては、焼結密度は
5.0g/cm3以上、1MHzにおける透磁率は300以上、そして
体積抵抗率は1000MΩcm以上を目標とした。
As a ferrite material, it is necessary that sintering proceed sufficiently and densely in the optimum sintering temperature range of the Ag conductor to obtain a high magnetic permeability, and further that a volume resistivity as high as possible can be obtained. is there. Various studies were made on the composition for obtaining ferrite having such performance. At that time, as for the performance of the ferrite after firing, the sintered density is
The target was 5.0 g / cm 3 or more, the magnetic permeability at 1 MHz was 300 or more, and the volume resistivity was 1000 MΩcm or more.

【0020】まず、CuNiZnフェライトをベースと
し、高周波域での透磁率および飽和磁束密度を十分確保
できるFe23、NiO、およびZnOの配合比率を検
討してこれらの各成分の影響を確認し、その上で焼結温
度を下げるためにCuO含有量の増加を試みた。しかし
CuOを多く含ませることは、非磁性のウスタイト相が
フェライトに固溶しなくなり、磁気性能をいちじるしく
損なってしまうため限界がある。そこで焼結助剤の添加
を検討した結果、CuO含有量を増した上で、Bi23
を少量添加することにより、ほぼAg導体の焼結温度で
フェライト緻密な焼結が可能であることがわかった。こ
れは、Bi23の融点がAg導体の焼結温度近傍にあ
り、わずかな液相を生ずることにより低温での焼結を促
進するためと推定された。
First, based on CuNiZn ferrite, the mixing ratio of Fe 2 O 3 , NiO, and ZnO that can sufficiently secure the magnetic permeability and the saturation magnetic flux density in a high frequency range was examined, and the effects of these components were confirmed. Then, an attempt was made to increase the CuO content in order to lower the sintering temperature. However, the inclusion of a large amount of CuO has a limit since the nonmagnetic wustite phase does not form a solid solution in ferrite and magnetic performance is significantly impaired. Therefore, as a result of studying the addition of a sintering aid, the CuO content was increased, and then Bi 2 O 3
It has been found that by adding a small amount of, ferrite dense sintering is possible at the sintering temperature of the Ag conductor. This was presumed to be because the melting point of Bi 2 O 3 was near the sintering temperature of the Ag conductor, and a slight liquid phase was generated to promote sintering at a low temperature.

【0021】次に、体積抵抗率を高くするため、Fe2
3の量を49モル%前後とすることを検討した。しか
し、焼成温度が高くない場合は焼結密度が必ずしも十分
でないこと、高い体積抵抗率が安定して得られないこ
と、および透磁率や焼結温度などからFe23の量をよ
り少なくしたい場合等もあって、助剤添加による体積抵
抗率の向上の可能性を調べてみた。その結果、TiO2
やMnO2など、4価の正イオンを有する酸化物の少量
添加が効果的であることが見いだされた。
Next, in order to increase the volume resistivity, Fe 2
It was considered that the amount of O 3 was about 49 mol%. However, when the sintering temperature is not high, the sintering density is not always sufficient, a high volume resistivity cannot be obtained stably, and the amount of Fe 2 O 3 is desired to be smaller from the viewpoint of the magnetic permeability and the sintering temperature. In some cases, the possibility of improving the volume resistivity by adding an auxiliary agent was examined. As a result, TiO 2
It has been found that the addition of a small amount of an oxide having a tetravalent cation, such as or MnO 2 , is effective.

【0022】そこで、これらの酸化物添加の影響をさら
に詳細に調査したところ、TiO2を含有させ、これに
さらにMnO2、MoO2、SnO2、TeO2、WO2
たはIrO2などの、Feイオンの半径に近い4価のイ
オンを持つ酸化物を加えることが、体積抵抗率増大に対
しより一層効果的であることが明らかになったのであ
る。
Therefore, the effects of these oxide additions were investigated in more detail. As a result, TiO 2 was added, and MnO 2 , MoO 2 , SnO 2 , TeO 2 , WO 2 or IrO 2, etc. It has been found that adding oxides having tetravalent ions close to the radius of the ions is even more effective in increasing the volume resistivity.

【0023】以上のような検討結果から、ほぼ目標とす
る焼結密度、透磁率および体積抵抗率を得ることのでき
る組成がわかったので、さらにそれらの組成範囲限界、
および製造条件等を明確にし、積層インダクタを作製し
て性能を確認し発明を完成させた。本発明の要旨は次の
とおりである。 (1) Fe23:43.0〜51.0モル%、CuO:5.0〜12.0
モル%、NiO:8.0〜39.0モル%およびZnO:残部
である主成分と、この主成分100質量部に対してBi2
3:0.5〜2.0質量部、TiO2:0.2〜2.0質量部およびM
nO2、MoO2、RuO2、SnO2、TeO2、WO2
たはIrO2の内の1種以上が併せて0.1〜1.0質量部の
副成分とからなることを特徴とする酸化物磁性材料。 (2) 酸化物原料を混合して仮焼合成し、粉砕整粒した粉
末にバインダーなどを加え混練して所要形状に成形した
後、830〜900℃にて1〜5時間焼成することを特徴とする
上記(1)の酸化物磁性材料の製造方法。 (3) Agの内部導体と、上記(1)の酸化物磁性材料とか
らなることを特徴とする積層チップインダクタ。
From the above examination results, it has been found that the compositions which can almost achieve the target sintering density, magnetic permeability and volume resistivity are obtained.
In addition, the manufacturing conditions were clarified, and a multilayer inductor was manufactured to confirm the performance, thereby completing the invention. The gist of the present invention is as follows. (1) Fe 2 O 3: 43.0~51.0 mol%, CuO: 5.0 to 12.0
Mol%, NiO: 8.0 to 39.0 mol% and ZnO: the remaining main component, and Bi 2 O with respect to 100 parts by mass of the main component.
3: 0.5 to 2.0 parts by weight, TiO 2: 0.2 to 2.0 parts by weight and M
An oxide magnetic material comprising at least one of nO 2 , MoO 2 , RuO 2 , SnO 2 , TeO 2 , WO 2 or IrO 2 together with 0.1 to 1.0 parts by mass of a subcomponent. (2) Mixing the oxide raw materials, calcining and synthesizing, adding a binder etc. to the crushed and sized powder, kneading and shaping into a required shape, and firing at 830 to 900 ° C for 1 to 5 hours. The method for producing an oxide magnetic material according to the above (1). (3) A multilayer chip inductor comprising the Ag internal conductor and the oxide magnetic material of (1).

【0024】[0024]

【発明の実施の形態】本発明において、フェライトの組
成を前述のように限定するのは、以下の理由による。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, the ferrite composition is limited as described above for the following reasons.

【0025】Fe23は、フェライトの基幹成分であ
り、そのフェライトの主成分をX−Fe24(XはC
u、Ni、Zn等)として示される逆スピネル構造の固
溶体とすれば、そのうちの43.0〜51.0モル%を構成して
いなければならない。43.0モル%未満の場合、十分な透
磁率が得られず、積層チップインダクタに組み込んだと
きのインピーダンスが不足する。他方、51.0モル%を超
えて存在すると、十分な焼結密度が得られず、体積抵抗
率が低くなる、その上、積層チップインダクタの機械的
強度が不足し、その上長期使用による性能劣化の耐性、
すなわち耐候性劣化をもたらすおそれがある。
Fe 2 O 3 is a main component of ferrite, and the main component of the ferrite is X-Fe 2 O 4 (X is C
u, Ni, Zn, etc.), it must constitute 43.0 to 51.0 mol% of the solid solution having an inverse spinel structure. If it is less than 43.0 mol%, sufficient magnetic permeability cannot be obtained, and the impedance when incorporated in a multilayer chip inductor will be insufficient. On the other hand, if the content exceeds 51.0 mol%, sufficient sintering density cannot be obtained, the volume resistivity becomes low, and furthermore, the mechanical strength of the multilayer chip inductor becomes insufficient, and furthermore, the performance degradation due to long-term use may occur. Resistance,
That is, the weather resistance may be deteriorated.

【0026】CuOはフェライトの主成分のうちの、5.
0〜12.0モル%を構成していることとする。これは、C
uOは後述のBi23と共存することにより、焼結温度
の低温化に大きく寄与しているからである。しかし、5.
0モル%を下回ると本発明の目的とする低温度域で焼成
をおこなう場合に焼結密度が不十分になり、機械的強度
の不足に加えて耐候性が劣る原因となる。また、12.0モ
ル%を超えると焼成時、表面にガラス状混合相が形成さ
れて保持台に溶着しやすくなり、生産性が低下すること
の他、体積抵抗率も低下する。
CuO is one of the main components of ferrite.
0 to 12.0 mol%. This is C
This is because uO greatly contributes to lowering the sintering temperature by coexisting with Bi 2 O 3 described later. But 5.
If the amount is less than 0 mol%, the sintering density becomes insufficient when firing is carried out in the low temperature range which is the object of the present invention, which causes insufficient mechanical strength and poor weather resistance. On the other hand, if it exceeds 12.0 mol%, a glassy mixed phase is formed on the surface during firing, and it becomes easy to weld to the holding table, so that productivity is reduced and the volume resistivity is also reduced.

【0027】NiOはフェライトの高周波域における透
磁率を確保するために含有させる。その量は8.0モル%
未満でも、また逆に多すぎて39.0モル%を超える場合で
も、高周波域での透磁率が低下してくるので、フェライ
トの主成分中の含有量は8.0〜39.0モル%に限定する。
NiO is contained to ensure the magnetic permeability of the ferrite in the high frequency range. The amount is 8.0 mol%
If it is less than 39.0 mol% because it is too large, on the other hand, the magnetic permeability in the high frequency range is reduced. Therefore, the content of ferrite in the main component is limited to 8.0 to 39.0 mol%.

【0028】ZnOはフェライトの透磁率向上のために
重要な元素であり、フェライトの主成分の上記Fe
23、CuOおよびNiOを除いた残りの部分を構成す
るものとする。ただし、その含有比率が6.0モル%を下
回ると、得られたフェライトの磁気特性不十分や焼結密
度不足等の問題を生じ、逆に36.0モル%を超えても磁気
特性が悪くなるので、望ましいのは6.0〜36.0モル%の
範囲とすることである。
ZnO is an important element for improving the magnetic permeability of ferrite.
The remaining portion except for 2 O 3 , CuO and NiO is to be constituted. However, if the content ratio is less than 6.0 mol%, problems such as insufficient magnetic properties and insufficient sintering density of the obtained ferrite occur, and conversely, if it exceeds 36.0 mol%, the magnetic properties deteriorate, so it is desirable. Is in the range of 6.0 to 36.0 mol%.

【0029】上記のフェライトを構成する主要成分に対
し、助剤として下記組成の副成分を含有させる。各副成
分の所要量とその作用は以下のとおりである。この場
合、上記フェライトの主成分の合計量を100質量部とし
たときの、それぞれの副成分の量を質量部で示す。
An auxiliary component having the following composition is added to the main component constituting the ferrite as an auxiliary. The required amount of each sub-component and its action are as follows. In this case, when the total amount of the main components of the ferrite is 100 parts by mass, the amounts of the respective subcomponents are indicated by parts by mass.

【0030】Bi23は、フェライトの低温での焼結を
促進させるため、0.5〜2.0質量部含有させる。Bi23
の量が0.5質量部未満の場合、目標とする温度では焼結
が不十分となり、焼成後のフェライトの十分な焼結密度
および透磁率が得られない。一方、2.0質量部を超える
場合は焼成の際にAg内部導体の断面積減少が顕著にな
り、内部抵抗を大きくさせるおそれがある。
Bi 2 O 3 is contained in an amount of 0.5 to 2.0 parts by mass to promote sintering of ferrite at a low temperature. Bi 2 O 3
If the amount is less than 0.5 parts by mass, sintering becomes insufficient at the target temperature, and a sufficient sintered density and magnetic permeability of the ferrite after firing cannot be obtained. On the other hand, if it exceeds 2.0 parts by mass, the cross-sectional area of the Ag internal conductor is significantly reduced during firing, and the internal resistance may be increased.

【0031】TiO2は、フェライトの体積抵抗率増大
のために、0.2〜2.0質量部含有させる。TiO2が0.2質
量部未満では体積抵抗率の増加が不十分であり、2.0質
量部を超える含有は、透磁率の低下を来すからである。
MnO2、MoO2、RuO2、SnO2、TeO2、WO2
またはIrO2の内の1種以上を、合計量で0.1〜1.0質
量部含有させる。これは上記のTiO2と共に含有させ
ることによって、体積抵抗率をさらに増大させることが
できる。これら酸化物の含有量合計が0.1質量部未満で
は十分な効果が得られず、1.0質量部を越える含有は焼
結性を悪くするおそれがある。
TiO 2 is added in an amount of 0.2 to 2.0 parts by mass to increase the volume resistivity of ferrite. If TiO 2 is less than 0.2 parts by mass, the increase in volume resistivity is insufficient, and if it exceeds 2.0 parts by mass, the magnetic permeability decreases.
MnO 2 , MoO 2 , RuO 2 , SnO 2 , TeO 2 , WO 2
Alternatively, at least one of IrO 2 is contained in a total amount of 0.1 to 1.0 part by mass. This can further increase the volume resistivity by being contained together with the above TiO 2 . If the total content of these oxides is less than 0.1 part by mass, a sufficient effect cannot be obtained, and if the total content exceeds 1.0 part by mass, sinterability may be deteriorated.

【0032】さらにAg2OまたはRh23のいずれ
か、あるいは両方を含有させると、焼成の際にAgの拡
散が抑止され、Ag内部導体の断面積減少を低減するこ
とができる。したがって、必要に応じこれらの酸化物を
含有させることが望ましいが、その場合は、Ag2Oで
は0.01〜0.07質量部、Rh23では0.2〜1.5質量部の範
囲とし、他の成分を混合仮焼した後の仮焼合成粉に添加
して、焼成をおこなうとよい。
Further, when one or both of Ag 2 O and Rh 2 O 3 are contained, diffusion of Ag at the time of firing is suppressed, and a decrease in the cross-sectional area of the Ag internal conductor can be reduced. Therefore, it is desirable to contain these oxides as necessary. In that case, the content is 0.01 to 0.07 parts by mass for Ag 2 O and 0.2 to 1.5 parts by mass for Rh 2 O 3 , and other components are mixed. It is preferable to add the calcined synthetic powder after calcining and calcinate.

【0033】これらの組成の他、フェライトの特性に大
きく影響しない限りにおいて、多少の不可避的不純物の
混在は許容できる。
In addition to these compositions, some inevitable impurities can be mixed as long as they do not significantly affect the properties of ferrite.

【0034】上記組成の酸化物磁性材料の製造は、一般
的な方法に従っておこなえばよいが、積層インダクタの
製造を例にとって説明すれば次のとおりである。まず、
主成分と副成分とを混合して大気中800℃前後の温度に
て仮焼し、仮焼粉を粉砕して整粒する。この整粒粉にバ
インダーを加えて十分混練し、ドクターブレード法など
により、グリーンシートに成形する。
The production of the oxide magnetic material having the above composition may be carried out in accordance with a general method. The production of a laminated inductor will be described as follows. First,
The main component and the subcomponent are mixed and calcined in the atmosphere at a temperature of about 800 ° C., and the calcined powder is pulverized and sized. A binder is added to the sized powder, the mixture is sufficiently kneaded, and formed into a green sheet by a doctor blade method or the like.

【0035】グリーンシート上に導電体ペーストを印刷
し、シートを積層して所定形状に切断後、830〜900℃に
て1〜5時間焼成する。焼成温度は830℃を下回ると、焼
結不十分で磁気特性および機械的強度とも劣ったものに
なり、900℃を超えると、内部導体が細くなったり消失
したりして、良好なチップインダクタが得られなくな
る。焼成時間は、1時間未満では焼結が不十分となる一
方、必要以上に加熱を続けても性能の向上はほとんど認
められず、加熱の時間およびエネルギーの無駄になるの
で、長くても5時間までとする。焼成後、内部導体と接
続する導体部分に入出力用端部電極を取り付け、チップ
インダクタとする。
The conductor paste is printed on the green sheet, the sheets are laminated, cut into a predetermined shape, and baked at 830 to 900 ° C. for 1 to 5 hours. If the firing temperature is lower than 830 ° C, the sintering will be insufficient and the magnetic properties and mechanical strength will be inferior.If the firing temperature is higher than 900 ° C, the inner conductor will be thinned or disappear, and a good chip inductor will be produced. No longer available. If the sintering time is less than 1 hour, sintering will be insufficient, but if heating is continued more than necessary, almost no improvement in performance will be recognized, and heating time and energy will be wasted, so at most 5 hours Up to. After firing, the input / output end electrodes are attached to the conductors connected to the internal conductors, to form chip inductors.

【0036】[0036]

【実施例】〔実施例1〕表1に示す調合組成比とした原
料を、各々合計量にて250gとなるように秤量し、1リッ
トルの純水とともにジルコニア製粉砕用ボールを使用し
たボールミルにて24時間混合後、原料粉を分別乾燥し、
ジルコニア製るつぼに移して800℃にて仮焼合成をおこ
なった。仮焼後X線回折により所要の化合物が得られて
いることを確認した。
EXAMPLES Example 1 Raw materials having the composition ratios shown in Table 1 were weighed to a total amount of 250 g each, and the resulting mixture was passed through a ball mill using zirconia grinding balls together with 1 liter of pure water. After mixing for 24 hours, the raw material powder is separated and dried,
It was transferred to a zirconia crucible and calcined at 800 ° C. After calcination, it was confirmed by X-ray diffraction that the required compound was obtained.

【0037】仮焼合成粉はボールミルにて湿式粉砕後、
分別乾燥して粒径が0.8〜1.0μmになるようメッシュふ
るいにて整粒した。これにバインダとして10質量%のP
VA溶液を添加し、ライカイ機にて造粒して、造粒粉を
金型にてプレスし成形した後、大気中にて850℃、2.0時
間の焼成をおこない、外径10mm、厚さ3mmの円柱状試験
片および外径16mm、内径8mm、厚さ3mmのトロイダル試験
片を作製した。
The calcined synthetic powder is wet-pulverized by a ball mill,
The mixture was separated and dried, and sized with a mesh sieve so that the particle size became 0.8 to 1.0 μm. 10% by mass of P as a binder
After adding the VA solution and granulating with a raikai machine, pressing and molding the granulated powder in a mold, calcination is performed in the air at 850 ° C. for 2.0 hours, and an outer diameter of 10 mm and a thickness of 3 mm And a toroidal test piece having an outer diameter of 16 mm, an inner diameter of 8 mm, and a thickness of 3 mm were prepared.

【0038】また、上記の仮焼合成粉からドクターブレ
ード法により、厚さ70μmのグリーンシートを作製し
て、シート表面に内部導体とするAg単一組成のペース
トを線幅150μm、厚さ20μmにて内部導体相当のパター
ンにて印刷し、その上にグリーンシートを乗せて圧着後
チップ形状に切断し、上記と同じく大気中にて850℃、
2.0時間の焼成をおこなった。この試験片は焼成後断面
を研磨し、走査型電子顕微鏡にて導体形状を観察した。
Further, a green sheet having a thickness of 70 μm was prepared from the calcined synthetic powder by a doctor blade method, and a paste having a single composition of Ag as an internal conductor was formed on the sheet surface to a line width of 150 μm and a thickness of 20 μm. Print in a pattern equivalent to the internal conductor, put a green sheet on it, cut it into chips after crimping, and at 850 ° C
The firing was performed for 2.0 hours. After firing, the cross section of the test piece was polished, and the conductor shape was observed with a scanning electron microscope.

【0039】得られた円柱状試験片は、液浸秤量法にて
密度を測定した後、上下面にIn−Ga合金を塗布して
電極を設け、日本ヒューレットパッカード社製直流定電
圧電源(HP4140B)を利用して、直流50V、1分値の絶
縁抵抗を測定し、電極面積と電極間距離とから体積抵抗
率を計算して求めた。また、トロイダル試験片は、日本
ヒューレットパッカード社製のインピーダンス測定装置
(HP4291A)および透磁率測定装置(HP16454A)を用
い、1MHzにおける透磁率を求めた。
After measuring the density of the obtained cylindrical test piece by the liquid immersion weighing method, an In-Ga alloy was applied to the upper and lower surfaces to provide electrodes, and a DC constant voltage power supply (HP4140B manufactured by Hewlett-Packard Japan) was provided. ), The insulation resistance was measured at a DC value of 50 V for one minute, and the volume resistivity was calculated from the electrode area and the distance between the electrodes. The magnetic permeability at 1 MHz of the toroidal test piece was determined using an impedance measuring device (HP4291A) and a magnetic permeability measuring device (HP16454A) manufactured by Hewlett-Packard Japan.

【0040】表1に焼結密度、体積抵抗率および透磁率
の測定結果を合わせて示す。これらの結果から明らかな
ように、主成分の組成比と、副成分の量が本発明に定め
る範囲内にあるものは、密度および透磁率が高く、体積
抵抗率の高いフェライトが得られている。すなわち、当
初の目標とした焼結密度が5.0g/cm3以上、1MHzにおける
透磁率は300以上、そして体積抵抗率は1000MΩcm以上の
フェライトである。
Table 1 also shows the measurement results of the sintered density, volume resistivity and magnetic permeability. As is evident from these results, those in which the composition ratio of the main component and the amount of the subcomponent are within the range specified in the present invention have a high density and magnetic permeability, and a ferrite with a high volume resistivity has been obtained. . That is, the ferrite has an initial target sintering density of 5.0 g / cm 3 or more, a magnetic permeability at 1 MHz of 300 or more, and a volume resistivity of 1000 MΩcm or more.

【0041】[0041]

【表1】 [Table 1]

【0042】フェライト内部のAg導体については、B
23の含有の多い試番14を除いては、いずれも減少
や拡散等は認められなかった。これは焼成温度を低くで
きた効果である。
For the Ag conductor inside the ferrite, B
Except for Test No. 14, which contains a large amount of i 2 O 3, no decrease or diffusion was observed in any case. This is an effect of reducing the firing temperature.

【0043】〔実施例2〕表1に示した試料番号5の組
成のフェライトを用い、ドクターブレード法にて厚さ70
μmのグリーンシートを作製し、シート表面に、内部導
体となるAg単一組成のペーストのパターンをスクリー
ン印刷した。模式的に図1に示す内部導体構造となるよ
うな内部導体パターンとして、積層チップを形成させ
る。この場合のチップは2125サイズ(長さ2.0mm、幅1.2
5mm、厚さ0.5mm)で、ペーストの印刷線幅は150μm、厚
さは20μmで、内部の導体ターン数は8とし、積層シー
トの導体間接続はスルーホールを用い、そこに導電ペー
ストを充填した。
Example 2 Using a ferrite having the composition of Sample No. 5 shown in Table 1, a thickness of 70% was obtained by a doctor blade method.
A μm green sheet was prepared, and a paste pattern of a single Ag composition serving as an internal conductor was screen-printed on the sheet surface. A laminated chip is formed as an internal conductor pattern having the internal conductor structure schematically shown in FIG. In this case, the chip is 2125 size (2.0mm long, 1.2mm wide)
5mm, thickness 0.5mm), the printed line width of the paste is 150μm, the thickness is 20μm, the number of internal conductor turns is 8, and the connection between the conductors of the laminated sheet uses through holes, which are filled with conductive paste did.

【0044】シートを積層圧着後上記チップサイズに切
断し、大気中にて850℃、2.0時間の焼成をおこなった。
この場合のフェライトの透磁率は350(1MHz)であっ
た。
After laminating and pressing the sheet, it was cut into the above chip size, and fired at 850 ° C. for 2.0 hours in the air.
The magnetic permeability of the ferrite in this case was 350 (1 MHz).

【0045】焼成後のチップの両端に入出力電極を取り
付け、ヒューレットパッカード社製インピーダンス測定
装置(HP4291A型)を用い、インピーダンスとインダク
タンスを測定した。また許容電流値は、種々電流を変え
て、表面温度の上昇幅が+3℃以内である最大電流値を
求めた。これらの結果は次のとおりである。 インピーダンス|Z|:1200 Ω(100MHz) インダクタンス Ls :450 nH(100MHz) 最大許容電流 Ip :3.0 A 以上のように、本発明による積層チップインダクタは、
インピ−ダンス、インダクタンスとも高い値を示してお
り、許容電流値も十分大きい。
Input and output electrodes were attached to both ends of the fired chip, and the impedance and inductance were measured using an impedance measuring device (HP4291A type) manufactured by Hewlett-Packard Company. For the allowable current value, the maximum current value at which the increase in the surface temperature was within + 3 ° C. was obtained by changing various currents. The results are as follows. Impedance | Z |: 1200 Ω (100 MHz) Inductance Ls: 450 nH (100 MHz) Maximum allowable current Ip: 3.0 A As described above, the multilayer chip inductor according to the present invention is:
Both the impedance and the inductance show high values, and the allowable current value is sufficiently large.

【0046】[0046]

【発明の効果】本発明の酸化物磁性材料すなわちソフト
フェライトは、高周波領域にても十分に高い透磁率を有
し、体積抵抗率が高く、かつ従来のものよりも低温での
焼成により焼結が可能であり、Agの拡散による内部導
体消失を抑止できる。このフェライトによる積層チップ
インダクタは、内部導体に電気抵抗の小さいAgを用い
ることができるので、とくに大電流仕様に最適であり、
高周波特性にすぐれ、内部抵抗が低いことから、電子機
器の高性能化に効果的に活用できる。
The oxide magnetic material of the present invention, that is, soft ferrite, has a sufficiently high magnetic permeability even in a high frequency range, has a high volume resistivity, and is sintered by firing at a lower temperature than conventional ones. And the disappearance of the internal conductor due to the diffusion of Ag can be suppressed. This ferrite multilayer chip inductor can use Ag with low electric resistance for the inner conductor, so it is especially suitable for large current specifications.
Since it has excellent high-frequency characteristics and low internal resistance, it can be effectively used for improving the performance of electronic devices.

【図面の簡単な説明】[Brief description of the drawings]

【図1】積層チップインダクタの内部導体の構造を模式
的に例示した図である。
FIG. 1 is a diagram schematically illustrating the structure of an internal conductor of a multilayer chip inductor.

【符号の説明】[Explanation of symbols]

1.フェライトの積層焼結体部分 2.入出力用端部電極 3.内部導体 4.入出力電極と接続する導電部分 5.内部導体間の接続用スルーホール 1. Ferrite laminated sintered body part End electrode for input / output 3. Internal conductor 4. Conductive part connected to input / output electrode 5. Through hole for connection between internal conductors

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G002 AA06 AA07 AB01 AE02 4G018 AA01 AA02 AA15 AA21 AA23 AA24 AA25 AA33 AA37 AA38 AC16 5E041 AB14 AB19 BD01 CA01 HB00 HB01 HB03 HB05 NN02 NN17 NN18 5E070 AA01 AB10 BA12 BB01 CB03 CB13 CB17 EB03  ──────────────────────────────────────────────────続 き Continued on the front page F-term (reference) 4G002 AA06 AA07 AB01 AE02 4G018 AA01 AA02 AA15 AA21 AA23 AA24 AA25 AA33 AA37 AA38 AC16 5E041 AB14 AB19 BD01 CA01 HB00 HB01 HB03 HB05 NN02 NN17 NB13 CB

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】Fe23:43.0〜51.0モル%、CuO:5.
0〜12.0モル%、NiO:8.0〜39.0モル%およびZn
O:残部である主成分と、この主成分100質量部に対し
てBi23:0.5〜2.0質量部、TiO2:0.2〜2.0質量
部、およびMnO2、MoO2、RuO2、SnO2、Te
2、WO2またはIrO2の内の1種以上が併せて0.1〜
1.0質量部の副成分とからなることを特徴とする酸化物
磁性材料。
(1) Fe 2 O 3 : 43.0 to 51.0 mol%, CuO: 5.
0-12.0 mol%, NiO: 8.0-39.0 mol% and Zn
O: a main component the balance, Bi 2 O 3 with respect to the main component of 100 parts by: 0.5 to 2.0 parts by weight, TiO 2: 0.2 to 2.0 parts by weight, and MnO 2, MoO 2, RuO 2 , SnO 2 , Te
One or more of O 2 , WO 2 and IrO 2 are combined with 0.1 to
An oxide magnetic material comprising 1.0 parts by mass of a subcomponent.
【請求項2】酸化物原料を混合して仮焼合成し、粉砕整
粒した粉末にバインダーなどを加え混練して所要形状に
成形した後、830〜900℃にて1〜5時間焼成することを特
徴とする請求項1に記載の酸化物磁性材料の製造方法。
2. Mixing the oxide raw materials, calcining and synthesizing, adding a binder or the like to the pulverized and sized powder, kneading the mixture, shaping it into a required shape, and firing at 830 to 900 ° C. for 1 to 5 hours. The method for producing an oxide magnetic material according to claim 1, wherein:
【請求項3】Agの内部導体と、請求項1に記載の酸化
物磁性材料とからなることを特徴とする積層チップイン
ダクタ。
3. A multilayer chip inductor comprising an Ag internal conductor and the oxide magnetic material according to claim 1.
JP2000338844A 2000-11-07 2000-11-07 Oxide magnetic material, its manufacturing method, and laminated chip inductor Pending JP2002141215A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000338844A JP2002141215A (en) 2000-11-07 2000-11-07 Oxide magnetic material, its manufacturing method, and laminated chip inductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000338844A JP2002141215A (en) 2000-11-07 2000-11-07 Oxide magnetic material, its manufacturing method, and laminated chip inductor

Publications (1)

Publication Number Publication Date
JP2002141215A true JP2002141215A (en) 2002-05-17

Family

ID=18813996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000338844A Pending JP2002141215A (en) 2000-11-07 2000-11-07 Oxide magnetic material, its manufacturing method, and laminated chip inductor

Country Status (1)

Country Link
JP (1) JP2002141215A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010067050A (en) * 1999-08-06 2001-07-12 사토 히로시 Multilayer inductor and production method thereof
EP1661869A2 (en) * 2004-11-29 2006-05-31 TDK Corporation Ferrite material and electronic component using same
JP2006151741A (en) * 2004-11-29 2006-06-15 Tdk Corp Ferrite material and electronic component using the same
CN1301231C (en) * 2003-10-06 2007-02-21 Tdk株式会社 Ni-cu-zn clan ferrite material and its manufacturing method
KR100757903B1 (en) 2005-12-21 2007-09-11 티디케이가부시기가이샤 NiCuZn BASED FERRITE AND ELECTRONIC COMPONENT USING THE SAME
WO2009081984A1 (en) * 2007-12-25 2009-07-02 Hitachi Metals, Ltd. Stacked inductor and power converter using the stacked inductor
JP2009184872A (en) * 2008-02-06 2009-08-20 Panasonic Corp Ferrite sintered product and production method therefor
KR101016501B1 (en) * 2007-12-11 2011-02-24 루유안 동양구앙 마그네틱 머티리얼 컴퍼니 리미티드 A NiCuZn ferrite and its manufacturing methods thereof
CN102690111A (en) * 2012-04-23 2012-09-26 横店集团东磁股份有限公司 Nickel-copper-zinc soft magnetic ferrite material for low temperature co-firing and preparation method thereof
CN102690110A (en) * 2012-04-23 2012-09-26 横店集团东磁股份有限公司 NiCuZn soft magnetic ferrite material used for low temperature co-sintering and preparation method thereof
CN103332928A (en) * 2012-11-02 2013-10-02 横店集团东磁股份有限公司 Soft-magnetic nickel-copper-zinc ferrite material and preparation method thereof
WO2015015636A1 (en) * 2013-08-02 2015-02-05 京セラ株式会社 Ferrite sintered body and ferrite core and coil component
WO2015178450A1 (en) * 2014-05-22 2015-11-26 戸田工業株式会社 Sintered ferrite plate and sintered ferrite sheet
CN115650717A (en) * 2022-11-11 2023-01-31 广东风华邦科电子有限公司 Nickel-zinc ferrite for high-current chip inductor and preparation method thereof

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010067050A (en) * 1999-08-06 2001-07-12 사토 히로시 Multilayer inductor and production method thereof
CN1301231C (en) * 2003-10-06 2007-02-21 Tdk株式会社 Ni-cu-zn clan ferrite material and its manufacturing method
US7238298B2 (en) 2003-10-06 2007-07-03 Tdk Corporation Ni-Cu-Zn-based ferrite material and process for the production thereof
EP1661869A3 (en) * 2004-11-29 2009-12-23 TDK Corporation Ferrite material and electronic component using same
EP1661869A2 (en) * 2004-11-29 2006-05-31 TDK Corporation Ferrite material and electronic component using same
JP2006151741A (en) * 2004-11-29 2006-06-15 Tdk Corp Ferrite material and electronic component using the same
US7378036B2 (en) 2004-11-29 2008-05-27 Tdk Corporation Ferrite material and electronic component using the same
KR100757903B1 (en) 2005-12-21 2007-09-11 티디케이가부시기가이샤 NiCuZn BASED FERRITE AND ELECTRONIC COMPONENT USING THE SAME
US7527744B2 (en) 2005-12-21 2009-05-05 Tdk Corporation NiCuZn-base ferrites and electronic parts using the same
KR101016501B1 (en) * 2007-12-11 2011-02-24 루유안 동양구앙 마그네틱 머티리얼 컴퍼니 리미티드 A NiCuZn ferrite and its manufacturing methods thereof
EP2234126A1 (en) * 2007-12-25 2010-09-29 Hitachi Metals, Ltd. Stacked inductor and power converter using the stacked inductor
US8436708B2 (en) 2007-12-25 2013-05-07 Hitachi Metals, Ltd. Multilayer inductor and power converter comprising it
WO2009081984A1 (en) * 2007-12-25 2009-07-02 Hitachi Metals, Ltd. Stacked inductor and power converter using the stacked inductor
EP2234126A4 (en) * 2007-12-25 2017-05-10 Hitachi Metals, Ltd. Stacked inductor and power converter using the stacked inductor
JP2009184872A (en) * 2008-02-06 2009-08-20 Panasonic Corp Ferrite sintered product and production method therefor
JP4752849B2 (en) * 2008-02-06 2011-08-17 パナソニック株式会社 Manufacturing method of sintered ferrite
CN102690111A (en) * 2012-04-23 2012-09-26 横店集团东磁股份有限公司 Nickel-copper-zinc soft magnetic ferrite material for low temperature co-firing and preparation method thereof
CN102690110A (en) * 2012-04-23 2012-09-26 横店集团东磁股份有限公司 NiCuZn soft magnetic ferrite material used for low temperature co-sintering and preparation method thereof
CN103332928A (en) * 2012-11-02 2013-10-02 横店集团东磁股份有限公司 Soft-magnetic nickel-copper-zinc ferrite material and preparation method thereof
WO2015015636A1 (en) * 2013-08-02 2015-02-05 京セラ株式会社 Ferrite sintered body and ferrite core and coil component
CN104507890A (en) * 2013-08-02 2015-04-08 京瓷株式会社 Ferrite sintered body and ferrite core and coil component
JP5960904B2 (en) * 2013-08-02 2016-08-02 京セラ株式会社 Ferrite sintered body, ferrite core and coil component
US9607751B2 (en) 2013-08-02 2017-03-28 Kyocera Corporation Ferrite sintered body, ferrite core, and coil component
WO2015178450A1 (en) * 2014-05-22 2015-11-26 戸田工業株式会社 Sintered ferrite plate and sintered ferrite sheet
CN105308003A (en) * 2014-05-22 2016-02-03 户田工业株式会社 Sintered ferrite plate and sintered ferrite sheet
CN105308003B (en) * 2014-05-22 2017-08-01 户田工业株式会社 Ferrite sintered plate and ferrite sintered
KR101769694B1 (en) * 2014-05-22 2017-08-18 도다 고교 가부시끼가이샤 Sintered ferrite plate and sintered ferrite sheet
US10714247B2 (en) 2014-05-22 2020-07-14 Toda Kogyo Corp. Ferrite sintered plate and ferrite sintered sheet
CN115650717A (en) * 2022-11-11 2023-01-31 广东风华邦科电子有限公司 Nickel-zinc ferrite for high-current chip inductor and preparation method thereof

Similar Documents

Publication Publication Date Title
KR101210772B1 (en) Hexagonal ferrite, and antenna and communication equipment using the same
JP5892430B2 (en) Ceramic electronic component and method for manufacturing ceramic electronic component
EP2040272A1 (en) Laminated component
KR101928210B1 (en) Ferrite composition, ferrite sintered body, electronic device, and chip coil
JP2010018482A (en) Ferrite, and manufacturing method thereof
JP2002141215A (en) Oxide magnetic material, its manufacturing method, and laminated chip inductor
WO1997002221A1 (en) Dielectric porcelain, process for production thereof, and electronic parts produced therefrom
JP2010235324A (en) Ferrite composition, ferrite sintered body, composite lamination type electronic component, and method for manufacturing ferrite sintered body
JP4069284B2 (en) Magnetic ferrite materials and multilayer ferrite parts
JP2002015913A (en) Magnetic ferrite powder, magnetic ferrite sintered body, laminated ferrite part and its manufacturing method
JP3975051B2 (en) Method for manufacturing magnetic ferrite, method for manufacturing multilayer chip ferrite component, and method for manufacturing LC composite multilayer component
WO2005005341A1 (en) Magnetic ferrite and magnetic device using same
JP2003272914A (en) Oxide magnetic material, manufacturing method of the same, and laminated chip inductor
JPH0891919A (en) Magnetic oxide material composition, its production and inductor, laminated chip inductor and composite laminated part
JP3407725B2 (en) Oxide magnetic material, method of manufacturing the same, and multilayer chip inductor
JP4431850B2 (en) Oxide magnetic material, manufacturing method thereof, and multilayer chip inductor
JP4074440B2 (en) Magnetic oxide sintered body and high-frequency circuit component using the same
JPH1092624A (en) Sintered body of hexagonal z-type magnetic oxide, its manufacture, and impedance element
JP2004262682A (en) Magnetic oxide sintered compact and high-frequency circuit part using the same
JP4449091B2 (en) Magnetic ferrite materials, multilayer chip ferrite components, composite multilayer components and magnetic cores
JP2001253769A (en) Oxide magnetic material, chip part using the same material and methods for manufacturing the same material and the same part
CN115124335B (en) Ferrite composition and electronic component
WO2024093990A1 (en) Magnetic material and multilayer inductor comprising said material
JP4074437B2 (en) Magnetic oxide sintered body and high-frequency circuit component using the same
JP3407681B2 (en) Oxide magnetic material, multilayer chip inductor and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091125

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100317