JPH09171918A - Magnetic material for microwave and high frequency circuit component employing it - Google Patents

Magnetic material for microwave and high frequency circuit component employing it

Info

Publication number
JPH09171918A
JPH09171918A JP7330012A JP33001295A JPH09171918A JP H09171918 A JPH09171918 A JP H09171918A JP 7330012 A JP7330012 A JP 7330012A JP 33001295 A JP33001295 A JP 33001295A JP H09171918 A JPH09171918 A JP H09171918A
Authority
JP
Japan
Prior art keywords
magnetic material
magnetic
amount
garnet
high frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7330012A
Other languages
Japanese (ja)
Other versions
JP3405030B2 (en
Inventor
Toshifumi Sato
利文 佐藤
Osamu Inoue
修 井上
Hirotaka Furukawa
裕高 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=18227790&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH09171918(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP33001295A priority Critical patent/JP3405030B2/en
Priority to US08/629,101 priority patent/US5709811A/en
Priority to DE69613745T priority patent/DE69613745T2/en
Priority to EP96105648A priority patent/EP0737987B1/en
Publication of JPH09171918A publication Critical patent/JPH09171918A/en
Application granted granted Critical
Publication of JP3405030B2 publication Critical patent/JP3405030B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a polycrystalline ceramic magnetic material wherein a composition to be fired at low temperature is optimized, and a high frequency circuit component employing it. SOLUTION: The microwave magnetic material principally comprises a phase having garnet type structure represented by a chemical formula A3 Bx O12 (where, A contains at least one kind of yttrium Y or rare earth metal element and B contains at least iron Fe) where 4.76<=x<5.00, and A contains bismuth Bi. Alternatively, A contains calcium Ca and bismuth Bi and B contains indium In and vanadium V.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、高周波回路部品用
に使用される、マイクロ波用磁性体材料およびこれを用
いて作製した高周波用回路部品である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a microwave magnetic material used for a high frequency circuit component and a high frequency circuit component produced by using the same.

【0002】[0002]

【従来の技術】近年、衛星通信や移動体通信の市場拡大
に見られるように、情報・通信分野の高速・高密度化が
進展し、使用周波数の高周波数化が進んでいる。このよ
うな高周波で使用される磁性体として、電気抵抗率が高
く、高周波における損失が小さい、ガーネット系磁性体
が注目されている。また、高周波信号処理用として、磁
性体のジャイロ磁気効果を利用した、サーキュレータ、
アイソレータ、ジャイレータ等の非可逆回路素子があ
り、この場合にも主にガーネット系磁性体が利用されて
いる。
2. Description of the Related Art In recent years, as seen in the expansion of the market for satellite communication and mobile communication, high-speed and high-density information and communication fields have been developed, and higher frequencies have been used. As a magnetic material used at such a high frequency, a garnet-based magnetic material, which has a high electric resistivity and a small loss at a high frequency, has attracted attention. Also, for high frequency signal processing, a circulator using the gyromagnetic effect of a magnetic material,
There are non-reciprocal circuit devices such as isolators and gyrators, and in this case also, garnet-based magnetic materials are mainly used.

【0003】非可逆回路素子の代表として、サーキュレ
ータを取り上げると、一般的な分布定数型Yストリップ
ラインタイプのものでは、ストリップラインの上下にガ
ーネット円盤を配し、これを上下より永久磁石ではさむ
構造となっている。この時の最小挿入損失を与える磁性
体円盤の直径dは、次式で与えられる。 d=a/(f・(μ'・ε')0.5) ここでaは定数、fは周波数、μ'は比透磁率の実数成
分、ε'は比誘電率の実数成分である。従って、磁性体
のμ'が高いほど磁性体円盤の直径が小さくなり、サー
キュレータを小型化できる。この場合のμ'は、強磁性
共鳴による順方向透磁率μ+'であり、外部直流磁場の強
さに依存する。強磁性共鳴直下となる外部磁場下でμ+'
は最大となるが、損失成分μ"も大きくなり、挿入損失
が大きくなるため、通常は共鳴点よりもやや大きい外部
磁場をかけ、μ"があまり大きくない状態で用いるのが
一般的である。同じμ"となる外部直流磁場下で用いる
場合、材料の磁気共鳴半値幅ΔHが小さいほど、μ+'が
大きくなり、小型化が可能となる。こうした事情は、よ
り小型の集中定数型でも、またアイソレーターでも同様
である。
Taking a circulator as a representative of the non-reciprocal circuit device, in a general distributed constant type Y strip line type, a garnet disk is arranged above and below the strip line, and a permanent magnet is sandwiched between the garnet disks from above and below. Has become. The diameter d of the magnetic disk that gives the minimum insertion loss at this time is given by the following equation. d = a / (f · (μ ′ · ε ′) 0.5 ) where a is a constant, f is frequency, μ ′ is a real number component of relative permeability, and ε ′ is a real number component of relative permittivity. Therefore, the higher the μ'of the magnetic material, the smaller the diameter of the magnetic disk, and the size of the circulator can be reduced. In this case, μ ′ is the forward magnetic permeability μ + ′ due to ferromagnetic resonance, and depends on the strength of the external DC magnetic field. Μ + 'in an external magnetic field directly under the ferromagnetic resonance
Is the maximum, but the loss component μ "is also large and the insertion loss is large. Therefore, it is general to apply an external magnetic field slightly larger than the resonance point and to use it in a state where μ" is not so large. When used in an external DC magnetic field with the same μ ", the smaller the magnetic resonance half-value width ΔH is, the larger μ + 'becomes, which enables downsizing. Even in the case of a smaller lumped constant type, The same applies to the isolator.

【0004】一方、ガーネット系磁性体材料は、通常単
結晶薄膜か、あるいは多結晶焼結体として利用されてい
る。単結晶の作製は、引き上げ法で作製されるGGG
(ガドリニウム・ガリウム・ガーネット)単結晶を基板
として、LPE(Liquid PhaseEpitaxy)法で900℃
程度の温度で薄膜として作製されるのが一般的である。
この方法で作製された試料は、磁気共鳴半値幅ΔHが小
さいが、アイソレータ等で使用されるような厚みのある
試料の作製には時間がかかりすぎ、また高価な点が欠点
である。一方、多結晶は、通常のセラミックス焼結体と
して作製されるため、ΔHは単結晶より一桁以上大きい
ものの、任意のサイズの試料が容易に作製でき、かつ単
結晶に比べてはるかに安価であり、サーキュレータやア
イソレータ用としては、この多結晶焼結体が用いられて
いた。
On the other hand, the garnet type magnetic material is usually used as a single crystal thin film or a polycrystalline sintered body. Single crystal is produced by the pulling method GGG
900 ℃ by LPE (Liquid Phase Epitaxy) method using (Gadolinium ・ Gallium ・ Garnet) single crystal as substrate
It is generally produced as a thin film at a temperature of about a certain degree.
The sample prepared by this method has a small magnetic resonance half-width ΔH, but it is disadvantageous in that it takes too much time to prepare a sample having a thickness as used in an isolator and is expensive. On the other hand, since a polycrystal is produced as a normal ceramics sintered body, ΔH is one digit or more larger than that of a single crystal, but a sample of any size can be easily produced and is much cheaper than a single crystal. This polycrystalline sintered body has been used for circulators and isolators.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、一般的
なYIG(イットリウム鉄ガーネット)は、その飽和磁
束密度や温度特性を調整するために、YをGd等で、ま
たFeをAlやGa等で置換したものでは、焼成温度が
1400℃以上の高温になり、特殊な炉が必要となり、
また、省エネルギーの面からも問題があった。
However, in general YIG (yttrium iron garnet), Y is replaced with Gd or the like, and Fe is replaced with Al or Ga or the like in order to adjust its saturation magnetic flux density and temperature characteristics. In this case, the firing temperature becomes higher than 1400 ° C and a special furnace is required.
There was also a problem in terms of energy saving.

【0006】また前述したサーキュレータの構造におい
て容易に推測されるように、ストリップラインに電流を
流す事によって生じる磁束が、磁性体とその隙間を交互
に通り、開磁路構成となる。このためみかけの透磁率
は、空隙部分(μ'=1)の影響を受け、磁性体本来の
透磁率より低下してしまうという欠点があった。この欠
点を防ぐためには閉磁路構成とする必要があり、導体を
磁性体に埋め込んで、同時に焼成する方法も考案されて
いる(信学技報、MW94−14、P17(1994))。し
かしながらこの方法では、ガーネットの焼成温度が14
00℃と高いため、内部電極として融点の高いパラジウ
ム等を用いる必要があり、パラジウムが高価でかつ比較
的電気抵抗率が高いため、高コスト・低Qとなるといっ
た問題点があった。
Further, as easily estimated in the structure of the circulator described above, the magnetic flux generated by passing a current through the strip line alternately passes through the magnetic body and the gap between the magnetic body and the open magnetic circuit. For this reason, the apparent magnetic permeability is affected by the void portion (μ ′ = 1), and has a drawback that the magnetic permeability is lower than the original magnetic permeability. In order to prevent this drawback, it is necessary to have a closed magnetic circuit structure, and a method of embedding a conductor in a magnetic material and firing it at the same time has also been devised (Shingaku Giho, MW94-14, P17 (1994)). However, in this method, the firing temperature of garnet is 14
Since it is as high as 00 ° C., it is necessary to use palladium or the like having a high melting point as an internal electrode, and since palladium is expensive and has a relatively high electric resistivity, there are problems that the cost is high and the Q is low.

【0007】また高周波インダクタとして使用する場合
にも、小型で高いインダクタンス値を得るためには、電
極材料を内蔵して閉磁路構成とする必要があるが(工業
調査会刊、「マイクロ磁気デバイスのすべて」P176
−177)、サーキュレーターと同様の理由から、高コ
スト・低Qとなるといった問題点があった。
Also, when used as a high frequency inductor, in order to obtain a small size and a high inductance value, it is necessary to incorporate an electrode material into a closed magnetic circuit structure (published by the Industrial Research Institute, "Micro Magnetic Device All ”P176
-177), there is a problem that the cost is high and the Q is low for the same reason as the circulator.

【0008】本発明は、前記従来の問題を解決するた
め、低温で焼成可能な組成を最適化した多結晶セラミッ
クス磁性体材料、及びこれを用いた高周波回路部品を提
供することを目的とする。
In order to solve the above-mentioned conventional problems, it is an object of the present invention to provide a polycrystalline ceramic magnetic material having an optimized composition that can be fired at a low temperature, and a high frequency circuit component using the same.

【0009】[0009]

【課題を解決するための手段】上記の問題点を解決する
ために、本発明の材料は、ガーネット型構造を持ち、化
学式A3x12(ここで、Aは少なくともイットリウム
(Y)もしくは希土類金属元素の1種類以上を含み、B
は少なくとも鉄(Fe)を含む)で表され、xが 4.76≦x<5.00 である相を主成分とする、マイクロ波用磁性体材料であ
る。また、本発明の材料は、Aがビスマス(Bi)を含
む事を特徴とする、マイクロ波用磁性体材料である。ま
た、本発明の材料は、Aがカルシウム(Ca)とビスマ
ス(Bi)を含み、Bが鉄(Fe)とインジウム(I
n)とバナジウム(V)よりなる事を特徴とする、マイ
クロ波用磁性体材料である。また、本発明の材料は、ガ
ーネット型構造を有する相を主成分とし、副成分とし
て、前記主成分を100重量部として、バナジウム
(V)をV25の重量部に換算して0<V25≦1、銅
(Cu)をCuOの重量部に換算して0<CuO≦1、
モリブデン(Mo)をMoO3の重量部に換算して0<
MoO3≦1、タングステン(W)をWO3の重量部に換
算して0<WO3≦1、鉛(Pb)をPbOの重量部に
換算して0<PbO≦1の1種類以上を含む事を特徴と
するマイクロ波用磁性体材料である。また、本発明の高
周波回路部品は、前記磁性体中に導体を埋め込んで閉磁
路を形成したことを特徴とする高周波回路部品である。
また本発明の高周波回路部品は高周波用非可逆回路素子
である。この素子においては、磁性体中の導体として
は、銀(Ag)を主成分とする事が望ましい。
In order to solve the above problems, the material of the present invention has a garnet type structure and has a chemical formula of A 3 B x O 12 (where A is at least yttrium (Y) or Contains at least one rare earth metal element, B
Is at least iron (Fe)), and x is a magnetic material material for microwaves containing as a main component a phase of 4.76 ≦ x <5.00. The material of the present invention is a magnetic material for microwaves, wherein A contains bismuth (Bi). Further, in the material of the present invention, A contains calcium (Ca) and bismuth (Bi), and B contains iron (Fe) and indium (I).
n) and vanadium (V), which is a magnetic material for microwaves. Further, the material of the present invention contains a phase having a garnet structure as a main component, and as a sub-component, the main component is 100 parts by weight, and vanadium (V) is converted into V 2 O 5 parts by weight, and 0 < V 2 O 5 ≦ 1, copper (Cu) in terms of CuO weight part, 0 <CuO ≦ 1,
Converting molybdenum (Mo) to parts by weight of MoO 3 0 <
Includes one or more of MoO 3 ≦ 1, tungsten (W) in terms of WO 3 by weight of 0 <WO 3 ≦ 1, and lead (Pb) in terms of PbO by weight of 0 <PbO ≦ 1. It is a magnetic material for microwaves that is characterized. Further, the high-frequency circuit component of the present invention is a high-frequency circuit component characterized in that a conductor is embedded in the magnetic body to form a closed magnetic circuit.
The high frequency circuit component of the present invention is a high frequency non-reciprocal circuit device. In this element, it is desirable that the conductor in the magnetic body contains silver (Ag) as a main component.

【0010】[0010]

【発明の実施の形態】以下、本発明の実施の形態につい
て、ガーネットの代表として主にYIGを例として説明
する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below by taking YIG as an example of a representative garnet.

【0011】(実施の形態1)出発原料として、Y
23、Bi23、α−Fe23、V25粉末を用いる。
これらの粉末を、化学式Y3ーyBiyFex12で表され
る組成比に配合し、添加物として0.1wt%V25
添加し、850℃で仮焼した後、再度粉砕する。xの値
としては4.76≦x<5.00、yの値としてはy<
2.00である。この仮焼粉末を成形後、所定の温度で
3時間焼成した。得られた試料はガーネット構造を持つ
磁性体材料である。Bi量yが大きくなるにしたがい、
より低温で緻密化する。しかしながら、粉末X線回折に
より、第2相の有無を求めた結果、Bi置換量yが2.
0以上か、あるいはFe量xが4.70以下か、あるい
はFe量xが5.00を超えるとガーネット単相とはな
らず、第2相の存在が認められる。Fe量が5.00の
場合は、単相ではあるが、Fe量が化学量論組成比より
少ない組成において、損失の低いものが得られる。な
お、添加物は仮焼後に添加しても同様の効果が得られ
る。
(Embodiment 1) As a starting material, Y
2 O 3 , Bi 2 O 3 , α-Fe 2 O 3 , and V 2 O 5 powder are used.
These powders were blended in the chemical formula Y 3 over y Bi y Fe x O 12 composition ratio represented, was added 0.1wt% V 2 O 5 as an additive, was calcined at 850 ° C., again Smash. The value of x is 4.76 ≦ x <5.00, and the value of y is y <
It is 2.00. After molding this calcined powder, it was fired at a predetermined temperature for 3 hours. The obtained sample is a magnetic material having a garnet structure. As the Bi amount y increases,
Densify at lower temperatures. However, as a result of determining the presence or absence of the second phase by powder X-ray diffraction, the Bi substitution amount y is 2.
When it is 0 or more, or when the Fe amount x is 4.70 or less, or when the Fe amount x exceeds 5.00, the garnet does not become a single phase, and the presence of the second phase is recognized. When the amount of Fe is 5.00, a single phase is obtained, but a low loss is obtained in a composition in which the amount of Fe is less than the stoichiometric composition ratio. The same effect can be obtained even if the additive is added after calcination.

【0012】(実施の形態2)出発原料として、Y
23、α−Fe23、V25、CuO粉末を用いる。こ
れらの粉末を、化学式Y3Fex12+zwt%V25
表される組成比に配合し、1100℃で仮焼した後、再
度粉砕する。xの値としては4.76≦x<5.00、
zの値としてはz<2.0である。この仮焼粉末を成形
後、所定の各温度で3時間焼成する。得られた試料はガ
ーネット構造を持つ磁性体材料である。zの値が大きく
なるにしたがい、より低温で緻密化する。しかしなが
ら、粉末X線回折により、第2相の有無を求めた結果、
25添加量zが2.0以上か、あるいはFe量xが
4.70以下か、あるいはFe量xが5.00を超える
とガーネット単相とはならず、第2相の存在が認められ
る。なお、添加物は仮焼後に添加しても同様の効果が得
られる。
(Embodiment 2) As a starting material, Y
2 O 3 , α-Fe 2 O 3 , V 2 O 5 , and CuO powder are used. These powders are blended in a composition ratio represented by the chemical formula Y 3 Fe x O 12 + zwt% V 2 O 5 , calcined at 1100 ° C., and then pulverized again. The value of x is 4.76 ≦ x <5.00,
The value of z is z <2.0. After molding this calcinated powder, it is fired at each predetermined temperature for 3 hours. The obtained sample is a magnetic material having a garnet structure. As the value of z becomes larger, the density becomes higher at a lower temperature. However, as a result of determining the presence or absence of the second phase by powder X-ray diffraction,
When the added amount z of V 2 O 5 is 2.0 or more, the Fe amount x is 4.70 or less, or the Fe amount x exceeds 5.00, the garnet single phase does not occur and the second phase is present. Is recognized. The same effect can be obtained even if the additive is added after calcination.

【0013】(実施の形態3)出発原料として、Y
23、Bi23、CaCO3、α−Fe23、In
23、V25粉末を用いる。これらの粉末を、化学式Y
3ー(2x+z)BizCa2xFep-(x+ y)Inyx12で表され
る組成比に配合し、850℃で仮焼した後、再度粉砕す
る。変数値としてはx≦0.8、y≦0.7、z<2.
00、p4.76≦p−(x+y)<5.00、ただ
し、2x+z≦2.5である。この仮焼粉末を成形後、
所定の温度で3時間焼成した。得られた試料はガーネッ
ト構造を持つ磁性体材料である。Bi量zが大きくなる
にしたがい、より低温で緻密化する。しかしながら、粉
末X線回折により、第2相の有無を求めた結果、Fe量
p−(x+y)が4.70以下か、あるいはFe量p−
(x+y)が5.00を超えるとガーネット単相とはな
らず、第2相の存在が認められる。Fe量p−(x+
y)が5.00の場合は、単相ではあるが、Fe量が化
学量論組成比より少ない組成において、結晶性の良いも
のが得られる。また、xが0.2≦x≦0.6、yが
0.3≦y≦0.6の組成において、損失の少ないもの
が得られる。なお、添加物は仮焼後に添加しても同様の
効果が得られる。
(Embodiment 3) As a starting material, Y
2 O 3 , Bi 2 O 3 , CaCO 3 , α-Fe 2 O 3 , In
2 O 3 and V 2 O 5 powder are used. These powders have the chemical formula Y
3 incorporated into chromatography (2x + z) Bi z Ca 2x Fe p- (x + y) In y V x O 12 composition ratio represented, after calcining at 850 ° C., pulverized again. Variable values are x ≦ 0.8, y ≦ 0.7, z <2.
00, p4.76 ≦ p− (x + y) <5.00, where 2x + z ≦ 2.5. After molding this calcined powder,
It was baked at a predetermined temperature for 3 hours. The obtained sample is a magnetic material having a garnet structure. As the Bi amount z increases, the density is increased at a lower temperature. However, as a result of determining the presence or absence of the second phase by powder X-ray diffraction, the Fe amount p- (x + y) is 4.70 or less, or the Fe amount p-
When (x + y) exceeds 5.00, the garnet single phase is not formed and the presence of the second phase is recognized. Fe content p- (x +
When y) is 5.00, although it is a single phase, good crystallinity can be obtained in a composition in which the amount of Fe is less than the stoichiometric composition ratio. Further, in the composition in which x is 0.2 ≦ x ≦ 0.6 and y is 0.3 ≦ y ≦ 0.6, the one with less loss can be obtained. The same effect can be obtained even if the additive is added after calcination.

【0014】(実施の形態4)出発原料として、Y
23、Bi23、α−Fe23、V25、CuO、Mo
3、WO3、PbO粉末を用いた。これらの粉末を、化
学式Y3ーyBiyFex12で表される組成比に配合し、
添加物としてV25、CuO、MoO3、WO3、PbO
のいずれかを添加し、850℃で仮焼した後、再度粉砕
する。xの値としては4.76≦x<5.00、yの値
としてはy<2.00である。この仮焼粉末を成形後、
所定の温度で3時間焼成した。得られた試料はガーネッ
ト構造を持つ磁性体材料である。Bi量yが大きくなる
にしたがい、より低温で緻密化する。90%以上の密度
が得られる焼成温度は、V25では1250℃、CuO
では1250℃、MoO3では1250℃、WO3では1
300℃、PbOでは1300℃である。同一添加物で
はFe23量に関係なく一定である。しかしながら、粉
末X線回折により、第2相の有無を求めた結果、Bi置
換量yが2.0以上か、あるいはFe量xが4.70以
下か、あるいはFe量xが5.00を超えるとガーネッ
ト単相とはならず、第2相の存在が認められる。Fe量
が5.00の場合は、単相ではあるが、Fe量が化学量
論組成比より少ない組成において、損失の低いものが得
られる。添加物としてV25、CuO、MoO3、W
3、PbO、それぞれ低温での緻密化に効果がある
が、V25、CuO添加がより効果的である。なお、添
加物は仮焼後に添加しても同様の効果が得られる。
(Embodiment 4) As a starting material, Y
TwoOThree, BiTwoOThree, Α-FeTwoOThree, VTwoOFive, CuO, Mo
O Three, WOThree, PbO powder was used. These powders,
Formula Y3-yBiyFexO12Blended to the composition ratio represented by
V as an additiveTwoOFive, CuO, MoOThree, WOThree, PbO
Add any of the above, calcinate at 850 ℃, then crush again
I do. The value of x is 4.76 ≦ x <5.00, the value of y
Is y <2.00. After molding this calcined powder,
It was baked at a predetermined temperature for 3 hours. The obtained sample is
It is a magnetic material with a structure. Bi amount y increases
Therefore, it densifies at a lower temperature. 90% or more density
The firing temperature at whichTwoOFiveAt 1250 ° C, CuO
At 1250 ° C, MoOThreeAt 1250 ° C, WOThreeThen 1
The temperature is 300 ° C., and that of PbO is 1300 ° C. With the same additives
Is FeTwoOThreeIt is constant regardless of the amount. However, the powder
The presence or absence of the second phase was determined by terminal X-ray diffraction.
The exchange amount y is 2.0 or more, or the Fe amount x is 4.70 or more.
Underneath, or when the Fe content x exceeds 5.00,
The presence of a second phase is recognized, instead of a single phase. Fe amount
Is 5.00, it is a single phase, but Fe content is stoichiometric
The composition with less loss is obtained in the composition less than the theoretical composition ratio.
Can be V as an additiveTwoOFive, CuO, MoOThree, W
OThree, PbO, effective for densification at low temperature
Is VTwoOFive, CuO addition is more effective. In addition,
Similar effects can be obtained by adding additives after calcination.

【0015】(実施の形態5)出発原料として、Y
23、Bi23、α−Fe23、V25粉末を用いる。
これらの粉末を、化学式Y2BiFe4.88で表される組
成比に配合し、添加物としてV25を0.1wt%の割
合で添加し、850℃で仮焼した後、再度粉砕する。こ
の仮焼粉末を成形後、900℃で焼成し、ガーネット円
板状試料を得る。この円板状試料をストリップラインの
上下に置き、さらに上下から磁石ではさみ、金属ケース
に納め、ストリップラインの一つの端部にターミネータ
用抵抗を接続して、分布定数型Yストリップラインアイ
ソレータを構成する。得られたアイソレータの1GHz
での正方向挿入損失を測定した結果、0.28dBであ
る。Fe量を精密に制御することにより、第2相の存在
なしに、従来よりもはるかに低温で緻密化し、特に、9
00℃以下でも焼結可能であり、挿入損失0.5dB以
下で、アイソレーターとして使用可能である。
(Embodiment 5) As a starting material, Y
2 O 3 , Bi 2 O 3 , α-Fe 2 O 3 , and V 2 O 5 powder are used.
These powders are blended in a composition ratio represented by the chemical formula Y 2 BiFe 4.88 , V 2 O 5 is added as an additive at a ratio of 0.1 wt%, calcined at 850 ° C., and then pulverized again. After this calcined powder is molded, it is fired at 900 ° C. to obtain a garnet disk-shaped sample. This disc-shaped sample is placed above and below the strip line, sandwiched by magnets from above and below, placed in a metal case, and a resistor for terminator is connected to one end of the strip line to form a distributed constant type Y strip line isolator. To do. 1 GHz of the obtained isolator
As a result of measuring the insertion loss in the positive direction at 0.28 dB. By controlling the amount of Fe precisely, it becomes densified at a much lower temperature than before without the presence of the second phase.
It can be sintered even at a temperature of 00 ° C. or less, has an insertion loss of 0.5 dB or less, and can be used as an isolator.

【0016】(実施の形態6)出発原料として、Y
23、Bi23、α−Fe23、V25粉末を用いる。
これらの粉末を、化学式Y2BiFe4.88で表される組
成比に配合し、添加物としてCuOを0.1wt%の割
合で添加し、850℃で仮焼した後、再度粉砕する。こ
の仮焼粉末に有機バインダを混合し、リバース・ロール
コータ方式により均一なグリーンシートを形成した後、
上記グリーンシートを円形に切断する。他方、Agにエ
チルセルロース系ビビクルを混合してなる導伝ペースト
を用意し、先のグリーンシート上にストリップラインと
して印刷する。同じ物を3枚用意し、ストリップライン
がお互いに120度の角度で交わるように重ね、その上
にさらに1枚のグリーンシートを重ねて、厚み方向に圧
力を加えて圧着し、磁性体4層に導体が3層サンドイッ
チされたグリーンシート積層体を作製する。これを90
0℃で焼成して閉磁路構成をとるようにし、その焼結体
の側面の内部導体の位置にAgペーストを塗布し、70
0℃で焼き付ける事により外部電極を形成する。この積
層体の電極のうち、互いに120度離れた3ヶ所を接地
し、他の3ヶ所の内、1ヶ所は、整合抵抗を介して接地
してターミネートし、他の2ヶ所に端子と適当な負荷容
量を設け、さらに上下より磁石ではさみ、磁性金属ケー
スにおさめて、1.9GHz用集中定数型アイソレータ
を作製する。
(Embodiment 6) As a starting material, Y
2 O 3 , Bi 2 O 3 , α-Fe 2 O 3 , and V 2 O 5 powder are used.
These powders are blended in a composition ratio represented by the chemical formula Y 2 BiFe 4.88 , CuO is added as an additive at a ratio of 0.1 wt%, calcined at 850 ° C., and then pulverized again. After mixing an organic binder with this calcined powder and forming a uniform green sheet by the reverse roll coater method,
The green sheet is cut into a circle. On the other hand, a conductive paste prepared by mixing Ag with an ethylcellulose-based vehicle is prepared and printed as a strip line on the green sheet. Prepare 3 sheets of the same product, stack them so that the strip lines intersect with each other at an angle of 120 degrees, stack 1 sheet of green sheet on top of it, and apply pressure in the thickness direction to crimp them, and then magnetic layer 4 layers A green sheet laminate in which three conductors are sandwiched is prepared. This is 90
It is fired at 0 ° C. so as to have a closed magnetic circuit configuration, and Ag paste is applied to the position of the internal conductor on the side surface of the sintered body.
External electrodes are formed by baking at 0 ° C. Of the electrodes of this laminated body, three places that are 120 degrees apart from each other are grounded, and one of the other three places is grounded and terminated through a matching resistor, and the other two places are properly connected to terminals. A 1.9 GHz lumped-constant type isolator is manufactured by providing a load capacitance, sandwiching it from above and below with a magnet, and holding it in a magnetic metal case.

【0017】また、同様の方法で、Fe量や添加物(V
25あるいはCuO)の配合量を変えたガーネットを用
い、AgとPdのいずれかの電極材料を使用する集中定
数型アイソレーターを作製する。さらに比較のため、従
来どうりの、磁性体と電極を別々に配した、開磁路構成
集中定数型アイソレーターも作製する。なお、磁性体サ
イズは、どちらも同じとする。得られたアイソレーター
のアイソレーション比帯域(20dB以上のアイソレー
ションが得られる周波数帯域幅/最大アイソレーション
周波数)と挿入損失を測定する。閉磁路構成は、開磁路
構成より、比帯域が広くなる。本発明のFe量を精密制
御し、V25あるいはCuO、とBiを含む磁性体で
は、900℃で焼成可能であるため、Agを内部電極と
して同時焼成/閉磁路構成とする事が可能であり、その
結果、広い比帯域、低い挿入損失が得られる。Fe量が
多すぎ、あるいは少なすぎる場合は、V25あるいはC
uOの含有量、あるいは電極材料の種類に係わらず、挿
入損失が若干大きくなった。これは、Feの過不足によ
り、900℃焼成では、焼結体の緻密化が充分ではな
く、さらに第2相の存在により相対的な密度が低下し、
損失が大きくなるためと考えられる。また、Fe量が化
学量論組成比より若干少ない4.82≦Fe≦4.94
の間で、挿入損失の小さい、特性の良いものが得られ
る。
In the same manner, the amount of Fe and additives (V
A lumped constant type isolator using an electrode material of either Ag or Pd is prepared by using garnet having a different compounding amount of 2 O 5 or CuO). For comparison, an open magnetic circuit configuration lumped constant isolator, in which a magnetic material and an electrode are separately arranged, is also manufactured for comparison. The magnetic material size is the same in both cases. The isolation ratio band (frequency bandwidth at which isolation of 20 dB or more / maximum isolation frequency) and the insertion loss of the obtained isolator are measured. The closed magnetic circuit configuration has a wider specific band than the open magnetic circuit configuration. Since the magnetic substance containing V 2 O 5 or CuO and Bi according to the present invention can be precisely controlled in the amount of Fe and can be fired at 900 ° C., simultaneous firing / closed magnetic circuit configuration can be achieved by using Ag as an internal electrode. As a result, a wide bandwidth and a low insertion loss can be obtained. If the Fe content is too large or too small, V 2 O 5 or C
The insertion loss increased a little regardless of the content of uO or the type of electrode material. This is because the densification of the sintered body is not sufficient at 900 ° C. firing due to the excess and deficiency of Fe, and the relative density is lowered due to the presence of the second phase.
This is probably because the loss becomes large. Further, the Fe content is slightly smaller than the stoichiometric composition ratio, and is 4.82 ≦ Fe ≦ 4.94.
In between, a product with small insertion loss and good characteristics can be obtained.

【0018】一方、V25あるいはCuO、とBiを含
まない通常のYIGの場合、Ag内部電極同時焼成/閉
磁路構成では、Fe量を精密制御してもアイソレーター
とならない。これは、温度が低いとYIGがほとんど緻
密化せず、一方温度が高くなると、YIGは緻密化する
が、Agの融点を大幅に越えるために、電極が切れてし
まったためと考えられる。この場合、Pdを内部電極と
して1400℃で焼成すれば、かなり良好な特性のもの
が得られるが、Pdが高価、高温焼成が必要、若干挿入
損失が大といった欠点がある。
On the other hand, in the case of a normal YIG which does not contain V 2 O 5 or CuO and Bi, in the Ag internal electrode simultaneous firing / closed magnetic circuit configuration, even if the Fe content is precisely controlled, it does not become an isolator. This is considered to be because the YIG hardly densified when the temperature was low, while the YIG densified when the temperature increased, but the electrode was cut off because the melting point of Ag was significantly exceeded. In this case, if Pd is used as an internal electrode and fired at 1400 ° C., it is possible to obtain the one having quite good characteristics, but there are disadvantages that Pd is expensive, requires high temperature firing, and has a slightly large insertion loss.

【0019】なお、以上の説明では、主にYIGを例と
して説明したが、本発明はこれに拘束される物ではな
く、ガーネット材料でよく行われるように、その飽和磁
束密度や温度特性を調整するために、FeをAlやGa
で置換したものや、YをGdで置換したものでも、全く
同様の効果が認められる。また高周波部品の代表とし
て、非可逆回路素子のYストリップライン型アイソレー
ターを例として説明するが、本発明はこれに拘束される
物ではなく、他のタイプの高周波回路部品においても、
全く同様の効果が得られる物である。
In the above description, YIG was mainly taken as an example, but the present invention is not restricted to this, and its saturation magnetic flux density and temperature characteristics are adjusted so that it is often performed with garnet materials. In order to achieve
The same effect can be observed with the case of substituting with or the case of substituting Y with Gd. Further, a Y stripline type isolator of a non-reciprocal circuit element will be described as an example of a high-frequency component, but the present invention is not restricted to this, and other types of high-frequency circuit components can also be used.
It is a product that can obtain exactly the same effect.

【0020】次に、本発明の具体例を説明する。 (実施例1)出発原料として、純度99.9%のY
23、Bi23、α−Fe23、V25粉末を用いた。
これらの粉末を、Y23量3−y、Bi23置換量y、
Fe23量xが(表1)の値となり、合計重量が300
gとなるように配合し、添加物としてV25を0.1w
t%添加し、ボールミルにて混合し、850℃で各2時
間仮焼した後、再度ボールミルで粉砕した。この仮焼粉
末を成形後、50℃きざみの所定の各温度で3時間焼成
した。得られた試料の相対密度を測定し、90%以上の
相対密度が得られる最低焼成温度と粉末X線回折によ
り、第2相の有無をもとめた結果を(表1)に示した。
Next, a specific example of the present invention will be described. (Example 1) As a starting material, Y having a purity of 99.9%
2 O 3 , Bi 2 O 3 , α-Fe 2 O 3 , and V 2 O 5 powder were used.
These powders were mixed with Y 2 O 3 amount 3-y, Bi 2 O 3 substitution amount y,
Fe 2 O 3 amount x becomes the value of (Table 1), and the total weight is 300
and added V 2 O 5 as an additive in an amount of 0.1 w
t% was added, mixed in a ball mill, calcined at 850 ° C. for 2 hours each, and then pulverized again in the ball mill. After this calcinated powder was molded, it was fired at each predetermined temperature of 50 ° C. for 3 hours. The relative densities of the obtained samples were measured, and the results of determining the presence or absence of the second phase by the minimum firing temperature at which a relative density of 90% or more was obtained and the powder X-ray diffraction are shown in (Table 1).

【0021】[0021]

【表1】 [Table 1]

【0022】(表1)より明らかなように、本発明の磁
性体では、yの置換量が多くなるにしたがい、より低温
で緻密化した。しかしながら、Bi置換量yが2.0以
上か、あるいはFe量xが4.70以下か、あるいはF
e量xが5.00を超えるとガーネット単相とはなら
ず、第2相の存在が認められた。Fe量が5.00の場
合は、単相ではあるが、Fe量が化学量論組成比より少
ない組成において、結晶性の優れたものが得られた。
As is clear from (Table 1), the magnetic substance of the present invention was densified at a lower temperature as the substitution amount of y increased. However, if the Bi substitution amount y is 2.0 or more, or the Fe amount x is 4.70 or less, or F
When the amount x exceeds 5.00, the garnet single phase was not formed and the presence of the second phase was recognized. When the amount of Fe was 5.00, it was a single phase, but in the composition in which the amount of Fe was less than the stoichiometric composition ratio, the one having excellent crystallinity was obtained.

【0023】(実施例2)出発原料として、純度99.
9%のY23、α−Fe23、V25、CuO粉末を用
いた。これらの粉末を、Y23=3、Fe23量xが
(表2、3)の割合となり、合計重量が300gとなる
ように配合し、さらに添加物としてV25、CuOを
(表2、3)の割合で添加し、ボールミルにて混合し、
1100℃で各2時間仮焼した後、再度ボールミルで粉
砕した。この仮焼粉末を成形後、50℃きざみの所定の
各温度で3時間焼成した。得られた試料の相対密度を測
定し、90%以上の相対密度が得られる最低焼成温度と
第2相の有無をもとめた結果を(表2、3)に示した。
(Example 2) As a starting material, a purity of 99.
9% Y 2 O 3, with α-Fe 2 O 3, V 2 O 5, CuO powders. These powders were blended so that Y 2 O 3 = 3, the amount of Fe 2 O 3 x was (Tables 2 and 3) and the total weight was 300 g, and V 2 O 5 and CuO were added as additives. Was added at a ratio of (Tables 2 and 3) and mixed by a ball mill,
After calcination at 1100 ° C. for 2 hours each, it was pulverized again with a ball mill. After this calcinated powder was molded, it was fired at each predetermined temperature of 50 ° C. for 3 hours. The relative densities of the obtained samples were measured, and the results of determining the minimum firing temperature at which a relative density of 90% or more and the presence or absence of the second phase are shown (Tables 2 and 3).

【0024】[0024]

【表2】 [Table 2]

【0025】[0025]

【表3】 [Table 3]

【0026】(表2、3)より明らかなように、本発明
の磁性体では、zの添加量が多くなるにしたがい、より
低温で緻密化した。しかしながら、V25添加量zが
2.0wt%以上か、あるいはFe量xが4.70以下
か、あるいはFe量xが5.00を超えるとガーネット
単相とはならず、第2相の存在が認められた。Fe量が
5.00の場合は、単相ではあるが、Fe量が化学量論
組成比より少ない組成において、結晶性の優れたものが
得られた。なお、添加物は仮焼後に添加しても同様の効
果が得られた。
As is clear from (Tables 2 and 3), the magnetic substance of the present invention was densified at a lower temperature as the added amount of z increased. However, when the added amount of V 2 O 5 z is 2.0 wt% or more, the Fe amount x is 4.70 or less, or the Fe amount x exceeds 5.00, the garnet single phase does not occur and the second phase The existence of When the amount of Fe was 5.00, it was a single phase, but in the composition in which the amount of Fe was less than the stoichiometric composition ratio, the one having excellent crystallinity was obtained. The same effect was obtained even if the additives were added after calcination.

【0027】(実施例3)出発原料として、純度99.
9%のY23、Bi23、α−Fe23、V25、Cu
O、MoO3、WO3、PbO粉末を用いた。これらの粉
末を、Y23=3、Fe23量xが(表4)の割合とな
り、合計重量が300gとなるように配合し、さらに添
加物としてV25、CuO、MoO3、WO3、PbOを
0.1wt%の割合で添加し、ボールミルにて混合し、
850℃で各2時間仮焼した後、再度ボールミルで粉砕
した。この仮焼粉末を成形後、50℃きざみの所定の各
温度で3時間焼成した。得られた試料の相対密度を測定
し、90%以上の相対密度が得られる最低焼成温度と第
2相の有無をもとめた結果を(表4)に示した。
(Example 3) As a starting material, a purity of 99.
9% Y 2 O 3 , Bi 2 O 3 , α-Fe 2 O 3 , V 2 O 5 , Cu
O, MoO 3 , WO 3 , and PbO powders were used. These powders were blended so that Y 2 O 3 = 3, the Fe 2 O 3 amount x was (Table 4) and the total weight was 300 g, and V 2 O 5 , CuO and MoO were added as additives. 3 , WO 3 , PbO were added at a ratio of 0.1 wt% and mixed by a ball mill,
After calcination at 850 ° C. for 2 hours each, it was ground again with a ball mill. After this calcinated powder was molded, it was fired at each predetermined temperature of 50 ° C. for 3 hours. The relative densities of the obtained samples were measured, and the minimum firing temperature at which a relative density of 90% or more was obtained and the presence / absence of the second phase are shown in (Table 4).

【0028】[0028]

【表4】 [Table 4]

【0029】(表4)より明らかなように、本発明の磁
性体では、V25、CuO、MoO 3、WO3、PbOの
いずれかを添加した場合、同一添加物ではFe23量に
関係なく焼成温度は一定である。しかしながら、いずれ
の添加物においても、Fe量xが4.70以下か、ある
いはFe量xが5.00を超えるとガーネット単相とは
ならず、第2相の存在が認められた。Fe量が5.00
の場合は、単相ではあるが、Fe量が化学量論組成比よ
り少ない組成において、結晶性の優れたものが得られ
た。添加物V25、CuO、MoO3、WO3、PbO
は、それぞれ低温焼成での緻密化に効果があるが、特に
25、CuO添加が効果的であった。なお、添加物は
仮焼後に添加しても同様の効果が得られた。
As is clear from Table 4, the magnet of the present invention is
In sex, VTwoOFive, CuO, MoO Three, WOThree, Of PbO
If either of them is added, the same additive is used as Fe.TwoOThreeIn quantity
The firing temperature is constant regardless. However, eventually
The Fe content x is 4.70 or less in the additive of
If the Fe content x exceeds 5.00, the garnet single phase is
However, the presence of the second phase was recognized. Fe amount is 5.00
In the case of, although it is a single phase, the Fe content is higher than the stoichiometric composition ratio.
It is possible to obtain excellent crystallinity with less composition.
Was. Additive VTwoOFive, CuO, MoOThree, WOThree, PbO
Are effective for densification in low temperature firing,
VTwoOFive, CuO addition was effective. The additives are
Similar effects were obtained even if added after calcination.

【0030】(実施例4)出発原料として、純度99.
9%のY23、Bi23、α−Fe23、V25粉末を
用いた。これらの粉末を、Y23、Bi23、Fe23
のmol比が(Y 23+Bi23):Fe23=3:
4.88となり、Y23とBi23のmol比がY/B
i=2/1の値となり、合計重量が300gとなるよう
に配合し、添加物としてV25を0.1wt%の割合で
添加し、ボールミルにて混合し、850℃で2時間仮焼
した後、再度ボールミルで粉砕した。この仮焼粉末を成
形後、900℃で3時間焼成し、外形25mmφ、厚さ
1.5mmのガーネット円板状試料を得た。この円板状
試料をY形状のストリップラインの上下に置き、さらに
上下からSrフェライト円板ではさみ、磁性金属ケース
に納め、ストリップラインの一つの端部にターミネータ
用抵抗を接続して、分布定数型Yストリップラインアイ
ソレータを構成した。得られたアイソレータの1GHz
での正方向挿入損失を測定した結果、0.28dBであ
った。比較のため、Fe23=5.00でアイソレータ
を作成すると、挿入損失が0.35dBとなった。
Example 4 As a starting material, a purity of 99.
9% YTwoOThree, BiTwoOThree, Α-FeTwoOThree, VTwoOFivePowder
Using. These powders areTwoOThree, BiTwoOThree, FeTwoOThree
The mol ratio of (Y TwoOThree+ BiTwoOThree): FeTwoOThree= 3:
4.88, YTwoOThreeAnd BiTwoOThreeThe molar ratio of Y / B
i = 2/1 value so that the total weight is 300g
And V as an additiveTwoOFiveAt a ratio of 0.1 wt%
Add, mix in a ball mill and calcine at 850 ° C for 2 hours
After that, it was crushed again with a ball mill. Form this calcinated powder
After shaping, calcination at 900 ℃ for 3 hours, outer diameter 25mmφ, thickness
A 1.5 mm garnet disk-shaped sample was obtained. This disk shape
Place the sample above and below the Y-shaped stripline, and
Sr ferrite disc from above and below, magnetic metal case
And a terminator at one end of the stripline
Constant resistance type Y strip line eye
Configured the Solator. 1 GHz of the obtained isolator
As a result of measuring the forward insertion loss at 0.28 dB
Was. For comparison, FeTwoOThree= 5.00 isolators
, The insertion loss was 0.35 dB.

【0031】本発明の磁性体では、Fe量を精密に制御
することにより、第2相の存在なしに、従来よりもはる
かに低温で緻密化し、特に、900℃以下でも焼結可能
であり、挿入損失0.5dB以下で、アイソレーターと
して使用可能であった。
The magnetic material of the present invention can be densified at a much lower temperature than the conventional one by controlling the amount of Fe precisely, and can be sintered even at 900 ° C. or less, It could be used as an isolator with an insertion loss of 0.5 dB or less.

【0032】(実施例5)実施例1と同様の方法で、Y
23:Bi23:Fe23=2:1:4.88のmol
比となり、合計重量が300gとなるように配合し、添
加物としてCuOを0.1wt%添加し、ボールミルに
て混合し、850℃にて5時間仮焼した後、再度ボール
ミルで粉砕した。この仮焼粉末に有機バインダを混合
し、リバース・ロールコータ方式により均一なグリーン
シートを形成した後、上記グリーンシートを円形に切断
した。他方、Agにエチルセルロース系ビビクルを混合
してなる導伝ペーストを用意し、先のグリーンシート上
にストリップラインとして印刷した。同じ物を3枚用意
し、ストリップラインがお互いに120度の角度で交わ
るように重ね、その上にさらに1枚のグリーンシートを
重ねて、厚み方向に圧力を加えて圧着し、磁性体4層に
導体が3層サンドイッチされたグリーンシート積層体を
作製した。これを900℃で3hr焼成して閉磁路構成
をとるようにし、その焼結体の側面の内部導体の位置6
ヶ所にAgペーストを塗布し、700℃で10分間焼き
付ける事により外部電極を形成した。この積層体の6ヶ
所の電極のうち、互いに120度離れた3ヶ所を接地
し、他の3ヶ所の内、1ヶ所は、整合抵抗を介して接地
してターミネートし、他の2ヶ所に端子と適当な負荷容
量を設け、さらに上下より磁石円盤ではさみ、磁性金属
ケースにおさめて、1.9GHz用集中定数型アイソレ
ータを作製した。
(Embodiment 5) In the same manner as in Embodiment 1, Y
2 O 3 : Bi 2 O 3 : Fe 2 O 3 = 2: 1: 4.88 mol
The ratio was such that the total weight was 300 g, 0.1 wt% of CuO was added as an additive, mixed in a ball mill, calcined at 850 ° C. for 5 hours, and then pulverized again in the ball mill. An organic binder was mixed with the calcined powder to form a uniform green sheet by a reverse roll coater method, and then the green sheet was cut into a circle. On the other hand, a conductive paste made by mixing Ag with an ethyl cellulose-based vehicle was prepared and printed as a strip line on the green sheet. Prepare 3 sheets of the same product, stack them so that the strip lines intersect with each other at an angle of 120 degrees, stack 1 sheet of green sheet on top of it, and apply pressure in the thickness direction to crimp them, and then magnetic layer 4 layers A three-layered green sheet laminate of conductors was prepared. This was fired at 900 ° C. for 3 hours to form a closed magnetic circuit, and the position 6 of the inner conductor on the side surface of the sintered body was used.
An external electrode was formed by applying Ag paste to various places and baking at 700 ° C. for 10 minutes. Out of the 6 electrodes of this laminated body, 3 of which are 120 degrees apart from each other are grounded, and 1 of the 3 other electrodes is grounded and terminated through a matching resistor, and the other 2 terminals are connected to terminals. Then, an appropriate load capacity was provided, and it was sandwiched from above and below by a magnet disk and placed in a magnetic metal case to manufacture a 1.9 GHz lumped constant isolator.

【0033】また、同様の方法で、(表5)に示すガー
ネット組成と電極材料を用いた集中定数型アイソレータ
ーを作製した。さらに比較のため、従来どうりの、磁性
体と電極を別々に配した、開磁路構成集中定数型アイソ
レーターも作製した。なお、磁性体サイズは、どちらも
同じとした。得られたアイソレーターのアイソレーショ
ン比帯域(20dB以上のアイソレーションが得られる
周波数帯域幅/最大アイソレーション周波数)と挿入損
失を測定した。結果を(表5)に示した。
A lumped constant type isolator using the garnet composition and electrode material shown in (Table 5) was prepared by the same method. For comparison, an open magnetic circuit configuration lumped constant isolator, in which a magnetic material and an electrode were separately arranged, was also manufactured for comparison. The magnetic material size was the same in both cases. The isolation ratio band (frequency bandwidth at which isolation of 20 dB or more / maximum isolation frequency) and the insertion loss of the obtained isolator were measured. The results are shown in (Table 5).

【0034】[0034]

【表5】 [Table 5]

【0035】(表5)より明らかなように、閉磁路構成
では、比帯域が広くなった。本発明のFe量を精密制御
し、V25あるいはCuO、とBiを含む磁性体では、
900℃で焼成可能であるため、Agを内部電極として
同時焼成/閉磁路構成とする事が可能であり、その結
果、広い比帯域、低い挿入損失が得られた。Fe量が多
すぎ、あるいは少なすぎる場合は、添加物の種類あるい
は電極材料の種類に係わらず、挿入損失が若干大きくな
った。これは、Feの過不足により、900℃焼成で
は、焼結体の緻密化が充分ではなく、焼結性が充分でな
いため、損失が大きくなるためと考えられる。また、F
e量が化学量論組成比より若干少ない4.82≦Fe≦
4.94の間で、挿入損失の小さい、特性の良いものが
得られた。
As is clear from (Table 5), in the closed magnetic circuit configuration, the specific band is wide. In the present invention, the amount of Fe is precisely controlled and the magnetic substance containing V 2 O 5 or CuO and Bi is
Since it can be fired at 900 ° C., it is possible to perform simultaneous firing / closed magnetic circuit configuration using Ag as an internal electrode, and as a result, a wide specific band and low insertion loss were obtained. When the amount of Fe was too large or too small, the insertion loss increased a little regardless of the kind of additive or the kind of electrode material. It is considered that this is because, due to the excess and deficiency of Fe, sintering at 900 ° C. does not sufficiently densify the sintered body and the sinterability is insufficient, resulting in a large loss. Also, F
The amount of e is slightly smaller than the stoichiometric composition ratio 4.82 ≦ Fe ≦
Between 4.94, the one with small insertion loss and good characteristics was obtained.

【0036】(実施例6)実施例1と同様の方法で、Y
23:Bi23:CaCO3:Fe23:In2 3:V2
5=0.8:1.4:0.8:4.18:0.3:
0.4のmol比となり、合計重量が300gとなるよ
うに配合し、ボールミルにて混合し、850℃にて5時
間仮焼した後、再度ボールミルで粉砕した。この仮焼粉
末を実施例5と同様の方法で、集中定数型アイソレータ
を作製した。
(Embodiment 6) In the same manner as in Embodiment 1, Y
TwoOThree: BiTwoOThree: CaCOThree: FeTwoOThree: InTwoO Three: VTwo
OFive= 0.8: 1.4: 0.8: 4.18: 0.3:
The molar ratio will be 0.4, and the total weight will be 300 g.
Seaweed, mix in a ball mill and mix at 850 ° C for 5 hours
After calcination for a while, it was crushed again with a ball mill. This calcined powder
A lumped-constant type isolator is manufactured with the same method as in the fifth embodiment.
Was prepared.

【0037】また、同様の方法で、(表6)に示すガー
ネット組成の集中定数型アイソレーターを作製した。得
られたアイソレーターのアイソレーション比帯域(20
dB以上のアイソレーションが得られる周波数帯域幅/
最大アイソレーション周波数)と挿入損失を測定した。
結果を(表6)に示した。
A lumped constant isolator having a garnet composition shown in (Table 6) was produced in the same manner. The isolation ratio band (20
Frequency bandwidth that can obtain isolation of dB or higher /
The maximum isolation frequency) and insertion loss were measured.
The results are shown in (Table 6).

【0038】[0038]

【表6】 [Table 6]

【0039】(表6)より明らかなように、本発明のF
e量を精密制御し、Bi、Ca、In、Vを含む磁性体
では、900℃で焼成可能であるため、Agを内部電極
として同時焼成/閉磁路構成とする事が可能であり、そ
の結果、広い比帯域、低い挿入損失が得られた。Fe量
が多すぎ、あるいは少なすぎる場合は、挿入損失が若干
大きくなった。これは、Feの過不足により、900℃
焼成では、焼結体の緻密化が充分ではなく、焼結性が充
分でないため、損失が大きくなるためと考えられる。ま
た、Fe量が化学量論組成比より若干少ない4.12≦
Fe≦4.24の間で、挿入損失の小さい、特性の良い
ものが得られた。
As is clear from (Table 6), F of the present invention
Since the amount of e can be precisely controlled and the magnetic substance containing Bi, Ca, In, and V can be fired at 900 ° C., it is possible to use simultaneous firing / closed magnetic circuit configuration with Ag as an internal electrode. A wide bandwidth and low insertion loss were obtained. When the Fe content was too large or too small, the insertion loss was slightly increased. This is due to excess and deficiency of Fe, 900 ℃
It is considered that the firing increases the loss due to insufficient densification of the sintered body and insufficient sinterability. Further, the Fe content is slightly smaller than the stoichiometric composition ratio, 4.12 ≦
When Fe ≦ 4.24, a material having a small insertion loss and good characteristics was obtained.

【0040】[0040]

【発明の効果】以上説明した通り、本発明は、低温で焼
成可能なマイクロ波用ガーネットフェライト焼結体であ
る。また、これを用いた高周波回路部品である。本発明
により、高周波用ガーネットが容易に製造可能となり、
また、900℃以下で焼成可能であるために、電極材料
や、例えば誘電体材料等とも同時焼成が可能で、より高
性能・小型の高周波回路部品が得られる。
As described above, the present invention is a microwave garnet ferrite sintered body that can be fired at a low temperature. Moreover, it is a high frequency circuit component using this. According to the present invention, a high-frequency garnet can be easily manufactured,
Further, since it can be fired at 900 ° C. or lower, it can be fired simultaneously with the electrode material and, for example, the dielectric material, and a high-performance and small-sized high-frequency circuit component can be obtained.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】ガーネット型構造を持ち、化学式A3x
12(ここで、Aは少なくともイットリウム(Y)もしく
は希土類金属元素の1種類以上を含み、Bは少なくとも
鉄(Fe)を含む)で表され、xが 4.76≦x<5.00 である相を主成分とする、マイクロ波用磁性体材料。
1. A garnet type structure having a chemical formula of A 3 B x O
12 (wherein A includes at least one type of yttrium (Y) or rare earth metal element, and B includes at least iron (Fe)), and x is 4.76 ≦ x <5.00 A magnetic material for microwaves that has a phase as a main component.
【請求項2】Aがビスマス(Bi)を含む事を特徴とす
る、請求項1記載のマイクロ波用磁性体材料。
2. The magnetic material for microwaves according to claim 1, wherein A contains bismuth (Bi).
【請求項3】Aがカルシウム(Ca)とビスマス(B
i)を含み、Bが鉄(Fe)とインジウム(In)とバ
ナジウム(V)よりなる事を特徴とする、請求項1記載
のマイクロ波用磁性体材料。
3. A is calcium (Ca) and bismuth (B)
2. The magnetic material for microwaves according to claim 1, characterized in that B is composed of iron (Fe), indium (In) and vanadium (V), including i).
【請求項4】ガーネット型構造を有する相を主成分と
し、副成分として、前記主成分を100重量部として、
バナジウム(V)をV25の重量部に換算して0<V2
5≦1、銅(Cu)をCuOの重量部に換算して0<
CuO≦1、モリブデン(Mo)をMoO3の重量部に
換算して0<MoO3≦1、タングステン(W)をWO3
の重量部に換算して0<WO3≦1、鉛(Pb)をPb
Oの重量部に換算して0<PbO≦1の1種類以上を含
む事を特徴とする請求項1、2又は3記載のマイクロ波
用磁性体材料。
4. A phase having a garnet-type structure as a main component, and the main component as an auxiliary component, 100 parts by weight,
Converting vanadium (V) to parts by weight of V 2 O 5 0 <V 2
O 5 ≦ 1, copper (Cu) is converted to CuO weight part and 0 <
CuO ≦ 1, molybdenum (Mo) is converted to the weight part of MoO 3 , and 0 <MoO 3 ≦ 1, tungsten (W) is WO 3
Converted to parts by weight of 0 <WO 3 ≤1, lead (Pb) is Pb
The magnetic material for microwaves according to claim 1, 2 or 3, which contains one or more kinds of 0 <PbO ≦ 1 in terms of O weight part.
【請求項5】請求項1、2、3、4、記載の磁性体を用
い、前記磁性体中に導体を埋め込んで閉磁路を形成した
ことを特徴とする高周波回路部品。
5. A high-frequency circuit component comprising the magnetic body according to claim 1, wherein a conductor is embedded in the magnetic body to form a closed magnetic circuit.
【請求項6】高周波回路部品が高周波用非可逆回路素子
である請求項5記載の回路部品。
6. The circuit component according to claim 5, wherein the high frequency circuit component is a high frequency non-reciprocal circuit device.
【請求項7】磁性体中の導体が、銀(Ag)を主成分と
する事を特徴とする、特許請求項第5項記載の高周波回
路部品。
7. The high frequency circuit component according to claim 5, wherein the conductor in the magnetic material contains silver (Ag) as a main component.
JP33001295A 1995-04-11 1995-12-19 Method for producing magnetic material for microwave and high frequency circuit component using the same Expired - Fee Related JP3405030B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP33001295A JP3405030B2 (en) 1995-12-19 1995-12-19 Method for producing magnetic material for microwave and high frequency circuit component using the same
US08/629,101 US5709811A (en) 1995-04-11 1996-04-08 Magnetic material for microwave and high-frequency circuit component using the same
DE69613745T DE69613745T2 (en) 1995-04-11 1996-04-10 Magnetic microwave material and high frequency circuit device using the same
EP96105648A EP0737987B1 (en) 1995-04-11 1996-04-10 Magnetic material for microwave and high-frequency circuit component using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33001295A JP3405030B2 (en) 1995-12-19 1995-12-19 Method for producing magnetic material for microwave and high frequency circuit component using the same

Publications (2)

Publication Number Publication Date
JPH09171918A true JPH09171918A (en) 1997-06-30
JP3405030B2 JP3405030B2 (en) 2003-05-12

Family

ID=18227790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33001295A Expired - Fee Related JP3405030B2 (en) 1995-04-11 1995-12-19 Method for producing magnetic material for microwave and high frequency circuit component using the same

Country Status (1)

Country Link
JP (1) JP3405030B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100268647B1 (en) * 1997-10-28 2000-10-16 이계철 A magnetic ceramic composition for microwave devices, a magnetic ceramics for microwave devices therefrom and a preparation method thereof
US6624713B2 (en) 2000-08-18 2003-09-23 Murata Manufacturing Co., Ltd. Magnetic material for high frequencies and high-frequency circuit component
JP2007145705A (en) * 2005-11-07 2007-06-14 Hitachi Metals Ltd Polycrystalline ceramic magnetic material, microwave magnetic substance, and non-reciprocal circuit component using the same
JP2016216345A (en) * 2011-06-06 2016-12-22 スカイワークス ソリューションズ, インコーポレイテッドSkyworks Solutions, Inc. Rare earth reduction garnet system and related microwave applicable example

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5940257B2 (en) * 2011-08-01 2016-06-29 株式会社三井ハイテック Lead frame, lead frame manufacturing method, and semiconductor device using the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100268647B1 (en) * 1997-10-28 2000-10-16 이계철 A magnetic ceramic composition for microwave devices, a magnetic ceramics for microwave devices therefrom and a preparation method thereof
US6624713B2 (en) 2000-08-18 2003-09-23 Murata Manufacturing Co., Ltd. Magnetic material for high frequencies and high-frequency circuit component
JP2007145705A (en) * 2005-11-07 2007-06-14 Hitachi Metals Ltd Polycrystalline ceramic magnetic material, microwave magnetic substance, and non-reciprocal circuit component using the same
JP2016216345A (en) * 2011-06-06 2016-12-22 スカイワークス ソリューションズ, インコーポレイテッドSkyworks Solutions, Inc. Rare earth reduction garnet system and related microwave applicable example
US10230146B2 (en) 2011-06-06 2019-03-12 Skyworks Solutions, Inc. Rare earth reduced garnet systems and related microwave applications

Also Published As

Publication number Publication date
JP3405030B2 (en) 2003-05-12

Similar Documents

Publication Publication Date Title
KR101273283B1 (en) Polycrystalline ceramic magnetic material, microwave magnetic components, and irreversible circuit devices made by using the same
EP0737987B1 (en) Magnetic material for microwave and high-frequency circuit component using the same
JPH09167703A (en) Magnetic material for microwave and high frequency circuit parts using the material
JP2011073937A (en) Polycrystal magnetic ceramic, microwave magnetic substance, and irreversible circuit element using the same
US20090321677A1 (en) Low microwave loss ferrite material and manufacturing process
KR100425994B1 (en) Magnetic material for high frequencies and high-frequency circuit component
JP5365967B2 (en) Polycrystalline ceramic magnetic material, microwave magnetic material, and non-reciprocal circuit device using the same
JP3405030B2 (en) Method for producing magnetic material for microwave and high frequency circuit component using the same
JP5488954B2 (en) Polycrystalline ceramic magnetic material, microwave magnetic material, and non-reciprocal circuit device using the same
JP3523363B2 (en) Manufacturing method of magnetic sintered body of polycrystalline ceramics and high frequency circuit component using magnetic body obtained by the method
JP3405013B2 (en) Method for producing magnetic material and high-frequency circuit component using the same
JP3627329B2 (en) Method for producing polycrystalline ceramic magnetic material and high-frequency nonreciprocal circuit device
JP4803415B2 (en) Ferrite porcelain composition for nonreciprocal circuit element, nonreciprocal circuit element, and wireless device
JP3598596B2 (en) Method of manufacturing magnetic material for microwave, and high-frequency circuit component using magnetic material obtained by the method
JPH10233308A (en) Polycrystalline magnetic ceramic material preparation thereof, and nonrevesible circuit element using the same
Liu et al. Low‐Temperature Co‐Fired Magnetoceramics for RF Applications
JP2000191368A (en) Magnetic material for high-frequency and high-frequency irreversible circuit element using the same
EP1269488B1 (en) High-frequency magnetic ceramic and high-frequency circuit component
JP4305787B2 (en) Magnet and manufacturing method thereof
Kishan Microwave lithium ferrites
JP4081734B2 (en) High frequency circuit components
JP2775826B2 (en) Faraday swirl
JPH11214212A (en) Non-reciprocal circuit element
JP2006044964A (en) Ferrite material, non-reciprocal circuit element and radio equipment
JP2002064012A (en) Method of manufacturing high-frequency magnetic material and high-frequency circuit

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees