JP2000191368A - Magnetic material for high-frequency and high-frequency irreversible circuit element using the same - Google Patents

Magnetic material for high-frequency and high-frequency irreversible circuit element using the same

Info

Publication number
JP2000191368A
JP2000191368A JP10371691A JP37169198A JP2000191368A JP 2000191368 A JP2000191368 A JP 2000191368A JP 10371691 A JP10371691 A JP 10371691A JP 37169198 A JP37169198 A JP 37169198A JP 2000191368 A JP2000191368 A JP 2000191368A
Authority
JP
Japan
Prior art keywords
frequency
magnetic material
composition
πms
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10371691A
Other languages
Japanese (ja)
Inventor
Hidehiro Takenoshita
英博 竹之下
Chisato Ishida
千里 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP10371691A priority Critical patent/JP2000191368A/en
Publication of JP2000191368A publication Critical patent/JP2000191368A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/342Oxides
    • H01F1/344Ferrites, e.g. having a cubic spinel structure (X2+O)(Y23+O3), e.g. magnetite Fe3O4
    • H01F1/346[(TO4) 3] with T= Si, Al, Fe, Ga

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Magnetic Ceramics (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a magnetic material which has an extremely small δH value and embodies high electric resistance and arbitrary 4 πMs by specifying the ratio of the Y site and Fe site of YIG ferrite to a specific range and substituting a part of Fe with Mn or Al. SOLUTION: The composition is represented by formulas (3.01<=A<=3.08, 0<=B<=0.5, 0<=C<=0.009). The composition purity is preferably 99 to 99.99%, the relative sintering density 95 to 99.9% and the average crystal grain size 5 to 50 μm. As a result, δH is <=7 (Oe), more adequately <=5 (Oe) and the low- loss garnet magnetic material for high-frequencies having the high resistance of >=1010 (Ω/cm) in a room temp. is obtained. In addition, 4 πMs may be arbitrarily set within a range of 100 to 1800 gauss and the material having 4 πMs suitable for the use frequency is selectable. Further, the insertion loss of the irreversible circuit element for high-frequencies may be confined to <=-0.8 (db), more adequately <=-0.5 (db). This element is adequate for isolators, circulators, gyrators, or the like, in high-frequency circuits of microwaves, milliwaves, or the like.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、マイクロ波・ミリ
波等の高周波回路部品用に使用される、ガーネット系の
磁性体及びこれを用いて作製した高周波用非可逆回路素
子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a garnet-based magnetic material used for high-frequency circuit components such as microwaves and millimeter waves, and a high-frequency nonreciprocal circuit device manufactured using the same.

【0002】[0002]

【従来の技術】近年、衛星通信や移動体通信の市場拡大
に見られるように、情報・ 通信分野の高速・ 高密度化が
進展し、使用周波数の高周波化が進んでいる。この様な
高周波で使用される磁性体として、電気抵抗率が高く、
高周波における損失が小さいガーネット系磁性体が注目
されている。また、高周波信号処理用として、磁性体の
ジャイロ磁気効果を利用し、信号を一方方向にしか伝達
しないようにしたアイソレータ、サーキュレータ、ジャ
イレータ等の非可逆回路素子があり、この場合にも主に
ガーネット系磁性体が利用されている。
2. Description of the Related Art In recent years, as seen in the market expansion of satellite communications and mobile communications, high-speed and high-density applications in the information and communication fields have been progressing, and higher frequencies have been used. As a magnetic material used at such a high frequency, the electrical resistivity is high,
A garnet-based magnetic material having a small loss at a high frequency has attracted attention. For high-frequency signal processing, there are non-reciprocal circuit elements such as isolators, circulators, and gyrators that use the gyromagnetic effect of a magnetic substance to transmit signals in only one direction. A system magnetic material is used.

【0003】ガーネット系磁性体材料は、通常単結晶薄
膜か、あるいは多結晶焼結体として利用されている。単
結晶の作製は、引き上げ法で作成されるGGG(ガドリニウ
ム・ガリウム・ガーネット)単結晶を基板として、LPE
(Liquid PhaseEpitaxy)法で900 ℃程度の温度で薄膜と
して作製されるのが一般的である。この方法で作製され
た試料は、磁気共鳴半値幅ΔH が小さいが、アイソレー
タ等で使用されるような厚みのある試料の作製には時間
がかかりすぎ、また高価な点が欠点である。
A garnet-based magnetic material is usually used as a single crystal thin film or a polycrystalline sintered body. The single crystal is produced by using a single crystal of GGG (gadolinium, gallium, garnet) made by the pulling method as a substrate.
It is generally manufactured as a thin film at a temperature of about 900 ° C by the (Liquid Phase Epitaxy) method. Although the sample produced by this method has a small magnetic resonance half width ΔH, it is disadvantageous in that it takes too much time to produce a sample having a thickness such as used in an isolator or the like, and is expensive.

【0004】一方、多結晶体は、通常のセラミックス焼
結体として作製されるため、ΔH は単結晶より一桁以上
大きいものの、任意の寸法の試料が容易に作製でき、且
つ単結晶に比べてはるかに安価であり、サーキュレータ
ーやアイソレータ用としては、この多結晶体が用いられ
ている。
[0004] On the other hand, since the polycrystal is produced as a normal ceramic sintered body, ΔH is at least one order of magnitude larger than that of a single crystal, but a sample of any size can be easily produced and compared with a single crystal. It is much cheaper, and this polycrystal is used for circulators and isolators.

【0005】一般にマイクロ波やミリ波の高周波用磁性
材料に要求される特性は、使用する周波数に応じた所定
の飽和磁化4 πMsの値を有し、キューリー温度Tcが高
く、強磁性共鳴吸収半値巾ΔH が小で、誘電損失が小さ
いことを要する。これらの内でΔH は磁気損失を表す値
であり、デバイスの損失に最も影響が大であるので特に
小さくする必要がある。
In general, the characteristics required for high frequency magnetic materials such as microwaves and millimeter waves have a predetermined saturation magnetization of 4πMs according to the frequency to be used, a high Curie temperature Tc, and a half-value of ferromagnetic resonance absorption. It is necessary that the width ΔH is small and the dielectric loss is small. Of these, ΔH is a value representing the magnetic loss, which has the greatest effect on the loss of the device and needs to be particularly reduced.

【0006】このようなガーネット系の高周波用磁性体
としては、Y A Fe8-A O12 の一般式で表されるYIG フェ
ライトが用いられているが、その製法がむずかしく、化
学量論組成Y2O337.5モル%,Fe2O3 62.5モル%の組成
(Y3Fe5O12)を0.5 モル%変化させても異相を生じ、Δ
H が極めて大になるとされている。
As such a garnet-based high-frequency magnetic material, YIG ferrite represented by the general formula of Y A Fe 8-A O 12 is used, but its production method is difficult and the stoichiometric composition Y 2 O 3 37.5 mol%, even Fe 2 O 3 62.5 mol% of the composition of (Y 3 Fe 5 O 12) was estimated at 0.5 mol% results in heterogeneous phase, delta
H is said to be extremely large.

【0007】また、特公昭60-55970号公報によれば、原
料のY2O3とFe2O3 の混合比をそれぞれ38.63 〜39.45 モ
ル%および61.37 〜60.55 モル%としたとき、即ちY A
Fe8-A O12 (3.09 ≦A ≦3.16)としたときに異相がな
く、強磁性共鳴吸収半値巾ΔHを小さくできることが示
されている。
According to Japanese Patent Publication No. 60-55970, when the mixing ratios of the raw materials Y 2 O 3 and Fe 2 O 3 are 38.63 to 39.45 mol% and 61.37 to 60.55 mol%, respectively, that is, Y A
It is shown that when Fe 8-A O 12 (3.09 ≦ A ≦ 3.16), there is no foreign phase and the ferromagnetic resonance absorption half width ΔH can be reduced.

【0008】また、特許第2504273 号では、Feの一部を
Mnで置換すると同時に、CoとZrを添加することで、きわ
めて小さいΔH を実現できることが示されている。
In Japanese Patent No. 2504273, a part of Fe is
It has been shown that extremely small ΔH can be realized by adding Co and Zr while substituting with Mn.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、ガーネ
ット系磁性体材料は、ΔH や誘電損失に影響を与える電
気抵抗値等の値が微妙な組成、相対焼結密度や平均結晶
粒径の変動によって実用上支障をきたすほど大きくなる
という欠点を有している。
However, garnet-based magnetic materials are not suitable for practical use due to the delicate composition of ΔH and the electric resistance value that affects the dielectric loss, and the relative sintering density and fluctuation of the average crystal grain size. It has the disadvantage that it becomes large enough to cause problems.

【0010】また、ΔH や電気抵抗値を悪化させること
なしに、使用する周波数に応じて飽和磁化4 πMsを任意
の値に調整することが困難であり、上述した従来のガー
ネット系磁性材料ではこれらの特性を満足させることが
できなかった。
Further, it is difficult to adjust the saturation magnetization 4πMs to an arbitrary value in accordance with the frequency to be used without deteriorating ΔH or electric resistance. Could not be satisfied.

【0011】[0011]

【課題を解決する為の手段】本発明は、Y A Fe8-A O12
の一般式で表されるYIG フェライトにおいて、Y サイト
とFeサイトの比をごく限られた狭い範囲に固定するこ
と、Feの一部をMnで置換すること、さらに好ましくは組
成純度、相対焼結密度そして平均結晶粒径を限定する事
で極めて小さいΔH の値を実現し、且つ、より高い電気
抵抗を実現させた高周波用磁性体を提供できるようにし
た。また、Feの一部をAlで置換して、高い電気抵抗の実
現と共に4 πMsを任意の値に設定できるようにした。
SUMMARY OF THE INVENTION The present invention is, Y A Fe 8-A O 12
In the YIG ferrite represented by the general formula, the ratio of the Y site to the Fe site is fixed to a very limited narrow range, a part of Fe is replaced with Mn, more preferably, the composition purity, relative sintering. By limiting the density and the average crystal grain size, an extremely small value of ΔH can be realized, and a high-frequency magnetic material having a higher electric resistance can be provided. In addition, a part of Fe was replaced with Al so that 4 πMs could be set to an arbitrary value while realizing high electric resistance.

【0012】本発明のガーネット系高周波用磁性体材料
は、Y A (Fe1-B-CAlB MnC ) 8-A O12 で表される組成に
おいて、A 、B 及びC がそれぞれ3.01≦A ≦3.08、0 ≦
B ≦0.5 、0 ≦C ≦0.009 であることを特徴とする。
The garnet-based high-frequency magnetic material of the present invention has a composition represented by Y A (Fe 1-BC Al B Mn C ) 8-A O 12 in which A, B and C are each in the range of 3.01 ≦ A ≦ 3.08, 0 ≤
B ≦ 0.5, 0 ≦ C ≦ 0.009.

【0013】また、好ましくは上記組成の純度が99〜9
9.99 %であり、相対焼結密度が95〜99.9%であり、平
均結晶粒径が5 〜50μmであることを特徴とする。
Preferably, the composition has a purity of 99-9.
9.99%, a relative sintered density of 95 to 99.9%, and an average crystal grain size of 5 to 50 μm.

【0014】即ち、本発明は、YIG フェライトからなる
磁性材料に対して、所定の組成純度、相対焼結密度そし
て平均結晶粒径を満足することで、ΔH が7(Oe) 以下、
好適には5(Oe) 以下となり、室温で1010(Ω・ cm) 以上
の高抵抗を有した低損失のガーネット系高周波用磁性体
を得るようにした。且つ、4 πMsを100 〜1800ガウスの
範囲で任意に設定でき、その使用周波数に最も適した4
πMsを有する材料を選択できる。更に、高周波用非可逆
回路素子の挿入損失が、-0.8(db)以下、好適には、-0.5
(db)以下とすることができる。
That is, the present invention satisfies a predetermined composition purity, a relative sintered density and an average crystal grain size with respect to a magnetic material composed of YIG ferrite, so that ΔH is 7 (Oe) or less.
Preferably, a low-loss garnet-based high-frequency magnetic material having a high resistance of not more than 5 (Oe) and not less than 10 10 (Ω · cm) at room temperature is obtained. In addition, 4 πMs can be set arbitrarily in the range of 100 to 1800 Gauss, and
A material having πMs can be selected. Further, the insertion loss of the high-frequency nonreciprocal circuit element is -0.8 (db) or less, preferably -0.5
(db) or less.

【0015】本発明において、成分の組成比を上記範囲
とした理由は、以下の通りである。A の範囲を3.01≦A
≦3.08としたのは、A が3.01未満では、電気抵抗値が低
下し、誘電損失が低下する。A が3.08を超えるとΔH が
大きくなる為である。B の範囲を0 ≦B ≦0.5 としたの
は、この範囲では、高抵抗値を有し、4 πMsを100 〜19
00ガウスの範囲で任意に設定できるが、0.5 を超えると
ΔH が大きくなる為である。C の範囲を0 ≦C ≦0.009
としたのは、この範囲ではΔH を悪化させることなく、
抵抗値低下を防ぎ誘電損失を小さくする効果があるが、
0.009 を超えるとΔH を悪化させる為である。
In the present invention, the reasons for setting the composition ratio of the components to the above range are as follows. A range 3.01 ≦ A
The reason for ≦ 3.08 is that when A is less than 3.01, the electric resistance value decreases and the dielectric loss decreases. When A exceeds 3.08, ΔH becomes large. The range of B is set to 0 ≦ B ≦ 0.5 because, in this range, it has a high resistance value and 4πMs is 100 to 19
It can be set arbitrarily in the range of 00 Gauss, but if it exceeds 0.5, ΔH becomes large. C range 0 ≤ C ≤ 0.009
The reason is that in this range, ΔH is not deteriorated,
Although it has the effect of preventing the resistance value from decreasing and reducing the dielectric loss,
If it exceeds 0.009, ΔH will deteriorate.

【0016】さらに本発明で、組成純度を99〜99.99 %
以下とするのは、99%未満では非磁性体による特性低下
が生じる為である。一方、99.99 %をえるには、原料精
製上大変困難である為である。
Further, according to the present invention, the composition purity is 99 to 99.99%
The reason for the following is that if the content is less than 99%, the property is deteriorated due to the non-magnetic material. On the other hand, in order to obtain 99.99%, it is very difficult in terms of material purification.

【0017】なお、本発明における組成純度とは、最終
焼結体中におけるY A (Fe1-B-CAlBMnC ) 8-A O12 の含
有量のことであり、上記成分以外に、希土類元素酸化
物、SiO2、Al2O3 、MgO 、CaO 、K2O 、Cr2O3 、ZrO2
ZnO 、Bi2O3 、S 、In2O3 、V2O5、NiO 等を各々0.05重
量部未満の範囲で含んでも良い。
The composition purity in the present invention refers to the content of Y A (Fe 1-BC Al B Mn C ) 8-A O 12 in the final sintered body. Element oxide, SiO 2 , Al 2 O 3 , MgO, CaO, K 2 O, Cr 2 O 3 , ZrO 2 ,
ZnO, Bi 2 O 3 , S, In 2 O 3 , V 2 O 5 , NiO and the like may each be contained in a range of less than 0.05 part by weight.

【0018】また、本発明で、相対焼結密度が95〜99.9
%とするのは、95%未満では、実効的な磁性体占有率が
低くなってΔH等の磁気特性が低下するためである。一
方、99.9%を超えるには、ホットプレス法のような特殊
な焼結方法が必要であり、これは、生産性の低下、コス
トアップにつながるためである。なお、相対焼結密度と
は、理論密度に対する実際の焼結体の密度の比のことで
ある。
In the present invention, the relative sintering density is 95-99.9.
The reason for the percentage is that if it is less than 95%, the effective magnetic material occupation ratio becomes low, and the magnetic characteristics such as ΔH deteriorate. On the other hand, if the content exceeds 99.9%, a special sintering method such as a hot press method is required, which leads to a decrease in productivity and an increase in cost. The relative sintering density is the ratio of the density of the actual sintered body to the theoretical density.

【0019】また、本発明で平均結晶粒径が5 〜50μm
とするのは、5 μm 未満では、ΔH特性が悪化し、50
μm を超えるとΔH の悪化と電気抵抗値が低下する為で
ある。
In the present invention, the average crystal grain size is 5 to 50 μm.
The reason is that if it is less than 5 μm, the ΔH characteristic deteriorates and the
If the thickness exceeds μm, ΔH becomes worse and the electric resistance decreases.

【0020】本発明のガーネット系高周波用磁性材料の
製造方法は、上記範囲となる様に主成分の各原料を調合
し、振動ミルやボールミル等で粉砕混合した後、仮焼
し、この仮焼粉体を、ボールミルで粉砕した後、バイン
ダーを加えて造粒し、得られた粉体をプレス成形にて所
定形状に成形し、1400〜1600℃の範囲で焼成する事によ
って得られる。また、焼成の降温時に1000〜1250℃の範
囲でアニール(再焼成)するとより好ましい。
In the method for producing a garnet-based high-frequency magnetic material of the present invention, the main ingredients are prepared so as to be in the above-mentioned range, pulverized and mixed by a vibration mill or a ball mill, and then calcined. The powder is obtained by pulverizing the powder with a ball mill, adding a binder, granulating the powder, forming the obtained powder into a predetermined shape by press molding, and firing at a temperature in the range of 1400 to 1600 ° C. It is more preferable to anneal (refire) in the range of 1000 to 1250 ° C. when the temperature of firing is lowered.

【0021】また、本発明は、上記のガーネット系高周
波用磁性体を用いて円板もしくは、所定の形状に加工し
た基板を形成し、非可逆回路素子としたことを特徴とす
る。具体的にはマイクロ波・ミリ波等の高周波回路にお
けるアイソレーター、サーキュレーター、ジャイレータ
ーなどに好適に使用する事ができる。
Further, the present invention is characterized in that a disc or a substrate processed into a predetermined shape is formed by using the above-mentioned garnet-based high-frequency magnetic material to form a non-reciprocal circuit device. Specifically, it can be suitably used for isolators, circulators, gyrators, and the like in high-frequency circuits such as microwaves and millimeter waves.

【0022】[0022]

【実施例】実施例1 純度99% 以上のY2O3、Fe2O3 、Al2O3 とMnO から成る主
成分を表1に示すように変化させ、振動ミルまたはボー
ルミルで混合した後、1000℃〜1200℃で仮焼した。この
仮焼粉体をボールミルにて粉砕した後、所定のバインダ
ーを加えて造粒し、圧縮成型にて円形状もしくは円柱状
に成形し、この成形体を1400℃〜1600℃で焼成した後、
降温時1000℃〜1200℃でアニール(再焼成)して焼結体
を得た。得られた焼結体の相対焼結密度は95% 以上で平
均結晶粒径は5 〜50μm であった。
EXAMPLE 1 A main component composed of Y 2 O 3 , Fe 2 O 3 , Al 2 O 3 and MnO having a purity of 99% or more was changed as shown in Table 1, and mixed with a vibration mill or a ball mill. And calcined at 1000 ° C to 1200 ° C. After pulverizing the calcined powder with a ball mill, adding a predetermined binder and granulating, forming into a circular or columnar shape by compression molding, and firing this molded body at 1400 ° C. to 1600 ° C.,
Annealed (refired) at 1000 ° C. to 1200 ° C. when the temperature was lowered to obtain a sintered body. The relative sintered density of the obtained sintered body was 95% or more, and the average crystal grain size was 5 to 50 μm.

【0023】得られた焼結体について、振動型磁力計を
用いて4 πMsを測定し、球状試料測定用TE10n 共振器中
で3GHz におけるΔH を測定した。また、抵抗値は、JI
S C-2141の規格に添って測定を行った。
With respect to the obtained sintered body, 4 πMs was measured using a vibration magnetometer, and ΔH at 3 GHz was measured in a spherical sample measuring TE 10n resonator. The resistance value is JI
The measurement was performed according to the standard of SC-2141.

【0024】さらに、挿入損失は、1.9(GHz)用集中定数
型アイソレータを作製し、測定した。本実施例の挿入損
失については、高周波用非可逆回路素子の代表として、
集中定数型アイソレータを例として説明するが、本発明
はこれに拘束される物ではなく、他のタイプの高周波用
非可逆回路素子においても全く同様の効果が得られる物
である。
Further, a lumped constant type isolator for 1.9 (GHz) was fabricated and measured for insertion loss. Regarding the insertion loss of the present embodiment, as a representative of the high-frequency non-reciprocal circuit element,
The lumped constant type isolator will be described as an example, but the present invention is not limited to this, and the same effect can be obtained in other types of high-frequency nonreciprocal circuit devices.

【0025】結果は、表1に示す通りである。この結果
より、組成式 YA (Fe1-B-CAlB MnC) 8-A O12 で表され
る組成において、A が3.01未満のもの(No.1 〜3)では、
ΔHが大きく、電気抵抗は低い。一方、A が3.08を超え
るもの(No.5 〜7)では、ΔHのみが大きかった。また、B
が0.5 を超えるもの(No.3 、4 、7)でも、ΔH が大き
かった。また、C が0.009 を超えるもの(No.14、17) で
も、ΔH が大きかった。
The results are as shown in Table 1. From these results, in the composition represented by the composition formula Y A (Fe 1-BC Al B Mn C ) 8-A O 12 , in the case where A is less than 3.01 (No. 1 to 3),
ΔH is large and electric resistance is low. On the other hand, in the case where A exceeded 3.08 (Nos. 5 to 7), only ΔH was large. Also, B
ΔH was large even when the ratio exceeded 0.5 (Nos. 3, 4, and 7). Also, ΔH was large even when C exceeded 0.009 (Nos. 14 and 17).

【0026】これに対し、A の値を3.01〜3.08、B の値
を0 〜0.5 、C の値を0 〜0.009 とした本発明の実施例
(No.8 〜13、15、16) では、ΔH が7(Oe) 以下と低く、
電気抵抗も1010( Ω・ cm) 以上と高かった。また、B の
値を0 〜0.5 としたことで、所望のΔH と電気抵抗を保
ちながら、4 πMsを100 〜1800まで任意に設定できた。
また、C の値を0 〜0.009 としたことで、所望のΔH を
保ちながら、更に電気抵抗値を高くできる事が分かっ
た。
On the other hand, the embodiment of the present invention in which the value of A is 3.01 to 3.08, the value of B is 0 to 0.5, and the value of C is 0 to 0.009
(Nos. 8 to 13, 15, 16), ΔH was as low as 7 (Oe) or less,
The electrical resistance was as high as 10 10 (Ω · cm) or more. Also, by setting the value of B to be 0 to 0.5, 4πMs could be set arbitrarily from 100 to 1800 while maintaining the desired ΔH and electric resistance.
It was also found that by setting the value of C to 0 to 0.009, the electric resistance could be further increased while maintaining the desired ΔH.

【0027】次に、これらのガーネット系高周波用磁性
体をアイソレータに組み込んだ挿入損失結果では、本発
明(No.8 〜13、15、16) において、-0.5(db)以下と損失
の小さいことが分かった。なお、他のタイプの高周波用
非可逆回路素子においても全く同様な結果が得られた。
Next, according to the insertion loss results obtained by incorporating these garnet-based high-frequency magnetic materials into an isolator, in the present invention (Nos. 8 to 13, 15, and 16), the loss is as small as -0.5 (db) or less. I understood. It should be noted that the same result was obtained with other types of high-frequency nonreciprocal circuit devices.

【0028】[0028]

【表1】 [Table 1]

【0029】実施例2 次に、組成をA3.05(Fe0.745Al0.25Mn0.005) 4.95O12
固定し、組成純度、相対焼結密度と平均結晶粒径を表2
に示すように変化させて、その他の条件は、上記実施例
1と同様にして円形状もしくは円柱状の焼結体を得た。
Example 2 Next, the composition was fixed to A 3.05 (Fe 0.745 Al 0.25 Mn 0.005 ) 4.95 O 12 , and the composition purity, relative sintered density and average crystal grain size were determined as shown in Table 2.
And the other conditions were the same as in Example 1 above to obtain a circular or columnar sintered body.

【0030】得られた焼結体に対して、実施例1と同様
にしてΔH 、4 πMs、電気抵抗値と挿入損失を測定した
結果は表2に示す通りである。
The obtained sintered body was measured for ΔH, 4πMs, electric resistance and insertion loss in the same manner as in Example 1, and the results are as shown in Table 2.

【0031】この結果より、組成純度が99% 未満のもの
(No.18、19) 、相対焼結密が95% 未満のもの(No.18、2
0) 、平均結晶粒径が5 μm 未満のもの(No.25、26、2
8、29)では、ΔH が8(Oe) 以上と、いずれも大きかっ
た。また、平均結晶粒径が50μmを超えるもの(No.31、3
2) では、ΔH が大きく、電気抵抗も108 ( Ω・ cm) 以
下と低かった。
From these results, those having a composition purity of less than 99%
(No.18,19), those with a relative sintering density of less than 95% (No.18, 2)
0), having an average crystal grain size of less than 5 μm (No. 25, 26, 2
8,29), ΔH was 8 (Oe) or more, and both were large. Further, those having an average crystal grain size exceeding 50 μm (No. 31, 3
In (2), ΔH was large and the electric resistance was as low as 10 8 (Ω · cm) or less.

【0032】これらに対し、組成純度が99〜99.99%であ
り、相対焼結密が95〜99.9% であり、平均結晶粒径が5
〜50μm の実施例(No.21〜24、27、30) では、電気抵抗
が1010( Ω・ cm) 以上、且つΔH も7(Oe) 以下と低いこ
とが分かった。
On the other hand, the composition purity is 99 to 99.99%, the relative sintering density is 95 to 99.9%, and the average crystal grain size is 5 to 99.99%.
In the examples (Nos. 21 to 24, 27, and 30) of 50 μm, it was found that the electric resistance was as low as 10 10 (Ω · cm) and the ΔH was as low as 7 (Oe) or less.

【0033】次に、これらのガーネット系高周波用磁性
体をアイソレータに組み込んだ挿入損失結果では、本発
明(No.21〜24、27、30) において、-0.5(db)以下と損失
の小さいことが分かった。なお、他のタイプの高周波用
非可逆回路素子においても全く同様な結果が得られた。
Next, according to the insertion loss results obtained by incorporating these garnet-based high-frequency magnetic materials into an isolator, in the present invention (Nos. 21 to 24, 27, and 30), the loss was as small as -0.5 (db) or less. I understood. It should be noted that the same result was obtained with other types of high-frequency nonreciprocal circuit devices.

【0034】[0034]

【表2】 [Table 2]

【0035】[0035]

【発明の効果】以上のように本発明によれば、Y A (Fe
1-B-CAlB MnC ) 8-A O12 で表される組成において、A
、B 及びC がそれぞれ3.01≦A ≦3.08、0 ≦B ≦0.5
、0 ≦C ≦0.009 であり、上記組成純度が99〜99.99%
で、相対焼結密度が95〜99.9% で、且つ上記平均結晶粒
径が、5 〜50μm にすることで、4 πMsが100 〜1800
(G) の任意の範囲で、電気抵抗1010( Ω・ cm) 以上を維
持したまま、ΔH を7(Oe) 以下と低くすることができ
る。
As described above, according to the present invention, Y A (Fe
1-BC Al B Mn C) in the composition represented by 8-A O 12, A
, B and C are respectively 3.01 ≦ A ≦ 3.08, 0 ≦ B ≦ 0.5
, 0 ≦ C ≦ 0.009, and the composition purity is 99 to 99.99%
By setting the relative sintering density to 95 to 99.9% and the average crystal grain size to 5 to 50 μm, 4πMs becomes 100 to 1800.
In any range of (G), ΔH can be reduced to 7 (Oe) or less while maintaining electric resistance of 10 10 (Ω · cm) or more.

【0036】また、上記高周波用磁性体を用いれば、ア
イソレータ、サーキュレータ、ジャイレータ等の非可逆
回路素子等の高周波化、低損失化が可能となる。従っ
て、この非可逆回路素子を高周波回路に用いれば、各種
情報・ 通信機器の高周波化に貢献する事ができる。
The use of the high-frequency magnetic material makes it possible to increase the frequency and reduce the loss of non-reciprocal circuit devices such as isolators, circulators and gyrators. Therefore, if this non-reciprocal circuit device is used in a high-frequency circuit, it can contribute to the increase in the frequency of various information and communication devices.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】Y A (Fe1-B-CAlB MnC ) 8-A O12 で表され
る組成においてA 、B 及びC がそれぞれ3.01≦A ≦3.0
8、0 ≦B ≦0.5 、0 ≦C ≦0.009 である事を特徴とす
る高周波用磁性体。
In a composition represented by Y A (Fe 1-BC Al B Mn C ) 8-A O 12 , each of A, B and C is 3.01 ≦ A ≦ 3.0
8, a magnetic material for high frequency, wherein 0 ≦ B ≦ 0.5 and 0 ≦ C ≦ 0.009.
【請求項2】上記主成分の含有量が99〜99.99 %、相対
焼結密度が95〜99.9%、平均結晶粒径が5〜50μmであ
ることを特徴とする請求項1に記載の高周波用磁性体。
2. The high frequency device according to claim 1, wherein the content of the main component is 99 to 99.99%, the relative sintered density is 95 to 99.9%, and the average crystal grain size is 5 to 50 μm. Magnetic material.
【請求項3】請求項1または2に記載の磁性体を用いた
ことを特徴とする高周波用非可逆回路素子。
3. A high frequency non-reciprocal circuit device using the magnetic material according to claim 1 or 2.
JP10371691A 1998-12-25 1998-12-25 Magnetic material for high-frequency and high-frequency irreversible circuit element using the same Pending JP2000191368A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10371691A JP2000191368A (en) 1998-12-25 1998-12-25 Magnetic material for high-frequency and high-frequency irreversible circuit element using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10371691A JP2000191368A (en) 1998-12-25 1998-12-25 Magnetic material for high-frequency and high-frequency irreversible circuit element using the same

Publications (1)

Publication Number Publication Date
JP2000191368A true JP2000191368A (en) 2000-07-11

Family

ID=18499144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10371691A Pending JP2000191368A (en) 1998-12-25 1998-12-25 Magnetic material for high-frequency and high-frequency irreversible circuit element using the same

Country Status (1)

Country Link
JP (1) JP2000191368A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002069358A1 (en) * 2001-02-23 2002-09-06 Murata Manufacturing Co., Ltd. High-frequency magnetic ceramic and high-frequency circuit component
JP2009124691A (en) * 2007-10-24 2009-06-04 Keycom Corp Millimeter wave band irreversible element
CN110156453A (en) * 2019-07-03 2019-08-23 三桥惠(佛山)新材料有限公司 A kind of preparation method of high power rare earth yttrium iron garnet complex ferrite material
CN110483032A (en) * 2019-09-06 2019-11-22 电子科技大学 Low-temperature sintering YIG ferrite and preparation method based on LTCC technology

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002069358A1 (en) * 2001-02-23 2002-09-06 Murata Manufacturing Co., Ltd. High-frequency magnetic ceramic and high-frequency circuit component
US6771140B2 (en) 2001-02-23 2004-08-03 Murata Manufacturing Co. Ltd High-frequency magnetic ceramic and high-frequency circuit component
JP2009124691A (en) * 2007-10-24 2009-06-04 Keycom Corp Millimeter wave band irreversible element
US8335037B2 (en) 2007-10-24 2012-12-18 The University Of Tokyo Millimeter wave band nonreciprocal device
CN110156453A (en) * 2019-07-03 2019-08-23 三桥惠(佛山)新材料有限公司 A kind of preparation method of high power rare earth yttrium iron garnet complex ferrite material
CN110483032A (en) * 2019-09-06 2019-11-22 电子科技大学 Low-temperature sintering YIG ferrite and preparation method based on LTCC technology
CN110483032B (en) * 2019-09-06 2021-12-03 电子科技大学 Low-temperature sintered YIG ferrite based on LTCC technology and preparation method thereof

Similar Documents

Publication Publication Date Title
CN109563640B (en) Temperature insensitive dielectric constant garnet
JP6685643B2 (en) Tunable resonator system, filtering system including tunable resonator system, and method of forming tunable resonator system
KR101904269B1 (en) Effective substitutions for rare earth metals in compositions and materials for electronic applications
JP2000191368A (en) Magnetic material for high-frequency and high-frequency irreversible circuit element using the same
JP3523363B2 (en) Manufacturing method of magnetic sintered body of polycrystalline ceramics and high frequency circuit component using magnetic body obtained by the method
JP2004075503A (en) Magnetic body ceramic for high frequency and high frequency circuit component
JP3405030B2 (en) Method for producing magnetic material for microwave and high frequency circuit component using the same
JP3396957B2 (en) High frequency magnetic composition
JP3396958B2 (en) High frequency magnetic composition
JPH10233308A (en) Polycrystalline magnetic ceramic material preparation thereof, and nonrevesible circuit element using the same
JP2001126912A (en) Magnetic material for high-frequency and non-reciprocal circuit for high frequency using the same
JP2000001317A (en) Controlling method of intermodulation product of irreversible circuit elements
JP3405013B2 (en) Method for producing magnetic material and high-frequency circuit component using the same
JP2504192B2 (en) Microwave / millimeter wave magnetic composition
Kishan Microwave lithium ferrites
JP2002255638A (en) Magnetic ceramic for high frequency and component for high frequency circuit
JP3003601B2 (en) Ni-Zn ferrite
JPH11214212A (en) Non-reciprocal circuit element
JPS5815923B2 (en) Microha Millihayo Ferrite
JP3598596B2 (en) Method of manufacturing magnetic material for microwave, and high-frequency circuit component using magnetic material obtained by the method
JPH04114411A (en) Magnetic composition for microwave and millimeter wave
JP2958809B2 (en) Microwave / millimeter wave magnetic composition
JP2760052B2 (en) Microwave / millimeter wave magnetic composition
JPH0848523A (en) Magnetic material for high-frequency
JP2006044964A (en) Ferrite material, non-reciprocal circuit element and radio equipment

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060704

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060912

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061109

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070130