JP2010080878A - Printed circuit board and method of manufacturing the same - Google Patents

Printed circuit board and method of manufacturing the same Download PDF

Info

Publication number
JP2010080878A
JP2010080878A JP2008250581A JP2008250581A JP2010080878A JP 2010080878 A JP2010080878 A JP 2010080878A JP 2008250581 A JP2008250581 A JP 2008250581A JP 2008250581 A JP2008250581 A JP 2008250581A JP 2010080878 A JP2010080878 A JP 2010080878A
Authority
JP
Japan
Prior art keywords
siloxane
wiring board
polyimide resin
printed wiring
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008250581A
Other languages
Japanese (ja)
Other versions
JP5332456B2 (en
Inventor
Tomoyasu Sunaga
友康 須永
Hiroki Kanaya
紘希 金谷
Mamiko Nomura
麻美子 野村
Junichi Ishii
淳一 石井
Yoshio Omori
良男 大森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dexerials Corp
Original Assignee
Sony Chemical and Information Device Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Chemical and Information Device Corp filed Critical Sony Chemical and Information Device Corp
Priority to JP2008250581A priority Critical patent/JP5332456B2/en
Priority to CN200980104480.3A priority patent/CN101940074B/en
Priority to PCT/JP2009/064715 priority patent/WO2010035601A1/en
Priority to TW98129215A priority patent/TWI400275B/en
Publication of JP2010080878A publication Critical patent/JP2010080878A/en
Application granted granted Critical
Publication of JP5332456B2 publication Critical patent/JP5332456B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings
    • H05K3/285Permanent coating compositions
    • H05K3/287Photosensitive compositions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1057Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain
    • C08G73/106Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/10Block- or graft-copolymers containing polysiloxane sequences
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/42Block-or graft-polymers containing polysiloxane sequences
    • C08G77/452Block-or graft-polymers containing polysiloxane sequences containing nitrogen-containing sequences
    • C08G77/455Block-or graft-polymers containing polysiloxane sequences containing nitrogen-containing sequences containing polyamide, polyesteramide or polyimide sequences
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/0154Polyimide
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/0162Silicon containing polymer, e.g. silicone
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/382Improvement of the adhesion between the insulating substrate and the metal by special treatment of the metal

Abstract

<P>PROBLEM TO BE SOLVED: To suppress the bleeding-out of a ring dimethylsiloxane oligomer from a protection layer including a photosensitive siloxane polyimide resin composition in a printed circuit board, and to achieve an excellent plating resistance. <P>SOLUTION: A protection layer including a thermosetting resin of a photosensitive siloxane polyimide resin composition containing a siloxane polyimide resin prepared by imidization of tetracarboxylic acid dianhydride, siloxane diamines containing diphenylsilirene unit, and non-siloxane-containing diamines, a crosslinking agent, and a photo-acid-generating agent is formed at least on a portion of the copper or copper alloy wiring pattern of a printed circuit board. A specific amount of a kind selected from a group containing a liquid epoxy resin, benzoxazines, and resoles is used as the crosslinking agent. A specific amount of photo-acid-generating agent is used as the photosensitising agent. The surface of the copper or copper alloy wiring pattern of the printed circuit board is textured. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、感光性シロキサンポリイミド樹脂組成物から形成された保護層を備えたプリント配線板およびその製造方法に関する。   The present invention relates to a printed wiring board having a protective layer formed from a photosensitive siloxane polyimide resin composition and a method for producing the same.

芳香族テトラカルボン酸と、芳香族ジアミンとをイミド化してなる芳香族系ポリイミド樹脂は、その優れた耐熱性や絶縁性のために、電子部品の層間絶縁膜やカバーレイの材料として広く使用されているが、そのような芳香族系ポリイミド樹脂に対し、優れた可撓性と接着性とが求められるようになっている。このため、芳香族ジアミンの一部をシロキサンジアミンに代え、ポリイミド骨格にシロキサン骨格を導入したシロキサンポリイミド樹脂の使用が増大している。   Aromatic polyimide resin formed by imidizing aromatic tetracarboxylic acid and aromatic diamine is widely used as an interlayer insulation film and coverlay material for electronic parts because of its excellent heat resistance and insulation. However, excellent flexibility and adhesiveness are required for such aromatic polyimide resins. For this reason, the use of siloxane polyimide resins in which a part of the aromatic diamine is replaced with siloxane diamine and the siloxane skeleton is introduced into the polyimide skeleton is increasing.

しかしながら、シロキサンポリイミド樹脂の原料であるシロキサンジアミンには、アミノ基を持たない環状ジメチルシロキサンオリゴマーが不純物として含まれているため、製造したシロキサンポリイミド樹脂を層間絶縁膜やカバーレイ等として電子部品に適用した場合、電子部品を半田リフロー工程等の熱処理工程に投入すると、層間−線間絶縁膜やカバーレイの表面にアウトガスとして発生した環状ジメチルシロキサンオリゴマーが再付着またはブリードアウトし、電子部品における接点障害や導電性の低下、接着強度の低下等が生ずるという問題があった。なお、本明細書中において、「ブリードアウト」とは、膜等の固層中から含まれている物質が固層表面に移動し、そこで液化または固化すること、あるいはそこで揮発し拡散する現象を意味する。   However, since siloxane diamine, which is a raw material of siloxane polyimide resin, contains cyclic dimethylsiloxane oligomers that do not have amino groups as impurities, the manufactured siloxane polyimide resin can be applied to electronic components as interlayer insulation films, coverlays, etc. In this case, when the electronic component is put into a heat treatment process such as a solder reflow process, the cyclic dimethylsiloxane oligomer generated as an outgas on the surface of the interlayer-line insulating film or the coverlay is reattached or bleeded out, resulting in a contact failure in the electronic component. In addition, there is a problem that a decrease in conductivity, a decrease in adhesive strength, and the like occur. In this specification, “bleed out” refers to a phenomenon in which a substance contained in a solid layer such as a film moves to the surface of the solid layer and liquefies or solidifies there, or volatilizes and diffuses there. means.

この問題を解決するために、ジアミン成分として少なくともジアミノシロキサンを含むジアミン化合物とテトラカルボン酸二無水物とをトルエンやエーテル系溶媒中でイミド化反応させる際に、例えば、数回に分けて、揮発する溶媒を系外に排出すると共に、溶媒を補充する方法が提案されている(特許文献1)。この方法によれば、環状ジメチルシロキサンオリゴマーは、溶媒に比べ比較的低沸点であるため、揮発する溶媒と共に、系外に排出され、環状ジメチルシロキサンオリゴマーの濃度が低減されたシロキサンポリイミドワニスが得られるとされている。   In order to solve this problem, a diamine compound containing at least diaminosiloxane as a diamine component and a tetracarboxylic dianhydride are subjected to an imidization reaction in toluene or an ether solvent. A method has been proposed in which the solvent to be discharged is discharged out of the system and the solvent is replenished (Patent Document 1). According to this method, since the cyclic dimethylsiloxane oligomer has a relatively low boiling point compared to the solvent, it is discharged out of the system together with the volatile solvent, and a siloxane polyimide varnish with a reduced concentration of the cyclic dimethylsiloxane oligomer is obtained. It is said that.

特開2004−263058公報JP 2004-263058 A

しかしながら、特許文献1の方法では、常圧で揮発した溶媒を系外に排出しているため、6量体までのジメチルシロキサンオリゴマーをかなり除去できるが、7量体以上のジメチルシロキサンオリゴマーを十分には除去できないという問題があった。このため、特許文献1の方法で得られたシロキサンポリイミドワニスに、感光剤を混合して感光性を付与するとともに、ポリイミドの架橋剤として広く用いられているシランカップリング剤、エポキシアミン、固形エポキシ樹脂等を配合した場合、得られた感光性シロキサンポリイミド樹脂組成物をプリント配線板上に成膜し、パターニングし、硬化させて得た薄い保護層(メッキレジストやソルダーレジスト等)から、不純物である環状ジメチルシロキサンオリゴマーがブリードアウトすることを依然として抑制することが困難であるという問題があった。   However, in the method of Patent Document 1, since the solvent volatilized at normal pressure is discharged out of the system, dimethylsiloxane oligomers up to hexamers can be considerably removed, but dimethylsiloxane oligomers more than heptamers are sufficiently removed. There was a problem that could not be removed. For this reason, the siloxane polyimide varnish obtained by the method of Patent Document 1 is mixed with a photosensitizer to impart photosensitivity, and is also widely used as a crosslinker for polyimide, silane coupling agent, epoxyamine, solid epoxy When a resin or the like is blended, the resulting photosensitive siloxane polyimide resin composition is formed on a printed wiring board, patterned and cured from a thin protective layer (plating resist, solder resist, etc.), and impurities. There is a problem that it is still difficult to suppress bleeding of a certain cyclic dimethylsiloxane oligomer.

また、このような感光性シロキサンポリイミド樹脂組成物から形成された保護層を備えたプリント配線板に対しては、保護層で被覆されていない銅または銅合金配線パターン領域(開口エリア)に無電解もしくは電解メッキ層を成長させるためにメッキ処理が施されているが、保護層と銅または銅合金配線パターンとの間の密着が十分とはいえないため、開口エリア周辺部に変色が生じる場合があり、耐メッキ性の向上が求められていた。   In addition, for a printed wiring board having a protective layer formed from such a photosensitive siloxane polyimide resin composition, electroless is applied to the copper or copper alloy wiring pattern region (opening area) not covered with the protective layer. Or, the plating process is applied to grow the electrolytic plating layer, but since the adhesion between the protective layer and the copper or copper alloy wiring pattern is not sufficient, discoloration may occur around the opening area. There has been a demand for improved plating resistance.

本発明の目的は、以上の従来の技術の課題を解決しようとするものであり、感光性シロキサンポリイミド樹脂組成物からなる保護層を有するプリント配線板であって、保護層から、不純物である環状ジメチルシロキサンオリゴマーのブリードアウトが十分に抑制され、しかも優れた耐メッキを示すプリント配線板を提供することがである。   SUMMARY OF THE INVENTION An object of the present invention is to solve the above-described problems of the prior art, and is a printed wiring board having a protective layer made of a photosensitive siloxane polyimide resin composition, which is an impurity which is an impurity from the protective layer. It is an object of the present invention to provide a printed wiring board in which bleedout of dimethylsiloxane oligomer is sufficiently suppressed and exhibits excellent plating resistance.

本発明者らは、ジアミン成分としてジフェニルシリレン単位を有するシロキサンジアミンを使用してシロキサンポリイミド樹脂を調製し、更にそれに特定の種類と量の架橋剤を配合した感光性シロキサンポリイミド樹脂組成物を使用して保護層を形成することにより環状ジメチルシロキサンオリゴマーのブリードアウトを抑制でき、また、配線板の銅または銅合金配線パターンを予め表面粗化処理しておくと、その上に形成された保護層の耐メッキ性を向上させることができることを見出し、本願発明を完成させた。   The present inventors prepared a siloxane polyimide resin by using a siloxane diamine having a diphenylsilylene unit as a diamine component, and further used a photosensitive siloxane polyimide resin composition containing a specific kind and amount of a crosslinking agent. By forming a protective layer, bleeding out of the cyclic dimethylsiloxane oligomer can be suppressed, and if the copper or copper alloy wiring pattern of the wiring board is subjected to surface roughening treatment in advance, the protective layer formed thereon The inventors found that the plating resistance can be improved and completed the present invention.

即ち、本発明は、テトラカルボン酸二無水物とジフェニルシリレン単位を有するシロキサンジアミンとシロキサン非含有ジアミンとをイミド化して得られるシロキサンポリイミド樹脂と、架橋剤と、光酸発生剤とを含有する感光性シロキサンポリイミド樹脂組成物の熱硬化物からなる保護層が、プリント配線板の銅または銅合金配線パターンの少なくとも一部の上に形成されてなる当該プリント配線板であって、
架橋剤として、液状エポキシ樹脂、ベンゾオキサジン類及びレゾール類からなる群より選択される少なくとも一種を、シロキサンポリイミド樹脂100質量部に対し1〜20質量部使用し、感光剤として、光酸発生剤をシロキサンポリイミド樹脂100質量部に対し5〜30質量部使用し、
銅または銅合金配線パターンの表面が、表面粗化処理されていることを特徴とするプリント配線基板を提供する。
That is, the present invention is a photosensitive resin containing a siloxane polyimide resin obtained by imidizing a tetracarboxylic dianhydride, a siloxane diamine having a diphenylsilylene unit and a siloxane-free diamine, a crosslinking agent, and a photoacid generator. A protective layer made of a thermosetting product of a functional siloxane polyimide resin composition is the printed wiring board formed on at least a part of the copper or copper alloy wiring pattern of the printed wiring board,
At least one selected from the group consisting of liquid epoxy resins, benzoxazines and resols is used as a crosslinking agent, 1 to 20 parts by mass with respect to 100 parts by mass of a siloxane polyimide resin, and a photoacid generator is used as a photosensitive agent. Use 5 to 30 parts by mass with respect to 100 parts by mass of siloxane polyimide resin,
Provided is a printed wiring board characterized in that the surface of a copper or copper alloy wiring pattern is subjected to surface roughening treatment.

また、本発明は、上述のプリント配線板の製造方法であって、
プリント配線板の銅または銅合金配線パターンの表面を、表面粗化処理し、
表面粗化処理された銅または銅合金配線パターンの少なくとも一部の上に、テトラカルボン酸二無水物とジフェニルシリレン単位を有するシロキサンジアミンとシロキサン非含有ジアミンとをイミド化して得られるシロキサンポリイミド樹脂と、架橋剤と、光酸発生剤とを含有する感光性シロキサンポリイミド樹脂組成物を成膜し、露光、現像してパターニングし、ポストべークにより熱硬化させて保護層を形成し、更に必要に応じて無電解メッキまたは電解メッキを施すプリント配線板の製造方法において、
架橋剤として、液状エポキシ樹脂、ベンゾオキサジン類及びレゾール類からなる群より選択される少なくとも一種を、シロキサンポリイミド樹脂100質量部に対し1〜20質量部使用し、感光剤として、光酸発生剤をシロキサンポリイミド樹脂100質量部に対し5〜30質量部使用することを特徴とする製造方法を提供する。
Further, the present invention is a method for manufacturing the above-described printed wiring board,
The surface of the copper or copper alloy wiring pattern on the printed wiring board is surface roughened,
A siloxane polyimide resin obtained by imidizing a tetracarboxylic dianhydride, a siloxane diamine having a diphenylsilylene unit and a siloxane-free diamine on at least a part of a copper or copper alloy wiring pattern subjected to surface roughening treatment; A photosensitive siloxane polyimide resin composition containing a crosslinking agent and a photoacid generator is formed, exposed, developed, patterned, and thermally cured by post-baking to form a protective layer. In the method of manufacturing a printed wiring board that performs electroless plating or electrolytic plating according to
At least one selected from the group consisting of liquid epoxy resins, benzoxazines and resols is used as a crosslinking agent, 1 to 20 parts by mass with respect to 100 parts by mass of a siloxane polyimide resin, and a photoacid generator is used as a photosensitive agent. Provided is a production method using 5 to 30 parts by mass with respect to 100 parts by mass of a siloxane polyimide resin.

本発明によれば、ジアミン成分としてジフェニルシリレン単位を有するシロキサンジアミンを使用し、更に感光性シロキサンポリイミド樹脂組成物からなる薄膜等の保護層に、特定の熱硬化性の架橋剤による三次元構造が形成されるので、その三次元構造中に不純物である環状ジメチルシロキサンオリゴマーが捕捉され、その結果、環状ジメチルシロキサンオリゴマーのブリードアウトを防止乃至抑制することができ、更に熱硬化により良好な耐メッキ性が得られる。また、感光剤として酸発生剤を特定量含有しているので、シロキサンポリイミド樹脂組成物がポジ型感光性となり、露光、アルカリ現像によりパターニングが可能となる。   According to the present invention, a siloxane diamine having a diphenylsilylene unit is used as a diamine component, and a protective layer such as a thin film made of a photosensitive siloxane polyimide resin composition has a three-dimensional structure with a specific thermosetting crosslinking agent. As a result, the cyclic dimethylsiloxane oligomer, which is an impurity, is trapped in the three-dimensional structure. As a result, bleeding out of the cyclic dimethylsiloxane oligomer can be prevented or suppressed, and further, good plating resistance can be obtained by thermosetting. Is obtained. In addition, since the acid generator is contained in a specific amount as the photosensitive agent, the siloxane polyimide resin composition becomes positive photosensitive and can be patterned by exposure and alkali development.

また、プリント配線板の銅または銅合金配線パターンが、予め表面粗化処理されているので、銅または銅合金配線パターンと保護層との間の密着性を高めることができ、保護層の耐メッキ性を向上させることが可能となる。   Moreover, since the copper or copper alloy wiring pattern of the printed wiring board has been subjected to surface roughening in advance, the adhesion between the copper or copper alloy wiring pattern and the protective layer can be improved, and the protective layer is resistant to plating. It becomes possible to improve the property.

本発明のプリント配線板の保護層を形成するための感光性シロキサンポリイミド樹脂組成物は、テトラカルボン酸二無水物とジフェニルシリレン単位を有するシロキサンジアミンとシロキサン非含有ジアミンとをイミド化して得られるシロキサンポリイミド樹脂100質量部と、液状エポキシ樹脂、ベンゾオキサジン類及びレゾール類からなる群より選択される少なくとも一種の架橋剤1〜20質量部と、感光剤として光酸発生剤5〜30質量部とを含有する。   The photosensitive siloxane polyimide resin composition for forming the protective layer of the printed wiring board of the present invention is a siloxane obtained by imidizing a tetracarboxylic dianhydride, a siloxane diamine having a diphenylsilylene unit and a siloxane-free diamine. 100 parts by mass of a polyimide resin, 1 to 20 parts by mass of a crosslinking agent selected from the group consisting of a liquid epoxy resin, benzoxazines and resols, and 5 to 30 parts by mass of a photoacid generator as a photosensitive agent contains.

まず、感光性シロキサンポリイミド樹脂組成物の主成分であるシロキサンポリイミド樹脂について説明する。このシロキサンポリイミド樹脂は、ジアミン成分として、ジフェニルシリレン単位を有するジアミノシロキサンを使用するので、環状ジメチルシロキサンオリゴマーの発生量を低減することができる。   First, the siloxane polyimide resin that is the main component of the photosensitive siloxane polyimide resin composition will be described. Since this siloxane polyimide resin uses diaminosiloxane having a diphenylsilylene unit as the diamine component, the amount of cyclic dimethylsiloxane oligomer generated can be reduced.

本発明で使用するシロキサンポリイミド樹脂の構成単位となるテトラカルボン酸二無水物の具体例としては、ピロメリット酸二無水物、3,4,3′,4′−ビフェニルテトラカルボン酸二無水物、4,4′‐オキシジフタル酸二無水物、3,4,3′,4′−ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’−ジフェニルスルホンテトラカルボン酸二無水物、9,9−ビス(3,4−ジカルボキシフェニル)フルオレン二無水物、9,9−ビス[4−(3,4−ジカルボキシフェノキシ)フェニル]フルオレン二無水物、2,3,6,7−ナフタレンテトラカルボン酸二無水物、4,4′−(ヘキサフルオロイソプロピリデン)ジフタル酸無水物、1,2,3,4−シクロブタンテトラカルボン酸二無水物、ビシクロ[2.2.2]オクト−7−エン−2,3,5,6−テトラカルボン酸二無水物、エチレングリコールビストリメリート二無水物、2,2−ビス(4−(3,4−ジカルボキシフェノキシ)フェニル)プロパン二無水物等を挙げることができる。中でも、3,3′,4,4′−ジフェニルスルホンテトラカルボン酸二無水物を好ましく使用できる。   Specific examples of the tetracarboxylic dianhydride that is a structural unit of the siloxane polyimide resin used in the present invention include pyromellitic dianhydride, 3,4,3 ′, 4′-biphenyltetracarboxylic dianhydride, 4,4′-oxydiphthalic dianhydride, 3,4,3 ′, 4′-benzophenone tetracarboxylic dianhydride, 3,3 ′, 4,4′-diphenylsulfone tetracarboxylic dianhydride, 9, 9-bis (3,4-dicarboxyphenyl) fluorene dianhydride, 9,9-bis [4- (3,4-dicarboxyphenoxy) phenyl] fluorene dianhydride, 2,3,6,7-naphthalene Tetracarboxylic dianhydride, 4,4 '-(hexafluoroisopropylidene) diphthalic anhydride, 1,2,3,4-cyclobutanetetracarboxylic dianhydride, bicyclo [2. .2] Oct-7-ene-2,3,5,6-tetracarboxylic dianhydride, ethylene glycol bistrimellitic dianhydride, 2,2-bis (4- (3,4-dicarboxyphenoxy) And phenyl) propane dianhydride. Among these, 3,3 ′, 4,4′-diphenylsulfonetetracarboxylic dianhydride can be preferably used.

また、本発明で使用するシロキサンポリイミド樹脂の構成単位となるシロキサンジアミンとしては、少なくとも分子内にジメチルシリレン骨格を有する化合物であり、従来より、ポリイミド樹脂のシロキサン変性に用いられているものを使用できる。中でも、難燃性、相溶性確保の点から以下の式(1)の構造を有するものを好ましく使用できる。   Moreover, as a siloxane diamine which becomes a structural unit of the siloxane polyimide resin used in the present invention, a compound having at least a dimethylsilylene skeleton in the molecule, and those conventionally used for siloxane modification of polyimide resins can be used. . Especially, what has the structure of the following formula | equation (1) can be used preferably from the point of a flame retardance and compatibility ensuring.

Figure 2010080878
Figure 2010080878

式(1)中、nは1〜30の整数、好ましくは1〜20の整数であり、mは1〜20の整数、好ましくは1〜10の整数である。mが1以上であるから、式(1)のシロキサンジアミンはジフェニルシリレン骨格を有することになり、シロキサンポリイミド樹脂の難燃性が向上する。しかも、mが1以上であるので、不純物である環状ジメチルシロキサンオリゴマーのブリードアウトをある程度抑制することが可能となる。このようなシロキサンジアミンの具体例としては、信越化学工業株式会社製のX−22−9409(m>1)を挙げることができる。なお、シロキサンジアミンとして、アミノ基がtert−ブトキシカルボニル基などのカルバメート系、フタロイル基などのイミド系、p−トルエンスルホニル基などのスルホンアミド系により保護されているものも使用できる。   In formula (1), n is an integer of 1-30, preferably an integer of 1-20, and m is an integer of 1-20, preferably an integer of 1-10. Since m is 1 or more, the siloxane diamine of the formula (1) has a diphenylsilylene skeleton, and the flame retardancy of the siloxane polyimide resin is improved. And since m is 1 or more, it becomes possible to suppress the bleeding out of the cyclic dimethylsiloxane oligomer which is an impurity to some extent. Specific examples of such siloxane diamine include X-22-9409 (m> 1) manufactured by Shin-Etsu Chemical Co., Ltd. As the siloxane diamine, those having an amino group protected by a carbamate type such as a tert-butoxycarbonyl group, an imide type such as a phthaloyl group, or a sulfonamide type such as a p-toluenesulfonyl group can be used.

本発明で使用するシロキサンポリイミド樹脂の構成単位となるシロキサン非含有ジアミンとしては、分子内にジメチルシリレン骨格およびジフェニルシリレン骨格を持たないジアミンを使用することができ、その具体例としては、3,3′−ジアミノ−4,4′−ジヒドロキシジフェニルスルホン、2,2−ビス(3−アミノ−4−ヒドロキシフェニル)へキサフルオロプロパン、2,2−ビス(3−アミノ−4−ヒドロキシフェニル)プロパン、3,3′−ジアミノ−4,4′−ジヒドロキシジフェニルメタン、3,3′−ジヒドロキシ‐4,4′−ジアミノビフェニル、2,4−ジアミノフェノール、9,9−ビス(3−アミノ−4−ヒドロキシフェニル)フルオレン等のジアミノフェノール誘導体;p−フェニレンジアミン、4,4′−ジアミノジフェニルエーテル、2,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパン、ビス[4−(4−アミノフェノキシ)フェニル]スルホン、1,3−ビス(4−アミノフェノキシ)ベンゼン、2,2′−ビス(トリフルオロメチル)−4,4′−ジアミノビフェニル、1,3−ビス(3−アミノフェノキシ)ベンゼン、4,4′−ジアミノベンズアニリド、5,5′−メチレン‐ビス(アントラニック酸)、9,9−ビス[4−(4−アミノフェノキシフェニル)]フルオレン、9,9−ビス(4−アミノフェノキシ)フルオレン、4,4′−ジアミノジフェニルスルホン、3,4′−ジアミノジフェニルエーテル、2,2−ビス[4−(4−アミノフェノキシ)フェニル]ヘキサフルオロプロパン、4,4′−ビス(4−アミノフェノキシ)ビフェニル、1,4−ビス(4−アミノフェノキシ)ベンゼン、o−トリジンスルホン等の芳香族ジアミン;trans−1,4−シクロヘキサンジアミン、cis−1,4−シクロヘキサンジアミン、4,4′−メチレンビス(シクロヘキシルアミン)等の脂肪族ジアミンを挙げることができるが、これらに限定されるものではないものの、好ましくはジアミノフェノール誘導体、特に、3,3′−ジアミノ−4,4′−ジヒドロキシジフェニルスルホンを挙げることができる。   As the siloxane-free diamine which is a constituent unit of the siloxane polyimide resin used in the present invention, a diamine having no dimethylsilylene skeleton and diphenylsilylene skeleton in the molecule can be used, and specific examples thereof include 3, 3 '-Diamino-4,4'-dihydroxydiphenyl sulfone, 2,2-bis (3-amino-4-hydroxyphenyl) hexafluoropropane, 2,2-bis (3-amino-4-hydroxyphenyl) propane, 3,3'-diamino-4,4'-dihydroxydiphenylmethane, 3,3'-dihydroxy-4,4'-diaminobiphenyl, 2,4-diaminophenol, 9,9-bis (3-amino-4-hydroxy Diaminophenol derivatives such as phenyl) fluorene; p-phenylenediamine, 4,4 ′ Diaminodiphenyl ether, 2,2-bis [4- (4-aminophenoxy) phenyl] propane, bis [4- (4-aminophenoxy) phenyl] sulfone, 1,3-bis (4-aminophenoxy) benzene, 2, 2'-bis (trifluoromethyl) -4,4'-diaminobiphenyl, 1,3-bis (3-aminophenoxy) benzene, 4,4'-diaminobenzanilide, 5,5'-methylene-bis (anthra Nickic acid), 9,9-bis [4- (4-aminophenoxyphenyl)] fluorene, 9,9-bis (4-aminophenoxy) fluorene, 4,4'-diaminodiphenyl sulfone, 3,4'-diamino Diphenyl ether, 2,2-bis [4- (4-aminophenoxy) phenyl] hexafluoropropane, 4,4'-bis ( -Aminophenoxy) aromatic diamines such as biphenyl, 1,4-bis (4-aminophenoxy) benzene, o-tolidine sulfone; trans-1,4-cyclohexanediamine, cis-1,4-cyclohexanediamine, 4,4 Examples include, but are not limited to, aliphatic diamines such as' -methylenebis (cyclohexylamine), but are preferably diaminophenol derivatives, particularly 3,3'-diamino-4,4'-dihydroxy. Mention may be made of diphenylsulfone.

本発明で使用するシロキサンポリイミド樹脂は、溶媒中でテトラカルボン酸二無水物とジフェニルシリレン単位を有するシロキサンジアミンと必要に応じてシロキサン非含有ジアミンとを、還流条件下でイミド化反応させることにより製造できるが、以下の工程(a)及び(b)を有する製造方法により得ることもできる。   The siloxane polyimide resin used in the present invention is produced by imidization reaction of a tetracarboxylic dianhydride, a siloxane diamine having a diphenylsilylene unit and, if necessary, a siloxane-free diamine in a solvent under reflux conditions. However, it can also be obtained by a production method having the following steps (a) and (b).

工程(a)
まず、溶媒中でテトラカルボン酸二無水物とジフェニルシリレン単位を有するシロキサンジアミンとを還流条件下でイミド化反応させて酸無水物末端シロキサンイミドオリゴマーを含む反応混合物を得る。
Step (a)
First, a tetracarboxylic dianhydride and a siloxane diamine having a diphenylsilylene unit are subjected to an imidization reaction under a reflux condition to obtain a reaction mixture containing an acid anhydride-terminated siloxane imide oligomer.

酸無水物末端シロキサンイミドオリゴマーを得るためには、シロキサンジアミンよりも第1のテトラカルボン酸二無水物のモル量を多くすればよい。ただし、シロキサンジアミンの使用量は、全テトラカルボン酸二無水物1モルに対し、少なすぎると接着性、可撓性の維持が困難になる傾向があり、多すぎると耐熱性が低下する傾向があるので、好ましくは、0.1〜0.9モル、より好ましくは、0.3〜0.8モルである。   In order to obtain an acid anhydride-terminated siloxane imide oligomer, the molar amount of the first tetracarboxylic dianhydride may be increased as compared with siloxane diamine. However, if the amount of siloxane diamine used is too small relative to 1 mol of all tetracarboxylic dianhydrides, it tends to be difficult to maintain adhesion and flexibility, and if too large, heat resistance tends to decrease. Since it exists, Preferably it is 0.1-0.9 mol, More preferably, it is 0.3-0.8 mol.

工程(a)において、イミド化反応を還流条件下で行う理由は、ディーンスタ−ク分離管等を用いてイミド化水を除くためである。従って、溶媒としては、テトラカルボン酸二無水物とシロキサンジアミンとの間のイミド化反応が生ずる温度で還流する溶媒であって、共沸により水を分離できる溶媒を使用する。このような溶媒としては、ジグライム、トリグライム等のグライム類、ジオキサン、テトラヒドロフラン等のエーテル系溶媒や、γ−ブチロラクトン、γ−バレロラクトン等のラクトン系溶媒、それらの混合物を使用することができる。また、発明の効果を損なわない限り、トルエン、キシレン、ベンゼン、メシチレン等の芳香族炭化水素系溶媒、N−メチル−2−ピロリドン等のアミド系溶媒を併用してもよい。本工程(a)では、還流温度等の点から好ましくはグライム類と芳香族炭化水素溶媒との混合溶媒、中でもトリグライムと、ベンゼン、トルエン、キシレン及びメシチレンからなる群より選択される少なくとも一種との混合溶媒(w/w=1/(0.1〜10))を好ましく使用できる。   In the step (a), the reason for carrying out the imidation reaction under reflux conditions is to remove imidized water using a Dean-Stark separation tube or the like. Therefore, as the solvent, a solvent that is refluxed at a temperature at which an imidization reaction between tetracarboxylic dianhydride and siloxane diamine occurs and can separate water by azeotropy is used. Examples of such a solvent include glymes such as diglyme and triglyme, ether solvents such as dioxane and tetrahydrofuran, lactone solvents such as γ-butyrolactone and γ-valerolactone, and mixtures thereof. In addition, an aromatic hydrocarbon solvent such as toluene, xylene, benzene and mesitylene and an amide solvent such as N-methyl-2-pyrrolidone may be used in combination as long as the effects of the invention are not impaired. In this step (a), preferably a mixed solvent of glymes and an aromatic hydrocarbon solvent, particularly triglyme, and at least one selected from the group consisting of benzene, toluene, xylene and mesitylene from the viewpoint of reflux temperature and the like. A mixed solvent (w / w = 1 / (0.1-10)) can be preferably used.

工程(a)における溶媒の使用量は、溶媒や反応基質の種類により異なるが、少なすぎるとモノマー分散不良や還流効率の低下を引き起こし、多すぎると溶媒の気化熱が大きくなり反応槽内の温度が上がりにくくなるので、テトラカルボン酸二無水物とシロキサンジアミンとの合計の質量が5〜60質量%となる量で使用することが好ましい。   The amount of solvent used in step (a) varies depending on the type of solvent and reaction substrate, but if it is too small, it will cause poor monomer dispersion and decrease in reflux efficiency. If it is too large, the heat of vaporization of the solvent will increase and the temperature in the reaction vessel will increase. Therefore, the total mass of tetracarboxylic dianhydride and siloxane diamine is preferably used in an amount of 5 to 60% by mass.

イミド化反応の反応温度は、溶媒や反応基質の種類や使用量により異なるが、低すぎるとイミド化反応が完結せず、高すぎるとイミド化反応以外の副反応が生じる可能性があるので、好ましくは150〜220℃、より好ましくは160〜200℃である。反応時間は、理論量のイミド化水を除去するに要した時間であり、通常0.5〜12時間、好ましくは1〜8時間である。   The reaction temperature of the imidation reaction varies depending on the type and amount of the solvent and reaction substrate, but if it is too low, the imidization reaction cannot be completed, and if it is too high, side reactions other than the imidization reaction may occur. Preferably it is 150-220 degreeC, More preferably, it is 160-200 degreeC. The reaction time is the time required to remove the theoretical amount of imidized water, and is usually 0.5 to 12 hours, preferably 1 to 8 hours.

なお、工程(a)におけるイミド化の際に、必要に応じてトリエチルアミン等の3級アミン、芳香族系イソキノリン、ピリジン等の塩基性触媒や、安息香酸、パラヒドロキシ安息香酸などの酸触媒を添加してもよい。   In addition, in the imidization in the step (a), a tertiary amine such as triethylamine, a basic catalyst such as aromatic isoquinoline and pyridine, and an acid catalyst such as benzoic acid and parahydroxybenzoic acid are added as necessary. May be.

工程(b)
工程(a)の反応終了後、工程(a)で得られた酸無水物末端シロキサンイミドオリゴマーの溶液に、シロキサン非含有ジアミンを添加し、シロキサン非含有ジアミンと酸無水物末端シロキサンイミドオリゴマーとをイミド化反応させ、それによりシロキサンポリイミド樹脂を得る。この場合、必要に応じてシロキサン非含有ジアミンと共に、先に使用したものと同じ又は異なるテトラカルボン酸二無水物を添加してもよい。また、必要に応じて溶媒を添加してもよい。これによりポリイミド固形分濃度を調整する事が可能となる。溶媒としては、工程(a)で用い得るものを使用できる。特に、シロキサンポリイミド樹脂をワニスとして使用する場合には、コーティング時の吸湿によるポリイミド析出を防ぐために、比較的吸湿性の低い溶媒であるエーテル系溶媒、ラクトン系溶媒、非極性溶媒などを単独、または混合して使用することができる。特に、本工程(b)では、トリグライム(別名:トリエチレングリコールジメチルエーテル)とγ−ブチロラクトンとの混合溶媒(w/w=1/(0.1〜10))を好ましく使用できる。
Step (b)
After completion of the reaction in the step (a), a siloxane-free diamine is added to the solution of the acid anhydride-terminated siloxane imide oligomer obtained in the step (a), and the siloxane-free diamine and the acid anhydride-terminated siloxane imide oligomer are added. An imidization reaction is performed to obtain a siloxane polyimide resin. In this case, you may add the same or different tetracarboxylic dianhydride as what was used previously with a siloxane non-containing diamine as needed. Moreover, you may add a solvent as needed. This makes it possible to adjust the polyimide solid content concentration. As the solvent, those that can be used in step (a) can be used. In particular, when a siloxane polyimide resin is used as a varnish, in order to prevent polyimide precipitation due to moisture absorption during coating, an ether solvent, a lactone solvent, a nonpolar solvent, etc., which are relatively low hygroscopic solvents, or Can be used as a mixture. In particular, in this step (b), a mixed solvent of triglyme (also known as triethylene glycol dimethyl ether) and γ-butyrolactone (w / w = 1 / (0.1-10)) can be preferably used.

シロキサン非含有ジアミンの使用量は、機械特性が十分な保護層を得るための分子量を確保するために、シロキサンジアミンと合算したモル数が、全テトラカルボン酸二無水物1モルに対して、好ましくは0.1〜0.9モル、より好ましくは0.3〜0.8モルとなる量である。   The amount of the siloxane-free diamine used is preferably such that the number of moles combined with the siloxane diamine is 1 mol of all tetracarboxylic dianhydrides in order to ensure a molecular weight for obtaining a protective layer having sufficient mechanical properties. Is an amount of 0.1 to 0.9 mol, more preferably 0.3 to 0.8 mol.

なお、工程(b)におけるイミド化の際に、工程(a)の場合と同様に、必要に応じてトリエチルアミン等の3級アミン、芳香族系イソキノリン、ピリジン等の塩基性触媒や、安息香酸、パラヒドロキシ安息香酸などの酸触媒を添加してもよい。   In the case of imidization in the step (b), as in the case of the step (a), a basic catalyst such as a tertiary amine such as triethylamine, aromatic isoquinoline or pyridine, benzoic acid, An acid catalyst such as parahydroxybenzoic acid may be added.

工程(b)におけるイミド化反応温度に関し、工程(b)においては極性基を有する酸二無水物やジアミン成分を使用した場合には、ワイゼルベルグ効果により生成したシロキサンポリイミド樹脂の粘度が増大し、撹拌棒の周囲に巻き付く現象が生ずることがある。生成したシロキサンポリイミド樹脂の粘度の増大を避けるためには、反応系中に水を存在させることが好ましい。この場合、水の量が少なすぎると増粘する危険性が高まり、多すぎるとポリイミドの分子量が低下する恐れがあるので、反応混合物中に0.01〜1.1質量%の割合で水を存在させることが好ましい。   Regarding the imidization reaction temperature in the step (b), in the step (b), when an acid dianhydride or diamine component having a polar group is used, the viscosity of the siloxane polyimide resin generated by the Weiselberg effect increases, A phenomenon of winding around the stirring rod may occur. In order to avoid an increase in the viscosity of the produced siloxane polyimide resin, it is preferable that water be present in the reaction system. In this case, if the amount of water is too small, the risk of thickening increases, and if it is too large, the molecular weight of the polyimide may decrease, so water is added at a ratio of 0.01 to 1.1% by mass in the reaction mixture. Preferably it is present.

工程(b)におけるイミド化の際の反応温度は、溶媒や反応基質の種類や使用量により異なるが、低すぎるとイミド化反応が完結せず、高すぎるとイミド化反応以外の副反応が生じる可能性があるので、好ましくは、150〜220℃、より好ましくは、160〜200℃である。反応時間は、通常0.5〜12時間、好ましくは、1〜8時間である。これにより、環状ジメチルシロキサンオリゴマーの含有量が少ないシロキサンポリイミド樹脂がワニス状態で得られる。   The reaction temperature at the time of imidation in the step (b) varies depending on the type and amount of the solvent and reaction substrate, but if it is too low, the imidization reaction is not completed, and if it is too high, side reactions other than the imidization reaction occur. Since there is a possibility, Preferably it is 150-220 degreeC, More preferably, it is 160-200 degreeC. The reaction time is usually 0.5 to 12 hours, preferably 1 to 8 hours. Thereby, the siloxane polyimide resin with little content of cyclic dimethylsiloxane oligomer is obtained in a varnish state.

次に、感光性シロキサンポリイミド樹脂組成物で使用する架橋剤について説明する。架橋剤は、文字通り、それ自身が加熱により重合硬化して三次元架橋構造を形成するものである。このため、三次元構造中に不純物の環状ジメチルシロキサンオリゴマーを閉じこめ、そのブリードアウトを抑制乃至防止することができる。   Next, the crosslinking agent used in the photosensitive siloxane polyimide resin composition will be described. Literally, the crosslinking agent itself is polymerized and cured by heating to form a three-dimensional crosslinked structure. For this reason, the cyclic dimethylsiloxane oligomer as an impurity can be confined in the three-dimensional structure, and the bleed-out can be suppressed or prevented.

このような架橋剤としては、シロキサンポリイミド樹脂に対し相溶性を有する、液状エポキシ樹脂、ベンゾオキサジン類及びレゾール類からなる群より選択される少なくとも一種が挙げられる。特に、環状シロキサンの揮発・拡散を防ぐ点から、液状エポキシ樹脂とベンゾオキサジン類とを同時に併用、または液状エポキシ樹脂、ベンゾオキサジン類及びレゾール類とを同時に併用することができる。ここで、液状エポキシ樹脂の重合は、シロキサンポリイミド樹脂に残存するアミノ基が加熱によりアニオン重合開始点となり進行する。ベンゾオキサジン類の重合は、加熱によりオキサジン環が開環してメチレニウムカチオンとフェノール性のオキソニウムアニオンが生成し、メチレニウムカチオンがベンゼン環に対し求核置換重合して進行する。レゾール類の場合は、フェノール性水酸基がベンゼン環に対し加熱により脱水縮合重合することで進行する。   Examples of such a crosslinking agent include at least one selected from the group consisting of liquid epoxy resins, benzoxazines, and resoles that are compatible with siloxane polyimide resins. In particular, from the viewpoint of preventing volatilization / diffusion of cyclic siloxane, a liquid epoxy resin and a benzoxazine can be used together, or a liquid epoxy resin, a benzoxazine and a resole can be used together. Here, the polymerization of the liquid epoxy resin proceeds with the amino group remaining in the siloxane polyimide resin as an anionic polymerization starting point by heating. Polymerization of benzoxazines proceeds by heating to open the oxazine ring to produce a methylenium cation and a phenolic oxonium anion, and the methylenium cation proceeds by nucleophilic substitution polymerization on the benzene ring. In the case of resols, the phenolic hydroxyl group proceeds by dehydration condensation polymerization of the benzene ring by heating.

このような液状エポキシ樹脂及びレゾール類としては、シロキサンポリイミド樹脂に対し良好な相溶性を有するように、好ましくは1〜100000mPa.s、より好ましくは1〜50000mPa・sである。ここで、粘度は、25℃でB型粘度計により測定した値である。他方、ベンゾオキサジン類は、通常、常温では固体であるが、軟化点が高すぎるとシロキサンポリイミド樹脂に対する相溶性が低下するので約100℃以下のものが好ましい。   Such liquid epoxy resins and resols are preferably 1 to 100,000 mPa.s so as to have good compatibility with the siloxane polyimide resin. s, more preferably 1 to 50000 mPa · s. Here, the viscosity is a value measured with a B-type viscometer at 25 ° C. On the other hand, benzoxazines are usually solid at room temperature, but if the softening point is too high, the compatibility with the siloxane polyimide resin is lowered, so that those having a temperature of about 100 ° C. or less are preferable.

架橋剤として使用する液状エポキシ樹脂の好ましい具体例としては、ビスフェノールF型エポキシ樹脂(jER807、ジャパンエポキシレジン株式会社等)、ビスフェノールA型エポキシ樹脂(jER828、ジャパンエポキシレジン株式会社等)、脂環式エポキシ樹脂(セロキサイド2021、ダイセル化学工業株式会社等)、グリシジルアミン型エポキシ樹脂(iER604、ジャパンエポキシレジン株式会社;GAN、日本化薬株式会社等)などが挙げられる。中でも、入手の容易さの点から、ビスフェノールF型エポキシ樹脂、ビスフェノールA型エポキシ樹脂を好ましく使用できる。   Preferred specific examples of the liquid epoxy resin used as the crosslinking agent include bisphenol F type epoxy resins (jER807, Japan Epoxy Resin Co., Ltd.), bisphenol A type epoxy resins (jER828, Japan Epoxy Resin Co., Ltd.), alicyclic type. Examples thereof include epoxy resins (Celoxide 2021, Daicel Chemical Industries, Ltd.), glycidylamine type epoxy resins (iER604, Japan Epoxy Resin Co., Ltd .; GAN, Nippon Kayaku Co., Ltd., etc.). Among these, bisphenol F type epoxy resin and bisphenol A type epoxy resin can be preferably used from the viewpoint of easy availability.

架橋剤として使用するベンゾオキサジン類の好ましい具体例としては、以下の式(1)のビスフェノールS型ベンゾオキサジン、式(2)のビスフェノールF型ベンゾオキサジン、式(3)のビスフェノールA型ベンゾオキサジン(いずれも小西化学工業株式会社)を挙げることができる。中でも、入手の容易さの点から、ビスフェノールF型ベンゾオキサジンを好ましく使用できる。   Preferable specific examples of benzoxazines used as a crosslinking agent include bisphenol S-type benzoxazine of the following formula (1), bisphenol F-type benzoxazine of formula (2), bisphenol A-type benzoxazine of formula (3) ( All include Konishi Chemical Industry Co., Ltd.). Among these, bisphenol F-type benzoxazine can be preferably used from the viewpoint of easy availability.

Figure 2010080878
Figure 2010080878

また、架橋剤として使用するレゾール類の好ましい具体例としては、アルカリ金属又はアルカリ土類金属の水酸化物を触媒として用いて得たアルカリレゾール樹脂、アンモニアを触媒として用いて得たアンモニアレゾール樹脂、2価金属塩を触媒として用いて得たハイオルソレゾール樹脂等が挙げられる。中でも、入手の容易さの点からアルカリレゾール樹脂を好ましく使用することができる。   Further, preferred specific examples of resoles used as a crosslinking agent include alkali resole resins obtained using alkali metal or alkaline earth metal hydroxides as catalysts, ammonia resole resins obtained using ammonia as a catalyst, Examples thereof include a high ortho resole resin obtained by using a divalent metal salt as a catalyst. Among these, alkali resole resins can be preferably used from the viewpoint of availability.

本発明で使用する感光性シロキサンポリイミド樹脂組成物中の架橋剤の含有量は、シロキサンポリイミド樹脂100質量部に対し、架橋剤1〜20質量部、好ましくは1〜15質量部、より好ましくは1〜10質量部である。架橋剤の含有量がこの範囲を下回ると環状シロキサンの揮発・拡散の抑制効果が不充分となり、超えると可撓性に乏しくなり、膜が硬くなる傾向があるので好ましくない。   The content of the crosslinking agent in the photosensitive siloxane polyimide resin composition used in the present invention is 1 to 20 parts by mass, preferably 1 to 15 parts by mass, more preferably 1 to 100 parts by mass of the siloxane polyimide resin. -10 parts by mass. If the content of the crosslinking agent is below this range, the effect of suppressing the volatilization / diffusion of the cyclic siloxane becomes insufficient, and if it exceeds, the flexibility tends to be poor and the film tends to be hard, which is not preferable.

なお、架橋剤として液状エポキシ樹脂とベンゾオキサジン類とを同時に併用した場合、液状エポキシ樹脂1質量部に対しベンゾオキサジン類を好ましくは0.5〜10質量部の割合で使用する。ベンゾオキサジン類が少なすぎると環状シロキサンの揮発・拡散の抑制効果が不充分となり、多すぎると可撓性に乏しくなり、膜が硬くなる傾向があるからである。また、液状エポキシ樹脂、ベンゾオキサジン類及びレゾール類とを同時に併用する場合、液状エポキシ樹脂1質量部に対しベンゾオキサジン類を好ましくは0.5〜10質量部、レゾール類を好ましくは0.5〜10質量部の割合で使用する。レゾール類が少なすぎると環状シロキサンの揮発・拡散の抑制効果が不充分となり、多すぎると可撓性に乏しくなり、膜が硬くなる傾向があるからである。   In addition, when a liquid epoxy resin and benzoxazines are used together as a crosslinking agent, benzoxazines are preferably used at a ratio of 0.5 to 10 parts by mass with respect to 1 part by mass of the liquid epoxy resin. This is because if the amount of benzoxazine is too small, the effect of suppressing the volatilization / diffusion of the cyclic siloxane is insufficient, and if it is too large, the flexibility tends to be poor and the film tends to be hard. Moreover, when using together a liquid epoxy resin, benzoxazines, and resoles simultaneously, preferably 0.5-10 mass parts of benzoxazines and preferably 0.5-resoles of benzoxazines per 1 mass part of the liquid epoxy resin. It is used at a ratio of 10 parts by mass. This is because if the amount of resol is too small, the effect of suppressing the volatilization / diffusion of cyclic siloxane is insufficient, and if it is too large, the flexibility tends to be poor and the film tends to be hard.

次に、感光性シロキサンポリイミド樹脂組成物で使用する光酸発生剤について説明する。光酸発生剤は、それを含有するシロキサンポリイミド樹脂組成物の薄膜が紫外線などに露光したときに、薄膜中で分解して酸を発生し、薄膜をアルカリ現像可能とする特性を組成物に付与するものであり、感光剤として使用されている。   Next, the photoacid generator used in the photosensitive siloxane polyimide resin composition will be described. The photoacid generator gives the composition the property that when the thin film of the siloxane polyimide resin composition containing it is exposed to ultraviolet rays or the like, it decomposes in the thin film to generate an acid, and the thin film can be developed with an alkali. It is used as a photosensitizer.

このような光酸発生剤としては、ジアゾニウム塩、ジアゾキノンスルホン酸アミド、ジアゾキノンスルホン酸エステル、ジアゾキノンスルホン酸塩、ニトロベンジルエステル、オニウム塩、ハロゲン化物、ハロゲン化イソシアネート、ハロゲン化トリアジン、ビスアリールスルホニルジアゾメタン、ジスルホン等が挙げられる。中でも、未露光部の水溶性を抑制する効果を有するo−キノンジアジド化合物を好ましく使用できる。o−キノンジアジド化合物の具体例としては、1,2−ベンゾキノン−2−アジド−4−スルホン酸エステル又はスルホン酸アミド、1,2−ナフトキノン−2−ジアジド−5−スルホン酸エステル又はスルホン酸アミド、1,2−ナフトキノン−2−ジアジド−4−スルホン酸エステル又はスルホン酸アミド等が挙げられる。これらは、例えば、1,2−ベンゾキノン−2−アジド−4−スルホニルクロリド、1,2−ナフトキノン−2−ジアジド−5−スルホニルクロリド、1,2−ナフトキノン−2−ジアジド−4−スルホニルクロリド等のo−キノンジアジドスルホニルクロリド類とポリヒドロキシ化合物又はポリアミン化合物を脱塩酸触媒の存在下で縮合反応することによって得ることができる。   Such photoacid generators include diazonium salts, diazoquinone sulfonic acid amides, diazoquinone sulfonic acid esters, diazoquinone sulfonates, nitrobenzyl esters, onium salts, halides, halogenated isocyanates, halogenated triazines, bis Examples include arylsulfonyldiazomethane and disulfone. Especially, the o-quinonediazide compound which has the effect which suppresses the water solubility of an unexposed part can be used preferably. Specific examples of o-quinonediazide compounds include 1,2-benzoquinone-2-azido-4-sulfonic acid ester or sulfonic acid amide, 1,2-naphthoquinone-2-diazide-5-sulfonic acid ester or sulfonic acid amide, Examples include 1,2-naphthoquinone-2-diazide-4-sulfonic acid ester or sulfonic acid amide. These include, for example, 1,2-benzoquinone-2-azido-4-sulfonyl chloride, 1,2-naphthoquinone-2-diazide-5-sulfonyl chloride, 1,2-naphthoquinone-2-diazide-4-sulfonyl chloride, and the like. The o-quinonediazide sulfonyl chloride and polyhydroxy compound or polyamine compound can be obtained by condensation reaction in the presence of a dehydrochlorination catalyst.

本発明で使用する感光性シロキサンポリイミド樹脂組成物中の光酸発生剤の含有量は、シロキサンポリイミド樹脂100質量部に対し、5〜30質量部、好ましくは5〜20質量部である。光酸発生剤の含有量がこの範囲を下回ると十分な感度が得られず、超えると樹脂組成物の耐熱性が低下する傾向があるので好ましくない。   Content of the photo-acid generator in the photosensitive siloxane polyimide resin composition used by this invention is 5-30 mass parts with respect to 100 mass parts of siloxane polyimide resins, Preferably it is 5-20 mass parts. If the content of the photoacid generator is below this range, sufficient sensitivity cannot be obtained, and if it exceeds, the heat resistance of the resin composition tends to decrease, such being undesirable.

本発明で使用する感光性シロキサンポリイミド樹脂組成物には、必要に応じて金属不活性剤、消泡剤、防錆剤、有機溶媒等の公知の添加剤を配合することができる。   In the photosensitive siloxane polyimide resin composition used in the present invention, known additives such as a metal deactivator, an antifoaming agent, a rust preventive, and an organic solvent can be blended as necessary.

本発明で使用する感光性シロキサンポリイミド樹脂組成物は、シロキサンポリイミド樹脂、架橋剤、感光剤、その他の添加剤や溶媒とを常法により均一に混合することにより製造することができる。   The photosensitive siloxane polyimide resin composition used in the present invention can be produced by uniformly mixing a siloxane polyimide resin, a crosslinking agent, a photosensitive agent, other additives and a solvent by a conventional method.

本発明で使用する感光性シロキサンポリイミド樹脂組成物を熱硬化させて得た保護層(メッキレジストやソルダーレジスト等)は、従来のシロキサンポリイミド樹脂の場合と異なり、環状ジメチルシロキサンオリゴマーのブリードアウトが大きく抑制されたものとなる。   The protective layer (plating resist, solder resist, etc.) obtained by thermally curing the photosensitive siloxane polyimide resin composition used in the present invention has a large cyclic dimethylsiloxane oligomer bleed-out unlike conventional siloxane polyimide resins. It will be suppressed.

本発明のプリント配線板は、上述の感光性シロキサンポリイミド樹脂組成物の熱硬化物である保護層が、プリント配線板の銅または銅合金配線パターンの少なくとも一部の上に形成された当該プリント配線板であって、銅または銅合金配線パターンの表面が、表面粗化処理されていることを特徴とするものである。このため、銅または銅合金配線パターンの表面には保護層のアンカーとなる微少な凹凸が形成され、その結果、保護層の密着性が高まり、耐メッキ性が向上する。   The printed wiring board of the present invention is a printed wiring board in which a protective layer, which is a thermoset of the photosensitive siloxane polyimide resin composition described above, is formed on at least a part of a copper or copper alloy wiring pattern of the printed wiring board. A surface of the copper or copper alloy wiring pattern is roughened. For this reason, the minute unevenness | corrugation used as the anchor of a protective layer is formed in the surface of a copper or copper alloy wiring pattern, As a result, the adhesiveness of a protective layer increases and plating resistance improves.

そのような表面粗化処理としては、無機微粒子の水性スラリーを用いたウェットブラスト処理や、銅または銅合金用の化学エッチング剤を用いたいわゆる化学研磨処理が好ましく挙げられる。また、粗化のレベルは、現像性との両立の観点から、好ましくはRa(平均表面粗さ)が50〜500nmである。   As such surface roughening treatment, wet blast treatment using an aqueous slurry of inorganic fine particles and so-called chemical polishing treatment using a chemical etching agent for copper or a copper alloy are preferably exemplified. The level of roughening is preferably Ra (average surface roughness) of 50 to 500 nm from the viewpoint of compatibility with developability.

ウェットブラスト処理で使用する水性スラリーに分散させる研磨剤となる無機微粒子としては、アルミナ粒子、シリカ粒子、ジルコニア粒子、樹脂粒子等が挙げられる。中でも、入手の容易さの点でアルミナ粒子を好ましく使用することができる。   Examples of the inorganic fine particles serving as an abrasive dispersed in the aqueous slurry used in the wet blast treatment include alumina particles, silica particles, zirconia particles, and resin particles. Among these, alumina particles can be preferably used from the viewpoint of availability.

これらの無機微粒子の平均粒径は、小さすぎると水性スラリー中で分散し難くなり、大きすぎると銅また銅配線パターンの表面に微妙な凹凸を形成し難くなるので、好ましくは1〜200μm、より好ましくは2〜100μmである。   If the average particle size of these inorganic fine particles is too small, it will be difficult to disperse in the aqueous slurry, and if it is too large, it will be difficult to form subtle irregularities on the surface of the copper or copper wiring pattern. Preferably it is 2-100 micrometers.

これらの無機微粒子は、水性スラリーとして使用されるが、媒体として水以外に、水混和性の有機溶媒(メタノール、エタノール、アセトン等)を併用することができる。また、水性スラリーには、公知の分散安定剤を配合することができる。   These inorganic fine particles are used as an aqueous slurry. In addition to water, a water-miscible organic solvent (methanol, ethanol, acetone, etc.) can be used in combination. Moreover, a well-known dispersion stabilizer can be mix | blended with aqueous slurry.

ウェットブラスト処理では、水性スラリーを圧縮空気でプリント配線板に向かって、通常80〜200m/秒の速度で噴射することが好ましい。   In the wet blast treatment, it is preferable that the aqueous slurry is jetted at a speed of usually 80 to 200 m / sec toward the printed wiring board with compressed air.

好ましい化学研磨処理としては、硫酸と過酸化水素水とアゾール系防錆剤と芳香属系過酸化水素分解抑制剤と含有するエッチング剤を用いたものが挙げられる。ここで、アゾール系防錆剤としては、イミダゾール系化合物、トリアゾール系化合物、テトラゾール系化合物等が挙げられる。また、芳香族系過酸化水素分解抑制剤としては、ベンゼンスルホン酸類、例えば、トルエンスルホン酸、フェノールスルホン酸などを添加することができる。なお、このような化学研磨処理により、銅または同合金表面にアゾール系防錆剤や芳香属系過酸化水素分解抑制剤が化学的にもしくは物理的に結合し有機物である保護層との間の密着性をより向上させるものと考えられる。   A preferable chemical polishing treatment is one using an etching agent containing sulfuric acid, a hydrogen peroxide solution, an azole rust inhibitor, and an aromatic hydrogen peroxide decomposition inhibitor. Here, examples of the azole rust preventive include imidazole compounds, triazole compounds, and tetrazole compounds. As the aromatic hydrogen peroxide decomposition inhibitor, benzenesulfonic acids such as toluenesulfonic acid and phenolsulfonic acid can be added. In addition, by such a chemical polishing treatment, an azole rust preventive agent or an aromatic hydrogen peroxide decomposition inhibitor is chemically or physically bonded to the surface of copper or the same alloy and a protective layer that is an organic substance. It is considered that the adhesion is further improved.

硫酸のエッチング液(1リットル)中の含有量は、少なすぎるとエッチング速度が遅く、多すぎても配合量に見合う効果がえられないので、好ましくは50〜300gである。過酸化水素のエッチング液中の含有量は、少なすぎるとエッチング速度が遅く、多すぎると均一なエッチングが困難になるので、好ましくは硫酸100g当たり10〜30質量%である。   If the content of sulfuric acid in the etching solution (1 liter) is too small, the etching rate is slow, and if it is too large, an effect commensurate with the blending amount cannot be obtained, so it is preferably 50 to 300 g. If the content of hydrogen peroxide in the etching solution is too small, the etching rate is slow, and if it is too large, uniform etching becomes difficult. Therefore, the content is preferably 10 to 30% by mass per 100 g of sulfuric acid.

化学研磨処理では、エッチング液を室温〜50℃に維持しつつ、プリント配線板の銅または銅合金配線パターン面にスプレーすることや、撹拌したエッチング液にプリント配線板を浸漬することが好ましい。   In the chemical polishing treatment, it is preferable to spray the copper or copper alloy wiring pattern surface of the printed wiring board or immerse the printed wiring board in the stirred etching liquid while maintaining the etching liquid at room temperature to 50 ° C.

本発明のプリント配線板は、いわゆるフレキシブルプリント配線板、ガラスエポキシ配線板、積層プリント配線板等を対象とすることができる。また、銅または銅合金パターンとしても、従来のセミアディティブ法やビルトアップ法で形成された任意の厚みのものを適用することができる。   The printed wiring board of the present invention can be applied to so-called flexible printed wiring boards, glass epoxy wiring boards, laminated printed wiring boards and the like. Also, as the copper or copper alloy pattern, a pattern of any thickness formed by a conventional semi-additive method or built-up method can be applied.

また、プリント配線板の保護層の形成位置は、銅または銅合金配線パターンの少なくとも一部の上である。配線パターンが露出している場合には、保護層と配線パターンとの境界が存在するので、保護層の耐メッキ性の向上効果を確認することが容易となる。なお、保護層が配線パターンの全面を覆った場合には、それらの間に境界ができることを想定できなくなるので、耐メッキ性の向上効果を確認することが困難となる。   Moreover, the formation position of the protective layer of a printed wiring board is on at least one part of a copper or copper alloy wiring pattern. When the wiring pattern is exposed, since there is a boundary between the protective layer and the wiring pattern, it is easy to confirm the effect of improving the plating resistance of the protective layer. When the protective layer covers the entire surface of the wiring pattern, it cannot be assumed that there is a boundary between them, so that it is difficult to confirm the effect of improving the plating resistance.

上説明した本発明のプリント配線板は、次のように製造することができる。まず、プリント配線板の銅または銅合金配線パターンの表面を前述したように表面粗化処理する。次に、表面粗化処理した配線パターン上にバーコーター、ロールコータ、コンマコータ、あるいはスクリーン印刷機等を用いて、本発明の感光性シロキサンポリイミド樹脂組成物を塗布し、50〜100℃で乾燥して成膜し、その膜を露光マスクを介して紫外線などの活性エネルギー線を照射して露光させ、水酸化ナトリウム水溶液等を用いるアルカリ現像により露光部を除去してパターニングし、その後120〜250℃に加熱するポストべークにより熱硬化させることにより保護層を形成し、更に、必要に応じて、無電解ニッケルメッキ等の無電解メッキを施しあるいは電解メッキを施すことにより製造することができる。   The printed wiring board of the present invention described above can be manufactured as follows. First, the surface of the copper or copper alloy wiring pattern of the printed wiring board is subjected to surface roughening as described above. Next, using the bar coater, roll coater, comma coater, or screen printer on the surface roughened wiring pattern, the photosensitive siloxane polyimide resin composition of the present invention is applied and dried at 50 to 100 ° C. Then, the film is exposed by irradiating active energy rays such as ultraviolet rays through an exposure mask, and the exposed portion is removed and patterned by alkali development using an aqueous sodium hydroxide solution, and then 120 to 250 ° C. The protective layer can be formed by heat-curing with a post-bake that is heated, and if necessary, electroless plating such as electroless nickel plating can be applied or electrolytic plating can be performed.

以下、本発明を実施例により具体的に説明する。   Hereinafter, the present invention will be specifically described by way of examples.

参考例1(架橋剤を含有する感光性シロキサンポリイミド樹脂組成物)
(1)シロキサンポリイミド樹脂の製造
ディーンスタークトラップを備えたポリイミド樹脂用合成装置の反応容器に、862.65g(0.639mol)のジアミノシロキサン(ジアミノジフェニル/ジメチルシロキサン(アミン当量675g/mol)、商品名;X−22−9409、信越化学工業株式会社製)と、363.6g(1.01mol)の3,3′,4,4′−ジフェニルスルホンテトラカルボン酸二無水物(リカシッドDSDA、新日本理化株式会社製;純度99.6%)と、547gのトリグライムと、200gのトルエンとを投入し、混合物を2時間十分に攪拌した。その後、185℃まで昇温させ、2時間その温度を保ち、ディーンスタークトラップで水を回収しながら、反応液を還流攪拌した。
Reference Example 1 (photosensitive siloxane polyimide resin composition containing a crosslinking agent)
(1) Manufacture of siloxane polyimide resin In a reaction vessel of a polyimide resin synthesizer equipped with a Dean-Stark trap, 862.65 g (0.639 mol) of diaminosiloxane (diaminodiphenyl / dimethylsiloxane (amine equivalent 675 g / mol), product Name: X-22-9409, manufactured by Shin-Etsu Chemical Co., Ltd.) and 363.6 g (1.01 mol) of 3,3 ′, 4,4′-diphenylsulfonetetracarboxylic dianhydride (Ricacid DSDA, Shin Nippon) Rika Co., Ltd .; purity 99.6%), 547 g of triglyme, and 200 g of toluene were added, and the mixture was sufficiently stirred for 2 hours. Thereafter, the temperature was raised to 185 ° C., the temperature was maintained for 2 hours, and the reaction solution was stirred under reflux while collecting water with a Dean-Stark trap.

得られた反応混合物を、酸化皮膜が除去されたシリコンウェハー上に塗布し、100℃で10分間乾燥させFT−IR透過法によって末端官能基の同定を行った。1780cm−1付近にイミドカルボニルの吸収が出現し、1860cm−1付近に環状酸無水物カルボニル伸縮振動の吸収が確認できたことから酸無水物末端シロキサンオリゴマーの生成が確認できた。 The obtained reaction mixture was applied on a silicon wafer from which the oxide film was removed, dried at 100 ° C. for 10 minutes, and the terminal functional group was identified by the FT-IR transmission method. Absorption of imide carbonyl appeared in the vicinity of 1780 cm −1 , and absorption of cyclic acid anhydride carbonyl stretching vibration was confirmed in the vicinity of 1860 cm −1 , thereby confirming the formation of an acid anhydride-terminated siloxane oligomer.

反応混合物を80℃まで放冷し、101.44g(0.361mol)の3,3′−ジアミノ−4,4′−ジヒドロキシジフェニルスルホン(BSDA、小西化学工業株式会社製;純度99.7%)を投入し、室温で12時間攪拌した。攪拌後、185℃まで昇温し、その温度で2時間加熱攪拌した。その後、室温まで冷却し、ジフェニルシリレン単位含有シロキサンポリイミド樹脂のワニスを得た。   The reaction mixture was allowed to cool to 80 ° C., and 101.44 g (0.361 mol) of 3,3′-diamino-4,4′-dihydroxydiphenyl sulfone (BSDA, manufactured by Konishi Chemical Industries, Ltd .; purity 99.7%) And stirred at room temperature for 12 hours. After stirring, the temperature was raised to 185 ° C., and the mixture was heated and stirred at that temperature for 2 hours. Then, it cooled to room temperature and obtained the varnish of the diphenylsilylene unit containing siloxane polyimide resin.

(2)感光性シロキサンポリイミド樹脂組成物の調製
シロキサンポリイミド樹脂のワニスに、感光剤(4NT−300、東洋合成工業株式会社)を10phrと、金属不活性剤(防錆剤)(CDA−10、株式会社ADEKA)を0.3phrと、架橋剤として液状エポキシ樹脂(jER807、ジャパンエポキシレジン社)を0.5phrと、ベンゾオキサジン(BF−BXZ、小西化学株式会社)を5phrと、レゾール樹脂(BRL−274、昭和高分子株式会社)を2phrとを加えて室温で均一に混合して感光性シロキサンポリイミド樹脂組成物を得た。ここで、phrの意味は、ポリイミド固形分を100質量部としたときの添加量(質量部)である。
(2) Preparation of photosensitive siloxane polyimide resin composition To varnish of siloxane polyimide resin, 10 phr of photosensitizer (4NT-300, Toyo Gosei Co., Ltd.), metal deactivator (rust inhibitor) (CDA-10, ADEKA Co., Ltd.) 0.3 phr, liquid epoxy resin (jER807, Japan Epoxy Resin Co., Ltd.) 0.5 phr as a cross-linking agent, benzoxazine (BF-BXZ, Konishi Chemical Co., Ltd.) 5 phr, and resole resin (BRL) -274, Showa Polymer Co., Ltd.) was added to 2 phr and mixed uniformly at room temperature to obtain a photosensitive siloxane polyimide resin composition. Here, the meaning of phr is the addition amount (parts by mass) when the polyimide solid content is 100 parts by mass.

参考例2(架橋剤を含有しない感光性シロキサンポリイミド樹脂組成物)
架橋剤である液状エポキシ樹脂(jER807、ジャパンエポキシレジン株式会社)と、ベンゾオキサジン(BF−BXZ、小西化学株式会社)と、レゾール樹脂(BRL−274、昭和高分子株式会社)とを使用しないこと以外、参考例1と同様に、シロキサンポリイミド樹脂を取得し、更に、感光性シロキサンポリイミド樹脂組成物を得た。
Reference Example 2 (photosensitive siloxane polyimide resin composition containing no crosslinking agent)
Do not use a liquid epoxy resin (jER807, Japan Epoxy Resin Co., Ltd.), a benzoxazine (BF-BXZ, Konishi Chemical Co., Ltd.), or a resole resin (BRL-274, Showa Polymer Co., Ltd.), which is a crosslinking agent Except for the above, a siloxane polyimide resin was obtained in the same manner as in Reference Example 1, and a photosensitive siloxane polyimide resin composition was obtained.

参考例3(ウェットブラストにより物理的に粗化処理された配線板の作成)
絶縁層厚25μm及び銅厚12μmの銅張積層板(ユピセルN、宇部日東化成株式会社)の銅表面を、マコー株式会社のウェットブラストシステム(http://www.macoho.co.jp/参照)を用いて、以下の条件(WB1)で表面粗化処理し、物理的に粗化処理された配線板を得た(平均面粗さRa:73.95nm)。
Reference Example 3 (Creation of a wiring board physically roughened by wet blasting)
The copper surface of a copper-clad laminate (Iupicel N, Ube Nitto Kasei Co., Ltd.) with an insulation layer thickness of 25 μm and a copper thickness of 12 μm is applied to Macau's wet blast system (see http://www.macoho.co.jp/) Was subjected to surface roughening treatment under the following conditions (WB1) to obtain a physically roughened wiring board (average surface roughness Ra: 73.95 nm).

(WB1条件)
研磨剤: アルミナ微粒子
中心粒径: 6.7μm
水性スラリー中研磨剤濃度: 14体積%
使用ガン: 幅広タイプ
処理速度: 1.8m/分
投射距離: 20mm
投射角度: 90度
エアー圧:0.15Mpa
(WB1 condition)
Abrasive: Alumina fine particles Center particle size: 6.7 μm
Abrasive concentration in aqueous slurry: 14% by volume
Use gun: Wide type Processing speed: 1.8m / min Projection distance: 20mm
Projection angle: 90 degrees Air pressure: 0.15 Mpa

参考例4(ウェットブラストにより物理的に粗化処理された配線板の作成)
エアー圧を0.25MPaとすること以外(WB2条件)は、参考例3を繰り返すことにより、物理的に粗化処理された配線板を得た(平均面粗さRa:100.7nm)。
Reference Example 4 (Creation of a wiring board physically roughened by wet blasting)
Except for setting the air pressure to 0.25 MPa (WB2 condition), the wiring board physically roughened was obtained by repeating Reference Example 3 (average surface roughness Ra: 100.7 nm).

参考例5(化学的に粗化処理された配線板の作成)
絶縁層厚25μm及び銅厚12μmの銅張積層板(ユピセルN、宇部日東化成株式会社)の銅表面に対し、まず、酸性洗浄液(CB−7612、メック株式会社)の10倍希釈液(液温25℃)をスプレーし、水道水をスプレーし、4%苛性ソーダ水溶液(40℃)をスプレーし、純水をスプレーし、エッチング液(25℃)(BO7770VP、メック株式会社)にプレディップし、エッチング液(25℃)(BO7770VP、メック株式会社)に本ディップし、純水をスプレーし、エアーナイフ(50℃)で水切りを行い、熱風(80℃)ブロアーにより乾燥することにより銅表面が化学的に粗化処理された配線板を得た(エッチング量:約0.5μm)。
Reference Example 5 (Creation of chemically roughened wiring board)
For the copper surface of a copper clad laminate (Iupicel N, Ube Nitto Kasei Co., Ltd.) having an insulation layer thickness of 25 μm and a copper thickness of 12 μm, first, a 10-fold diluted solution (liquid temperature) of an acidic cleaning solution (CB-7612, MEC Co., Ltd.) 25 ° C), tap water, 4% caustic soda solution (40 ° C), pure water, pre-dip into etching solution (25 ° C) (BO7770VP, MEC), etching Dip into liquid (25 ° C) (BO7770VP, MEC Co., Ltd.), spray pure water, drain with an air knife (50 ° C), and dry with hot air (80 ° C) blower to make the copper surface chemically A wiring board roughened was obtained (etching amount: about 0.5 μm).

参考例6(化学的に研磨処理した配線板の作成)
絶縁層厚25μm及び銅厚12μmの銅張積層板(ユピセルN、宇部日東化成株式会社)の銅表面を、まず、ソフトエッチング液(CPE−755、三菱ガス化学株式会社)の10倍希釈液(液温30℃)に浸漬し、続いて5%硫酸に浸漬した。その後、純水で洗浄し、エアーナイフで水切りを行い、熱風(50℃)ブロアーにより乾燥し、銅表面が化学的に研磨処理された配線板を得た。
Reference Example 6 (Creation of chemically polished wiring board)
First, the copper surface of a copper clad laminate (Iupicel N, Ube Nitto Kasei Co., Ltd.) having an insulating layer thickness of 25 μm and a copper thickness of 12 μm is diluted 10 times with a soft etching solution (CPE-755, Mitsubishi Gas Chemical Co., Ltd.) (Solution temperature 30 ° C.), followed by 5% sulfuric acid. Then, it wash | cleaned with the pure water, drained with the air knife, and dried with the hot air (50 degreeC) blower, and obtained the wiring board by which the copper surface was chemically grind | polished.

実施例1〜6及び比較例1〜3
表1に示す組み合わせに従い、参考例1又は2の感光性シロキサンポリイミド樹脂組成物を、参考例3〜6の配線板に、バーコーターを用いて仮乾燥後で10μmとなるように塗布し、80℃で10分間乾燥した。この樹脂組成物膜に対し、露光マスクを介して紫外線(条件2500mJ/cm)を照射して露光を行った。露光後、基板を3質量%の水酸化ナトリウム水溶液に40℃で60秒分間浸漬して、樹脂組成物膜の露光部を除去して現像した。基板を30℃の水で60秒間洗浄し、10質量%の室温の希硫酸水溶液に10秒間酸洗浄し、更に、室温の蒸留水で120秒水洗した。その後、窒素雰囲気下でポストべーク(200℃、60分間)を行い、樹脂組成物膜を熱硬化させ、保護層を備えた配線板を得た。
Examples 1-6 and Comparative Examples 1-3
According to the combinations shown in Table 1, the photosensitive siloxane polyimide resin composition of Reference Example 1 or 2 was applied to the wiring boards of Reference Examples 3 to 6 so as to be 10 μm after temporary drying using a bar coater. Dry at 10 ° C. for 10 minutes. The resin composition film was exposed to ultraviolet rays (condition 2500 mJ / cm 2 ) through an exposure mask. After the exposure, the substrate was immersed in a 3% by mass aqueous sodium hydroxide solution at 40 ° C. for 60 seconds to remove the exposed portion of the resin composition film and develop. The substrate was washed with water at 30 ° C. for 60 seconds, acid washed with 10% by mass of dilute sulfuric acid aqueous solution at room temperature for 10 seconds, and further washed with distilled water at room temperature for 120 seconds. Thereafter, post-baking (200 ° C., 60 minutes) was performed in a nitrogen atmosphere, the resin composition film was thermally cured, and a wiring board provided with a protective layer was obtained.

<環状ジメチルシロキサンのブリードアウトの抑制効果評価>
実施例及び比較例の配線板から幅4mmで長さ50mmの大きさのサンプルを、樹脂組成物膜が存在している箇所から切り出し、50ml/分の流速のヘリウムガス流通下で、260℃で15分間加熱することで、サンプルから揮発性成分をパージし、他方でその揮発成分を−20℃でTenax−TA捕集管にトラップした。続いて、トラップした成分を所定の条件下でヘリウムガス流中に気化させ、そのヘリウムガスをGC−MS装置(JAS100、JAI社)に導入し、環状ジメチルシロキサン量を定量した。得られた結果を表1に示す。
<Evaluation of inhibitory effect on bleeding out of cyclic dimethylsiloxane>
A sample having a width of 4 mm and a length of 50 mm was cut out from the location where the resin composition film was present from the wiring boards of the examples and comparative examples, and the flow was helium gas flowing at a flow rate of 50 ml / min at 260 ° C. The sample was purged of volatile components by heating for 15 minutes, while the volatile components were trapped in a Tenax-TA collection tube at -20 ° C. Subsequently, the trapped component was vaporized into a helium gas stream under predetermined conditions, and the helium gas was introduced into a GC-MS apparatus (JAS100, JAI), and the amount of cyclic dimethylsiloxane was quantified. The obtained results are shown in Table 1.

<耐メッキ性の評価>
実施例及び比較例の配線板の露出した銅表面に、電解直金メッキを行うことにより金メッキ膜(0.03μm厚)を形成した。または、電解ニッケル/金メッキを行うことにより、銅表面が露出した露光部に、硬質Ni(3μm)/金メッキ(0.05μm厚)を形成した。得られた、電解メッキ処理され且つ保護層を備えた実施例及び比較例の配線板における電解メッキ領域の周縁の保護層の変色の様子を目視にて評価した。変色しない場合を良(G)と評価し、僅かでも変色した場合を不良(NG)と評価した。
<Evaluation of plating resistance>
A gold plating film (0.03 μm thick) was formed by performing electrolytic direct gold plating on the exposed copper surface of the wiring boards of Examples and Comparative Examples. Alternatively, by performing electrolytic nickel / gold plating, hard Ni (3 μm) / gold plating (0.05 μm thickness) was formed on the exposed portion where the copper surface was exposed. The state of discoloration of the protective layer at the peripheral edge of the electrolytic plating region in the obtained wiring boards of Examples and Comparative Examples that were subjected to electrolytic plating and provided with a protective layer was visually evaluated. The case where no color change was evaluated as good (G), and the case where even a slight color change occurred was evaluated as bad (NG).

Figure 2010080878
*1: 感光性シロキサンポリイミド樹脂組成物
*2: 配線板
*3: 参考例2のシロキサンポリイミド樹脂組成物
*4: 参考例1のシロキサンポリイミド樹脂組成物
*5: 参考例6の化学的に研磨処理された配線板
*6: 参考例3のウェットブラスト処理により物理的に粗化処理された配線板
*7: 参考例4のウェットブラスト処理により物理的に粗化処理された配線板
*8: 参考例5の化学的に粗化処理された配線板
Figure 2010080878
* 1: Photosensitive siloxane polyimide resin composition * 2: Wiring board * 3: Siloxane polyimide resin composition of Reference Example 2 * 4: Siloxane polyimide resin composition of Reference Example 1 * 5: Chemical polishing of Reference Example 6 Treated wiring board * 6: Wiring board physically roughened by wet blasting in Reference Example * 7: Wiring board physically roughened by wet blasting in Reference Example * 8: The chemically roughened wiring board of Reference Example 5

表1から明らかなように、参考例3〜5の表面粗化処理した配線板に、参考例1の架橋剤を含有する特有のシロキサンポリイミド樹脂組成物の熱硬化物からなる三次元架橋構造を有する保護層を備えた実施例1〜6の配線板は、環状ジメチルシロキサンオリゴマーのブリードアウトが抑制されており、しかも耐メッキ性にも優れていることがわかる。   As is apparent from Table 1, the wiring board subjected to surface roughening treatment in Reference Examples 3 to 5 has a three-dimensional cross-linking structure made of a thermosetting product of a specific siloxane polyimide resin composition containing the cross-linking agent of Reference Example 1. It turns out that the wiring board of Examples 1-6 provided with the protective layer which has has the bleeding out of cyclic dimethylsiloxane oligomer being suppressed, and is excellent also in plating resistance.

他方、参考例6の従来の化学研磨処理した配線板に、架橋剤を含有しない参考例2の感光性シロキサンポリイミド樹脂組成物を使用して得た保護層を備えた比較例1の配線板は、環状ジメチルシロキサンオリゴマーのブリードアウトが抑制されておらず、しかも耐メッキ性にも問題があることわかる。参考例1の感光性シロキサンポリイミド樹脂組成物を使用して得た保護層を備えた比較例3の配線板は、環状ジメチルシロキサンオリゴマーのブリードアウトが抑制されておらず、また、耐メッキ性にも依然として問題があることがわかる。逆に、比較例1の場合に対し、架橋剤を含有する参考例1の感光性シロキサンポリイミド樹脂組成物を使用して得た保護層を備えた比較例2の配線板は、環状ジメチルシロキサンオリゴマーのブリードアウトが抑制されていたが、比較例1よりは耐メッキ性は改善されていたものの、比較例3、更には実施例1〜6に比べ、耐メッキ性に問題があったことがわかる。   On the other hand, the wiring board of Comparative Example 1 provided with a protective layer obtained by using the photosensitive siloxane polyimide resin composition of Reference Example 2 containing no crosslinking agent on the conventional chemically polished wiring board of Reference Example 6 was It can be seen that the bleeding out of the cyclic dimethylsiloxane oligomer is not suppressed and there is a problem in the plating resistance. The wiring board of Comparative Example 3 provided with a protective layer obtained by using the photosensitive siloxane polyimide resin composition of Reference Example 1 is not suppressed from bleeding out of the cyclic dimethylsiloxane oligomer, and is resistant to plating. It turns out that there is still a problem. On the contrary, compared with the case of Comparative Example 1, the wiring board of Comparative Example 2 having a protective layer obtained by using the photosensitive siloxane polyimide resin composition of Reference Example 1 containing a crosslinking agent is a cyclic dimethylsiloxane oligomer. Although the bleed-out was suppressed, the plating resistance was improved as compared with Comparative Example 1, but it was found that there was a problem with the plating resistance as compared with Comparative Example 3 and Examples 1-6. .

本発明の保護層を備えたプリント配線板においては、ジアミン成分としてジフェニルシリレン単位を有するシロキサンジアミンを使用し、更に感光性シロキサンポリイミド樹脂組成物からなる薄膜等の保護層に、特定の熱硬化性の架橋剤による三次元構造が形成されるので、環状ジメチルシロキサンオリゴマーのブリードアウトを抑制もしくは防止することができ、更に熱硬化により良好な耐メッキ性が得られる。更に、プリント配線板の銅または銅合金配線パターンが、予め表面粗化処理されているので、銅または銅合金配線パターンと保護層との間の密着性を高めることができ、保護層の耐メッキ性がいっそう向上している。従って、接続信頼性の高いプリント配線板として有用である。   In the printed wiring board provided with the protective layer of the present invention, a siloxane diamine having a diphenylsilylene unit is used as a diamine component, and a protective layer such as a thin film made of a photosensitive siloxane polyimide resin composition has a specific thermosetting property. Since a three-dimensional structure is formed by the crosslinking agent, bleeding out of the cyclic dimethylsiloxane oligomer can be suppressed or prevented, and good plating resistance can be obtained by thermosetting. Furthermore, since the copper or copper alloy wiring pattern of the printed wiring board has been surface-roughened in advance, the adhesion between the copper or copper alloy wiring pattern and the protective layer can be improved, and the protective layer is resistant to plating. Sex is even better. Therefore, it is useful as a printed wiring board with high connection reliability.

Claims (12)

テトラカルボン酸二無水物とジフェニルシリレン単位を有するシロキサンジアミンとシロキサン非含有ジアミンとをイミド化して得られるシロキサンポリイミド樹脂と、架橋剤と、光酸発生剤とを含有する感光性シロキサンポリイミド樹脂組成物の熱硬化物からなる保護層が、プリント配線板の銅または銅合金配線パターンの少なくとも一部の上に形成されてなる当該プリント配線板であって、
架橋剤として、液状エポキシ樹脂、ベンゾオキサジン類及びレゾール類からなる群より選択される少なくとも一種を、シロキサンポリイミド樹脂100質量部に対し1〜20質量部使用し、感光剤として、光酸発生剤をシロキサンポリイミド樹脂100質量部に対し5〜30質量部使用し、
銅または銅合金配線パターンの表面が、表面粗化処理されていることを特徴とするプリント配線基板。
Photosensitive siloxane polyimide resin composition comprising a siloxane polyimide resin obtained by imidizing a tetracarboxylic dianhydride, a siloxane diamine having a diphenylsilylene unit and a siloxane-free diamine, a crosslinking agent, and a photoacid generator A protective layer made of a thermosetting material is a printed wiring board formed on at least a part of a copper or copper alloy wiring pattern of the printed wiring board,
At least one selected from the group consisting of liquid epoxy resins, benzoxazines and resols is used as a crosslinking agent, 1 to 20 parts by mass with respect to 100 parts by mass of a siloxane polyimide resin, and a photoacid generator is used as a photosensitive agent. Use 5 to 30 parts by mass with respect to 100 parts by mass of siloxane polyimide resin,
A printed wiring board, wherein the surface of the copper or copper alloy wiring pattern is subjected to surface roughening.
架橋剤が、液状エポキシ樹脂および/またはベンゾオキサジン類、または液状エポキシ樹脂、ベンゾオキサジン類およびレゾール類である請求項1記載のプリント配線板。   The printed wiring board according to claim 1, wherein the crosslinking agent is a liquid epoxy resin and / or a benzoxazine, or a liquid epoxy resin, a benzoxazine and a resole. 液状エポキシ樹脂の粘度が、1〜100000mPa.sである請求項1または2記載のプリント配線板。   The viscosity of the liquid epoxy resin is 1 to 100,000 mPa.s. The printed wiring board according to claim 1, which is s. テトラカルボン酸二無水物が、3,3′,4,4′−ジフェニルスルホンテトラカルボン酸二無水物である請求項1〜3のいずれかに記載のプリント配線板。   The printed wiring board according to claim 1, wherein the tetracarboxylic dianhydride is 3,3 ′, 4,4′-diphenylsulfone tetracarboxylic dianhydride. ジフェニルシリレン単位を有するシロキサンジアミンが、式(1)
Figure 2010080878
(式中、nは1〜30の整数であり、mは1〜20の整数である。)
の構造を有する請求項1〜4のいずれかに記載のプリント配線板。
A siloxane diamine having a diphenylsilylene unit has the formula (1)
Figure 2010080878
(In the formula, n is an integer of 1 to 30, and m is an integer of 1 to 20.)
The printed wiring board in any one of Claims 1-4 which has the structure of these.
シロキサン非含有ジアミンが、ジアミノフェノール誘導体である請求項1〜5のいずれかに記載のプリント配線板。   The printed wiring board according to claim 1, wherein the siloxane-free diamine is a diaminophenol derivative. ジアミノフェノール誘導体が、3,3′−ジアミノ−4,4′−ジヒドロキシジフェニルスルホンである請求項6記載のプリント配線板。   The printed wiring board according to claim 6, wherein the diaminophenol derivative is 3,3'-diamino-4,4'-dihydroxydiphenylsulfone. ポリシロキサンポリイミド樹脂が、テトラカルボン酸二無水物とシロキサンジアミンとシロキサン非含有ジアミンとの反応混合物を、0.01〜1.1質量%の水の存在下でイミド化することにより得られたものである請求項1〜7のいずれかに記載のプリント配線板。   A polysiloxane polyimide resin obtained by imidizing a reaction mixture of tetracarboxylic dianhydride, siloxane diamine and siloxane-free diamine in the presence of 0.01 to 1.1% by mass of water The printed wiring board according to any one of claims 1 to 7. 光酸発生剤が、o−キノンジアジド化合物である請求項1〜8のいずれかに記載のプリント配線板。   The printed wiring board according to claim 1, wherein the photoacid generator is an o-quinonediazide compound. 請求項1記載のプリント配線板の製造方法であって、
プリント配線板の銅または銅合金配線パターンの表面を、表面粗化処理し、
表面粗化処理された銅または銅合金配線パターンの少なくとも一部の上に、テトラカルボン酸二無水物とジフェニルシリレン単位を有するシロキサンジアミンとシロキサン非含有ジアミンとをイミド化して得られるシロキサンポリイミド樹脂と、架橋剤と、光酸発生剤とを含有する感光性シロキサンポリイミド樹脂組成物を成膜し、露光、現像してパターニングし、ポストべークにより熱硬化させて保護層を形成するプリント配線板の製造方法において、
架橋剤として、液状エポキシ樹脂、ベンゾオキサジン類及びレゾール類からなる群より選択される少なくとも一種を、シロキサンポリイミド樹脂100質量部に対し1〜20質量部使用し、感光剤として、光酸発生剤をシロキサンポリイミド樹脂100質量部に対し5〜30質量部使用することを特徴とする製造方法。
It is a manufacturing method of the printed wiring board according to claim 1,
The surface of the copper or copper alloy wiring pattern on the printed wiring board is surface roughened,
A siloxane polyimide resin obtained by imidizing a tetracarboxylic dianhydride, a siloxane diamine having a diphenylsilylene unit and a siloxane-free diamine on at least a part of a copper or copper alloy wiring pattern subjected to surface roughening treatment; A printed wiring board in which a photosensitive siloxane polyimide resin composition containing a crosslinking agent and a photoacid generator is formed, exposed, developed, patterned, and thermally cured by post-baking to form a protective layer In the manufacturing method of
At least one selected from the group consisting of liquid epoxy resins, benzoxazines and resols is used as a crosslinking agent, 1 to 20 parts by mass with respect to 100 parts by mass of a siloxane polyimide resin, and a photoacid generator is used as a photosensitive agent. The manufacturing method characterized by using 5-30 mass parts with respect to 100 mass parts of siloxane polyimide resins.
表面粗化処理が、水性スラリーを用いたウェットブラスト処理である請求項10記載の製造方法。   The method according to claim 10, wherein the surface roughening treatment is a wet blast treatment using an aqueous slurry. 表面粗化処理が、エッチング剤を用いた化学研磨処理である請求項10記載の製造方法。   The manufacturing method according to claim 10, wherein the surface roughening treatment is a chemical polishing treatment using an etching agent.
JP2008250581A 2008-09-29 2008-09-29 Printed wiring board and manufacturing method thereof Active JP5332456B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2008250581A JP5332456B2 (en) 2008-09-29 2008-09-29 Printed wiring board and manufacturing method thereof
CN200980104480.3A CN101940074B (en) 2008-09-29 2009-08-24 Printed wiring board and method for manufacturing same
PCT/JP2009/064715 WO2010035601A1 (en) 2008-09-29 2009-08-24 Printed wiring board and method for manufacturing same
TW98129215A TWI400275B (en) 2008-09-29 2009-08-31 Printed wiring board and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008250581A JP5332456B2 (en) 2008-09-29 2008-09-29 Printed wiring board and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2010080878A true JP2010080878A (en) 2010-04-08
JP5332456B2 JP5332456B2 (en) 2013-11-06

Family

ID=42059608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008250581A Active JP5332456B2 (en) 2008-09-29 2008-09-29 Printed wiring board and manufacturing method thereof

Country Status (4)

Country Link
JP (1) JP5332456B2 (en)
CN (1) CN101940074B (en)
TW (1) TWI400275B (en)
WO (1) WO2010035601A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013185056A (en) * 2012-03-07 2013-09-19 Nippon Shokubai Co Ltd Curable resin composition, method of manufacturing the same, and electronics mounting material
US9353223B2 (en) 2012-07-02 2016-05-31 Kaneka Corporation Polyamic acid, polyimide, polyamic acid solution, and use of polyimide

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI572674B (en) * 2015-02-09 2017-03-01 奇美實業股份有限公司 Composition for flexible substrate and flexible substrate
CN106028668A (en) * 2016-05-05 2016-10-12 广合科技(广州)有限公司 Printed circuit board preparing method preventing discoloration of solder resist layer
CN116891571A (en) * 2017-09-18 2023-10-17 嘉兴山蒲照明电器有限公司 Organosilicon modified polyimide resin composition and application thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11130936A (en) * 1997-10-27 1999-05-18 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2007031565A (en) * 2005-07-27 2007-02-08 Asahi Glass Co Ltd Curable silicone resin composition, method for producing air-tight container or electronic part using the same
JP2008197545A (en) * 2007-02-15 2008-08-28 Kaneka Corp Flexible printed wiring board with insulating film

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006083307A (en) * 2004-09-16 2006-03-30 Kyocera Chemical Corp Photosensitive polyimide-siloxane and its composition
WO2007004345A1 (en) * 2005-06-30 2007-01-11 Toray Industries, Inc. Photosensitive resin composition and adhesion enhancer
JP4663720B2 (en) * 2005-07-14 2011-04-06 三井化学株式会社 Positive photosensitive resin composition and pattern forming method
JP2008197418A (en) * 2007-02-14 2008-08-28 Sumitomo Electric Ind Ltd Photosensitive polyimide composition and method for preparing the same
JP2008163262A (en) * 2006-12-28 2008-07-17 Shin Etsu Chem Co Ltd Polycarbonate resin composition and electrophotographic photoreceptor using the same
JP5053650B2 (en) * 2007-01-29 2012-10-17 三井化学株式会社 Polyimide copolymer, positive photosensitive resin composition, and pattern forming method
JP5048364B2 (en) * 2007-03-08 2012-10-17 新日鐵化学株式会社 Flame retardant adhesive resin composition and coverlay film using the same
JP4918875B2 (en) * 2007-03-15 2012-04-18 宇部興産株式会社 Copolymer in which part of repeating unit of amic acid structure is imide structure, and production method thereof
CN101259572A (en) * 2008-04-11 2008-09-10 湖南利尔电子材料有限公司 OSP antioxidizing organic solderability preservation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11130936A (en) * 1997-10-27 1999-05-18 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2007031565A (en) * 2005-07-27 2007-02-08 Asahi Glass Co Ltd Curable silicone resin composition, method for producing air-tight container or electronic part using the same
JP2008197545A (en) * 2007-02-15 2008-08-28 Kaneka Corp Flexible printed wiring board with insulating film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013185056A (en) * 2012-03-07 2013-09-19 Nippon Shokubai Co Ltd Curable resin composition, method of manufacturing the same, and electronics mounting material
US9353223B2 (en) 2012-07-02 2016-05-31 Kaneka Corporation Polyamic acid, polyimide, polyamic acid solution, and use of polyimide

Also Published As

Publication number Publication date
CN101940074B (en) 2012-12-05
CN101940074A (en) 2011-01-05
JP5332456B2 (en) 2013-11-06
WO2010035601A1 (en) 2010-04-01
TW201012851A (en) 2010-04-01
TWI400275B (en) 2013-07-01

Similar Documents

Publication Publication Date Title
JP5343494B2 (en) Photosensitive siloxane polyimide resin composition
JP5006310B2 (en) Photosensitive ink composition for screen printing and method for forming positive relief pattern using the same
TWI386433B (en) Polyimide compounds and flexible wiring boards
JP5603977B2 (en) Polyimide precursor
US20110127077A1 (en) Block copolymerized polyimide ink composition for printing
JP5497312B2 (en) Flexible printed circuit board
JP5332456B2 (en) Printed wiring board and manufacturing method thereof
JP7474054B2 (en) Benzoxazine compound, curable resin composition, adhesive, adhesive film, cured product, circuit board, interlayer insulating material, and multilayer printed wiring board
WO2018021565A1 (en) Polyimide resin and resin composition
JP5242958B2 (en) Polyimide composition and flexible wiring board
JP2009235311A (en) Polyimide resin and heat-resistant resin composition using the same
JP2008038031A (en) Polyimide composition, flexible wiring board and method of producing flexible wiring board
JP5354443B2 (en) Polyimide ink composition, protective film, and flexible printed wiring board
JP2009109592A (en) Photosensitive resin composition, photosensitive dry film, photosensitive laminated film and coverlay using those
JP5971960B2 (en) LAMINATE, METHOD FOR PRODUCING LAMINATE, AND METHOD FOR PRODUCING PRINTED WIRING BOARD
JP2020143218A (en) Photosensitive resin composition
JP2013149870A (en) Multilayer flexible wiring board and method for manufacturing multilayer flexible wiring board
JP2010111818A (en) Resin composition for screen printing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110509

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130313

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130715

R150 Certificate of patent or registration of utility model

Ref document number: 5332456

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250