JP2010080440A - Luminescent laminate - Google Patents

Luminescent laminate Download PDF

Info

Publication number
JP2010080440A
JP2010080440A JP2009200311A JP2009200311A JP2010080440A JP 2010080440 A JP2010080440 A JP 2010080440A JP 2009200311 A JP2009200311 A JP 2009200311A JP 2009200311 A JP2009200311 A JP 2009200311A JP 2010080440 A JP2010080440 A JP 2010080440A
Authority
JP
Japan
Prior art keywords
powder
magnesium oxide
fluorine
mgo
phosphor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009200311A
Other languages
Japanese (ja)
Other versions
JP5306946B2 (en
Inventor
Akira Ueki
明 植木
Yuzo Kato
裕三 加藤
Toru Inagaki
徹 稲垣
Masato Yamauchi
正人 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Material Industries Ltd
Original Assignee
Ube Material Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Material Industries Ltd filed Critical Ube Material Industries Ltd
Priority to JP2009200311A priority Critical patent/JP5306946B2/en
Publication of JP2010080440A publication Critical patent/JP2010080440A/en
Application granted granted Critical
Publication of JP5306946B2 publication Critical patent/JP5306946B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Luminescent Compositions (AREA)
  • Gas-Filled Discharge Tubes (AREA)
  • Vessels And Coating Films For Discharge Lamps (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a novel luminescent laminate useful as a visible light emitting device for emitting visible light by utilizing ultraviolet rays generated by the discharge of Xe gas. <P>SOLUTION: The luminescent laminate includes a phosphor layer formed on a substrate via a wavelength conversion layer containing specified magnesium oxide sintered material power which is excited by ultraviolet rays generated by the discharge of Xe gas to emit ultraviolet rays having peaks in a wavelength range of 230-260 nm, the phosphor layer containing phosphor which is excited by the ultraviolet rays in the wavelength range of 230-260 nm to show visible light emission. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、基体の上に、Xeガスの放電によって生成する紫外光に励起されて可視光を発光する蛍光体からなる蛍光体層が形成されている発光性積層体に関する。   The present invention relates to a luminescent laminate in which a phosphor layer made of a phosphor that emits visible light when excited by ultraviolet light generated by discharge of Xe gas is formed on a substrate.

基体の上に、Xeガスの放電によって生成する紫外光に励起されて可視光を発光する蛍光体を含む蛍光体層が形成されている発光性積層体と、Xeガスを含む放電ガスとを組み合わせて、Xeガスの放電によって生成した紫外光により蛍光体を励起して可視光を発光させる可視光発光装置として、交流型プラズマディスプレイパネル(以下、AC型PDPともいう)やXeランプが知られている。Xeガスの放電によって生成する紫外光には、Xeの共鳴線(波長146nm)とXe2の分子線(波長172nm)が含まれる。 A combination of a light-emitting laminate in which a phosphor layer including a phosphor that emits visible light when excited by ultraviolet light generated by discharge of Xe gas is formed on a substrate and a discharge gas containing Xe gas As a visible light emitting device that emits visible light by exciting a phosphor with ultraviolet light generated by the discharge of Xe gas, an AC type plasma display panel (hereinafter also referred to as AC type PDP) and an Xe lamp are known. Yes. The ultraviolet light generated by the discharge of Xe gas includes Xe resonance line (wavelength 146 nm) and Xe 2 molecular beam (wavelength 172 nm).

AC型PDPは、画像表示面となる前面板と、Xeガスを含む放電ガスが充填された放電空間を挟んで対向配置された背面板とから構成されている。AC型PDPでは、背面板は、一般に、基板(通常は、ガラス板)と、基板の上に形成されたアドレス電極と、アドレス電極を被覆する誘電体層と、誘電体層の上に形成された隔壁とからなる積層体を基体として、その基体の誘電体層表面と隔壁側面の上に蛍光体層が形成された発光性積層体である。背面板の蛍光体層は、隔壁によって青色発光蛍光体層、緑色発光蛍光体層及び赤色発光蛍光体層の三色の蛍光体層に仕切られており、各色の蛍光体層の蛍光体を励起させることにより発光した青色、緑色、赤色の可視光の組み合わせにより画像を表示する。   The AC type PDP is composed of a front plate serving as an image display surface and a back plate disposed opposite to each other across a discharge space filled with a discharge gas containing Xe gas. In the AC type PDP, a back plate is generally formed on a substrate (usually a glass plate), an address electrode formed on the substrate, a dielectric layer covering the address electrode, and the dielectric layer. A light emitting laminate in which a phosphor layer is formed on the dielectric layer surface of the substrate and the side walls of the laminate using the laminate comprising the barrier ribs as a substrate. The phosphor layer of the back plate is divided into three color phosphor layers, a blue light-emitting phosphor layer, a green light-emitting phosphor layer, and a red light-emitting phosphor layer, by partition walls, and excites the phosphor of each color phosphor layer. The image is displayed by a combination of blue, green, and red visible light emitted.

Xeランプは、一般に、管状ガラスやガラス製筐体を基体とし、その内側に蛍光体層を形成した発光素子内に、放電ガスを充填した構成となっている。Xeランプでは、発光素子が発光性積層体である。発光素子の蛍光体層は、通常は、青色発光蛍光体、緑色発光蛍光体及び赤色発光蛍光体を混合した蛍光体混合物から形成されている。   In general, the Xe lamp has a configuration in which a discharge gas is filled in a light emitting element having a tubular glass or a glass casing as a base and a phosphor layer formed inside thereof. In the Xe lamp, the light emitting element is a light emitting laminate. The phosphor layer of the light emitting element is usually formed from a phosphor mixture in which a blue light emitting phosphor, a green light emitting phosphor and a red light emitting phosphor are mixed.

発光性積層体の可視光発光効率を向上させる方法として、Xeガスの放電により生成した紫外光により励起されて、蛍光体層の蛍光体を励起し得る紫外光を発光する波長変換層を、蛍光体層の下に設ける方法が知られている。すなわち、蛍光体層を通過した紫外光を、波長変換層にて別の波長を有する紫外光に変換して、蛍光体層を照射して、蛍光体層の蛍光体を励起させる方法である。   As a method for improving the visible light emission efficiency of the light-emitting laminate, a wavelength conversion layer that emits ultraviolet light that can be excited by ultraviolet light generated by the discharge of Xe gas and excite the phosphor of the phosphor layer can be converted to fluorescent light. A method of providing under a body layer is known. That is, it is a method in which ultraviolet light having passed through the phosphor layer is converted into ultraviolet light having another wavelength by the wavelength conversion layer, and the phosphor layer is irradiated to excite the phosphor in the phosphor layer.

特許文献1には、AC型PDP用の発光性積層体の蛍光体層の下に、フッ素を0.01〜10質量%の範囲で含有する酸化マグネシウム純度が99.8質量%以上で、かつBET比表面積が0.1〜30m2/gの範囲にあるフッ素含有酸化マグネシウムからなる層を形成することが開示されている。この特許文献1によれば、フッ素含有酸化マグネシウムは、Xeガスの放電によって生成する紫外光に励起させると220〜270nmの波長範囲にピークを有する紫外光を発光し、蛍光体層を通過した紫外光を220〜270nmの波長範囲の紫外光に変換して、再度蛍光体層に照射することによって、蛍光体層の蛍光体が励起され蛍光体層の発光輝度が高まるとされている。 Patent Document 1 discloses that the purity of magnesium oxide containing fluorine in the range of 0.01 to 10% by mass is 99.8% by mass or more under the phosphor layer of the light-emitting laminate for AC type PDP, and It is disclosed to form a layer made of fluorine-containing magnesium oxide having a BET specific surface area in the range of 0.1 to 30 m 2 / g. According to this Patent Document 1, fluorine-containing magnesium oxide emits ultraviolet light having a peak in the wavelength range of 220 to 270 nm when excited by ultraviolet light generated by discharge of Xe gas, and passes through the phosphor layer. The light is converted into ultraviolet light having a wavelength range of 220 to 270 nm and irradiated to the phosphor layer again, whereby the phosphor of the phosphor layer is excited and the emission luminance of the phosphor layer is increased.

特開2008−10403号公報JP 2008-10403 A

本発明の目的は、Xeガスの放電によって生成する紫外光を利用して可視光を発光させる可視光発光装置用として有用で、新規な発光性積層体を提供することにある。   An object of the present invention is to provide a novel light-emitting laminate that is useful for a visible light emitting device that emits visible light using ultraviolet light generated by discharge of Xe gas.

本発明は、基体の上に、Xeガスの放電により生成する紫外光により励起されて230〜260nmの波長範囲にピークを有する紫外光を発光する、下記の(1)〜(4)からなる群より選ばれる少なくとも一種の酸化マグネシウム焼成物粉末を含む波長変換層を介して、230〜260nmの波長範囲にある紫外光に励起されて可視光の発光を示す蛍光体を含む蛍光体層が形成されている発光性積層体にある。
(1)塩素を0.005〜10質量%の範囲にて含有する塩素含有酸化マグネシウム焼成物粉末。
(2)亜鉛を0.1〜30質量%の範囲にて含有する亜鉛含有酸化マグネシウム焼成物粉末。
(3)γ型酸化アルミニウム粉末と酸化マグネシウム源粉末との粉末混合物を焼成して得られたアルミニウム含有量が2〜38質量%の範囲にあるアルミニウム含有酸化マグネシウム焼成物粉末。
(4)フッ素をマグネシウム100モルに対して0.01〜24モルの範囲の量にて含み、かつアルカリ金属、マグネシウム以外のアルカリ土類金属、希土類金属、アルミニウム、亜鉛及びスズからなる群より選ばれる少なくとも一種の補助金属をマグネシウム100モルに対して0.01〜30モルの範囲の量にて含むフッ素と補助金属を含有する酸化マグネシウム焼成物粉末。
The present invention is a group consisting of the following (1) to (4) that emits ultraviolet light having a peak in a wavelength range of 230 to 260 nm when excited by ultraviolet light generated by discharge of Xe gas on a substrate. A phosphor layer containing a phosphor that emits visible light when excited by ultraviolet light in the wavelength range of 230 to 260 nm is formed through a wavelength conversion layer containing at least one magnesium oxide fired powder selected from the above. It is in the light emitting laminate.
(1) Chlorine-containing magnesium oxide fired powder containing chlorine in a range of 0.005 to 10% by mass.
(2) Zinc-containing magnesium oxide fired powder containing zinc in a range of 0.1 to 30% by mass.
(3) An aluminum-containing magnesium oxide fired powder obtained by firing a powder mixture of a γ-type aluminum oxide powder and a magnesium oxide source powder and having an aluminum content in the range of 2 to 38% by mass.
(4) Fluorine is contained in an amount in the range of 0.01 to 24 mol with respect to 100 mol of magnesium, and selected from the group consisting of alkali metals, alkaline earth metals other than magnesium, rare earth metals, aluminum, zinc and tin. Magnesium oxide calcined powder containing fluorine and an auxiliary metal containing at least one auxiliary metal in an amount in the range of 0.01 to 30 mol with respect to 100 mol of magnesium.

本発明の発光性積層体の好ましい態様は、次の通りである。
(1)波長変換層の厚みが0.5〜10μmの範囲にある。
(2)蛍光体層の厚みが0.1〜30μmの範囲にある。
(3)蛍光体層が、CaMgSi26:Eu2+、(Ca,Sr)MgSi26:Eu2+、Sr3MgSi28:Eu2+、及びBaMgAl1017:Eu2+からなる群より選ばれる少なくとも一つの基本組成式で表される青色発光蛍光体を含む青色発光蛍光体層である。
(4)蛍光体層が、Zn2SiO4:Mn2+の基本組成式で表される緑色発光蛍光体を含む緑色発光蛍光体層である。
(5)蛍光体層が、(Y,Gd)BO3:Eu3+の基本組成式で表される赤色発光蛍光体を含む赤色発光蛍光体層である。
(6)交流型プラズマディスプレイパネルの背面板である。
(7)Xeランプの発光素子である。
Preferred embodiments of the luminescent laminate of the present invention are as follows.
(1) The thickness of the wavelength conversion layer is in the range of 0.5 to 10 μm.
(2) The thickness of the phosphor layer is in the range of 0.1 to 30 μm.
(3) The phosphor layer has CaMgSi 2 O 6 : Eu 2+ , (Ca, Sr) MgSi 2 O 6 : Eu 2+ , Sr 3 MgSi 2 O 8 : Eu 2+ , and BaMgAl 10 O 17 : Eu 2 A blue light-emitting phosphor layer containing a blue light-emitting phosphor represented by at least one basic composition formula selected from the group consisting of + .
(4) The phosphor layer is a green light-emitting phosphor layer including a green light-emitting phosphor represented by a basic composition formula of Zn 2 SiO 4 : Mn 2+ .
(5) The phosphor layer is a red light-emitting phosphor layer including a red light-emitting phosphor represented by a basic composition formula of (Y, Gd) BO 3 : Eu 3+ .
(6) A back plate of an AC type plasma display panel.
(7) A light emitting element of a Xe lamp.

本発明の蛍光体層の下に波長変換層を設けた発光性積層体は、後述の実施例に示すデータから明らかなように、基体の上に蛍光体層のみが形成されている積層体よりも、波長146nmの紫外光(Xeの共鳴線に相当)及び波長172nmの紫外光(Xe2の分子線
に相当)による励起によって発光する可視光の発光輝度が顕著に高くなる。従って、本発明の発光性積層体は、AC型PDPの背面板やXeランプの発光素子として有利に用いることができる。
The light-emitting laminate in which the wavelength conversion layer is provided under the phosphor layer of the present invention is more clear than the laminate in which only the phosphor layer is formed on the substrate, as is apparent from the data shown in the examples below. In addition, the emission luminance of visible light emitted by excitation with ultraviolet light having a wavelength of 146 nm (corresponding to the Xe resonance line) and ultraviolet light having a wavelength of 172 nm (corresponding to the molecular beam of Xe 2 ) is remarkably increased. Therefore, the light emitting laminate of the present invention can be advantageously used as a back plate of an AC type PDP or a light emitting element of an Xe lamp.

本発明の発光性積層体は、基体と、基体の上に形成される波長変換層と、波長変換層の上に形成される蛍光体層とからなる。   The luminescent laminate of the present invention comprises a substrate, a wavelength conversion layer formed on the substrate, and a phosphor layer formed on the wavelength conversion layer.

本発明の発光性積層体において、波長変換層は、Xeガスの放電により生成した紫外光により励起されて230〜260nmの波長範囲にピークを有する紫外光を発光する、下記の(1)〜(4)からなる群より選ばれる少なくとも一種の酸化マグネシウム焼成物粉末により形成される。   In the light emitting laminate of the present invention, the wavelength conversion layer emits ultraviolet light having a peak in the wavelength range of 230 to 260 nm when excited by ultraviolet light generated by discharge of Xe gas. 4) formed of at least one magnesium oxide fired powder selected from the group consisting of:

(1)塩素を0.005〜10質量%の範囲にて含有する塩素含有酸化マグネシウム焼成物粉末。
上記塩素含有酸化マグネシウム焼成物粉末の塩素含有量は、0.01〜10質量%の範囲にあることが好ましく、0.1〜10質量%の範囲にあることが特に好ましい。
(1) Chlorine-containing magnesium oxide fired powder containing chlorine in a range of 0.005 to 10% by mass.
It is preferable that the chlorine content of the said chlorine containing magnesium oxide baked material powder exists in the range of 0.01-10 mass%, and it is especially preferable that it exists in the range of 0.1-10 mass%.

塩素含有酸化マグネシウム焼成物粉末は、酸化マグネシウム源粉末を、塩素源の存在下、もしくは塩素含有気体の雰囲気下に焼成することにより製造することができる。   The chlorine-containing magnesium oxide fired powder can be produced by firing the magnesium oxide source powder in the presence of a chlorine source or in an atmosphere of a chlorine-containing gas.

酸化マグネシウム源粉末としては、酸化マグネシウム粉末、及び加熱により酸化マグネシウム粉末を生成するマグネシウム化合物粉末(但し、塩化マグネシウム粉末を除く)を用いることができる。マグネシウム化合物粉末の例としては、水酸化マグネシウム粉末、塩基性炭酸マグネシウム粉末、硝酸マグネシウム粉末及び酢酸マグネシウム粉末を挙げることができる。酸化マグネシウム源粉末は、酸化マグネシウム粉末であることが好ましい。酸化マグネシウム粉末は、純度が99.95質量%以上で、BET比表面積が5〜150m2/gの範囲、特に7〜50m2/gの範囲にあることが好ましく、気相合成法により製造された酸化マグネシウム粉末であることが特に好ましい。気相合成法とは、金属マグネシウム蒸気と酸素含有気体とを気相中にて接触させ、金属マグネシウム蒸気を酸化させて酸化マグネシウム粉末を製造する方法である。 As the magnesium oxide source powder, magnesium oxide powder and magnesium compound powder (except for magnesium chloride powder) that generates magnesium oxide powder by heating can be used. Examples of the magnesium compound powder include magnesium hydroxide powder, basic magnesium carbonate powder, magnesium nitrate powder, and magnesium acetate powder. The magnesium oxide source powder is preferably magnesium oxide powder. The magnesium oxide powder preferably has a purity of 99.95% by mass or more and a BET specific surface area of 5 to 150 m 2 / g, particularly 7 to 50 m 2 / g, and is produced by a gas phase synthesis method. Particularly preferred is magnesium oxide powder. The vapor phase synthesis method is a method for producing magnesium oxide powder by bringing a metal magnesium vapor and an oxygen-containing gas into contact with each other in the gas phase and oxidizing the metal magnesium vapor.

塩素源としては、塩化マグネシウム粉末及び塩化アンモニウム粉末を用いることができる。塩素源は、純度が99.0質量%以上であることが好ましい。塩素源の存在下にて、酸化マグネシウム原料粉末の焼成を行なう場合は、焼成を行なう前に酸化マグネシウム原料粉末と塩素源とを均一に混合しておくことが好ましい。   As the chlorine source, magnesium chloride powder and ammonium chloride powder can be used. The chlorine source preferably has a purity of 99.0% by mass or more. When the magnesium oxide raw material powder is fired in the presence of a chlorine source, it is preferable to uniformly mix the magnesium oxide raw material powder and the chlorine source before firing.

塩素含有気体としては、塩化水素ガス、あるいは塩化アンモニウム粉末、塩化マグネシウム粉末、もしくは塩素含有有機化合物(CHCl3、CCl4等)を加熱して気化させたガスを用いることができる。 As the chlorine-containing gas, hydrogen chloride gas, or gas obtained by heating and vaporizing ammonium chloride powder, magnesium chloride powder, or a chlorine-containing organic compound (CHCl 3 , CCl 4, etc.) can be used.

塩素源存在下及び塩素含有気体雰囲気下での酸化マグネシウム源粉末の焼成温度は、好ましくは850℃以上、より好ましくは900〜1500℃、特に好ましくは1000〜1500℃の範囲である。焼成時間は、好ましくは10分以上、より好ましくは10分〜2時間、特に好ましくは20分〜2時間の範囲である。酸化マグネシウム源粉末の焼成は、例えば、常圧下、昇温速度100〜500℃/時間の条件で、上記の焼成温度にまで昇温し、次いで上記の焼成時間焼成した後、降温速度100〜500℃/時間の条件で、室温まで冷却することにより行なうことができる。   The firing temperature of the magnesium oxide source powder in the presence of a chlorine source and in a chlorine-containing gas atmosphere is preferably 850 ° C. or higher, more preferably 900 to 1500 ° C., and particularly preferably 1000 to 1500 ° C. The firing time is preferably 10 minutes or more, more preferably 10 minutes to 2 hours, and particularly preferably 20 minutes to 2 hours. The firing of the magnesium oxide source powder is performed, for example, by raising the temperature to the above-mentioned firing temperature under normal pressure and a temperature rise rate of 100 to 500 ° C./hour, and then firing the above firing time, followed by a temperature drop rate of 100 to 500 It can carry out by cooling to room temperature on the conditions of (degreeC / hour).

(2)亜鉛を0.1〜30質量%の範囲にて含有する亜鉛含有酸化マグネシウム焼成物粉末。
上記亜鉛含有酸化マグネシウム焼成物粉末の亜鉛含有量は、0.5〜7質量%の範囲にあることが特に好ましい。
(2) Zinc-containing magnesium oxide fired powder containing zinc in a range of 0.1 to 30% by mass.
The zinc content in the zinc-containing magnesium oxide fired powder is particularly preferably in the range of 0.5 to 7% by mass.

亜鉛含有酸化マグネシウム焼成物粉末は、酸化マグネシウム源粉末と酸化亜鉛源粉末とを混合して、粉末混合物を得て、次いで得られた粉末混合物を焼成することにより製造することができる。   The zinc-containing magnesium oxide fired powder can be produced by mixing a magnesium oxide source powder and a zinc oxide source powder to obtain a powder mixture, and then firing the obtained powder mixture.

酸化マグネシウム源粉末としては、酸化マグネシウム粉末もしくは加熱により酸化マグネシウム粉末を生成するマグネシウム化合物粉末を用いることができる。酸化マグネシウム源粉末は、酸化マグネシウム粉末であることが好ましい。酸化マグネシウム粉末は、純度が99.95質量%以上で、BET比表面積が5〜150m2/gの範囲、特に7〜50m2/gの範囲にあることが好ましく、気相合成法により製造された酸化マグネシウム粉末であることが特に好ましい。 As the magnesium oxide source powder, magnesium oxide powder or magnesium compound powder that forms magnesium oxide powder by heating can be used. The magnesium oxide source powder is preferably magnesium oxide powder. The magnesium oxide powder preferably has a purity of 99.95% by mass or more and a BET specific surface area of 5 to 150 m 2 / g, particularly 7 to 50 m 2 / g, and is produced by a gas phase synthesis method. Particularly preferred is magnesium oxide powder.

酸化亜鉛源粉末としては、酸化亜鉛粉末、及び加熱により酸化亜鉛粉末を生成する亜鉛化合物粉末を用いることができる。亜鉛化合物粉末の例としては、水酸化亜鉛粉末、炭酸亜鉛粉末、硝酸亜鉛粉末、酢酸亜鉛粉末及びシュウ酸亜鉛粉末を挙げることができる。酸化亜鉛源粉末は、酸化亜鉛粉末であることが好ましい。酸化亜鉛源粉末の純度は99.0質量%以上であることが好ましい。   As the zinc oxide source powder, zinc oxide powder and zinc compound powder that generates zinc oxide powder by heating can be used. Examples of the zinc compound powder include zinc hydroxide powder, zinc carbonate powder, zinc nitrate powder, zinc acetate powder and zinc oxalate powder. The zinc oxide source powder is preferably zinc oxide powder. The purity of the zinc oxide source powder is preferably 99.0% by mass or more.

酸化マグネシウム源粉末と酸化亜鉛源粉末との粉末混合物の焼成温度は、好ましくは850℃以上、より好ましくは900〜1500℃、特に好ましくは1000〜1500℃の範囲である。焼成時間は、好ましくは10分以上、より好ましくは10分〜2時間、特に好ましくは20分〜2時間の範囲である。   The firing temperature of the powder mixture of the magnesium oxide source powder and the zinc oxide source powder is preferably 850 ° C. or higher, more preferably 900 to 1500 ° C., and particularly preferably 1000 to 1500 ° C. The firing time is preferably 10 minutes or more, more preferably 10 minutes to 2 hours, and particularly preferably 20 minutes to 2 hours.

(3)γ型酸化アルミニウム粉末と酸化マグネシウム源粉末との粉末混合物を焼成して得られたアルミニウム含有量が2〜38質量%の範囲にあるアルミニウム含有酸化マグネシウム焼成物粉末。
上記アルミニウム含有酸化マグネシウム焼成物粉末のアルミニウム含有量は、5〜35質量%の範囲にあることが好ましい。
(3) An aluminum-containing magnesium oxide fired powder obtained by firing a powder mixture of a γ-type aluminum oxide powder and a magnesium oxide source powder and having an aluminum content in the range of 2 to 38% by mass.
The aluminum content of the aluminum-containing fired magnesium oxide powder is preferably in the range of 5 to 35% by mass.

アルミニウム含有酸化マグネシウム焼成物粉末は、γ型酸化アルミニウム粉末と酸化マグネシウム源粉末とを混合して、粉末混合物を得て、次いで得られた粉末混合物を焼成することにより製造することができる。   The aluminum-containing fired magnesium oxide powder can be produced by mixing a γ-type aluminum oxide powder and a magnesium oxide source powder to obtain a powder mixture, and then firing the obtained powder mixture.

酸化マグネシウム源粉末としては、酸化マグネシウム粉末もしくは加熱により酸化マグネシウム粉末を生成するマグネシウム化合物粉末を用いることができる。酸化マグネシウム源粉末は、酸化マグネシウム粉末であることが好ましい。酸化マグネシウム粉末は、純度が99.95質量%以上で、BET比表面積が5〜150m2/gの範囲、特に7〜50m2/gの範囲にあることが好ましく、気相合成法により製造された酸化マグネシウム粉末であることが特に好ましい。 As the magnesium oxide source powder, magnesium oxide powder or magnesium compound powder that forms magnesium oxide powder by heating can be used. The magnesium oxide source powder is preferably magnesium oxide powder. The magnesium oxide powder preferably has a purity of 99.95% by mass or more and a BET specific surface area of 5 to 150 m 2 / g, particularly 7 to 50 m 2 / g, and is produced by a gas phase synthesis method. Particularly preferred is magnesium oxide powder.

γ型酸化アルミニウム粉末の純度は99.0質量%以上であることが好ましい。   The purity of the γ-type aluminum oxide powder is preferably 99.0% by mass or more.

γ型酸化アルミニウム粉末と酸化マグネシウム源粉末との粉末混合物の焼成温度は、好ましくは850℃以上、より好ましくは900〜1500℃、特に好ましくは1000〜1500℃の範囲である。焼成時間は、好ましくは10分以上、より好ましくは10分〜2時間、特に好ましくは20分〜2時間の範囲である。   The firing temperature of the powder mixture of the γ-type aluminum oxide powder and the magnesium oxide source powder is preferably 850 ° C. or higher, more preferably 900 to 1500 ° C., and particularly preferably 1000 to 1500 ° C. The firing time is preferably 10 minutes or more, more preferably 10 minutes to 2 hours, and particularly preferably 20 minutes to 2 hours.

(4)フッ素をマグネシウム100モルに対して0.01〜24モルの範囲の量にて含み、かつアルカリ金属、マグネシウム以外のアルカリ土類金属、希土類金属、アルミニウム、亜鉛及びスズからなる群より選ばれる少なくとも一種の補助金属をマグネシウム100モルに対して0.01〜30モルの範囲の量にて含むフッ素と補助金属を含有する酸化マグネシウム焼成物粉末。
上記フッ素と補助金属とを含有する酸化マグネシウム焼成物粉末は、フッ素の含有量がマグネシウム100モルに対して0.02〜12モルの範囲にあることが好ましく、0.02〜5モルの範囲にあることが特に好ましい。補助金属の含有量は、マグネシウム100モルに対して0.025〜25モルの範囲にあることが好ましく、0.1〜5モルの範囲にあることが特に好ましい。また、補助金属の含有量は、フッ素1モルに対して、0.25〜50モルの範囲にあることが好ましく、0.4〜30モルの範囲にあることが特に好ましい。
(4) Fluorine is contained in an amount in the range of 0.01 to 24 mol with respect to 100 mol of magnesium, and selected from the group consisting of alkali metals, alkaline earth metals other than magnesium, rare earth metals, aluminum, zinc and tin. Magnesium oxide calcined powder containing fluorine and an auxiliary metal containing at least one auxiliary metal in an amount in the range of 0.01 to 30 mol with respect to 100 mol of magnesium.
The magnesium oxide fired powder containing the fluorine and the auxiliary metal preferably has a fluorine content in the range of 0.02 to 12 moles relative to 100 moles of magnesium, and in the range of 0.02 to 5 moles. It is particularly preferred. The content of the auxiliary metal is preferably in the range of 0.025 to 25 mol, particularly preferably in the range of 0.1 to 5 mol, with respect to 100 mol of magnesium. Moreover, it is preferable that content of an auxiliary metal exists in the range of 0.25-50 mol with respect to 1 mol of fluorine, and it is especially preferable that it exists in the range of 0.4-30 mol.

補助金属として用いるアルカリ金属の例としては、リチウム、ナトリウム及びカリウムを挙げることができる。アルカリ土類金属の例としては、カルシウム及びバリウムを挙げることができる。希土類金属の例としては、イットリウム、セリウム及びガドリニウムを挙げることができる。補助金属は、一種を単独で使用してもよいし、二種以上を併用してもよい。   Examples of the alkali metal used as the auxiliary metal include lithium, sodium and potassium. Examples of alkaline earth metals include calcium and barium. Examples of rare earth metals include yttrium, cerium and gadolinium. An auxiliary metal may be used individually by 1 type, and may use 2 or more types together.

フッ素と補助金属とを含有する酸化マグネシウム焼成物粉末は、酸化マグネシウム源粉末と、補助金属のフッ化物の粉末とを混合して、フッ化物を酸化マグネシウム源粉末中のマグネシウム100モルに対して0.05〜30モルの範囲、好ましくは0.1〜25モルの範囲、特に好ましくは0.2〜15モルの範囲となる量にて含む粉末混合物を得て、次いで得られた粉末混合物を焼成することにより製造することができる。   Magnesium oxide calcined powder containing fluorine and auxiliary metal is prepared by mixing magnesium oxide source powder and auxiliary metal fluoride powder so that the fluoride is 0 with respect to 100 mol of magnesium in the magnesium oxide source powder. Obtaining a powder mixture containing in an amount ranging from 0.05 to 30 mol, preferably 0.1 to 25 mol, particularly preferably 0.2 to 15 mol, and then firing the obtained powder mixture Can be manufactured.

補助金属のフッ化物粉末に代えて、補助金属の酸化物粉末又は加熱により金属酸化物に転化する補助金属の化合物粉末(フッ化物粉末を除く)と、フッ化マグネシウム粉末及びフッ化アンモニウム粉末からなる群より選ばれる少なくとも一種のフッ化物粉末とを用いることができる。すなわち、フッ素と補助金属とを含有する酸化マグネシウム焼成物粉末は、酸化マグネシウム源粉末と、補助金属の酸化物の粉末又は加熱により金属酸化物を生成する補助金属のフッ化物以外の化合物の粉末と、フッ化マグネシウム粉末及びフッ化アンモニウム粉末からなる群より選ばれる少なくとも一種のフッ化物粉末とを混合して、補助金属を粉末混合物中のマグネシウム100モルに対して0.05〜30モルの範囲の量にて、かつフッ化物粉末中のフッ化物を補助金属1モルに対して0.1〜10モルの範囲の量にて含む粉末混合物を得て、次いで得られた粉末混合物を焼成することにより製造することもできる。   Instead of auxiliary metal fluoride powder, it consists of auxiliary metal oxide powder or auxiliary metal compound powder (except fluoride powder) that is converted to metal oxide by heating, magnesium fluoride powder and ammonium fluoride powder. At least one fluoride powder selected from the group can be used. That is, the calcined magnesium oxide powder containing fluorine and an auxiliary metal includes a magnesium oxide source powder, an auxiliary metal oxide powder, or a powder of a compound other than the auxiliary metal fluoride that generates a metal oxide by heating. , Mixed with at least one fluoride powder selected from the group consisting of magnesium fluoride powder and ammonium fluoride powder, and the auxiliary metal is in the range of 0.05 to 30 mol with respect to 100 mol of magnesium in the powder mixture. By obtaining a powder mixture comprising the amount of fluoride in the fluoride powder in an amount ranging from 0.1 to 10 moles per mole of auxiliary metal, and then firing the resulting powder mixture It can also be manufactured.

酸化マグネシウム源粉末としては、酸化マグネシウム粉末もしくは加熱により酸化マグネシウム粉末を生成するマグネシウム化合物粉末を用いることができる。酸化マグネシウム源粉末は、酸化マグネシウム粉末であることが好ましい。酸化マグネシウム粉末は、純度が99.95質量%以上で、BET比表面積が5〜150m2/gの範囲、特に7〜50m2/gの範囲にあることが好ましく、気相合成法により製造された酸化マグネシウム粉末であることが特に好ましい。 As the magnesium oxide source powder, magnesium oxide powder or magnesium compound powder that forms magnesium oxide powder by heating can be used. The magnesium oxide source powder is preferably magnesium oxide powder. The magnesium oxide powder preferably has a purity of 99.95% by mass or more and a BET specific surface area of 5 to 150 m 2 / g, particularly 7 to 50 m 2 / g, and is produced by a gas phase synthesis method. Particularly preferred is magnesium oxide powder.

酸化マグネシウム源粉末と混合する補助金属のフッ化物粉末、補助金属の酸化物粉末、加熱により補助金属の酸化物粉末を生成する化合物粉末、及びフッ化物粉末は、純度が99.0質量%以上であることが好ましい。加熱により補助金属の酸化物粉末を生成する化合物粉末の例としては、補助金属の水酸化物粉末、炭酸塩粉末、重炭酸塩粉末、硝酸塩粉末、酢酸塩粉末、シュウ酸塩粉末を挙げることができる。   The auxiliary metal fluoride powder mixed with the magnesium oxide source powder, the auxiliary metal oxide powder, the compound powder that generates the auxiliary metal oxide powder by heating, and the fluoride powder have a purity of 99.0% by mass or more. Preferably there is. Examples of compound powders that produce auxiliary metal oxide powders upon heating include auxiliary metal hydroxide powders, carbonate powders, bicarbonate powders, nitrate powders, acetate powders, and oxalate powders. it can.

酸化マグネシウム源粉末と補助金属のフッ化物粉末の粉末混合物、及び酸化マグネシウム源粉末と補助金属の酸化物粉末もしくは加熱により補助金属の酸化物粉末を生成する化合物粉末とフッ化物粉末との粉末混合物の焼成温度は、好ましくは850℃以上、より好ましくは900〜1500℃、特に好ましくは1000〜1500℃の範囲である。焼成時間は、好ましくは10分以上、より好ましくは10分〜2時間、特に好ましくは20分〜2時間の範囲である。   Powder mixture of magnesium oxide source powder and auxiliary metal fluoride powder, and powder mixture of magnesium oxide source powder and auxiliary metal oxide powder or compound powder and fluoride powder that produce auxiliary metal oxide powder by heating The firing temperature is preferably 850 ° C. or higher, more preferably 900 to 1500 ° C., and particularly preferably 1000 to 1500 ° C. The firing time is preferably 10 minutes or more, more preferably 10 minutes to 2 hours, and particularly preferably 20 minutes to 2 hours.

波長変換層を形成する酸化マグネシウム焼成物粉末は、BET比表面積が0.1〜30m2/gの範囲、特に0.2〜12m2/gの範囲にあることが好ましい。 Magnesium oxide calcined product to form a wavelength converting layer powder is in the range BET specific surface area of 0.1~30m 2 / g, it is particularly preferably from 0.2~12m 2 / g.

波長変換層の厚さは、0.5〜10μmの範囲にあることが好ましく、1.0〜10μmの範囲にあることがより好ましい。   The thickness of the wavelength conversion layer is preferably in the range of 0.5 to 10 μm, and more preferably in the range of 1.0 to 10 μm.

波長変換層は、基体の上に、酸化マグネシウム焼成物粉末が分散されているペーストをスクリーン印刷法あるいはリバースコータ、カーテンコータ、ダイコータ、スロットコータなどの各種コータを用いたコーティング法により塗布し、塗布膜を乾燥することにより形成することができる。   The wavelength conversion layer is applied by applying a paste in which the magnesium oxide fired powder is dispersed on the substrate by a screen printing method or a coating method using various coaters such as a reverse coater, curtain coater, die coater, and slot coater. It can be formed by drying the membrane.

本発明の発光性積層体において、蛍光体層は、230〜260nmの波長範囲にある紫外光に励起されて可視光の発光を示す蛍光体により形成される。蛍光体には、通常は青色発光蛍光体、緑色発光蛍光体及び赤色発光蛍光体が用いられる。   In the light emitting laminate of the present invention, the phosphor layer is formed of a phosphor that emits visible light when excited by ultraviolet light in the wavelength range of 230 to 260 nm. As the phosphor, a blue light emitting phosphor, a green light emitting phosphor and a red light emitting phosphor are usually used.

青色発光蛍光体の例としては、基本組成式がCaMgSi26:Eu2+、(Ca,Sr)MgSi26:Eu2+、Sr3MgSi28:Eu2+、及びBaMgAl1017:Eu2+で表される青色発光蛍光体を挙げることができる。緑色発光蛍光体の例としては、基本組成式がZn2SiO4:Mn2+、(Ba,Sr,Mg)O・αAl23:Mn2+、YBO3:Tb3+、(Y,Gd)BO3:Tb3+、BaAl1219:Mn2+及びBaMgAl1017:Eu2+,Mn2+で表される蛍光体を挙げることができる。赤色発光蛍光体の例としては、基本組成式がYBO3:Eu3+、(Y,Gd)BO3:Eu3+、Y23:Eu3+及び(Y,Gd)23:Eu3+で表される蛍光体を挙げることができる。蛍光体粉末は一種を単独で使用してもよいし、二種以上を併用してもよい。 As an example of a blue light emitting phosphor, the basic composition formula is CaMgSi 2 O 6 : Eu 2+ , (Ca, Sr) MgSi 2 O 6 : Eu 2+ , Sr 3 MgSi 2 O 8 : Eu 2+ , and BaMgAl 10 A blue light emitting phosphor represented by O 17 : Eu 2+ can be given. As an example of the green light emitting phosphor, the basic composition formula is Zn 2 SiO 4 : Mn 2+ , (Ba, Sr, Mg) O.αAl 2 O 3 : Mn 2+ , YBO 3 : Tb 3+ , (Y, Examples include phosphors represented by Gd) BO 3 : Tb 3+ , BaAl 12 O 19 : Mn 2+ and BaMgAl 10 O 17 : Eu 2+ , Mn 2+ . As an example of a red light emitting phosphor, the basic composition formula is YBO 3 : Eu 3+ , (Y, Gd) BO 3 : Eu 3+ , Y 2 O 3 : Eu 3+ and (Y, Gd) 2 O 3 : A phosphor represented by Eu 3+ can be given. The phosphor powder may be used alone or in combination of two or more.

蛍光体層の厚みは、0.1〜30μmの範囲にあることが好ましく、1.0〜30μmの範囲にあることがより好ましい。   The thickness of the phosphor layer is preferably in the range of 0.1 to 30 μm, and more preferably in the range of 1.0 to 30 μm.

蛍光体層は、基体の上に、蛍光体粉末が分散されているペーストをスクリーン印刷法あるいはリバースコータ、カーテンコータ、ダイコータ、スロットコータなどの各種コータを用いたコーティング法により塗布し、塗布膜を乾燥することにより形成することができる。   For the phosphor layer, a paste in which the phosphor powder is dispersed is applied onto the substrate by a screen printing method or a coating method using various coaters such as a reverse coater, curtain coater, die coater, slot coater, and a coating film is formed. It can be formed by drying.

本発明の発光性積層体は、AC型PDPの背面板や、Xeランプの発光素子として用いることができる。   The light emitting laminate of the present invention can be used as a back plate of an AC type PDP or a light emitting element of an Xe lamp.

AC型PDPの背面板として用いる発光性積層体は、基板(通常は、ガラス板)と、基板の上に形成されたアドレス電極と、アドレス電極を被覆する誘電体層と、誘電体層の上に形成された隔壁とからなる積層体を基体として、誘電体層表面と隔壁側面の上に波長変換層と蛍光体層とをこの順で形成した構成や、基体の誘電体層を、酸化マグネシウム焼成物粉末を分散させて波長変換層とし、波長変換層の表面と隔壁側面の上に波長変換層と蛍光体層とをこの順で形成した構成とすることができる。このような構成の波長変換層を有する背面板は、前記特開2008−10403号公報に開示されている。   The light emitting laminate used as the back plate of the AC type PDP is a substrate (usually a glass plate), an address electrode formed on the substrate, a dielectric layer covering the address electrode, and a dielectric layer on the dielectric layer. A structure in which a multilayer body formed of barrier ribs formed on a substrate is used as a substrate and a wavelength conversion layer and a phosphor layer are formed in this order on the surface of the dielectric layer and the side surfaces of the barrier ribs. The fired powder may be dispersed to form a wavelength conversion layer, and the wavelength conversion layer and the phosphor layer may be formed in this order on the surface of the wavelength conversion layer and the side wall of the partition wall. A back plate having a wavelength conversion layer having such a configuration is disclosed in Japanese Unexamined Patent Application Publication No. 2008-10403.

AC型PDPの背面板では、一般に、蛍光体層が隔壁によって青色発光蛍光体層、緑色発光蛍光体層及び赤色発光蛍光体層の三色の蛍光体層に仕切られている。波長変換層は、これらの三色の蛍光体層の下にそれぞれ均一に形成してもよいし、各色の発光輝度のバランスを合わせるために、三色の蛍光体層のうちの一又は二つの蛍光体層の下にのみ設けてもよい。   In the back plate of the AC type PDP, the phosphor layer is generally divided into three color phosphor layers, a blue light emitting phosphor layer, a green light emitting phosphor layer, and a red light emitting phosphor layer, by partition walls. The wavelength conversion layer may be formed uniformly under each of the three color phosphor layers, or one or two of the three color phosphor layers may be used to balance the emission luminance of each color. You may provide only under a fluorescent substance layer.

Xeランプの発光素子として用いる発光性積層体は、ガラス管やガラス製筐体を基体として、その基体の内側に波長変換層と蛍光体層とをこの順で形成した構成とすることができる。   The light emitting laminate used as the light emitting element of the Xe lamp can have a structure in which a glass tube or a glass housing is used as a base, and a wavelength conversion layer and a phosphor layer are formed in this order inside the base.

[実施例1]
気相合成法により製造された酸化マグネシウム粉末(2000A、宇部マテリアルズ(株)製、純度:99.98質量%、BET比表面積:8.7m2/g)250gと、塩化マグネシウム粉末(純度:99%)500gとを混合して、粉末混合物を得た。得られた粉末混合物をアルミナ坩堝に投入し、蓋をして、電気炉に入れ、240℃/時間の昇温速度で1300℃まで上昇させ、次いでその温度で30分間焼成した。その後、炉内温度を240℃/時間の降温速度で室温まで冷却した。得られた焼成物は、BET比表面積が0.57m2/gで、塩素含有量が0.8質量%の塩素含有酸化マグネシウム焼成物粉末であった。得られた塩素含有酸化マグネシウム焼成物粉末に、波長146nmと波長172nmの紫外光を照射したところ、230〜260nmの波長範囲にピークを有する紫外光を発光することが確認された。
[Example 1]
Magnesium oxide powder (2000A, manufactured by Ube Materials Co., Ltd., purity: 99.98% by mass, BET specific surface area: 8.7 m 2 / g) manufactured by the vapor phase synthesis method, and magnesium chloride powder (purity: 99%) and 500 g were mixed to obtain a powder mixture. The obtained powder mixture was put into an alumina crucible, covered, put into an electric furnace, raised to 1300 ° C. at a heating rate of 240 ° C./hour, and then baked at that temperature for 30 minutes. Thereafter, the furnace temperature was cooled to room temperature at a temperature lowering rate of 240 ° C./hour. The obtained fired product was a chlorine-containing fired magnesium oxide powder having a BET specific surface area of 0.57 m 2 / g and a chlorine content of 0.8% by mass. When the obtained chlorine-containing magnesium oxide fired powder was irradiated with ultraviolet light having a wavelength of 146 nm and a wavelength of 172 nm, it was confirmed that ultraviolet light having a peak in the wavelength range of 230 to 260 nm was emitted.

イソプロピルアルコール300mLにエチルメチルセルロース21gを加えて、マグネチックスターラーにて15時間撹拌して、ペースト基材を調製した。このペースト基材に、上記で製造した塩素含有酸化マグネシウム焼成物粉末2.5gを加えて、脱泡機を用いて7分間混合して、塩素含有酸化マグネシウム焼成物粉末ペーストを調製した。また、同様にして調製したペースト基材に、CaMgSi26:Eu2+青色発光蛍光体粉末2.5gを加えて、脱泡機を用いて7分間混合して、CaMgSi26:Eu2+青色発光蛍光体粉末ペーストを調製した。 21 g of ethyl methylcellulose was added to 300 mL of isopropyl alcohol and stirred for 15 hours with a magnetic stirrer to prepare a paste base material. To this paste base material, 2.5 g of the chlorine-containing magnesium oxide fired powder produced above was added and mixed for 7 minutes using a defoaming machine to prepare a chlorine-containing magnesium oxide fired powder paste. Further, 2.5 g of CaMgSi 2 O 6 : Eu 2+ blue light-emitting phosphor powder is added to the paste base material prepared in the same manner, and mixed for 7 minutes using a defoamer, and CaMgSi 2 O 6 : Eu. A 2+ blue light emitting phosphor powder paste was prepared.

直径19.8mm、厚さ2.0mmの石英基板に、上記で調製した塩素含有酸化マグネシウム焼成物粉末ペーストを、スクリーン印刷機にて塗布し、70℃の温度で乾燥した後、600℃の温度で1時間アニールして、厚さ3μmの塩素含有酸化マグネシウム焼成物層を形成した。次いで、塩素含有酸化マグネシウム焼成物層の上に、上記で調製したCaMgSi26:Eu2+青色発光蛍光体粉末ペーストを、スクリーン印刷機にて塗布し、70℃の温度で乾燥した後、600℃の温度で1時間アニールして、厚さ7μmのCaMgSi26:Eu2+青色発光蛍光体層を形成して、石英基板の上に、塩素含有酸化マグネシウム焼成物粉末(MgCl2・MgO)からなる波長変換層を介して、CaMgSi26:Eu2+青色発光蛍光体層が形成された発光性積層体を製造した。 The chlorine-containing magnesium oxide fired powder paste prepared above is applied to a quartz substrate having a diameter of 19.8 mm and a thickness of 2.0 mm using a screen printer, dried at a temperature of 70 ° C., and then a temperature of 600 ° C. Was annealed for 1 hour to form a 3 μm thick layer of fired chlorine-containing magnesium oxide. Next, the CaMgSi 2 O 6 : Eu 2+ blue light emitting phosphor powder paste prepared above was applied on a chlorine-containing magnesium oxide fired product layer with a screen printer and dried at a temperature of 70 ° C. Annealing is performed at a temperature of 600 ° C. for 1 hour to form a CaMgSi 2 O 6 : Eu 2+ blue light emitting phosphor layer having a thickness of 7 μm, and a chlorine-containing magnesium oxide fired powder (MgCl 2. A light-emitting laminate in which a CaMgSi 2 O 6 : Eu 2+ blue light-emitting phosphor layer was formed through a wavelength conversion layer made of MgO) was produced.

[実施例2]
気相合成法により製造された酸化マグネシウム粉末(2000A、宇部マテリアルズ(株)製)500gと、酸化亜鉛粉末(純度:99.9%)20gとを混合して、粉末混合物を得た。得られた粉末混合物をアルミナ坩堝に投入し、蓋をして、電気炉に入れ、240℃/時間の昇温速度で1300℃まで上昇させ、次いでその温度で30分間焼成した。その後、炉内温度を240℃/時間の降温速度で室温まで冷却した。得られた焼成物は、BET比表面積が5.73m2/gで、亜鉛含有量が3.09質量%の亜鉛含有酸化マグネシウム焼成物粉末であった。得られた亜鉛含有酸化マグネシウム焼成物粉末に、波長146nmと波長172nmの紫外光を照射したところ、230〜260nmの波長範囲にピークを有する紫外光を発光することが確認された。
[Example 2]
500 g of magnesium oxide powder (2000A, manufactured by Ube Materials Co., Ltd.) manufactured by a gas phase synthesis method and 20 g of zinc oxide powder (purity: 99.9%) were mixed to obtain a powder mixture. The obtained powder mixture was put into an alumina crucible, covered, put into an electric furnace, raised to 1300 ° C. at a heating rate of 240 ° C./hour, and then baked at that temperature for 30 minutes. Thereafter, the furnace temperature was cooled to room temperature at a temperature lowering rate of 240 ° C./hour. The obtained fired product was a zinc-containing fired magnesium oxide powder having a BET specific surface area of 5.73 m 2 / g and a zinc content of 3.09% by mass. When the obtained zinc-containing magnesium oxide fired powder was irradiated with ultraviolet light having a wavelength of 146 nm and a wavelength of 172 nm, it was confirmed that ultraviolet light having a peak in the wavelength range of 230 to 260 nm was emitted.

塩素含有酸化マグネシウム焼成物粉末の代わりに、上記で製造した亜鉛含有酸化マグネシウム焼成物粉末を用いたこと以外は実施例1と同様にして、石英基板の上に、亜鉛含有酸化マグネシウム焼成物粉末(ZnO・MgO)からなる波長変換層を介して蛍光体層が形成された発光性積層体を製造した。   The zinc-containing magnesium oxide fired powder (on the quartz substrate) was used in the same manner as in Example 1 except that the zinc-containing magnesium oxide fired powder produced above was used instead of the chlorine-containing magnesium oxide fired powder. A light-emitting laminate in which a phosphor layer was formed via a wavelength conversion layer made of ZnO · MgO was manufactured.

[実施例3]
気相合成法により製造された酸化マグネシウム粉末(2000A、宇部マテリアルズ(株)製)500gと、γ型酸化アルミニウム粉末(住友化学(株)製、高純度アルミナAKP−G015)26.38gとを混合して、粉末混合物を得た。得られた粉末混合物をアルミナ坩堝に投入し、蓋をして、電気炉に入れ、240℃/時間の昇温速度で1300℃まで上昇させ、次いでその温度で30分間焼成した。その後、炉内温度を240℃/時間の降温速度で室温まで冷却した。得られた焼成物は、BET比表面積が6.07m2/gで、アルミニウム含有量が2.48質量%のアルミニウム含有酸化マグネシウム焼成物粉末であった。得られたアルミニウム含有酸化マグネシウム焼成物粉末に、波長146nmと波長172nmの紫外光を照射したところ、230〜260nmの波長範囲にピークを有する紫外光を発光することが確認された。
[Example 3]
500 g of magnesium oxide powder (2000A, manufactured by Ube Materials Co., Ltd.) manufactured by a gas phase synthesis method and 26.38 g of γ-type aluminum oxide powder (manufactured by Sumitomo Chemical Co., Ltd., high-purity alumina AKP-G015) Mixed to obtain a powder mixture. The obtained powder mixture was put into an alumina crucible, covered, put into an electric furnace, raised to 1300 ° C. at a heating rate of 240 ° C./hour, and then baked at that temperature for 30 minutes. Thereafter, the furnace temperature was cooled to room temperature at a temperature lowering rate of 240 ° C./hour. The obtained fired product was an aluminum-containing fired magnesium oxide powder having a BET specific surface area of 6.07 m 2 / g and an aluminum content of 2.48% by mass. When the obtained aluminum-containing magnesium oxide fired powder was irradiated with ultraviolet light having a wavelength of 146 nm and a wavelength of 172 nm, it was confirmed to emit ultraviolet light having a peak in the wavelength range of 230 to 260 nm.

塩素含有酸化マグネシウム焼成物粉末の代わりに、上記で製造したアルミニウム含有酸化マグネシウム焼成物粉末を用いたこと以外は実施例1と同様にして、石英基板の上に、アルミニウム含有酸化マグネシウム焼成物粉末(γ−Al23・MgO)からなる波長変換層を介して蛍光体層が形成された発光性積層体を製造した。 In the same manner as in Example 1 except that the aluminum-containing magnesium oxide calcined powder produced above was used instead of the chlorine-containing magnesium oxide calcined powder, the aluminum-containing magnesium oxide calcined powder ( A light-emitting laminate having a phosphor layer formed through a wavelength conversion layer made of (γ-Al 2 O 3 .MgO) was manufactured.

[実施例4]
気相合成法により製造された酸化マグネシウム粉末(2000A、宇部マテリアルズ(株)製)6.0gと、フッ化リチウム粉末(純度:99.9質量%)0.0386gとを混合して、粉末混合物を得た。得られた粉末混合物をアルミナ坩堝に投入し、蓋をして、電気炉に入れ、240℃/時間の昇温速度で1200℃まで上昇させ、次いでその温度で30分間焼成した。その後、炉内温度を240℃/時間の降温速度で室温まで冷却した。得られた焼成物は、BET比表面積が0.26m2/gで、リチウム含有量がマグネシウム100モルに対して0.2モル、フッ素含有量がマグネシウム100モルに対して0.09モルのリチウム・フッ素含有酸化マグネシウム焼成物粉末であった。得られたリチウム・フッ素含有酸化マグネシウム焼成物粉末に、波長146nmと波長172nmの紫外光を照射したところ、230〜260nmの波長範囲にピークを有する紫外光を発光することが確認された。
[Example 4]
A powder obtained by mixing 6.0 g of magnesium oxide powder (2000A, manufactured by Ube Materials Co., Ltd.) and 0.0386 g of lithium fluoride powder (purity: 99.9% by mass) manufactured by a gas phase synthesis method. A mixture was obtained. The obtained powder mixture was put into an alumina crucible, covered, put into an electric furnace, raised to 1200 ° C. at a temperature rising rate of 240 ° C./hour, and then baked at that temperature for 30 minutes. Thereafter, the furnace temperature was cooled to room temperature at a temperature lowering rate of 240 ° C./hour. The obtained fired product has a BET specific surface area of 0.26 m 2 / g, a lithium content of 0.2 mol per 100 mol of magnesium, and a fluorine content of 0.09 mol per 100 mol of magnesium. -It was a fluorine-containing magnesium oxide fired powder. When the obtained lithium / fluorine-containing fired magnesium oxide powder was irradiated with ultraviolet light having a wavelength of 146 nm and a wavelength of 172 nm, it was confirmed that ultraviolet light having a peak in the wavelength range of 230 to 260 nm was emitted.

塩素含有酸化マグネシウム焼成物粉末の代わりに、上記で製造したリチウム・フッ素含有酸化マグネシウム焼成物粉末を用いたこと以外は実施例1と同様にして、石英基板の上に、リチウム・フッ素含有酸化マグネシウム焼成物粉末(LiF・MgO)からなる波長変換層を介して蛍光体層が形成された発光性積層体を製造した。   A lithium / fluorine-containing magnesium oxide was formed on a quartz substrate in the same manner as in Example 1 except that the lithium / fluorine-containing magnesium oxide fired powder produced above was used instead of the chlorine-containing magnesium oxide fired powder. The light emitting laminated body in which the fluorescent substance layer was formed through the wavelength conversion layer which consists of baked material powder (LiF * MgO) was manufactured.

[実施例5]
気相合成法により製造された酸化マグネシウム粉末(2000A、宇部マテリアルズ(株)製)6.0gと、フッ化ナトリウム粉末(純度:99.9質量%)0.0625gとを混合して、粉末混合物を得た。得られた粉末混合物をアルミナ坩堝に投入し、蓋をして、電気炉に入れ、240℃/時間の昇温速度で1200℃まで上昇させ、次いでその温度で30分間焼成した。その後、炉内温度を240℃/時間の降温速度で室温まで冷却した。得られた焼成物は、BET比表面積が0.21m2/gで、ナトリウム含有量がマグネシウム100モルに対して0.2モル、フッ素含有量がマグネシウム100モルに対して0.10モルのナトリウム・フッ素含有酸化マグネシウム焼成物粉末であった。得られたナトリウム・フッ素含有酸化マグネシウム焼成物粉末に、波長146nmと波長172nmの紫外光を照射したところ、230〜260nmの波長範囲にピークを有する紫外光を発光することが確認された。
[Example 5]
A powder obtained by mixing 6.0 g of magnesium oxide powder (2000A, manufactured by Ube Materials Co., Ltd.) produced by a gas phase synthesis method and 0.0625 g of sodium fluoride powder (purity: 99.9% by mass). A mixture was obtained. The obtained powder mixture was put into an alumina crucible, covered, put into an electric furnace, raised to 1200 ° C. at a temperature rising rate of 240 ° C./hour, and then baked at that temperature for 30 minutes. Thereafter, the furnace temperature was cooled to room temperature at a temperature lowering rate of 240 ° C./hour. The obtained fired product has a BET specific surface area of 0.21 m 2 / g, a sodium content of 0.2 mol with respect to 100 mol of magnesium, and a fluorine content of 0.10 mol with respect to 100 mol of magnesium. -It was a fluorine-containing magnesium oxide fired powder. When the obtained sodium / fluorine-containing magnesium oxide fired powder was irradiated with ultraviolet light having a wavelength of 146 nm and a wavelength of 172 nm, it was confirmed to emit ultraviolet light having a peak in the wavelength range of 230 to 260 nm.

塩素含有酸化マグネシウム焼成物粉末の代わりに、上記で製造したナトリウム・フッ素含有酸化マグネシウム焼成物粉末を用いたこと以外は実施例1と同様にして、石英基板の上に、ナトリウム・フッ素含有酸化マグネシウム焼成物粉末(NaF・MgO)からなる波長変換層を介して蛍光体層が形成された発光性積層体を製造した。   A sodium / fluorine-containing magnesium oxide was formed on a quartz substrate in the same manner as in Example 1, except that the sodium / fluorine-containing magnesium oxide fired powder produced above was used instead of the chlorine-containing magnesium oxide fired powder. A light-emitting laminate having a phosphor layer formed through a wavelength conversion layer made of a fired powder (NaF · MgO) was produced.

[実施例6]
気相合成法により製造された酸化マグネシウム粉末(2000A、宇部マテリアルズ(株)製)6.0gと、フッ化カリウム粉末(純度:99.9質量%)0.432gとを混合して、粉末混合物を得た。得られた粉末混合物をアルミナ坩堝に投入し、蓋をして、電気炉に入れ、240℃/時間の昇温速度で1200℃まで上昇させ、次いでその温度で30分間焼成した。その後、炉内温度を240℃/時間の降温速度で室温まで冷却した。得られた焼成物は、BET比表面積が0.60m2/gで、カリウム含有量がマグネシウム100モルに対して0.1モル、フッ素含有量がマグネシウム100モルに対して0.07モルのカリウム・フッ素含有酸化マグネシウム焼成物粉末であった。得られたカリウム・フッ素含有酸化マグネシウム焼成物粉末に、波長146nmと波長172nmの紫外光を照射したところ、230〜260nmの波長範囲にピークを有する紫外光を発光することが確認された。
[Example 6]
6.0 g of magnesium oxide powder (2000A, manufactured by Ube Materials Co., Ltd.) produced by a gas phase synthesis method and 0.432 g of potassium fluoride powder (purity: 99.9% by mass) are mixed to obtain a powder. A mixture was obtained. The obtained powder mixture was put into an alumina crucible, covered, put into an electric furnace, raised to 1200 ° C. at a temperature rising rate of 240 ° C./hour, and then baked at that temperature for 30 minutes. Thereafter, the furnace temperature was cooled to room temperature at a temperature lowering rate of 240 ° C./hour. The obtained fired product has a BET specific surface area of 0.60 m 2 / g, a potassium content of 0.1 mol per 100 mol of magnesium, and a fluorine content of 0.07 mol per 100 mol of magnesium. -It was a fluorine-containing magnesium oxide fired powder. When the obtained potassium / fluorine-containing magnesium oxide fired powder was irradiated with ultraviolet light having a wavelength of 146 nm and a wavelength of 172 nm, it was confirmed to emit ultraviolet light having a peak in the wavelength range of 230 to 260 nm.

塩素含有酸化マグネシウム焼成物粉末の代わりに、上記で製造したカリウム・フッ素含有酸化マグネシウム焼成物粉末を用いたこと以外は実施例1と同様にして、石英基板の上に、カリウム・フッ素含有酸化マグネシウム焼成物粉末(KF・MgO)からなる波長変換層を介して蛍光体層が形成された発光性積層体を製造した。   A potassium / fluorine-containing magnesium oxide was formed on a quartz substrate in the same manner as in Example 1 except that the potassium / fluorine-containing magnesium oxide fired powder produced above was used instead of the chlorine-containing magnesium oxide fired powder. A light-emitting laminate having a phosphor layer formed through a wavelength conversion layer made of fired powder (KF · MgO) was produced.

[実施例7]
気相合成法により製造された酸化マグネシウム粉末(2000A、宇部マテリアルズ(株)製)6.0gと、フッ化カルシウム粉末(純度:99.9質量%)0.0581gとを混合して、粉末混合物を得た。得られた粉末混合物をアルミナ坩堝に投入し、蓋をして、電気炉に入れ、240℃/時間の昇温速度で1200℃まで上昇させ、次いでその温度で30分間焼成した。その後、炉内温度を240℃/時間の降温速度で室温まで冷却した。得られた焼成物は、BET比表面積が1.36m2/gで、カルシウム含有量がマグネシウム100モルに対して0.5モル、フッ素含有量がマグネシウム100モルに対して0.82モルのカルシウム・フッ素含有酸化マグネシウム焼成物粉末であった。得られたカルシウム・フッ素含有酸化マグネシウム焼成物粉末に、波長146nmと波長172nmの紫外光を照射したところ、230〜260nmの波長範囲にピークを有する紫外光を発光することが確認された。
[Example 7]
6.0 g of magnesium oxide powder (2000A, manufactured by Ube Materials Co., Ltd.) manufactured by a gas phase synthesis method and 0.0581 g of calcium fluoride powder (purity: 99.9 mass%) are mixed to obtain a powder. A mixture was obtained. The obtained powder mixture was put into an alumina crucible, covered, put into an electric furnace, raised to 1200 ° C. at a temperature rising rate of 240 ° C./hour, and then baked at that temperature for 30 minutes. Thereafter, the furnace temperature was cooled to room temperature at a temperature lowering rate of 240 ° C./hour. The obtained calcined product has a BET specific surface area of 1.36 m 2 / g, a calcium content of 0.5 mol with respect to 100 mol of magnesium, and a fluorine content of 0.82 mol with respect to 100 mol of magnesium. -It was a fluorine-containing magnesium oxide fired powder. When the obtained calcium / fluorine-containing magnesium oxide fired powder was irradiated with ultraviolet light having a wavelength of 146 nm and a wavelength of 172 nm, it was confirmed that ultraviolet light having a peak in the wavelength range of 230 to 260 nm was emitted.

塩素含有酸化マグネシウム焼成物粉末の代わりに、上記で製造したカルシウム・フッ素含有酸化マグネシウム焼成物粉末を用いたこと以外は実施例1と同様にして、石英基板の上に、カルシウム・フッ素含有酸化マグネシウム焼成物粉末(CaF2・MgO)からなる波長変換層を介して蛍光体層が形成された発光性積層体を製造した。 A calcium / fluorine-containing magnesium oxide was formed on a quartz substrate in the same manner as in Example 1 except that the calcium / fluorine-containing magnesium oxide fired powder produced above was used instead of the chlorine-containing magnesium oxide fired powder. calcined powder was produced luminescent laminate phosphor layer via a wavelength conversion layer consisting of (CaF 2 · MgO) is formed.

[実施例8]
気相合成法により製造された酸化マグネシウム粉末(2000A、宇部マテリアルズ(株)製)6.0gと、フッ化バリウム粉末(純度:99.9質量%)0.2610gとを混合して、粉末混合物を得た。得られた粉末混合物をアルミナ坩堝に投入し、蓋をして、電気炉に入れ、240℃/時間の昇温速度で1200℃まで上昇させ、次いでその温度で30分間焼成した。その後、炉内温度を240℃/時間の降温速度で室温まで冷却した。得られた焼成物は、BET比表面積が1.49m2/gで、バリウム含有量がマグネシウム100モルに対して1.0モル、フッ素含有量がマグネシウム100モルに対して1.91モルのバリウム・フッ素含有酸化マグネシウム焼成物粉末であった。得られたバリウム・フッ素含有酸化マグネシウム焼成物粉末に、波長146nmと波長172nmの紫外光を照射したところ、230〜260nmの波長範囲にピークを有する紫外光を発光することが確認された。
[Example 8]
A powder obtained by mixing 6.0 g of magnesium oxide powder (2000A, manufactured by Ube Materials Co., Ltd.) produced by a gas phase synthesis method and 0.2610 g of barium fluoride powder (purity: 99.9% by mass). A mixture was obtained. The obtained powder mixture was put into an alumina crucible, covered, put into an electric furnace, raised to 1200 ° C. at a temperature rising rate of 240 ° C./hour, and then baked at that temperature for 30 minutes. Thereafter, the furnace temperature was cooled to room temperature at a temperature lowering rate of 240 ° C./hour. The obtained fired product has a BET specific surface area of 1.49 m 2 / g, a barium content of 1.0 mol per 100 mol of magnesium and a fluorine content of 1.91 mol per 100 mol of magnesium. -It was a fluorine-containing magnesium oxide fired powder. When the obtained barium / fluorine-containing calcined magnesium oxide powder was irradiated with ultraviolet light having a wavelength of 146 nm and a wavelength of 172 nm, it was confirmed to emit ultraviolet light having a peak in the wavelength range of 230 to 260 nm.

塩素含有酸化マグネシウム焼成物粉末の代わりに、上記で製造したバリウム・フッ素含有酸化マグネシウム焼成物粉末を用いたこと以外は実施例1と同様にして、石英基板の上に、バリウム・フッ素含有酸化マグネシウム焼成物粉末(BaF2・MgO)からなる波長変換層を介して蛍光体層が形成された発光性積層体を製造した。 A barium / fluorine-containing magnesium oxide was formed on a quartz substrate in the same manner as in Example 1 except that the barium / fluorine-containing magnesium oxide fired powder produced above was used instead of the chlorine-containing magnesium oxide fired powder. A light-emitting laminate having a phosphor layer formed through a wavelength conversion layer made of a fired powder (BaF 2 .MgO) was produced.

[実施例9]
気相合成法により製造された酸化マグネシウム粉末(2000A、宇部マテリアルズ(株)製)6.0gと、フッ化アルミニウム粉末(純度:99.9質量%)0.1250gとを混合して、粉末混合物を得た。得られた粉末混合物をアルミナ坩堝に投入し、蓋をして、電気炉に入れ、240℃/時間の昇温速度で1300℃まで上昇させ、次いでその温度で30分間焼成した。その後、炉内温度を240℃/時間の降温速度で室温まで冷却した。得られた焼成物は、BET比表面積が0.96m2/gで、アルミニウム含有量がマグネシウム100モルに対して1.0モル、フッ素含有量がマグネシウム100モルに対して0.47モルのアルミニウム・フッ素含有酸化マグネシウム焼成物粉末であった。得られたアルミニウム・フッ素含有酸化マグネシウム焼成物粉末に、波長146nmと波長172nmの紫外光を照射したところ、230〜260nmの波長範囲にピークを有する紫外光を発光することが確認された。
[Example 9]
A powder obtained by mixing 6.0 g of magnesium oxide powder (2000A, manufactured by Ube Materials Co., Ltd.) produced by a gas phase synthesis method and 0.1250 g of aluminum fluoride powder (purity: 99.9% by mass). A mixture was obtained. The obtained powder mixture was put into an alumina crucible, covered, put into an electric furnace, raised to 1300 ° C. at a heating rate of 240 ° C./hour, and then baked at that temperature for 30 minutes. Thereafter, the furnace temperature was cooled to room temperature at a temperature lowering rate of 240 ° C./hour. The obtained fired product has a BET specific surface area of 0.96 m 2 / g, an aluminum content of 1.0 mol with respect to 100 mol of magnesium, and a fluorine content of 0.47 mol with respect to 100 mol of magnesium. -It was a fluorine-containing magnesium oxide fired powder. When the obtained aluminum / fluorine-containing magnesium oxide fired powder was irradiated with ultraviolet light having a wavelength of 146 nm and a wavelength of 172 nm, it was confirmed to emit ultraviolet light having a peak in the wavelength range of 230 to 260 nm.

塩素含有酸化マグネシウム焼成物粉末の代わりに、上記で製造したアルミニウム・フッ素含有酸化マグネシウム焼成物粉末を用いたこと以外は実施例1と同様にして、石英基板の上に、アルミニウム・フッ素含有酸化マグネシウム焼成物粉末(AlF3・MgO)からなる波長変換層を介して蛍光体層が形成された発光性積層体を製造した。 An aluminum / fluorine-containing magnesium oxide was formed on a quartz substrate in the same manner as in Example 1 except that the aluminum / fluorine-containing magnesium oxide fired powder produced above was used instead of the chlorine-containing magnesium oxide fired powder. A light-emitting laminate having a phosphor layer formed through a wavelength conversion layer made of fired powder (AlF 3 .MgO) was produced.

[実施例10]
気相合成法により製造された酸化マグネシウム粉末(2000A、宇部マテリアルズ(株)製)6.0gと、フッ化亜鉛・四水和物粉末(純度:99.9質量%)0.1306gとを混合して、粉末混合物を得た。得られた粉末混合物をアルミナ坩堝に投入し、蓋をして、電気炉に入れ、240℃/時間の昇温速度で1300℃まで上昇させ、次いでその温度で30分間焼成した。その後、炉内温度を240℃/時間の降温速度で室温まで冷却した。得られた焼成物は、BET比表面積が1.29m2/gで、亜鉛含有量がマグネシウム100モルに対して0.5モル、フッ素含有量がマグネシウム100モルに対して0.03モルの亜鉛・フッ素含有酸化マグネシウム焼成物粉末であった。得られた亜鉛・フッ素含有酸化マグネシウム焼成物粉末に、波長146nmと波長172nmの紫外光を照射したところ、230〜260nmの波長範囲にピークを有する紫外光を発光することが確認された。
[Example 10]
6.0 g of magnesium oxide powder (2000A, manufactured by Ube Materials Co., Ltd.) produced by a gas phase synthesis method and 0.1306 g of zinc fluoride tetrahydrate powder (purity: 99.9% by mass) Mixed to obtain a powder mixture. The obtained powder mixture was put into an alumina crucible, covered, put into an electric furnace, raised to 1300 ° C. at a heating rate of 240 ° C./hour, and then baked at that temperature for 30 minutes. Thereafter, the furnace temperature was cooled to room temperature at a temperature lowering rate of 240 ° C./hour. The obtained fired product has a BET specific surface area of 1.29 m 2 / g, a zinc content of 0.5 mol with respect to 100 mol of magnesium, and a fluorine content of 0.03 mol with respect to 100 mol of magnesium. -It was a fluorine-containing magnesium oxide fired powder. When the obtained zinc / fluorine-containing magnesium oxide fired powder was irradiated with ultraviolet light having a wavelength of 146 nm and a wavelength of 172 nm, it was confirmed to emit ultraviolet light having a peak in the wavelength range of 230 to 260 nm.

塩素含有酸化マグネシウム焼成物粉末の代わりに、上記で製造した亜鉛・フッ素含有酸化マグネシウム焼成物粉末を用いたこと以外は実施例1と同様にして、石英基板の上に、亜鉛・フッ素含有酸化マグネシウム焼成物粉末(ZnF2・MgO)からなる波長変換層を介して蛍光体層が形成された発光性積層体を製造した。 A zinc / fluorine-containing magnesium oxide was formed on a quartz substrate in the same manner as in Example 1 except that the zinc / fluorine-containing magnesium oxide fired powder produced above was used instead of the chlorine-containing magnesium oxide fired powder. A light-emitting laminate having a phosphor layer formed through a wavelength conversion layer made of a fired powder (ZnF 2 .MgO) was produced.

[実施例11]
気相合成法により製造された酸化マグネシウム粉末(2000A、宇部マテリアルズ(株)製)6.0gと、フッ化スズ粉末(純度:99.9質量%)0.2334gとを混合して、粉末混合物を得た。得られた粉末混合物をアルミナ坩堝に投入し、蓋をして、電気炉に入れ、240℃/時間の昇温速度で1300℃まで上昇させ、次いでその温度で30分間焼成した。その後、炉内温度を240℃/時間の降温速度で室温まで冷却した。得られた焼成物は、BET比表面積が0.80m2/gで、スズ含有量がマグネシウム100モルに対して1.0モル、フッ素含有量がマグネシウム100モルに対して0.07モルのスズ・フッ素含有酸化マグネシウム焼成物粉末であった。得られたスズ・フッ素含有酸化マグネシウム焼成物粉末に、波長146nmと波長172nmの紫外光を照射したところ、230〜260nmの波長範囲にピークを有する紫外光を発光することが確認された。
[Example 11]
A powder obtained by mixing 6.0 g of magnesium oxide powder (2000A, manufactured by Ube Materials Co., Ltd.) produced by a gas phase synthesis method and 0.2334 g of tin fluoride powder (purity: 99.9% by mass). A mixture was obtained. The obtained powder mixture was put into an alumina crucible, covered, put into an electric furnace, raised to 1300 ° C. at a heating rate of 240 ° C./hour, and then baked at that temperature for 30 minutes. Thereafter, the furnace temperature was cooled to room temperature at a temperature lowering rate of 240 ° C./hour. The obtained fired product has a BET specific surface area of 0.80 m 2 / g, a tin content of 1.0 mol with respect to 100 mol of magnesium, and a fluorine content of 0.07 mol with respect to 100 mol of magnesium. -It was a fluorine-containing magnesium oxide fired powder. When the obtained tin / fluorine-containing fired magnesium oxide powder was irradiated with ultraviolet light having a wavelength of 146 nm and a wavelength of 172 nm, it was confirmed to emit ultraviolet light having a peak in the wavelength range of 230 to 260 nm.

塩素含有酸化マグネシウム焼成物粉末の代わりに、上記で製造したスズ・フッ素含有酸化マグネシウム焼成物粉末を用いたこと以外は実施例1と同様にして、石英基板の上に、スズ・フッ素含有酸化マグネシウム焼成物粉末(SnF2・MgO)からなる波長変換層を介して蛍光体層が形成された発光性積層体を製造した。 A tin / fluorine-containing magnesium oxide was formed on a quartz substrate in the same manner as in Example 1 except that the tin / fluorine-containing magnesium oxide fired powder produced above was used instead of the chlorine-containing magnesium oxide fired powder. calcined powders were prepared (SnF 2 · MgO) through the wavelength conversion layer consisting of luminescent laminate phosphor layer is formed.

[実施例12]
気相合成法により製造された酸化マグネシウム粉末(2000A、宇部マテリアルズ(株)製)6.0gと、フッ化セリウム粉末(純度:99.9質量%)0.1460gとを混合して、粉末混合物を得た。得られた粉末混合物をアルミナ坩堝に投入し、蓋をして、電気炉に入れ、240℃/時間の昇温速度で1300℃まで上昇させ、次いでその温度で30分間焼成した。その後、炉内温度を240℃/時間の降温速度で室温まで冷却した。得られた焼成物は、BET比表面積が0.99m2/gで、セリウム含有量がマグネシウム100モルに対して1.0モル、フッ素含有量がマグネシウム100モルに対して0.26モルのセリウム・フッ素含有酸化マグネシウム焼成物粉末であった。得られたセリウム・フッ素含有酸化マグネシウム焼成物粉末に、波長146nmと波長172nmの紫外光を照射したところ、230〜260nmの波長範囲にピークを有する紫外光を発光することが確認された。
[Example 12]
A powder obtained by mixing 6.0 g of magnesium oxide powder (2000A, manufactured by Ube Materials Co., Ltd.) produced by a gas phase synthesis method and 0.1460 g of cerium fluoride powder (purity: 99.9% by mass). A mixture was obtained. The obtained powder mixture was put into an alumina crucible, covered, put into an electric furnace, raised to 1300 ° C. at a heating rate of 240 ° C./hour, and then baked at that temperature for 30 minutes. Thereafter, the furnace temperature was cooled to room temperature at a temperature lowering rate of 240 ° C./hour. The obtained fired product has a BET specific surface area of 0.99 m 2 / g, a cerium content of 1.0 mol per 100 mol of magnesium, and a fluorine content of 0.26 mol per 100 mol of magnesium. -It was a fluorine-containing magnesium oxide fired powder. When the obtained cerium / fluorine-containing fired magnesium oxide powder was irradiated with ultraviolet light having a wavelength of 146 nm and a wavelength of 172 nm, it was confirmed that ultraviolet light having a peak in the wavelength range of 230 to 260 nm was emitted.

塩素含有酸化マグネシウム焼成物粉末の代わりに、上記で製造したセリウム・フッ素含有酸化マグネシウム焼成物粉末を用いたこと以外は実施例1と同様にして、石英基板の上に、セリウム・フッ素含有酸化マグネシウム焼成物粉末(CeF3・MgO)からなる波長変換層を介して蛍光体層が形成された発光性積層体を製造した。 A cerium / fluorine-containing magnesium oxide was formed on a quartz substrate in the same manner as in Example 1 except that the cerium / fluorine-containing magnesium oxide fired powder produced above was used instead of the chlorine-containing magnesium oxide fired powder. A light-emitting laminate having a phosphor layer formed through a wavelength conversion layer made of a fired powder (CeF 3 .MgO) was produced.

[実施例13]
気相合成法により製造された酸化マグネシウム粉末(2000A、宇部マテリアルズ(株)製)6.0gと、フッ化イットリウム粉末(純度:99.9質量%)0.2180gとを混合して、粉末混合物を得た。得られた粉末混合物をアルミナ坩堝に投入し、蓋をして、電気炉に入れ、240℃/時間の昇温速度で1300℃まで上昇させ、次いでその温度で30分間焼成した。その後、炉内温度を240℃/時間の降温速度で室温まで冷却した。得られた焼成物は、BET比表面積が0.97m2/gで、イットリウム含有量がマグネシウム100モルに対して1.0モル、フッ素含有量がマグネシウム100モルに対して1.52モルのイットリウム・フッ素含有酸化マグネシウム焼成物粉末であった。得られたイットリウム・フッ素含有酸化マグネシウム焼成物粉末に、波長146nmと波長172nmの紫外光を照射したところ、230〜260nmの波長範囲にピークを有する紫外光を発光することが確認された。
[Example 13]
A powder obtained by mixing 6.0 g of magnesium oxide powder (2000A, manufactured by Ube Materials Co., Ltd.) and 0.2180 g of yttrium fluoride powder (purity: 99.9% by mass) manufactured by a gas phase synthesis method. A mixture was obtained. The obtained powder mixture was put into an alumina crucible, covered, put into an electric furnace, raised to 1300 ° C. at a heating rate of 240 ° C./hour, and then baked at that temperature for 30 minutes. Thereafter, the furnace temperature was cooled to room temperature at a temperature lowering rate of 240 ° C./hour. The obtained fired product has a BET specific surface area of 0.97 m 2 / g, an yttrium content of 1.0 mol with respect to 100 mol of magnesium, and a fluorine content of 1.52 mol with respect to 100 mol of magnesium. -It was a fluorine-containing magnesium oxide fired powder. When the obtained yttrium / fluorine-containing magnesium oxide fired powder was irradiated with ultraviolet light having a wavelength of 146 nm and a wavelength of 172 nm, it was confirmed to emit ultraviolet light having a peak in the wavelength range of 230 to 260 nm.

塩素含有酸化マグネシウム焼成物粉末の代わりに、上記で製造したイットリウム・フッ素含有酸化マグネシウム焼成物粉末を用いたこと以外は実施例1と同様にして、石英基板の上に、イットリウム・フッ素含有酸化マグネシウム焼成物粉末(YF3・MgO)からなる波長変換層を介して蛍光体層が形成された発光性積層体を製造した。 A yttrium / fluorine-containing magnesium oxide was formed on a quartz substrate in the same manner as in Example 1, except that the yttrium / fluorine-containing magnesium oxide fired powder produced above was used instead of the chlorine-containing magnesium oxide fired powder. A light-emitting laminate having a phosphor layer formed through a wavelength conversion layer made of a fired powder (YF 3 .MgO) was produced.

[実施例14]
気相合成法により製造された酸化マグネシウム粉末(2000A、宇部マテリアルズ(株)製)6.0gと、フッ化ガドリニウム粉末(純度:99.9質量%)0.0796gとを混合して、粉末混合物を得た。得られた粉末混合物をアルミナ坩堝に投入し、蓋をして、電気炉に入れ、240℃/時間の昇温速度で1300℃まで上昇させ、次いでその温度で30分間焼成した。その後、炉内温度を240℃/時間の降温速度で室温まで冷却した。得られた焼成物は、BET比表面積が1.10m2/gで、ガドリニウム含有量がマグネシウム100モルに対して0.5モル、フッ素含有量がマグネシウム100モルに対して0.59モルのガドリニウム・フッ素含有酸化マグネシウム焼成物粉末であった。得られたガドリニウム・フッ素含有酸化マグネシウム焼成物粉末に、波長146nmと波長172nmの真空紫外光を照射したところ、230〜260nmの波長範囲にピークを有する紫外光を発光することが確認された。
[Example 14]
A powder obtained by mixing 6.0 g of magnesium oxide powder (2000A, manufactured by Ube Materials Co., Ltd.) produced by a gas phase synthesis method and 0.0796 g of gadolinium fluoride powder (purity: 99.9% by mass). A mixture was obtained. The obtained powder mixture was put into an alumina crucible, covered, put into an electric furnace, raised to 1300 ° C. at a heating rate of 240 ° C./hour, and then baked at that temperature for 30 minutes. Thereafter, the furnace temperature was cooled to room temperature at a temperature lowering rate of 240 ° C./hour. The obtained fired product has a BET specific surface area of 1.10 m 2 / g, a gadolinium content of 0.5 mol per 100 mol of magnesium, and a fluorine content of 0.59 mol per 100 mol of magnesium. -It was a fluorine-containing magnesium oxide fired powder. When the obtained powder of fired gadolinium / fluorine-containing magnesium oxide was irradiated with vacuum ultraviolet light having a wavelength of 146 nm and a wavelength of 172 nm, it was confirmed to emit ultraviolet light having a peak in the wavelength range of 230 to 260 nm.

塩素含有酸化マグネシウム焼成物粉末の代わりに、上記で製造したガドリニウム・フッ素含有酸化マグネシウム焼成物粉末を用いたこと以外は実施例1と同様にして、石英基板の上に、ガドリニウム・フッ素含有酸化マグネシウム焼成物粉末(GdF3・MgO)からなる波長変換層を介して蛍光体層が形成された発光性積層体を製造した。 The gadolinium / fluorine-containing magnesium oxide was formed on the quartz substrate in the same manner as in Example 1 except that the gadolinium / fluorine-containing magnesium oxide fired powder produced above was used instead of the chlorine-containing magnesium oxide fired powder. A light-emitting laminate having a phosphor layer formed through a wavelength conversion layer made of a fired powder (GdF 3 .MgO) was produced.

[比較例1]
石英基板の上に、塩素含有酸化マグネシウム焼成物からなる波長変換層を形成しなかったこと以外は実施例1と同様にして、石英基板の上に、厚さ7μmのCaMgSi26:Eu2+青色発光蛍光体層が形成された発光性積層体を製造した。
[Comparative Example 1]
A CaMgSi 2 O 6 : Eu 2 having a thickness of 7 μm is formed on the quartz substrate in the same manner as in Example 1 except that the wavelength conversion layer made of the baked chlorine-containing magnesium oxide is not formed on the quartz substrate. + A light emitting laminate having a blue light emitting phosphor layer formed thereon was produced.

[発光性積層体の評価]
実施例1〜14及び比較例1にて製造した発光性積層体の蛍光体層の上から、波長146nmと波長172nmの紫外光を照射して、積層体から放出される可視光の発光スペクトルを測定した。得られた発光スペクトルの最大ピーク値を最大発光輝度として表1に示す。
[Evaluation of luminous laminate]
From the phosphor layer of the light emitting laminate manufactured in Examples 1 to 14 and Comparative Example 1, ultraviolet light having a wavelength of 146 nm and a wavelength of 172 nm is irradiated, and an emission spectrum of visible light emitted from the laminate is obtained. It was measured. The maximum peak value of the obtained emission spectrum is shown in Table 1 as the maximum emission luminance.

表1(蛍光体層:CaMgSi26:Eu2+青色発光蛍光体層)
────────────────────────────────────────
最大発光輝度
──────────────────
波長変換層の材料 波長146nm 波長172nm
────────────────────────────────────────
実施例1 MgCl2・MgO 198 247
実施例2 ZnO・MgO 205 238
実施例3 γ−Al23・MgO 202 229
実施例4 LiF・MgO 224 253
実施例5 NaF・MgO 225 249
実施例6 KF・MgO 218 243
実施例7 CaF2・MgO 222 245
実施例8 BaF2・MgO 219 243
実施例9 AlF3・MgO 230 261
実施例10 ZnF2・MgO 195 234
実施例11 SnF2・MgO 201 233
実施例12 CeF3・MgO 207 237
実施例13 YF3・MgO 212 242
実施例14 GdF3・MgO 224 252
────────────────────────────────────────
比較例1 なし 100 100
────────────────────────────────────────注)最大発光輝度は、比較例1の値を100とした相対値。
Table 1 (phosphor layer: CaMgSi 2 O 6 : Eu 2+ blue light emitting phosphor layer)
────────────────────────────────────────
Maximum luminance
──────────────────
Material of wavelength conversion layer Wavelength 146nm Wavelength 172nm
────────────────────────────────────────
Example 1 MgCl 2 .MgO 198 247
Example 2 ZnO.MgO 205 238
Example 3 γ-Al 2 O 3 .MgO 202 229
Example 4 LiF · MgO 224 253
Example 5 NaF · MgO 225 249
Example 6 KF · MgO 218 243
Example 7 CaF 2 .MgO 222 245
Example 8 BaF 2 .MgO 219 243
Example 9 AlF 3 .MgO 230 261
Example 10 ZnF 2 .MgO 195 234
Example 11 SnF 2 .MgO 201 233
Example 12 CeF 3 .MgO 207 237
Example 13 YF 3 .MgO 212 242
Example 14 GdF 3 .MgO 224 252
────────────────────────────────────────
Comparative Example 1 None 100 100
──────────────────────────────────────── Note) Maximum emission brightness is Comparative Example 1. The relative value with the value of 100 as 100.

[実施例15]
CaMgSi26:Eu2+青色発光蛍光体粉末の代わりに、Ca0.5Sr0.5MgSi26:Eu2+青色発光蛍光体粉末を用いたこと以外は実施例1と同様にして、石英基板の上に、塩素含有酸化マグネシウム焼成物粉末(MgCl2・MgO)からなる厚さ3μmの波長変換層を介して、厚さ7μmのCa0.5Sr0.5MgSi26:Eu2+青色発光蛍光体層が形成された発光性積層体を製造した。
[Example 15]
A quartz substrate in the same manner as in Example 1 except that Ca 0.5 Sr 0.5 MgSi 2 O 6 : Eu 2+ blue light-emitting phosphor powder was used instead of CaMgSi 2 O 6 : Eu 2+ blue light-emitting phosphor powder. 7 μm thick Ca 0.5 Sr 0.5 MgSi 2 O 6 : Eu 2+ blue light emitting phosphor through a 3 μm thick wavelength conversion layer made of baked chlorine-containing magnesium oxide powder (MgCl 2 · MgO) A luminescent laminate having a layer formed thereon was produced.

[実施例16]
塩素含有酸化マグネシウム焼成物粉末の代わりに、実施例2で製造した亜鉛含有酸化マグネシウム焼成物粉末を用いたこと以外は実施例15と同様にして、石英基板の上に、亜鉛含有酸化マグネシウム焼成物粉末(ZnO・MgO)からなる波長変換層を介して蛍光体層が形成された発光性積層体を製造した。
[Example 16]
A zinc-containing magnesium oxide fired product is formed on a quartz substrate in the same manner as in Example 15 except that the zinc-containing magnesium oxide fired powder produced in Example 2 is used instead of the chlorine-containing magnesium oxide fired powder. A light-emitting laminate having a phosphor layer formed through a wavelength conversion layer made of powder (ZnO.MgO) was produced.

[実施例17]
塩素含有酸化マグネシウム焼成物粉末の代わりに、実施例3で製造したアルミニウム含有酸化マグネシウム焼成物粉末を用いたこと以外は実施例15と同様にして、石英基板の上に、アルミニウム含有酸化マグネシウム焼成物粉末(γ−Al23・MgO)からなる波長変換層を介して蛍光体層が形成された発光性積層体を製造した。
[Example 17]
An aluminum-containing magnesium oxide fired product is formed on a quartz substrate in the same manner as in Example 15 except that the aluminum-containing magnesium oxide fired material powder produced in Example 3 is used instead of the chlorine-containing magnesium oxide fired powder. A light-emitting laminate having a phosphor layer formed through a wavelength conversion layer made of powder (γ-Al 2 O 3 .MgO) was produced.

[実施例18]
塩素含有酸化マグネシウム焼成物粉末の代わりに、実施例4で製造したリチウム・フッ素含有酸化マグネシウム焼成物粉末を用いたこと以外は実施例15と同様にして、石英基板の上に、リチウム・フッ素含有酸化マグネシウム焼成物粉末(LiF・MgO)からなる波長変換層を介して蛍光体層が形成された発光性積層体を製造した。
[Example 18]
A lithium / fluorine-containing material was formed on a quartz substrate in the same manner as in Example 15 except that the lithium / fluorine-containing magnesium oxide fired material powder produced in Example 4 was used instead of the chlorine-containing magnesium oxide powder. The light emitting laminated body in which the fluorescent substance layer was formed through the wavelength conversion layer which consists of a magnesium oxide baked material powder (LiF * MgO) was manufactured.

[実施例19]
塩素含有酸化マグネシウム焼成物粉末の代わりに、実施例5で製造したナトリウム・フッ素含有酸化マグネシウム焼成物粉末を用いたこと以外は実施例15と同様にして、石英基板の上に、ナトリウム・フッ素含有酸化マグネシウム焼成物粉末(NaF・MgO)からなる波長変換層を介して蛍光体層が形成された発光性積層体を製造した。
[Example 19]
Instead of the chlorine-containing magnesium oxide calcined powder, the sodium / fluorine-containing magnesium oxide calcined powder produced in Example 5 was used in the same manner as in Example 15 on the quartz substrate. The light emitting laminated body in which the fluorescent substance layer was formed through the wavelength conversion layer which consists of a magnesium oxide baked material powder (NaF * MgO) was manufactured.

[実施例20]
塩素含有酸化マグネシウム焼成物粉末の代わりに、実施例6で製造したカリウム・フッ素含有酸化マグネシウム焼成物粉末を用いたこと以外は実施例15と同様にして、石英基板の上に、カリウム・フッ素含有酸化マグネシウム焼成物粉末(KF・MgO)からなる波長変換層を介して蛍光体層が形成された発光性積層体を製造した。
[Example 20]
A potassium / fluorine-containing material was formed on a quartz substrate in the same manner as in Example 15 except that the potassium / fluorine-containing magnesium oxide fired powder produced in Example 6 was used instead of the chlorine-containing magnesium oxide powder. A light-emitting laminate having a phosphor layer formed through a wavelength conversion layer made of magnesium oxide fired powder (KF · MgO) was produced.

[実施例21]
塩素含有酸化マグネシウム焼成物粉末の代わりに、実施例7で製造したカルシウム・フッ素含有酸化マグネシウム焼成物粉末を用いたこと以外は実施例15と同様にして、石英基板の上に、カルシウム・フッ素含有酸化マグネシウム焼成物粉末(CaF2・MgO)からなる波長変換層を介して蛍光体層が形成された発光性積層体を製造した。
[Example 21]
A calcium / fluorine-containing material was formed on a quartz substrate in the same manner as in Example 15 except that the calcium / fluorine-containing magnesium oxide fired powder produced in Example 7 was used instead of the chlorine-containing magnesium oxide fired powder. was prepared phosphor layer is formed through the wavelength conversion layer made of magnesium calcined powder oxide (CaF 2 · MgO) luminescent laminate.

[実施例22]
塩素含有酸化マグネシウム焼成物粉末の代わりに、実施例8で製造したバリウム・フッ素含有酸化マグネシウム焼成物粉末を用いたこと以外は実施例15と同様にして、石英基板の上に、バリウム・フッ素含有酸化マグネシウム焼成物粉末(BaF2・MgO)からなる波長変換層を介して蛍光体層が形成された発光性積層体を製造した。
[Example 22]
A barium / fluorine-containing material was formed on a quartz substrate in the same manner as in Example 15 except that the barium / fluorine-containing magnesium oxide fired material powder produced in Example 8 was used instead of the chlorine-containing magnesium oxide fired material powder. was prepared phosphor layer is formed through the wavelength conversion layer made of magnesium calcined powder oxide (BaF 2 · MgO) luminescent laminate.

[実施例23]
塩素含有酸化マグネシウム焼成物粉末の代わりに、実施例9で製造したアルミニウム・フッ素含有酸化マグネシウム焼成物粉末を用いたこと以外は実施例15と同様にして、石英基板の上に、アルミニウム・フッ素含有酸化マグネシウム焼成物粉末(AlF3・MgO)からなる波長変換層を介して蛍光体層が形成された発光性積層体を製造した。
[Example 23]
Instead of the chlorine-containing magnesium oxide fired powder, the aluminum / fluorine-containing magnesium oxide fired powder produced in Example 9 was used in the same manner as in Example 15 on the quartz substrate. was prepared phosphor layer is formed through the wavelength conversion layer made of magnesium calcined powder oxide (AlF 3 · MgO) luminescent laminate.

[実施例24]
塩素含有酸化マグネシウム焼成物粉末の代わりに、実施例10で製造した亜鉛・フッ素含有酸化マグネシウム焼成物粉末を用いたこと以外は実施例15と同様にして、石英基板の上に、亜鉛・フッ素含有酸化マグネシウム焼成物粉末(ZnF2・MgO)からなる波長変換層を介して蛍光体層が形成された発光性積層体を製造した。
[Example 24]
A zinc / fluorine-containing material was formed on a quartz substrate in the same manner as in Example 15 except that the zinc / fluorine-containing magnesium oxide fired powder produced in Example 10 was used instead of the chlorine-containing magnesium oxide fired powder. A light-emitting laminate having a phosphor layer formed through a wavelength conversion layer made of a magnesium oxide fired powder (ZnF 2 .MgO) was produced.

[実施例25]
塩素含有酸化マグネシウム焼成物粉末の代わりに、実施例11で製造したスズ・フッ素含有酸化マグネシウム焼成物粉末を用いたこと以外は実施例15と同様にして、石英基板の上に、スズ・フッ素含有酸化マグネシウム焼成物粉末(SnF2・MgO)からなる波長変換層を介して蛍光体層が形成された発光性積層体を製造した。
[Example 25]
A tin / fluorine-containing material was formed on a quartz substrate in the same manner as in Example 15 except that the tin / fluorine-containing magnesium oxide fired powder produced in Example 11 was used instead of the chlorine-containing magnesium oxide fired powder. was prepared phosphor layer is formed through the wavelength conversion layer made of magnesium calcined powder oxide (SnF 2 · MgO) luminescent laminate.

[実施例26]
塩素含有酸化マグネシウム焼成物粉末の代わりに、実施例12で製造したセリウム・フッ素含有酸化マグネシウム焼成物粉末を用いたこと以外は実施例15と同様にして、石英基板の上に、セリウム・フッ素含有酸化マグネシウム焼成物粉末(CeF3・MgO)からなる波長変換層を介して蛍光体層が形成された発光性積層体を製造した。
[Example 26]
A cerium / fluorine-containing material was formed on a quartz substrate in the same manner as in Example 15 except that the cerium / fluorine-containing magnesium oxide fired powder produced in Example 12 was used instead of the chlorine-containing magnesium oxide fired material powder. was prepared phosphor layer is formed through the wavelength conversion layer made of magnesium calcined powder oxide (CeF 3 · MgO) luminescent laminate.

[実施例27]
塩素含有酸化マグネシウム焼成物粉末の代わりに、実施例13で製造したイットリウム・フッ素含有酸化マグネシウム焼成物粉末を用いたこと以外は実施例15と同様にして、石英基板の上に、イットリウム・フッ素含有酸化マグネシウム焼成物粉末(YF3・MgO)からなる波長変換層を介して蛍光体層が形成された発光性積層体を製造した。
[Example 27]
A yttrium / fluorine-containing material was formed on a quartz substrate in the same manner as in Example 15 except that the yttrium / fluorine-containing magnesium oxide powder produced in Example 13 was used instead of the chlorine-containing magnesium oxide powder. A light-emitting laminate in which a phosphor layer was formed through a wavelength conversion layer made of magnesium oxide fired powder (YF 3 .MgO) was produced.

[実施例28]
塩素含有酸化マグネシウム焼成物粉末の代わりに、実施例14で製造したガドリニウム・フッ素含有酸化マグネシウム焼成物粉末を用いたこと以外は実施例15と同様にして、石英基板の上に、ガドリニウム・フッ素含有酸化マグネシウム焼成物粉末(GdF3・MgO)からなる波長変換層を介して蛍光体層が形成された発光性積層体を製造した。
[Example 28]
A gadolinium / fluorine-containing material was formed on a quartz substrate in the same manner as in Example 15 except that the gadolinium / fluorine-containing magnesium oxide fired powder produced in Example 14 was used instead of the chlorine-containing magnesium oxide fired powder. A light-emitting laminate having a phosphor layer formed through a wavelength conversion layer made of magnesium oxide fired powder (GdF 3 .MgO) was produced.

[比較例2]
石英基板の上に、塩素含有酸化マグネシウム焼成物粉末からなる波長変換層を形成しなかったこと以外は実施例15と同様にして、石英基板の上に、厚さ7μmのCa0.5Sr0.5MgSi26:Eu2+青色発光蛍光体層が形成された発光性積層体を製造した。
[Comparative Example 2]
A Ca 0.5 Sr 0.5 MgSi 2 having a thickness of 7 μm was formed on the quartz substrate in the same manner as in Example 15 except that the wavelength conversion layer made of the chlorine-containing fired magnesium oxide powder was not formed on the quartz substrate. A light emitting laminate in which an O 6 : Eu 2+ blue light emitting phosphor layer was formed was manufactured.

[発光性積層体の評価]
実施例15〜28及び比較例2にて製造した発光性積層体の蛍光体層の上から、波長146nmと波長172nmの紫外光を照射して、積層体から放出される可視光の発光スペクトルを測定した。得られた発光スペクトルの最大ピーク値を最大発光輝度として表2に示す。
[Evaluation of luminous laminate]
From the phosphor layer of the light emitting laminate manufactured in Examples 15 to 28 and Comparative Example 2, ultraviolet light having a wavelength of 146 nm and a wavelength of 172 nm is irradiated to obtain an emission spectrum of visible light emitted from the laminate. It was measured. Table 2 shows the maximum peak value of the obtained emission spectrum as the maximum emission luminance.

表2(蛍光体層:Ca0.5Sr0.5MgSi26:Eu2+青色発光蛍光体層)────────────────────────────────────────
最大発光輝度
──────────────────
波長変換層の材料 波長146nm 波長172nm
────────────────────────────────────────
実施例15 MgCl2・MgO 206 259
実施例16 ZnO・MgO 220 250
実施例17 γ−Al23・MgO 218 237
実施例18 LiF・MgO 229 244
実施例19 NaF・MgO 224 245
実施例20 KF・MgO 206 236
実施例21 CaF2・MgO 227 241
実施例22 BaF2・MgO 226 241
実施例23 AlF3・MgO 228 259
実施例24 ZnF2・MgO 204 245
実施例25 SnF2・MgO 196 232
実施例26 CeF3・MgO 214 240
実施例27 YF3・MgO 218 233
実施例28 GdF3・MgO 230 245
────────────────────────────────────────
比較例2 なし 100 100
────────────────────────────────────────注)最大発光輝度は、比較例2の値を100とした相対値。
Table 2 (phosphor layer: Ca 0.5 Sr 0.5 MgSi 2 O 6 : Eu 2+ blue light emitting phosphor layer) ───────────────────────── ───────────────
Maximum luminance
──────────────────
Material of wavelength conversion layer Wavelength 146nm Wavelength 172nm
────────────────────────────────────────
Example 15 MgCl 2 .MgO 206 259
Example 16 ZnO.MgO 220 250
Example 17 γ-Al 2 O 3 .MgO 218 237
Example 18 LiF · MgO 229 244
Example 19 NaF · MgO 224 245
Example 20 KF · MgO 206 236
Example 21 CaF 2 .MgO 227 241
Example 22 BaF 2 .MgO 226 241
Example 23 AlF 3 .MgO 228 259
Example 24 ZnF 2 .MgO 204 245
Example 25 SnF 2 .MgO 196 232
Example 26 CeF 3 .MgO 214 240
Example 27 YF 3 .MgO 218 233
Example 28 GdF 3 .MgO 230 245
────────────────────────────────────────
Comparative Example 2 None 100 100
──────────────────────────────────────── Note) The maximum emission brightness is the value of Comparative Example 2 The relative value with the value of 100 as 100.

[実施例29]
CaMgSi26:Eu2+青色発光蛍光体粉末の代わりに、BaMgAl1017:Eu2+青色発光蛍光体粉末を用いたこと以外は実施例1と同様にして、石英基板の上に、塩素含有酸化マグネシウム焼成物粉末(MgCl2・MgO)からなる厚さ3μmの波長変換層を介して、厚さ7μmのBaMgAl1017:Eu2+青色発光蛍光体層が形成された発光性積層体を製造した。
[Example 29]
In the same manner as in Example 1 except that BaMgAl 10 O 17 : Eu 2+ blue light-emitting phosphor powder was used instead of CaMgSi 2 O 6 : Eu 2+ blue light-emitting phosphor powder, A light-emitting laminate in which a BaMgAl 10 O 17 : Eu 2+ blue light-emitting phosphor layer having a thickness of 7 μm is formed through a wavelength conversion layer having a thickness of 3 μm, which is made of a calcined magnesium oxide powder (MgCl 2 · MgO) The body was manufactured.

[実施例30]
塩素含有酸化マグネシウム焼成物粉末の代わりに、実施例2で製造した亜鉛含有酸化マグネシウム焼成物粉末を用いたこと以外は実施例29と同様にして、石英基板の上に、亜鉛含有酸化マグネシウム焼成物粉末(ZnO・MgO)からなる波長変換層を介して蛍光体層が形成された発光性積層体を製造した。
[Example 30]
A zinc-containing magnesium oxide fired product is formed on a quartz substrate in the same manner as in Example 29 except that the zinc-containing magnesium oxide fired powder produced in Example 2 is used instead of the chlorine-containing magnesium oxide fired powder. A light-emitting laminate having a phosphor layer formed through a wavelength conversion layer made of powder (ZnO.MgO) was produced.

[実施例31]
塩素含有酸化マグネシウム焼成物粉末の代わりに、実施例3で製造したアルミニウム含有酸化マグネシウム焼成物粉末を用いたこと以外は実施例29と同様にして、石英基板の上に、アルミニウム含有酸化マグネシウム焼成物粉末(γ−Al23・MgO)からなる波長変換層を介して蛍光体層が形成された発光性積層体を製造した。
[Example 31]
An aluminum-containing magnesium oxide fired product is formed on a quartz substrate in the same manner as in Example 29 except that the aluminum-containing magnesium oxide fired powder produced in Example 3 is used instead of the chlorine-containing magnesium oxide fired powder. A light-emitting laminate having a phosphor layer formed through a wavelength conversion layer made of powder (γ-Al 2 O 3 .MgO) was produced.

[実施例32]
塩素含有酸化マグネシウム焼成物粉末の代わりに、実施例4で製造したリチウム・フッ素含有酸化マグネシウム焼成物粉末を用いたこと以外は実施例29と同様にして、石英基板の上に、リチウム・フッ素含有酸化マグネシウム焼成物粉末(LiF・MgO)からなる波長変換層を介して蛍光体層が形成された発光性積層体を製造した。
[Example 32]
A lithium / fluorine-containing material was formed on the quartz substrate in the same manner as in Example 29 except that the lithium / fluorine-containing magnesium oxide fired material powder produced in Example 4 was used instead of the chlorine-containing magnesium oxide powder. The light emitting laminated body in which the fluorescent substance layer was formed through the wavelength conversion layer which consists of a magnesium oxide baked material powder (LiF * MgO) was manufactured.

[実施例33]
塩素含有酸化マグネシウム焼成物粉末の代わりに、実施例5で製造したナトリウム・フッ素含有酸化マグネシウム焼成物粉末を用いたこと以外は実施例29と同様にして、石英基板の上に、ナトリウム・フッ素含有酸化マグネシウム焼成物粉末(NaF・MgO)からなる波長変換層を介して蛍光体層が形成された発光性積層体を製造した。
[Example 33]
In place of the chlorine-containing magnesium oxide fired powder, the sodium / fluorine-containing magnesium oxide fired powder produced in Example 5 was used in the same manner as in Example 29 on the quartz substrate. The light emitting laminated body in which the fluorescent substance layer was formed through the wavelength conversion layer which consists of a magnesium oxide baked material powder (NaF * MgO) was manufactured.

[実施例34]
塩素含有酸化マグネシウム焼成物粉末の代わりに、実施例6で製造したカリウム・フッ素含有酸化マグネシウム焼成物粉末を用いたこと以外は実施例29と同様にして、石英基板の上に、カリウム・フッ素含有酸化マグネシウム焼成物粉末(KF・MgO)からなる波長変換層を介して蛍光体層が形成された発光性積層体を製造した。
[Example 34]
In place of the chlorine-containing magnesium oxide fired powder, the potassium / fluorine-containing powder was formed on the quartz substrate in the same manner as in Example 29 except that the potassium / fluorine-containing magnesium oxide fired powder produced in Example 6 was used. A light-emitting laminate having a phosphor layer formed through a wavelength conversion layer made of magnesium oxide fired powder (KF · MgO) was produced.

[実施例35]
塩素含有酸化マグネシウム焼成物粉末の代わりに、実施例7で製造したカルシウム・フッ素含有酸化マグネシウム焼成物粉末を用いたこと以外は実施例29と同様にして、石英基板の上に、カルシウム・フッ素含有酸化マグネシウム焼成物粉末(CaF2・MgO)からなる波長変換層を介して蛍光体層が形成された発光性積層体を製造した。
[Example 35]
A calcium / fluorine-containing material was formed on a quartz substrate in the same manner as in Example 29 except that the calcium / fluorine-containing magnesium oxide fired powder produced in Example 7 was used instead of the chlorine-containing magnesium oxide fired powder. was prepared phosphor layer is formed through the wavelength conversion layer made of magnesium calcined powder oxide (CaF 2 · MgO) luminescent laminate.

[実施例36]
塩素含有酸化マグネシウム焼成物粉末の代わりに、実施例8で製造したバリウム・フッ素含有酸化マグネシウム焼成物粉末を用いたこと以外は実施例29と同様にして、石英基板の上に、バリウム・フッ素含有酸化マグネシウム焼成物粉末(BaF2・MgO)からなる波長変換層を介して蛍光体層が形成された発光性積層体を製造した。
[Example 36]
A barium / fluorine-containing material was formed on a quartz substrate in the same manner as in Example 29 except that the barium / fluorine-containing magnesium oxide fired material powder produced in Example 8 was used instead of the chlorine-containing magnesium oxide powder. was prepared phosphor layer is formed through the wavelength conversion layer made of magnesium calcined powder oxide (BaF 2 · MgO) luminescent laminate.

[実施例37]
塩素含有酸化マグネシウム焼成物粉末の代わりに、実施例9で製造したアルミニウム・フッ素含有酸化マグネシウム焼成物粉末を用いたこと以外は実施例29と同様にして、石英基板の上に、アルミニウム・フッ素含有酸化マグネシウム焼成物粉末(AlF3・MgO)からなる波長変換層を介して蛍光体層が形成された発光性積層体を製造した。
[Example 37]
Instead of the chlorine-containing magnesium oxide fired powder, the aluminum / fluorine-containing magnesium oxide fired powder produced in Example 9 was used in the same manner as in Example 29 on the quartz substrate. was prepared phosphor layer is formed through the wavelength conversion layer made of magnesium calcined powder oxide (AlF 3 · MgO) luminescent laminate.

[実施例38]
塩素含有酸化マグネシウム焼成物粉末の代わりに、実施例10で製造した亜鉛・フッ素含有酸化マグネシウム焼成物粉末を用いたこと以外は実施例29と同様にして、石英基板の上に、亜鉛・フッ素含有酸化マグネシウム焼成物粉末(ZnF2・MgO)からなる波長変換層を介して蛍光体層が形成された発光性積層体を製造した。
[Example 38]
A zinc / fluorine-containing material was formed on the quartz substrate in the same manner as in Example 29 except that the zinc / fluorine-containing magnesium oxide fired powder produced in Example 10 was used instead of the chlorine-containing magnesium oxide fired powder. A light-emitting laminate having a phosphor layer formed through a wavelength conversion layer made of a magnesium oxide fired powder (ZnF 2 .MgO) was produced.

[実施例39]
塩素含有酸化マグネシウム焼成物粉末の代わりに、実施例11で製造したスズ・フッ素含有酸化マグネシウム焼成物粉末を用いたこと以外は実施例29と同様にして、石英基板の上に、スズ・フッ素含有酸化マグネシウム焼成物粉末(SnF2・MgO)からなる波長変換層を介して蛍光体層が形成された発光性積層体を製造した。
[Example 39]
A tin / fluorine-containing material was formed on a quartz substrate in the same manner as in Example 29 except that the tin / fluorine-containing magnesium oxide fired powder produced in Example 11 was used instead of the chlorine-containing magnesium oxide fired powder. was prepared phosphor layer is formed through the wavelength conversion layer made of magnesium calcined powder oxide (SnF 2 · MgO) luminescent laminate.

[実施例40]
塩素含有酸化マグネシウム焼成物粉末の代わりに、実施例12で製造したセリウム・フッ素含有酸化マグネシウム焼成物粉末を用いたこと以外は実施例29と同様にして、石英基板の上に、セリウム・フッ素含有酸化マグネシウム焼成物粉末(CeF3・MgO)か
らなる波長変換層を介して蛍光体層が形成された発光性積層体を製造した。
[Example 40]
A cerium / fluorine-containing material was formed on a quartz substrate in the same manner as in Example 29 except that the cerium / fluorine-containing magnesium oxide fired powder produced in Example 12 was used instead of the chlorine-containing magnesium oxide fired powder. was prepared phosphor layer is formed through the wavelength conversion layer made of magnesium calcined powder oxide (CeF 3 · MgO) luminescent laminate.

[実施例41]
塩素含有酸化マグネシウム焼成物粉末の代わりに、実施例13で製造したイットリウム・フッ素含有酸化マグネシウム焼成物粉末を用いたこと以外は実施例29と同様にして、石英基板の上に、イットリウム・フッ素含有酸化マグネシウム焼成物粉末(YF3・MgO)からなる波長変換層を介して蛍光体層が形成された発光性積層体を製造した。
[Example 41]
A yttrium / fluorine-containing material was formed on a quartz substrate in the same manner as in Example 29 except that the yttrium / fluorine-containing magnesium oxide fired powder produced in Example 13 was used instead of the chlorine-containing magnesium oxide powder. A light-emitting laminate in which a phosphor layer was formed through a wavelength conversion layer made of magnesium oxide fired powder (YF 3 .MgO) was produced.

[実施例42]
塩素含有酸化マグネシウム焼成物粉末の代わりに、実施例14で製造したガドリニウム・フッ素含有酸化マグネシウム焼成物粉末を用いたこと以外は実施例29と同様にして、石英基板の上に、ガドリニウム・フッ素含有酸化マグネシウム焼成物粉末(GdF3・MgO)からなる波長変換層を介して蛍光体層が形成された発光性積層体を製造した。
[Example 42]
A gadolinium / fluorine-containing material was formed on a quartz substrate in the same manner as in Example 29 except that the gadolinium / fluorine-containing magnesium oxide fired material powder produced in Example 14 was used instead of the chlorine-containing magnesium oxide fired material powder. A light-emitting laminate having a phosphor layer formed through a wavelength conversion layer made of magnesium oxide fired powder (GdF 3 .MgO) was produced.

[比較例3]
石英基板の上に、塩素含有酸化マグネシウム焼成物粉末からなる波長変換層を形成しなかったこと以外は実施例29と同様にして、石英基板の上に、厚さ7μmのBaMgAl1017:Eu2+青色発光蛍光体層が形成された発光性積層体を製造した。
[Comparative Example 3]
A BaMgAl 10 O 17 : Eu having a thickness of 7 μm was formed on the quartz substrate in the same manner as in Example 29 except that the wavelength conversion layer made of the chlorine-containing fired magnesium oxide powder was not formed on the quartz substrate. A light-emitting laminate in which a 2+ blue light-emitting phosphor layer was formed was manufactured.

[発光性積層体の評価]
実施例29〜42及び比較例3にて製造した発光性積層体の蛍光体層の上から、波長146nmと波長172nmの紫外光を照射して、積層体から放出される可視光の発光スペクトルを測定した。得られた発光スペクトルの最大ピーク値を最大発光輝度として表3に示す。
[Evaluation of luminous laminate]
The emission spectrum of visible light emitted from the laminate by irradiating with ultraviolet light having a wavelength of 146 nm and a wavelength of 172 nm from above the phosphor layers of the luminescent laminate produced in Examples 29 to 42 and Comparative Example 3. It was measured. Table 3 shows the maximum peak value of the obtained emission spectrum as the maximum emission luminance.

表3(蛍光体層:BaMgAl1017:Eu2+青色発光蛍光体層)
────────────────────────────────────────
最大発光輝度
──────────────────
波長変換層の材料 波長146nm 波長172nm
────────────────────────────────────────
実施例29 MgCl2・MgO 188 200
実施例30 ZnO・MgO 192 193
実施例31 γ−Al23・MgO 182 194
実施例32 LiF・MgO 203 250
実施例33 NaF・MgO 210 251
実施例34 KF・MgO 218 238
実施例35 CaF2・MgO 220 240
実施例36 BaF2・MgO 223 244
実施例37 AlF3・MgO 224 253
実施例38 ZnF2・MgO 209 240
実施例39 SnF2・MgO 206 240
実施例40 CeF3・MgO 203 238
実施例41 YF3・MgO 205 245
実施例42 GdF3・MgO 227 241
────────────────────────────────────────
比較例3 なし 100 100
────────────────────────────────────────注)最大発光輝度は、比較例3の値を100とした相対値。
Table 3 (phosphor layer: BaMgAl 10 O 17 : Eu 2+ blue light emitting phosphor layer)
────────────────────────────────────────
Maximum luminance
──────────────────
Material of wavelength conversion layer Wavelength 146nm Wavelength 172nm
────────────────────────────────────────
Example 29 MgCl 2 .MgO 188 200
Example 30 ZnO.MgO 192 193
Example 31 γ-Al 2 O 3 .MgO 182 194
Example 32 LiF · MgO 203 250
Example 33 NaF · MgO 210 251
Example 34 KF · MgO 218 238
Example 35 CaF 2 .MgO 220 240
Example 36 BaF 2 .MgO 223 244
Example 37 AlF 3 .MgO 224 253
Example 38 ZnF 2 .MgO 209 240
Example 39 SnF 2 .MgO 206 240
Example 40 CeF 3 .MgO 203 238
Example 41 YF 3 .MgO 205 245
Example 42 GdF 3 .MgO 227 241
────────────────────────────────────────
Comparative Example 3 None 100 100
──────────────────────────────────────── Note) The maximum light emission brightness is Comparative Example 3. The relative value with the value of 100 as 100.

[実施例43]
CaMgSi26:Eu2+青色発光蛍光体粉末の代わりに、Zn2SiO4:Mn2+緑色発光蛍光体粉末を用いたこと以外は実施例1と同様にして、石英基板の上に、塩素含有酸化マグネシウム焼成物粉末(MgCl2・MgO)からなる厚さ3μmの波長変換層を介
して、厚さ7μmのZn2SiO4:Mn2+緑色発光蛍光体層が形成された発光性積層体を製造した。
[Example 43]
In the same manner as in Example 1 except that Zn 2 SiO 4 : Mn 2+ green light-emitting phosphor powder was used instead of CaMgSi 2 O 6 : Eu 2+ blue light-emitting phosphor powder, Luminescent laminate in which a 7 μm thick Zn 2 SiO 4 : Mn 2+ green light-emitting phosphor layer is formed through a wavelength conversion layer having a thickness of 3 μm and made of chlorine-containing magnesium oxide fired powder (MgCl 2 · MgO) The body was manufactured.

[実施例44]
塩素含有酸化マグネシウム焼成物粉末の代わりに、実施例2で製造した亜鉛含有酸化マグネシウム焼成物粉末を用いたこと以外は実施例43と同様にして、石英基板の上に、亜鉛含有酸化マグネシウム焼成物粉末(ZnO・MgO)からなる波長変換層を介して蛍光体層が形成された発光性積層体を製造した。
[Example 44]
A zinc-containing magnesium oxide fired product is formed on a quartz substrate in the same manner as in Example 43 except that the zinc-containing magnesium oxide fired product powder produced in Example 2 is used instead of the chlorine-containing magnesium oxide fired product powder. A light-emitting laminate having a phosphor layer formed through a wavelength conversion layer made of powder (ZnO.MgO) was produced.

[実施例45]
塩素含有酸化マグネシウム焼成物粉末の代わりに、実施例3で製造したアルミニウム含有酸化マグネシウム焼成物粉末を用いたこと以外は実施例43と同様にして、石英基板の上に、アルミニウム含有酸化マグネシウム焼成物粉末(γ−Al23・MgO)からなる波長変換層を介して蛍光体層が形成された発光性積層体を製造した。
[Example 45]
An aluminum-containing magnesium oxide fired product is formed on a quartz substrate in the same manner as in Example 43 except that the aluminum-containing magnesium oxide fired powder produced in Example 3 is used instead of the chlorine-containing magnesium oxide fired powder. A light-emitting laminate having a phosphor layer formed through a wavelength conversion layer made of powder (γ-Al 2 O 3 .MgO) was produced.

[実施例46]
塩素含有酸化マグネシウム焼成物粉末の代わりに、実施例4で製造したリチウム・フッ素含有酸化マグネシウム焼成物粉末を用いたこと以外は実施例43と同様にして、石英基板の上に、リチウム・フッ素含有酸化マグネシウム焼成物粉末(LiF・MgO)からなる波長変換層を介して蛍光体層が形成された発光性積層体を製造した。
[Example 46]
A lithium / fluorine-containing material was formed on a quartz substrate in the same manner as in Example 43 except that the lithium / fluorine-containing magnesium oxide fired material powder produced in Example 4 was used instead of the chlorine-containing magnesium oxide powder. The light emitting laminated body in which the fluorescent substance layer was formed through the wavelength conversion layer which consists of a magnesium oxide baked material powder (LiF * MgO) was manufactured.

[実施例47]
塩素含有酸化マグネシウム焼成物粉末の代わりに、実施例5で製造したナトリウム・フッ素含有酸化マグネシウム焼成物粉末を用いたこと以外は実施例43と同様にして、石英基板の上に、ナトリウム・フッ素含有酸化マグネシウム焼成物粉末(NaF・MgO)からなる波長変換層を介して蛍光体層が形成された発光性積層体を製造した。
[Example 47]
Instead of the chlorine-containing magnesium oxide fired powder, the sodium / fluorine-containing magnesium oxide fired powder produced in Example 5 was used in the same manner as in Example 43 on the quartz substrate. The light emitting laminated body in which the fluorescent substance layer was formed through the wavelength conversion layer which consists of a magnesium oxide baked material powder (NaF * MgO) was manufactured.

[実施例48]
塩素含有酸化マグネシウム焼成物粉末の代わりに、実施例6で製造したカリウム・フッ素含有酸化マグネシウム焼成物粉末を用いたこと以外は実施例43と同様にして、石英基板の上に、カリウム・フッ素含有酸化マグネシウム焼成物粉末(KF・MgO)からなる波長変換層を介して蛍光体層が形成された発光性積層体を製造した。
[Example 48]
In place of the chlorine-containing magnesium oxide fired powder, the potassium / fluorine-containing magnesium oxide fired powder produced in Example 6 was used in the same manner as in Example 43 on the quartz substrate. A light-emitting laminate having a phosphor layer formed through a wavelength conversion layer made of magnesium oxide fired powder (KF · MgO) was produced.

[実施例49]
塩素含有酸化マグネシウム焼成物粉末の代わりに、実施例7で製造したカルシウム・フッ素含有酸化マグネシウム焼成物粉末を用いたこと以外は実施例43と同様にして、石英基板の上に、カルシウム・フッ素含有酸化マグネシウム焼成物粉末(CaF2・MgO)からなる波長変換層を介して蛍光体層が形成された発光性積層体を製造した。
[Example 49]
A calcium / fluorine-containing material was formed on a quartz substrate in the same manner as in Example 43 except that the calcium / fluorine-containing magnesium oxide fired powder produced in Example 7 was used instead of the chlorine-containing magnesium oxide fired powder. was prepared phosphor layer is formed through the wavelength conversion layer made of magnesium calcined powder oxide (CaF 2 · MgO) luminescent laminate.

[実施例50]
塩素含有酸化マグネシウム焼成物粉末の代わりに、実施例8で製造したバリウム・フッ素含有酸化マグネシウム焼成物粉末を用いたこと以外は実施例43と同様にして、石英基板の上に、バリウム・フッ素含有酸化マグネシウム焼成物粉末(BaF2・MgO)からなる波長変換層を介して蛍光体層が形成された発光性積層体を製造した。
[Example 50]
A barium / fluorine-containing material was formed on a quartz substrate in the same manner as in Example 43 except that the barium / fluorine-containing magnesium oxide fired powder produced in Example 8 was used instead of the chlorine-containing magnesium oxide fired material powder. was prepared phosphor layer is formed through the wavelength conversion layer made of magnesium calcined powder oxide (BaF 2 · MgO) luminescent laminate.

[実施例51]
塩素含有酸化マグネシウム焼成物粉末の代わりに、実施例9で製造したアルミニウム・フッ素含有酸化マグネシウム焼成物粉末を用いたこと以外は実施例43と同様にして、石英基板の上に、アルミニウム・フッ素含有酸化マグネシウム焼成物粉末(AlF3・MgO)からなる波長変換層を介して蛍光体層が形成された発光性積層体を製造した。
[Example 51]
In place of the chlorine-containing magnesium oxide calcined powder, the aluminum / fluorine-containing magnesium oxide calcined powder produced in Example 9 was used in the same manner as in Example 43 on the quartz substrate. was prepared phosphor layer is formed through the wavelength conversion layer made of magnesium calcined powder oxide (AlF 3 · MgO) luminescent laminate.

[実施例52]
塩素含有酸化マグネシウム焼成物粉末の代わりに、実施例10で製造した亜鉛・フッ素含有酸化マグネシウム焼成物粉末を用いたこと以外は実施例43と同様にして、石英基板の上に、亜鉛・フッ素含有酸化マグネシウム焼成物粉末(ZnF2・MgO)からなる波長変換層を介して蛍光体層が形成された発光性積層体を製造した。
[Example 52]
A zinc / fluorine-containing material was formed on a quartz substrate in the same manner as in Example 43 except that the zinc / fluorine-containing magnesium oxide fired powder produced in Example 10 was used instead of the chlorine-containing magnesium oxide fired powder. A light-emitting laminate having a phosphor layer formed through a wavelength conversion layer made of a magnesium oxide fired powder (ZnF 2 .MgO) was produced.

[実施例53]
塩素含有酸化マグネシウム焼成物粉末の代わりに、実施例11で製造したスズ・フッ素含有酸化マグネシウム焼成物粉末を用いたこと以外は実施例43と同様にして、石英基板の上に、スズ・フッ素含有酸化マグネシウム焼成物粉末(SnF2・MgO)からなる波長変換層を介して蛍光体層が形成された発光性積層体を製造した。
[Example 53]
A tin / fluorine-containing material was formed on a quartz substrate in the same manner as in Example 43 except that the tin / fluorine-containing magnesium oxide fired powder produced in Example 11 was used instead of the chlorine-containing magnesium oxide fired powder. was prepared phosphor layer is formed through the wavelength conversion layer made of magnesium calcined powder oxide (SnF 2 · MgO) luminescent laminate.

[実施例54]
塩素含有酸化マグネシウム焼成物粉末の代わりに、実施例12で製造したセリウム・フッ素含有酸化マグネシウム焼成物粉末を用いたこと以外は実施例43と同様にして、石英基板の上に、セリウム・フッ素含有酸化マグネシウム焼成物粉末(CeF3・MgO)からなる波長変換層を介して蛍光体層が形成された発光性積層体を製造した。
[Example 54]
A cerium / fluorine-containing material was formed on a quartz substrate in the same manner as in Example 43 except that the cerium / fluorine-containing magnesium oxide fired powder produced in Example 12 was used instead of the chlorine-containing magnesium oxide fired powder. was prepared phosphor layer is formed through the wavelength conversion layer made of magnesium calcined powder oxide (CeF 3 · MgO) luminescent laminate.

[実施例55]
塩素含有酸化マグネシウム焼成物粉末の代わりに、実施例13で製造したイットリウム・フッ素含有酸化マグネシウム焼成物粉末を用いたこと以外は実施例43と同様にして、石英基板の上に、イットリウム・フッ素含有酸化マグネシウム焼成物粉末(YF3・MgO)からなる波長変換層を介して蛍光体層が形成された発光性積層体を製造した。
[Example 55]
A yttrium / fluorine-containing material was formed on a quartz substrate in the same manner as in Example 43 except that the yttrium / fluorine-containing magnesium oxide fired material powder produced in Example 13 was used instead of the chlorine-containing magnesium oxide powder. A light-emitting laminate in which a phosphor layer was formed through a wavelength conversion layer made of magnesium oxide fired powder (YF 3 .MgO) was produced.

[実施例56]
塩素含有酸化マグネシウム焼成物粉末の代わりに、実施例14で製造したガドリニウム・フッ素含有酸化マグネシウム焼成物粉末を用いたこと以外は実施例43と同様にして、石英基板の上に、ガドリニウム・フッ素含有酸化マグネシウム焼成物粉末(GdF3・MgO)からなる波長変換層を介して蛍光体層が形成された発光性積層体を製造した。
[Example 56]
A gadolinium / fluorine-containing material was formed on a quartz substrate in the same manner as in Example 43 except that the gadolinium / fluorine-containing magnesium oxide fired powder produced in Example 14 was used instead of the chlorine-containing magnesium oxide fired powder. A light-emitting laminate having a phosphor layer formed through a wavelength conversion layer made of magnesium oxide fired powder (GdF 3 .MgO) was produced.

[比較例4]
石英基板の上に、塩素含有酸化マグネシウム焼成物粉末からなる波長変換層を形成しなかったこと以外は実施例43と同様にして、石英基板の上に、厚さ7μmのZn2SiO4:Mn2+緑色発光蛍光体層が形成された発光性積層体を製造した。
[Comparative Example 4]
A Zn 2 SiO 4 : Mn having a thickness of 7 μm is formed on the quartz substrate in the same manner as in Example 43 except that the wavelength conversion layer made of the chlorine-containing magnesium oxide fired powder is not formed on the quartz substrate. A light-emitting laminate in which a 2+ green light-emitting phosphor layer was formed was manufactured.

[発光性積層体の評価]
実施例43〜56及び比較例4にて製造した発光性積層体の蛍光体層の上から、波長146nmと波長172nmの紫外光を照射して、積層体から放出される可視光の発光スペクトルを測定した。得られた発光スペクトルの最大ピーク値を最大発光輝度として表4に示す。
[Evaluation of luminous laminate]
The emission spectrum of visible light emitted from the laminate by irradiating with ultraviolet light having a wavelength of 146 nm and a wavelength of 172 nm from the phosphor layer of the luminescent laminate produced in Examples 43 to 56 and Comparative Example 4 It was measured. Table 4 shows the maximum peak value of the obtained emission spectrum as the maximum emission luminance.

表4(蛍光体層:Zn2SiO4:Mn2+緑色発光蛍光体層)
────────────────────────────────────────
最大発光輝度
──────────────────
波長変換層の材料 波長146nm 波長172nm
────────────────────────────────────────
実施例43 MgCl2・MgO 184 192
実施例44 ZnO・MgO 179 192
実施例45 γ−Al23・MgO 187 195
実施例46 LiF・MgO 217 258
実施例47 NaF・MgO 215 237
実施例48 KF・MgO 206 238
実施例49 CaF2・MgO 212 243
実施例50 BaF2・MgO 204 239
実施例51 AlF3・MgO 229 259
実施例52 ZnF2・MgO 200 236
実施例53 SnF2・MgO 203 229
実施例54 CeF3・MgO 199 227
実施例55 YF3・MgO 220 237
実施例56 GdF3・MgO 216 247
────────────────────────────────────────
比較例4 なし 100 100
────────────────────────────────────────注)最大発光輝度は、比較例4の値を100とした相対値。
Table 4 (phosphor layer: Zn 2 SiO 4 : Mn 2+ green light emitting phosphor layer)
────────────────────────────────────────
Maximum luminance
──────────────────
Material of wavelength conversion layer Wavelength 146nm Wavelength 172nm
────────────────────────────────────────
Example 43 MgCl 2 .MgO 184 192
Example 44 ZnO.MgO 179 192
Example 45 γ-Al 2 O 3 .MgO 187 195
Example 46 LiF · MgO 217 258
Example 47 NaF · MgO 215 237
Example 48 KF · MgO 206 238
Example 49 CaF 2 .MgO 212 243
Example 50 BaF 2 .MgO 204 239
Example 51 AlF 3 .MgO 229 259
Example 52 ZnF 2 .MgO 200 236
Example 53 SnF 2 .MgO 203 229
Example 54 CeF 3 .MgO 199 227
Example 55 YF 3 .MgO 220 237
Example 56 GdF 3 .MgO 216 247
────────────────────────────────────────
Comparative Example 4 None 100 100
──────────────────────────────────────── Note) The maximum light emission brightness is Comparative Example 4 The relative value with the value of 100 as 100.

[実施例57]
CaMgSi26:Eu2+青色発光蛍光体粉末の代わりに、(Y,Gd)BO3:Eu3+赤色発光蛍光体粉末を用いたこと以外は実施例1と同様にして、石英基板の上に、塩素含有酸化マグネシウム焼成物粉末(MgCl2・MgO)からなる厚さ3μmの波長変換層を介して、厚さ7μmの(Y,Gd)BO3:Eu3+赤色発光蛍光体層が形成された発光性積層体を製造した。
[Example 57]
In the same manner as in Example 1 except that (Y, Gd) BO 3 : Eu 3+ red light emitting phosphor powder was used instead of CaMgSi 2 O 6 : Eu 2+ blue light emitting phosphor powder, On top of this, a 7 μm thick (Y, Gd) BO 3 : Eu 3+ red light emitting phosphor layer is passed through a 3 μm thick wavelength conversion layer made of chlorine-containing sintered magnesium oxide powder (MgCl 2 .MgO). The formed luminescent laminate was manufactured.

[実施例58]
塩素含有酸化マグネシウム焼成物粉末の代わりに、実施例2で製造した亜鉛含有酸化マグネシウム焼成物粉末を用いたこと以外は実施例57と同様にして、石英基板の上に、亜鉛含有酸化マグネシウム焼成物粉末(ZnO・MgO)からなる波長変換層を介して蛍光体層が形成された発光性積層体を製造した。
[Example 58]
A zinc-containing magnesium oxide fired product is formed on a quartz substrate in the same manner as in Example 57 except that the zinc-containing magnesium oxide fired powder produced in Example 2 is used instead of the chlorine-containing magnesium oxide fired powder. A light-emitting laminate having a phosphor layer formed through a wavelength conversion layer made of powder (ZnO.MgO) was produced.

[実施例59]
塩素含有酸化マグネシウム焼成物粉末の代わりに、実施例3で製造したアルミニウム含有酸化マグネシウム焼成物粉末を用いたこと以外は実施例57と同様にして、石英基板の上に、アルミニウム含有酸化マグネシウム焼成物粉末(γ−Al23・MgO)からなる波長変換層を介して蛍光体層が形成された発光性積層体を製造した。
[Example 59]
An aluminum-containing magnesium oxide fired product is formed on a quartz substrate in the same manner as in Example 57 except that the aluminum-containing magnesium oxide fired powder produced in Example 3 is used instead of the chlorine-containing magnesium oxide fired powder. A light-emitting laminate having a phosphor layer formed through a wavelength conversion layer made of powder (γ-Al 2 O 3 .MgO) was produced.

[実施例60]
塩素含有酸化マグネシウム焼成物粉末の代わりに、実施例4で製造したリチウム・フッ素含有酸化マグネシウム焼成物粉末を用いたこと以外は実施例57と同様にして、石英基板の上に、リチウム・フッ素含有酸化マグネシウム焼成物粉末(LiF・MgO)からなる波長変換層を介して蛍光体層が形成された発光性積層体を製造した。
[Example 60]
A lithium / fluorine-containing material was formed on a quartz substrate in the same manner as in Example 57 except that the lithium / fluorine-containing magnesium oxide fired material powder produced in Example 4 was used instead of the chlorine-containing magnesium oxide fired material powder. The light emitting laminated body in which the fluorescent substance layer was formed through the wavelength conversion layer which consists of a magnesium oxide baked material powder (LiF * MgO) was manufactured.

[実施例61]
塩素含有酸化マグネシウム焼成物粉末の代わりに、実施例5で製造したナトリウム・フッ素含有酸化マグネシウム焼成物粉末を用いたこと以外は実施例57と同様にして、石英基板の上に、ナトリウム・フッ素含有酸化マグネシウム焼成物粉末(NaF・MgO)からなる波長変換層を介して蛍光体層が形成された発光性積層体を製造した。
[Example 61]
A sodium / fluorine-containing material was formed on a quartz substrate in the same manner as in Example 57 except that the sodium / fluorine-containing magnesium oxide fired material powder produced in Example 5 was used instead of the chlorine-containing magnesium oxide fired material powder. The light emitting laminated body in which the fluorescent substance layer was formed through the wavelength conversion layer which consists of a magnesium oxide baked material powder (NaF * MgO) was manufactured.

[実施例62]
塩素含有酸化マグネシウム焼成物粉末の代わりに、実施例6で製造したカリウム・フッ素含有酸化マグネシウム焼成物粉末を用いたこと以外は実施例57と同様にして、石英基板の上に、カリウム・フッ素含有酸化マグネシウム焼成物粉末(KF・MgO)からなる波長変換層を介して蛍光体層が形成された発光性積層体を製造した。
[Example 62]
In place of the chlorine-containing magnesium oxide calcined powder, the potassium / fluorine-containing magnesium oxide calcined powder produced in Example 6 was used in the same manner as in Example 57 except that potassium / fluorine-containing A light-emitting laminate having a phosphor layer formed through a wavelength conversion layer made of magnesium oxide fired powder (KF · MgO) was produced.

[実施例63]
塩素含有酸化マグネシウム焼成物粉末の代わりに、実施例7で製造したカルシウム・フッ素含有酸化マグネシウム焼成物粉末を用いたこと以外は実施例57と同様にして、石英基板の上に、カルシウム・フッ素含有酸化マグネシウム焼成物粉末(CaF2・MgO)からなる波長変換層を介して蛍光体層が形成された発光性積層体を製造した。
[Example 63]
A calcium / fluorine-containing material was formed on a quartz substrate in the same manner as in Example 57 except that the calcium / fluorine-containing magnesium oxide fired powder produced in Example 7 was used instead of the chlorine-containing magnesium oxide fired powder. was prepared phosphor layer is formed through the wavelength conversion layer made of magnesium calcined powder oxide (CaF 2 · MgO) luminescent laminate.

[実施例64]
塩素含有酸化マグネシウム焼成物粉末の代わりに、実施例8で製造したバリウム・フッ素含有酸化マグネシウム焼成物粉末を用いたこと以外は実施例57と同様にして、石英基板の上に、バリウム・フッ素含有酸化マグネシウム焼成物粉末(BaF2・MgO)からなる波長変換層を介して蛍光体層が形成された発光性積層体を製造した。
[Example 64]
A barium / fluorine-containing material was formed on a quartz substrate in the same manner as in Example 57 except that the barium / fluorine-containing magnesium oxide fired material powder produced in Example 8 was used instead of the chlorine-containing magnesium oxide fired material powder. was prepared phosphor layer is formed through the wavelength conversion layer made of magnesium calcined powder oxide (BaF 2 · MgO) luminescent laminate.

[実施例65]
塩素含有酸化マグネシウム焼成物粉末の代わりに、実施例9で製造したアルミニウム・フッ素含有酸化マグネシウム焼成物粉末を用いたこと以外は実施例57と同様にして、石英基板の上に、アルミニウム・フッ素含有酸化マグネシウム焼成物粉末(AlF3・MgO)からなる波長変換層を介して蛍光体層が形成された発光性積層体を製造した。
[Example 65]
In place of the chlorine-containing magnesium oxide fired powder, the aluminum / fluorine-containing magnesium oxide fired powder produced in Example 9 was used, except that the aluminum / fluorine-containing powder was formed on the quartz substrate in the same manner as in Example 57. was prepared phosphor layer is formed through the wavelength conversion layer made of magnesium calcined powder oxide (AlF 3 · MgO) luminescent laminate.

[実施例66]
塩素含有酸化マグネシウム焼成物粉末の代わりに、実施例10で製造した亜鉛・フッ素含有酸化マグネシウム焼成物粉末を用いたこと以外は実施例57と同様にして、石英基板の上に、亜鉛・フッ素含有酸化マグネシウム焼成物粉末(ZnF2・MgO)からなる波長変換層を介して蛍光体層が形成された発光性積層体を製造した。
[Example 66]
A zinc / fluorine-containing material was formed on a quartz substrate in the same manner as in Example 57 except that the zinc / fluorine-containing magnesium oxide fired powder produced in Example 10 was used instead of the chlorine-containing magnesium oxide fired powder. A light-emitting laminate having a phosphor layer formed through a wavelength conversion layer made of a magnesium oxide fired powder (ZnF 2 .MgO) was produced.

[実施例67]
塩素含有酸化マグネシウム焼成物粉末の代わりに、実施例11で製造したスズ・フッ素含有酸化マグネシウム焼成物粉末を用いたこと以外は実施例57と同様にして、石英基板の上に、スズ・フッ素含有酸化マグネシウム焼成物粉末(SnF2・MgO)からなる波長変換層を介して蛍光体層が形成された発光性積層体を製造した。
[Example 67]
A tin / fluorine-containing material was formed on a quartz substrate in the same manner as in Example 57 except that the tin / fluorine-containing magnesium oxide fired powder produced in Example 11 was used instead of the chlorine-containing magnesium oxide fired powder. was prepared phosphor layer is formed through the wavelength conversion layer made of magnesium calcined powder oxide (SnF 2 · MgO) luminescent laminate.

[実施例68]
塩素含有酸化マグネシウム焼成物粉末の代わりに、実施例12で製造したセリウム・フッ素含有酸化マグネシウム焼成物粉末を用いたこと以外は実施例57と同様にして、石英基板の上に、セリウム・フッ素含有酸化マグネシウム焼成物粉末(CeF3・MgO)からなる波長変換層を介して蛍光体層が形成された発光性積層体を製造した。
[Example 68]
A cerium / fluorine-containing material was formed on a quartz substrate in the same manner as in Example 57 except that the cerium / fluorine-containing magnesium oxide fired material powder produced in Example 12 was used instead of the chlorine-containing fired magnesium oxide powder. was prepared phosphor layer is formed through the wavelength conversion layer made of magnesium calcined powder oxide (CeF 3 · MgO) luminescent laminate.

[実施例69]
塩素含有酸化マグネシウム焼成物粉末の代わりに、実施例13で製造したイットリウム・フッ素含有酸化マグネシウム焼成物粉末を用いたこと以外は実施例57と同様にして、石英基板の上に、イットリウム・フッ素含有酸化マグネシウム焼成物粉末(YF3・MgO)からなる波長変換層を介して蛍光体層が形成された発光性積層体を製造した。
[Example 69]
A yttrium / fluorine-containing material was formed on a quartz substrate in the same manner as in Example 57 except that the yttrium / fluorine-containing magnesium oxide fired material powder produced in Example 13 was used instead of the chlorine-containing magnesium oxide fired material powder. A light-emitting laminate in which a phosphor layer was formed through a wavelength conversion layer made of magnesium oxide fired powder (YF 3 .MgO) was produced.

[実施例70]
塩素含有酸化マグネシウム焼成物粉末の代わりに、実施例14で製造したガドリニウム・フッ素含有酸化マグネシウム焼成物粉末を用いたこと以外は実施例57と同様にして、石英基板の上に、ガドリニウム・フッ素含有酸化マグネシウム焼成物粉末(GdF3・MgO)からなる波長変換層を介して蛍光体層が形成された発光性積層体を製造した。
[Example 70]
A gadolinium / fluorine-containing material was formed on a quartz substrate in the same manner as in Example 57 except that the gadolinium / fluorine-containing magnesium oxide fired powder produced in Example 14 was used instead of the chlorine-containing magnesium oxide fired powder. A light-emitting laminate having a phosphor layer formed through a wavelength conversion layer made of magnesium oxide fired powder (GdF 3 .MgO) was produced.

[比較例5]
石英基板の上に、塩素含有酸化マグネシウム焼成物粉末からなる波長変換層を形成しなかったこと以外は実施例57と同様にして、石英基板の上に、厚さ7μmの(Y,Gd)BO3:Eu3+赤色発光蛍光体層が形成された発光性積層体を製造した。
[Comparative Example 5]
A (Y, Gd) BO film having a thickness of 7 μm is formed on the quartz substrate in the same manner as in Example 57 except that the wavelength conversion layer made of the chlorine-containing fired magnesium oxide powder is not formed on the quartz substrate. 3 : A light emitting laminate in which an Eu 3+ red light emitting phosphor layer was formed was manufactured.

[発光性積層体の評価]
実施例57〜70及び比較例5にて製造した発光性積層体の蛍光体層の上から、波長146nmと波長172nmの紫外光を照射して、積層体から放出される可視光の発光スペクトルを測定した。得られた発光スペクトルの最大ピーク値を最大発光輝度として表5に示す。
[Evaluation of luminous laminate]
An emission spectrum of visible light emitted from the laminate by irradiating with ultraviolet light having a wavelength of 146 nm and a wavelength of 172 nm from the phosphor layer of the luminescent laminate produced in Examples 57 to 70 and Comparative Example 5. It was measured. Table 5 shows the maximum peak value of the obtained emission spectrum as the maximum emission luminance.

表5(蛍光体層:(Y,Gd)BO3:Eu3+赤色発光蛍光体層)
────────────────────────────────────────
最大発光輝度
──────────────────
波長変換層の材料 波長146nm 波長172nm
────────────────────────────────────────
実施例57 MgCl2・MgO 210 212
実施例58 ZnO・MgO 211 206
実施例59 γ−Al23・MgO 205 199
実施例60 LiF・MgO 221 249
実施例61 NaF・MgO 227 242
実施例62 KF・MgO 205 240
実施例63 CaF2・MgO 218 242
実施例64 BaF2・MgO 206 235
実施例65 AlF3・MgO 219 258
実施例66 ZnF2・MgO 202 240
実施例67 SnF2・MgO 200 234
実施例68 CeF3・MgO 208 237
実施例69 YF3・MgO 204 232
実施例70 GdF3・MgO 223 250
────────────────────────────────────────
比較例5 なし 100 100
────────────────────────────────────────注)最大発光輝度は、比較例5の値を100とした相対値。
Table 5 (phosphor layer: (Y, Gd) BO 3 : Eu 3 + red light emitting phosphor layer)
────────────────────────────────────────
Maximum luminance
──────────────────
Material of wavelength conversion layer Wavelength 146nm Wavelength 172nm
────────────────────────────────────────
Example 57 MgCl 2 .MgO 210 212
Example 58 ZnO.MgO 211 206
Example 59 γ-Al 2 O 3 .MgO 205 199
Example 60 LiF · MgO 221 249
Example 61 NaF · MgO 227 242
Example 62 KF · MgO 205 240
Example 63 CaF 2 .MgO 218 242
Example 64 BaF 2 .MgO 206 235
Example 65 AlF 3 .MgO 219 258
Example 66 ZnF 2 .MgO 202 240
Example 67 SnF 2 .MgO 200 234
Example 68 CeF 3 .MgO 208 237
Example 69 YF 3 .MgO 204 232
Example 70 GdF 3 .MgO 223 250
────────────────────────────────────────
Comparative Example 5 None 100 100
──────────────────────────────────────── Note) The maximum light emission brightness is Comparative Example 5 The relative value with the value of 100 as 100.

[実施例71]
CaMgSi26:Eu2+青色発光蛍光体粉末の代わりに、Sr3MgSi28:Eu2+青色発光蛍光体粉末を用いたこと以外は実施例1と同様にして、石英基板の上に、塩素含有酸化マグネシウム焼成物粉末(MgCl2・MgO)からなる厚さ3μmの波長変換層を介して、厚さ7μmのSr3MgSi28:Eu2+青色発光蛍光体層が形成された発光性積層体を製造した。
[Example 71]
On the quartz substrate in the same manner as in Example 1 except that Sr 3 MgSi 2 O 8 : Eu 2+ blue light emitting phosphor powder was used instead of CaMgSi 2 O 6 : Eu 2+ blue light emitting phosphor powder. In addition, a 7 μm thick Sr 3 MgSi 2 O 8 : Eu 2+ blue light emitting phosphor layer is formed through a wavelength conversion layer having a thickness of 3 μm made of a calcined magnesium oxide powder (MgCl 2 · MgO). A luminescent laminate was produced.

[実施例72]
塩素含有酸化マグネシウム焼成物粉末の代わりに、実施例2で製造した亜鉛含有酸化マグネシウム焼成物粉末を用いたこと以外は実施例71と同様にして、石英基板の上に、亜鉛含有酸化マグネシウム焼成物粉末(ZnO・MgO)からなる波長変換層を介して蛍光体層が形成された発光性積層体を製造した。
[Example 72]
A zinc-containing magnesium oxide fired product is formed on a quartz substrate in the same manner as in Example 71 except that the zinc-containing magnesium oxide fired powder produced in Example 2 is used instead of the chlorine-containing magnesium oxide fired powder. A light-emitting laminate having a phosphor layer formed through a wavelength conversion layer made of powder (ZnO.MgO) was produced.

[実施例73]
塩素含有酸化マグネシウム焼成物粉末の代わりに、実施例3で製造したアルミニウム含有酸化マグネシウム焼成物粉末を用いたこと以外は実施例71と同様にして、石英基板の上に、アルミニウム含有酸化マグネシウム焼成物粉末(γ−Al23・MgO)からなる波長変換層を介して蛍光体層が形成された発光性積層体を製造した。
[Example 73]
An aluminum-containing magnesium oxide fired product is formed on a quartz substrate in the same manner as in Example 71 except that the aluminum-containing magnesium oxide fired powder produced in Example 3 is used instead of the chlorine-containing magnesium oxide fired powder. A light-emitting laminate having a phosphor layer formed through a wavelength conversion layer made of powder (γ-Al 2 O 3 .MgO) was produced.

[実施例74]
塩素含有酸化マグネシウム焼成物粉末の代わりに、実施例4で製造したリチウム・フッ素含有酸化マグネシウム焼成物粉末を用いたこと以外は実施例71と同様にして、石英基板の上に、リチウム・フッ素含有酸化マグネシウム焼成物粉末(LiF・MgO)からなる波長変換層を介して蛍光体層が形成された発光性積層体を製造した。
[Example 74]
A lithium / fluorine-containing material was formed on a quartz substrate in the same manner as in Example 71 except that the lithium / fluorine-containing magnesium oxide fired material powder produced in Example 4 was used instead of the chlorine-containing magnesium oxide fired material powder. The light emitting laminated body in which the fluorescent substance layer was formed through the wavelength conversion layer which consists of a magnesium oxide baked material powder (LiF * MgO) was manufactured.

[実施例75]
塩素含有酸化マグネシウム焼成物粉末の代わりに、実施例5で製造したナトリウム・フッ素含有酸化マグネシウム焼成物粉末を用いたこと以外は実施例71と同様にして、石英基板の上に、ナトリウム・フッ素含有酸化マグネシウム焼成物粉末(NaF・MgO)からなる波長変換層を介して蛍光体層が形成された発光性積層体を製造した。
[Example 75]
Instead of the chlorine-containing magnesium oxide fired powder, the sodium / fluorine-containing magnesium oxide fired powder produced in Example 5 was used in the same manner as in Example 71 on the quartz substrate. The light emitting laminated body in which the fluorescent substance layer was formed through the wavelength conversion layer which consists of a magnesium oxide baked material powder (NaF * MgO) was manufactured.

[実施例76]
塩素含有酸化マグネシウム焼成物粉末の代わりに、実施例6で製造したカリウム・フッ素含有酸化マグネシウム焼成物粉末を用いたこと以外は実施例71と同様にして、石英基板の上に、カリウム・フッ素含有酸化マグネシウム焼成物粉末(KF・MgO)からなる波長変換層を介して蛍光体層が形成された発光性積層体を製造した。
[Example 76]
In place of the chlorine-containing magnesium oxide fired powder, the potassium / fluorine-containing magnesium oxide fired powder produced in Example 6 was used in the same manner as in Example 71 on the quartz substrate. A light-emitting laminate having a phosphor layer formed through a wavelength conversion layer made of magnesium oxide fired powder (KF · MgO) was produced.

[実施例77]
塩素含有酸化マグネシウム焼成物粉末の代わりに、実施例7で製造したカルシウム・フッ素含有酸化マグネシウム焼成物粉末を用いたこと以外は実施例71と同様にして、石英基板の上に、カルシウム・フッ素含有酸化マグネシウム焼成物粉末(CaF2・MgO)からなる波長変換層を介して蛍光体層が形成された発光性積層体を製造した。
[Example 77]
A calcium / fluorine-containing material was formed on a quartz substrate in the same manner as in Example 71 except that the calcium / fluorine-containing magnesium oxide fired powder produced in Example 7 was used instead of the chlorine-containing magnesium oxide fired powder. was prepared phosphor layer is formed through the wavelength conversion layer made of magnesium calcined powder oxide (CaF 2 · MgO) luminescent laminate.

[実施例78]
塩素含有酸化マグネシウム焼成物粉末の代わりに、実施例8で製造したバリウム・フッ素含有酸化マグネシウム焼成物粉末を用いたこと以外は実施例71と同様にして、石英基板の上に、バリウム・フッ素含有酸化マグネシウム焼成物粉末(BaF2・MgO)からなる波長変換層を介して蛍光体層が形成された発光性積層体を製造した。
[Example 78]
A barium / fluorine-containing material was formed on a quartz substrate in the same manner as in Example 71 except that the barium / fluorine-containing magnesium oxide fired material powder produced in Example 8 was used instead of the chlorine-containing magnesium oxide powder. was prepared phosphor layer is formed through the wavelength conversion layer made of magnesium calcined powder oxide (BaF 2 · MgO) luminescent laminate.

[実施例79]
塩素含有酸化マグネシウム焼成物粉末の代わりに、実施例9で製造したアルミニウム・フッ素含有酸化マグネシウム焼成物粉末を用いたこと以外は実施例71と同様にして、石英基板の上に、アルミニウム・フッ素含有酸化マグネシウム焼成物粉末(AlF3・MgO)からなる波長変換層を介して蛍光体層が形成された発光性積層体を製造した。
[Example 79]
In place of the chlorine-containing magnesium oxide fired powder, the aluminum / fluorine-containing magnesium oxide fired powder produced in Example 9 was used, except that the aluminum / fluorine-containing powder was formed on the quartz substrate in the same manner as in Example 71. was prepared phosphor layer is formed through the wavelength conversion layer made of magnesium calcined powder oxide (AlF 3 · MgO) luminescent laminate.

[実施例80]
塩素含有酸化マグネシウム焼成物粉末の代わりに、実施例10で製造した亜鉛・フッ素含有酸化マグネシウム焼成物粉末を用いたこと以外は実施例71と同様にして、石英基板の上に、亜鉛・フッ素含有酸化マグネシウム焼成物粉末(ZnF2・MgO)からなる波長変換層を介して蛍光体層が形成された発光性積層体を製造した。
[Example 80]
A zinc / fluorine-containing material was formed on a quartz substrate in the same manner as in Example 71 except that the zinc / fluorine-containing magnesium oxide fired powder produced in Example 10 was used instead of the chlorine-containing magnesium oxide fired powder. A light-emitting laminate having a phosphor layer formed through a wavelength conversion layer made of a magnesium oxide fired powder (ZnF 2 .MgO) was produced.

[実施例81]
塩素含有酸化マグネシウム焼成物粉末の代わりに、実施例11で製造したスズ・フッ素含有酸化マグネシウム焼成物粉末を用いたこと以外は実施例71と同様にして、石英基板の上に、スズ・フッ素含有酸化マグネシウム焼成物粉末(SnF2・MgO)からなる波長変換層を介して蛍光体層が形成された発光性積層体を製造した。
[Example 81]
A tin / fluorine-containing material was formed on a quartz substrate in the same manner as in Example 71 except that the tin / fluorine-containing magnesium oxide fired powder produced in Example 11 was used instead of the chlorine-containing magnesium oxide fired powder. was prepared phosphor layer is formed through the wavelength conversion layer made of magnesium calcined powder oxide (SnF 2 · MgO) luminescent laminate.

[実施例82]
塩素含有酸化マグネシウム焼成物粉末の代わりに、実施例12で製造したセリウム・フッ素含有酸化マグネシウム焼成物粉末を用いたこと以外は実施例71と同様にして、石英基板の上に、セリウム・フッ素含有酸化マグネシウム焼成物粉末(CeF3・MgO)からなる波長変換層を介して蛍光体層が形成された発光性積層体を製造した。
[Example 82]
A cerium / fluorine-containing material was formed on a quartz substrate in the same manner as in Example 71 except that the cerium / fluorine-containing magnesium oxide fired powder produced in Example 12 was used instead of the chlorine-containing magnesium oxide fired powder. was prepared phosphor layer is formed through the wavelength conversion layer made of magnesium calcined powder oxide (CeF 3 · MgO) luminescent laminate.

[実施例83]
塩素含有酸化マグネシウム焼成物粉末の代わりに、実施例13で製造したイットリウム・フッ素含有酸化マグネシウム焼成物粉末を用いたこと以外は実施例71と同様にして、石英基板の上に、イットリウム・フッ素含有酸化マグネシウム焼成物粉末(YF3・MgO)からなる波長変換層を介して蛍光体層が形成された発光性積層体を製造した。
[Example 83]
A yttrium / fluorine-containing material was formed on a quartz substrate in the same manner as in Example 71, except that the yttrium / fluorine-containing magnesium oxide fired material powder produced in Example 13 was used instead of the chlorine-containing fired magnesium oxide powder. A light-emitting laminate in which a phosphor layer was formed through a wavelength conversion layer made of magnesium oxide fired powder (YF 3 .MgO) was produced.

[実施例84]
塩素含有酸化マグネシウム焼成物粉末の代わりに、実施例14で製造したガドリニウム・フッ素含有酸化マグネシウム焼成物粉末を用いたこと以外は実施例71と同様にして、石英基板の上に、ガドリニウム・フッ素含有酸化マグネシウム焼成物粉末(GdF3・MgO)からなる波長変換層を介して蛍光体層が形成された発光性積層体を製造した。
[Example 84]
A gadolinium / fluorine-containing material was formed on a quartz substrate in the same manner as in Example 71 except that the gadolinium / fluorine-containing magnesium oxide fired powder produced in Example 14 was used instead of the chlorine-containing magnesium oxide fired powder. A light-emitting laminate having a phosphor layer formed through a wavelength conversion layer made of magnesium oxide fired powder (GdF 3 .MgO) was produced.

[比較例6]
石英基板の上に、塩素含有酸化マグネシウム焼成物粉末からなる波長変換層を形成しなかったこと以外は実施例71と同様にして、石英基板の上に、厚さ7μmのSr3MgSi2O8:Eu2+青色発光蛍光体層が形成された発光性積層体を製造した。
[Comparative Example 6]
A Sr 3 MgSi 2 O 8 : Eu having a thickness of 7 μm was formed on the quartz substrate in the same manner as in Example 71 except that the wavelength conversion layer made of the chlorine-containing fired magnesium oxide powder was not formed on the quartz substrate. A light-emitting laminate in which a 2+ blue light-emitting phosphor layer was formed was manufactured.

[発光性積層体の評価]
実施例71〜84及び比較例6にて製造した発光性積層体の蛍光体層の上から、波長146nmと波長172nmの紫外光を照射して、積層体から放出される可視光の発光スペクトルを測定した。得られた発光スペクトルの最大ピーク値を最大発光輝度として表5に示す。
[Evaluation of luminous laminate]
From the phosphor layer of the light emitting laminate manufactured in Examples 71 to 84 and Comparative Example 6, ultraviolet light having a wavelength of 146 nm and a wavelength of 172 nm is irradiated, and an emission spectrum of visible light emitted from the laminate is obtained. It was measured. Table 5 shows the maximum peak value of the obtained emission spectrum as the maximum emission luminance.

表6(蛍光体層:Sr3MgSi28:Eu2+青色発光蛍光体層)
────────────────────────────────────────
最大発光輝度
──────────────────
波長変換層の材料 波長146nm 波長172nm
────────────────────────────────────────
実施例71 MgCl2・MgO 192 231
実施例72 ZnO・MgO 196 228
実施例73 γ−Al23・MgO 205 232
実施例74 LiF・MgO 223 268
実施例75 NaF・MgO 220 254
実施例76 KF・MgO 225 243
実施例77 CaF2・MgO 228 248
実施例78 BaF2・MgO 231 251
実施例79 AlF3・MgO 222 257
実施例80 ZnF2・MgO 219 236
実施例81 SnF2・MgO 209 228
実施例82 CeF3・MgO 205 225
実施例83 YF3・MgO 211 230
実施例84 GdF3・MgO 216 218
────────────────────────────────────────
比較例6 なし 100 100
────────────────────────────────────────注)最大発光輝度は、比較例6の値を100とした相対値。
Table 6 (phosphor layer: Sr 3 MgSi 2 O 8 : Eu 2+ blue light emitting phosphor layer)
────────────────────────────────────────
Maximum luminance
──────────────────
Material of wavelength conversion layer Wavelength 146nm Wavelength 172nm
────────────────────────────────────────
Example 71 MgCl 2 .MgO 192 231
Example 72 ZnO.MgO 196 228
Example 73 γ-Al 2 O 3 .MgO 205 232
Example 74 LiF.MgO 223 268
Example 75 NaF · MgO 220 254
Example 76 KF · MgO 225 243
Example 77 CaF 2 .MgO 228 248
Example 78 BaF 2 .MgO 231 251
Example 79 AlF 3 .MgO 222 257
Example 80 ZnF 2 .MgO 219 236
Example 81 SnF 2 .MgO 209 228
Example 82 CeF 3 .MgO 205 225
Example 83 YF 3 .MgO 211 230
Example 84 GdF 3 .MgO 216 218
────────────────────────────────────────
Comparative Example 6 None 100 100
──────────────────────────────────────── Note) The maximum light emission brightness is Comparative Example 6 Relative value with the value of 100 as 100.

上記表1〜6に示す結果から明らかなように、本発明に従う波長変換層を介して蛍光体層が形成された発光性積層体は、蛍光体層のみが形成された発光性積層体と比較して、発光輝度が顕著に高くなる。   As is clear from the results shown in Tables 1 to 6, the luminescent laminate in which the phosphor layer is formed through the wavelength conversion layer according to the present invention is compared with the luminescent laminate in which only the phosphor layer is formed. As a result, the emission luminance is remarkably increased.

Claims (8)

基体の上に、Xeガスの放電により生成する紫外光により励起されて230〜260nmの波長範囲にピークを有する紫外光を発光する、下記の(1)〜(4)からなる群より選ばれる少なくとも一種の酸化マグネシウム焼成物粉末を含む波長変換層を介して、230〜260nmの波長範囲にある紫外光に励起されて可視光の発光を示す蛍光体を含む蛍光体層が形成されている発光性積層体:
(1)塩素を0.005〜10質量%の範囲にて含有する塩素含有酸化マグネシウム焼成物粉末;
(2)亜鉛を0.1〜30質量%の範囲にて含有する亜鉛含有酸化マグネシウム焼成物粉末;
(3)γ型酸化アルミニウム粉末と酸化マグネシウム源粉末との粉末混合物を焼成して得られたアルミニウム含有量が2〜38質量%の範囲にあるアルミニウム含有酸化マグネシウム焼成物粉末;
(4)フッ素をマグネシウム100モルに対して0.01〜24モルの範囲の量にて含み、かつアルカリ金属、マグネシウム以外のアルカリ土類金属、希土類金属、アルミニウム、亜鉛及びスズからなる群より選ばれる少なくとも一種の補助金属をマグネシウム100モルに対して0.01〜30モルの範囲の量にて含むフッ素と補助金属を含有する酸化マグネシウム焼成物粉末。
At least selected from the group consisting of the following (1) to (4), which emits ultraviolet light having a peak in the wavelength range of 230 to 260 nm when excited by ultraviolet light generated by discharge of Xe gas on the substrate. A phosphor layer including a phosphor that emits visible light when excited by ultraviolet light in the wavelength range of 230 to 260 nm is formed through a wavelength conversion layer containing a kind of magnesium oxide fired powder. Laminate:
(1) Chlorine-containing magnesium oxide fired powder containing chlorine in a range of 0.005 to 10% by mass;
(2) Zinc-containing magnesium oxide fired powder containing zinc in a range of 0.1 to 30% by mass;
(3) An aluminum-containing magnesium oxide fired powder having an aluminum content in the range of 2 to 38% by mass obtained by firing a powder mixture of γ-type aluminum oxide powder and magnesium oxide source powder;
(4) Fluorine is contained in an amount in the range of 0.01 to 24 mol with respect to 100 mol of magnesium, and selected from the group consisting of alkali metals, alkaline earth metals other than magnesium, rare earth metals, aluminum, zinc and tin. Magnesium oxide calcined powder containing fluorine and an auxiliary metal containing at least one auxiliary metal in an amount in the range of 0.01 to 30 mol with respect to 100 mol of magnesium.
波長変換層の厚みが0.5〜10μmの範囲にある請求項1に記載の発光性積層体。   The luminescent laminate according to claim 1, wherein the wavelength conversion layer has a thickness in the range of 0.5 to 10 μm. 蛍光体層の厚みが0.1〜30μmの範囲にある請求項1に記載の発光性積層体。   The luminescent laminate according to claim 1, wherein the thickness of the phosphor layer is in the range of 0.1 to 30 μm. 蛍光体層が、CaMgSi26:Eu2+、(Ca,Sr)MgSi26:Eu2+、Sr3MgSi28:Eu2+、及びBaMgAl1017:Eu2+からなる群より選ばれる少なくとも一つの基本組成式で表される青色発光蛍光体を含む青色発光蛍光体層である請求項1に記載の発光性積層体。 The phosphor layer is made of CaMgSi 2 O 6 : Eu 2+ , (Ca, Sr) MgSi 2 O 6 : Eu 2+ , Sr 3 MgSi 2 O 8 : Eu 2+ , and BaMgAl 10 O 17 : Eu 2+. The luminescent laminate according to claim 1, wherein the luminescent laminate is a blue-emitting phosphor layer containing a blue-emitting phosphor represented by at least one basic composition formula selected from the group. 蛍光体層が、Zn2SiO4:Mn2+の基本組成式で表される緑色発光蛍光体を含む緑色発光蛍光体層である請求項1に記載の発光性積層体。 The luminescent laminate according to claim 1, wherein the phosphor layer is a green light-emitting phosphor layer containing a green light-emitting phosphor represented by a basic composition formula of Zn 2 SiO 4 : Mn 2+ . 蛍光体層が、(Y,Gd)BO3:Eu3+の基本組成式で表される赤色発光蛍光体を含む赤色発光蛍光体層である請求項1に記載の発光性積層体。 Phosphor layer, (Y, Gd) BO 3 : Eu 3+ emission laminate according to claim 1 which is a red-emitting phosphor layer containing the red light-emitting phosphor represented by the basic formula of. 交流型プラズマディスプレイパネルの背面板である請求項1に記載の発光性積層体。   The luminescent laminate according to claim 1, which is a back plate of an AC type plasma display panel. Xeランプの発光素子である請求項1に記載の発光性積層体。   The light emitting laminate according to claim 1, which is a light emitting element of a Xe lamp.
JP2009200311A 2008-08-29 2009-08-31 Luminescent laminate Expired - Fee Related JP5306946B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009200311A JP5306946B2 (en) 2008-08-29 2009-08-31 Luminescent laminate

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008222254 2008-08-29
JP2008222254 2008-08-29
JP2009200311A JP5306946B2 (en) 2008-08-29 2009-08-31 Luminescent laminate

Publications (2)

Publication Number Publication Date
JP2010080440A true JP2010080440A (en) 2010-04-08
JP5306946B2 JP5306946B2 (en) 2013-10-02

Family

ID=42210604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009200311A Expired - Fee Related JP5306946B2 (en) 2008-08-29 2009-08-31 Luminescent laminate

Country Status (1)

Country Link
JP (1) JP5306946B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016215183A (en) * 2015-05-18 2016-12-22 パナソニックIpマネジメント株式会社 Ultraviolet light irradiation device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11339665A (en) * 1998-05-27 1999-12-10 Mitsubishi Electric Corp Ac plasma display panel, substrate for it and protective film material for it
JP2003100217A (en) * 2001-09-19 2003-04-04 Matsushita Electric Ind Co Ltd Electrode material and plasma display using the same
JP2004363079A (en) * 2002-11-18 2004-12-24 Matsushita Electric Ind Co Ltd Plasma display panel and its manufacturing method
JP2005264272A (en) * 2004-03-19 2005-09-29 Technology Seed Incubation Co Ltd Material of magnesium oxide thin film
JP2006269258A (en) * 2005-03-24 2006-10-05 Matsushita Electric Ind Co Ltd Gas discharge display panel
JP2007317613A (en) * 2006-05-29 2007-12-06 Ube Material Industries Ltd Back plate for ac type plasma display panel
JP2008010403A (en) * 2006-05-29 2008-01-17 Ube Material Industries Ltd Back plate for ac type plasma display panel
JP2008140781A (en) * 2006-12-01 2008-06-19 Samsung Sdi Co Ltd Plasma display panel and its manufacturing method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11339665A (en) * 1998-05-27 1999-12-10 Mitsubishi Electric Corp Ac plasma display panel, substrate for it and protective film material for it
JP2003100217A (en) * 2001-09-19 2003-04-04 Matsushita Electric Ind Co Ltd Electrode material and plasma display using the same
JP2004363079A (en) * 2002-11-18 2004-12-24 Matsushita Electric Ind Co Ltd Plasma display panel and its manufacturing method
JP2005264272A (en) * 2004-03-19 2005-09-29 Technology Seed Incubation Co Ltd Material of magnesium oxide thin film
JP2006269258A (en) * 2005-03-24 2006-10-05 Matsushita Electric Ind Co Ltd Gas discharge display panel
JP2007317613A (en) * 2006-05-29 2007-12-06 Ube Material Industries Ltd Back plate for ac type plasma display panel
JP2008010403A (en) * 2006-05-29 2008-01-17 Ube Material Industries Ltd Back plate for ac type plasma display panel
JP2008140781A (en) * 2006-12-01 2008-06-19 Samsung Sdi Co Ltd Plasma display panel and its manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016215183A (en) * 2015-05-18 2016-12-22 パナソニックIpマネジメント株式会社 Ultraviolet light irradiation device
US9649401B2 (en) 2015-05-18 2017-05-16 Panasonic Intellectual Property Management Co., Ltd. Ultraviolet irradiation apparatus

Also Published As

Publication number Publication date
JP5306946B2 (en) 2013-10-02

Similar Documents

Publication Publication Date Title
JP4741420B2 (en) Back plate for AC type plasma display panel
KR101573104B1 (en) Light-emitting laminate
JP2003096448A (en) Fluorescent substance for vacuum ultraviolet-excited light-emitting element
JP4969529B2 (en) Production material and light emitting material of ultraviolet light emitting layer
JP2009074090A (en) Phosphor for vacuum-ultraviolet ray-excited light-emitting element
JP5002288B2 (en) Phosphor for UV-excited light emitting device
JP4713169B2 (en) Phosphor
JP5306946B2 (en) Luminescent laminate
JP5390305B2 (en) Luminescent laminate
JPWO2008136171A1 (en) Blue phosphor, light emitting device and plasma display panel
JP4325364B2 (en) Method for manufacturing phosphor
JP2003147352A (en) Aluminate phosphor
JP4228628B2 (en) Phosphor for vacuum ultraviolet light-emitting device
JP5484833B2 (en) Phosphor powder composition
JP2004339401A (en) Fluorescent substance for vacuum ultraviolet-excited light emitting element
JP4622135B2 (en) Phosphor for vacuum ultraviolet light-emitting device
JP2004231786A (en) Phosphor and light-emitting device
JP2004026922A (en) Fluorescent substance for vacuum ultraviolet light excitation light emission element
JP2006206619A (en) Phosphor
JP3994775B2 (en) Phosphor for vacuum ultraviolet light-excited light emitting device
JP4147915B2 (en) Blue phosphor for vacuum ultraviolet light-emitting device
JP2003096447A (en) Fluorescent substance for vacuum ultraviolet-excited light-emitting element
JP2005126704A (en) Fluorescent substance
JP4556310B2 (en) Method for producing aluminate phosphor
JP2006104445A (en) Fluorescent substance for vacuum ultraviolet-excited light-emitting diode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130618

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130626

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5306946

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees