JPH11339665A - Ac plasma display panel, substrate for it and protective film material for it - Google Patents

Ac plasma display panel, substrate for it and protective film material for it

Info

Publication number
JPH11339665A
JPH11339665A JP10145831A JP14583198A JPH11339665A JP H11339665 A JPH11339665 A JP H11339665A JP 10145831 A JP10145831 A JP 10145831A JP 14583198 A JP14583198 A JP 14583198A JP H11339665 A JPH11339665 A JP H11339665A
Authority
JP
Japan
Prior art keywords
protective film
display panel
plasma display
oxide
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10145831A
Other languages
Japanese (ja)
Inventor
Keiji Watabe
勁二 渡部
Keiji Fukuyama
敬二 福山
Takuya Ohira
卓也 大平
Takao Sawada
隆夫 沢田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP10145831A priority Critical patent/JPH11339665A/en
Publication of JPH11339665A publication Critical patent/JPH11339665A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/20Constructional details
    • H01J11/34Vessels, containers or parts thereof, e.g. substrates
    • H01J11/40Layers for protecting or enhancing the electron emission, e.g. MgO layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/10AC-PDPs with at least one main electrode being out of contact with the plasma

Abstract

PROBLEM TO BE SOLVED: To enhance a secondary electron discharging rate of a protective film on an AC(alternate current) PDP(plasma display panel), and to suppress and eliminate flicker and failed discharge lighting. SOLUTION: In this substrate for an AC PDP, an X-electrode 10 and a Y- electrode in parallel each other are extendedly formed on the surface of a glass substrate 1, a dielectric layer 2 to entirely cover the surface of these electrodes and the glass substrate 1 is formed, and a protective film 3 to entirely cover the surface of the dielectric layer 2 is formed. The protective film 3 is formed by using a pellet formed by baking it for 30 minutes at 1400 deg.C in the atmosphere as a vapor deposition source in an electron beam vapor deposition method after powder of basic magnesium carbonate penta-hydrate and powder of iron oxide are mixed at a designated rate and pressurized for molding in a die. The protective film 3 is heated at 350 deg.C-500 deg.C in a vacuum or a reductive atmosphere after it is formed. The protective film 3 comprises solution of magnesium oxide and iron oxide, and concentration of the iron oxide is 0.1 mol.% to 20 mol.%.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、交流型のプラズマ
ディスプレイパネル(以下「PDP」と呼ぶ)に関する
ものであり、特に交流型PDPの保護膜の二次電子放出
効果を改善し、放電を安定化する技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an AC type plasma display panel (hereinafter, referred to as "PDP"), and more particularly, to improving the secondary electron emission effect of a protective film of an AC type PDP and stabilizing discharge. Technology to become

【0002】[0002]

【従来の技術】放電発光現象を利用するディスプレイで
あるPDPは、その電極構造から、放電空間に金属電極
が露出している直流形(DC型)と、金属電極が誘電体
で覆われている交流形(AC型)とに大別される。特
に、AC型PDPでは上記誘電体上に、当該誘電体の保
護膜として酸化マグネシウム(MgO)膜が形成され
る。
2. Description of the Related Art Due to its electrode structure, a PDP, which is a display utilizing a discharge light emission phenomenon, has a direct current type (DC type) in which a metal electrode is exposed in a discharge space and a metal electrode covered with a dielectric. It is roughly divided into AC type (AC type). Particularly, in the AC type PDP, a magnesium oxide (MgO) film is formed on the dielectric as a protective film of the dielectric.

【0003】かかるMgO膜(保護膜)は、(a)上記
の誘電体層及び電極がプラズマに直接にさらされて、イ
オン衝撃によるダメージを受けないようにするための保
護膜として機能するほかに、(b)所定の電極間に放電
電圧を印加したときに、ガス放電のための二次電子を放
出する機能(二次電子放出効果)や、(c)壁電荷を蓄
積することによってMgO膜を有さない場合よりも低い
電圧で以て電子を放出する機能、即ち放電電圧を低減さ
せる機能を有する。
The MgO film (protective film) functions as a protective film for preventing (a) the dielectric layer and the electrodes from being directly exposed to plasma and being damaged by ion bombardment. (B) a function of emitting secondary electrons for gas discharge when a discharge voltage is applied between predetermined electrodes (secondary electron emission effect), and (c) an MgO film by accumulating wall charges. Has a function of emitting electrons at a lower voltage than in the case where it does not have, that is, a function of reducing a discharge voltage.

【0004】このMgO保護膜の形成方法としては、一
般的に電子ビーム蒸着法が多用されるが、これは、
(i)MgO膜の成膜方法の中でかかる成膜方法が最も
速い速度で結晶性の良い(結晶の方位が揃い易い)薄膜
を形成できるという理由と、(ii)かかる成膜方法に
より形成されるMgO膜はAC型PDPにおける放電に
対する諸性能(上述の(a)〜(c))に優れるという
理由とによる。
As a method for forming the MgO protective film, an electron beam evaporation method is generally widely used.
(I) The reason that such a film forming method among MgO film forming methods can form a thin film having good crystallinity (crystal orientation is easily aligned) at the fastest speed, and (ii) forming by such a film forming method This is because the MgO film to be used is excellent in various performances (discussed above (a) to (c)) for the discharge in the AC type PDP.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、PDP
の放電ガス中に微量な不純ガス、例えば水分や炭酸ガス
が含まれる場合には、これに起因する放電開始遅れによ
って放電電圧印加時の放電のちらつきや不点灯という問
題が生じる。
SUMMARY OF THE INVENTION However, PDP
When a small amount of impurity gas, for example, moisture or carbon dioxide gas is contained in the discharge gas, the discharge start delay caused by this causes problems such as flickering of the discharge and non-lighting when the discharge voltage is applied.

【0006】かかる問題点を解決するためには、PDP
内の上記不純ガスを出来るだけ除去することは勿論であ
るが、保護膜の二次電子放出率を高めることによっても
上記の問題点を解決することができる。
In order to solve such a problem, a PDP
Of course, the above problem can be solved by increasing the secondary electron emission rate of the protective film as well as removing the above-mentioned impurity gas as much as possible.

【0007】他方、印加電圧のマージンが大きければ、
放電を起こすのに十分な大きさの電圧を安定的に印加す
ることができるので、上記の不純ガスの有無に関わら
ず、ちらつきや不点灯の無い安定した放電を起こすこと
ができる。この印加電圧のマージンの増大化は放電開始
電圧を低減することによって達成できるので、放電開始
電圧の低減化も上記問題点の解決策の一つとなりうる。
On the other hand, if the margin of the applied voltage is large,
Since a voltage large enough to cause a discharge can be stably applied, a stable discharge free of flicker and non-lighting can be generated regardless of the presence or absence of the impurity gas. Since the increase in the margin of the applied voltage can be achieved by reducing the firing voltage, the reduction of the firing voltage can be one of the solutions to the above problem.

【0008】ここでは、二次電子放出の機構の考察を通
じて、二次電子放出率の改善・向上の手段を探求する。
Here, through consideration of the mechanism of secondary electron emission, a means for improving and improving the secondary electron emission rate will be searched.

【0009】従来のAC型PDPの保護膜として多用さ
れる酸化マグネシウム(MgO)膜からの二次電子放出
の機構は、公知のようにオージェ中和機構で説明され
る。即ち、プラズマ中のガスイオンがMgO膜の表面に
近づくと、酸化マグネシウムの価電子帯に存在する電子
が上記イオンの基底状態に落ち、この時に発生するエネ
ルギーを貰った酸化マグネシウムの価電子帯の他の電子
が二次電子としてMgO膜から真空準位に飛び出す。こ
のとき、酸化マグネシウムのエネルギーギャップは約7
eVであるので、二次電子放出のための上記エネルギー
はかかる値以上の大きなエネルギーが必要である。
The mechanism of secondary electron emission from a magnesium oxide (MgO) film, which is frequently used as a protective film of a conventional AC type PDP, is described by an Auger neutralization mechanism as is well known. That is, when the gas ions in the plasma approach the surface of the MgO film, the electrons present in the valence band of magnesium oxide fall to the ground state of the ions, and the valence band of magnesium oxide, which receives the energy generated at this time, Other electrons jump out of the MgO film to a vacuum level as secondary electrons. At this time, the energy gap of magnesium oxide is about 7
Since the energy is eV, the energy for secondary electron emission needs a large energy larger than the above value.

【0010】そこで、上述の二次電子放出機構を踏まえ
て、従来の酸化マグネシウムよりも高い二次電子放出率
を有する保護膜を得るためには、酸化マグネシウム中に
不純物元素を添加して酸化マグネシウムのエネルギーギ
ャップ中に不純物準位を形成することにより、二次電子
放出率を大きくすることが考えられる。
Therefore, in order to obtain a protective film having a higher secondary electron emission rate than conventional magnesium oxide based on the above-mentioned secondary electron emission mechanism, it is necessary to add an impurity element to magnesium oxide to obtain magnesium oxide. It is conceivable to increase the secondary electron emission rate by forming an impurity level in the energy gap of.

【0011】ところで、かかる着眼点に関して、AC型
PDPの保護膜中に不純物元素を添加する技術が特開
昭56−61739号公報又は特開平8−23602
8号公報に開示されている。
With respect to this point of view, a technique of adding an impurity element to a protective film of an AC type PDP is disclosed in Japanese Patent Application Laid-Open No. 56-61739 or Japanese Patent Application Laid-Open No. 8-23602.
No. 8 discloses this.

【0012】しかしながら、先行技術は保護膜である
酸化マグネシウム膜中に二酸化チタン(TiO2)等を
添加することによって酸化マグネシウム膜の吸湿性を改
善するための技術であり、保護膜の二次電子放出率の改
善・向上するための提案や示唆を何ら与えるものではな
い。
However, the prior art is a technique for improving the hygroscopicity of a magnesium oxide film by adding titanium dioxide (TiO2) or the like to the magnesium oxide film as a protective film. It does not give any suggestions or suggestions for improving or improving the rate.

【0013】他方、先行技術には、PDPの放電開始
電圧の低減化及び放電マージン電圧を増大化を図るため
に、保護膜である酸化マグネシウム中のマグネシウムの
一部を鉄(Fe),クロム(Cr)又はバナジウム
(V)で置換するという技術が提案されてはいるが、当
該先行技術では、かかる置換のための具体的手段及び
上記金属の具体的な量の規定については何ら提案されて
いない。
On the other hand, in the prior art, in order to reduce the discharge starting voltage of a PDP and increase the discharge margin voltage, a part of magnesium in magnesium oxide as a protective film is changed to iron (Fe), chromium ( Although a technique of substituting with Cr) or vanadium (V) has been proposed, the prior art does not suggest any specific means for such substitution and no specific amount of the metal. .

【0014】そこで、本発明は、上記問題点を解決すべ
くなされたものであり、高い二次電子放出率を有し、放
電開始電圧を低減化しうる保護膜を得るための、より実
効的な手段及び条件を探求して、これらを提供すること
を第1の目的とする。
Accordingly, the present invention has been made to solve the above problems, and has a more effective method for obtaining a protective film having a high secondary electron emission rate and capable of reducing a discharge starting voltage. A first object is to search for and provide means and conditions.

【0015】そして、上記第1の目的を実現しうる保護
膜を備えることにより、従来の保護膜(MgO膜)を有
するAC型PDPに比べて、放電のちらつきや不点灯が
抑制・除去されたAC型PDP、並びに上記放電の不安
定性を抑制・除去しうるAC型PDP用基板を提供する
ことを第2の目的とする。
By providing a protective film capable of realizing the first object, flickering and non-lighting of discharge are suppressed and eliminated as compared with an AC PDP having a conventional protective film (MgO film). A second object is to provide an AC-type PDP and an AC-type PDP substrate capable of suppressing and removing the instability of the discharge.

【0016】加えて、本発明は、上記第1及び第2の目
的を実現しうるAC型PDP用の保護膜材料を提供する
ことを第3の目的とする。
In addition, a third object of the present invention is to provide a protective film material for an AC type PDP which can realize the first and second objects.

【0017】[0017]

【課題を解決するための手段】(1)請求項1の発明に
係る交流型プラズマディスプレイパネルは、放電空間に
面し、電極を被覆する誘電体上に形成された保護膜を備
える交流型プラズマディスプレイパネルであって、前記
保護膜は、酸化マグネシウムと酸化状態の価数が3価、
4価又は5価のいずれかである金属元素の酸化物とが固
溶して成り、前記金属酸化物の濃度は0.1モル%乃至
20モル%の濃度範囲内であることを特徴とする。
According to a first aspect of the present invention, there is provided an AC type plasma display panel including an AC type plasma display panel facing a discharge space and having a protective film formed on a dielectric covering an electrode. The display panel, wherein the protective film has a valence of three in an oxidation state with magnesium oxide;
It is characterized by being formed as a solid solution with an oxide of a tetravalent or pentavalent metal element, and the concentration of the metal oxide is within a range of 0.1 mol% to 20 mol%. .

【0018】(2)請求項2の発明に係る交流型プラズ
マディスプレイパネルは、請求項1に記載の交流型プラ
ズマディスプレイパネルであって、前記保護膜は、前記
交流型プラズマディスプレイパネルの基板上に形成され
た後に、真空中あるいは還元性雰囲気中で以て350゜
C乃至500゜Cの温度範囲内の温度で少なくとも30
分の加熱処理が施されて成ることを特徴とする。
(2) The AC plasma display panel according to the invention of claim 2 is the AC plasma display panel according to claim 1, wherein the protective film is formed on a substrate of the AC plasma display panel. After formation, at least 30 ° C. in a vacuum or reducing atmosphere at a temperature in the temperature range of 350 ° C. to 500 ° C.
Characterized by being subjected to a heat treatment for one minute.

【0019】(3)請求項3の発明に係る交流型プラズ
マディスプレイパネルは、請求項1又は2に記載の交流
型プラズマディスプレイパネルであって、前記金属酸化
物は、アルミニウム,ジルコニウム,ハフニウム,バナ
ジウム,ニオブ,タンタル,クロム,モリブデン,タン
グステン,マンガン,鉄,コバルト,ニッケル,セリウ
ム,ネオジム,サマリウム,ユウロピウム,ガドリウム
又はジスプロシウムのいずれかの酸化物の内の少なくと
も1種を含むことを特徴とする。
(3) An AC-type plasma display panel according to claim 3 is the AC-type plasma display panel according to claim 1 or 2, wherein the metal oxide is aluminum, zirconium, hafnium, vanadium. , Niobium, tantalum, chromium, molybdenum, tungsten, manganese, iron, cobalt, nickel, cerium, neodymium, samarium, europium, gadolinium, or dysprosium.

【0020】(4)請求項4の発明に係る交流型プラズ
マディスプレイパネル用基板は、基板の表面上に電極、
誘電体及び保護膜が順次に形成された交流型プラズマデ
ィスプレイパネル用基板において、前記保護膜は、酸化
マグネシウムと酸化状態の価数が3価、4価又は5価の
いずれかである金属元素の酸化物とが固溶して成り、前
記金属酸化物の濃度は0.1モル%乃至20モル%の濃
度範囲内であることを特徴とする。
(4) The substrate for an AC type plasma display panel according to the invention of claim 4 comprises an electrode,
In an AC plasma display panel substrate on which a dielectric and a protective film are sequentially formed, the protective film is made of magnesium oxide and a metal element whose valence in an oxidation state is trivalent, tetravalent or pentavalent. The oxide is formed as a solid solution, and the concentration of the metal oxide is within a range of 0.1 mol% to 20 mol%.

【0021】(5)請求項5の発明に係る交流型プラズ
マディスプレイパネル用保護膜材料は、交流型プラズマ
ディスプレイパネルの保護膜材料であって、マグネシウ
ムの化合物と酸化状態の価数が3価、4価又は5価のい
ずれかである金属元素の化合物とが所定の割合で混合さ
れて加圧成型された後に、大気中で1400゜C乃至1
600゜Cの温度範囲内の温度で加熱されて形成される
ことを特徴とする。
(5) The protective film material for an AC type plasma display panel according to the invention of claim 5 is a protective film material for an AC type plasma display panel, wherein the compound of magnesium and the valence of the oxidation state are trivalent, After being mixed with a compound of a tetravalent or pentavalent metal element at a predetermined ratio and press-molded, the mixture is heated at 1400 ° C. to 1
It is formed by heating at a temperature within a temperature range of 600 ° C.

【0022】[0022]

【発明の実施の形態】(実施の形態1) (AC型PDPの構造)図1は、本実施の形態1に係る
AC型PDPの画素の基本単位である1つの発光セル2
0を抽出し、その構造を図示した縦断面図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiment 1 (Structure of AC PDP) FIG. 1 shows one light emitting cell 2 which is a basic unit of a pixel of an AC PDP according to Embodiment 1.
FIG. 2 is a longitudinal sectional view illustrating the structure of the extracted 0.

【0023】図1に示すように、当該PDPにおいて前
面パネル21(表示側)と背面パネル22とが所定の距
離を保って対峙している。前面パネル21を構成するガ
ラス基板1の背面パネル22側の表面上に互いに平行な
X電極10、Y電極(図示せず)から成る一対の電極が
ストライプ状に形成されている。但し、図1では、その
図示する方向の関係から、上記一対の電極のうちのX電
極10のみを図示化している。そして、当該一対の電極
及びガラス基板1の上記表面を全面的に被覆するように
誘電体層2が形成されている。更に、誘電体層2の表面
を全面的に覆うように、本AC型PDPの特徴である保
護膜3が形成されている。この保護膜3は以下のように
して形成される。
As shown in FIG. 1, in the PDP, a front panel 21 (display side) and a rear panel 22 face each other while maintaining a predetermined distance. A pair of electrodes composed of an X electrode 10 and a Y electrode (not shown), which are parallel to each other, are formed in stripes on the surface of the glass substrate 1 constituting the front panel 21 on the side of the rear panel 22. However, in FIG. 1, only the X electrode 10 of the pair of electrodes is illustrated due to the relationship in the illustrated direction. The dielectric layer 2 is formed so as to cover the entire surface of the pair of electrodes and the glass substrate 1. Further, a protective film 3 which is a feature of the present AC PDP is formed so as to cover the entire surface of the dielectric layer 2. This protective film 3 is formed as follows.

【0024】まず、出発原料としての塩基性炭酸マグネ
シウム五水和物((MgCO34Mg(OH)2・5H2
O)の粉末と酸化鉄(Fe23)の粉末とを所定の割合
で混合し、金型に入れて加圧成型した後に、大気中で1
400゜C又はその近傍の温度で30分の焼成をして形
成されるペレットを準備する。なお、上記加熱温度とし
ては、1600゜Cまでならば可能である。そして、こ
のペレットを小塊状に粉砕した後に、電子ビーム蒸着装
置の蒸着ルツボに入れて保護膜の蒸着源として用い、約
7000オングストロームの厚みの保護膜3を成膜す
る。特に、本AC型PDPでは、保護膜3の形成後に後
述の所定の熱処理が施される。
First, basic magnesium carbonate pentahydrate ((MgCO 3 ) 4 Mg (OH) 2 .5H 2 as a starting material
O) powder and iron oxide (Fe 2 O 3 ) powder are mixed at a predetermined ratio, put into a mold, and press-molded.
A pellet formed by baking for 30 minutes at a temperature of 400 ° C. or in the vicinity thereof is prepared. The heating temperature can be up to 1600 ° C. Then, after the pellets are pulverized into small blocks, the pellets are put into a vapor deposition crucible of an electron beam vapor deposition apparatus and used as a vapor deposition source of the protective film, thereby forming a protective film 3 having a thickness of about 7000 Å. In particular, in the present AC PDP, a predetermined heat treatment described later is performed after the formation of the protective film 3.

【0025】このように、本保護膜3は母材としての酸
化マグネシウム中に酸化鉄ないしは鉄元素が含まれてい
る。特に、本実施の形態1に係る保護膜3では、かかる
酸化鉄の濃度は0.1モル%乃至20モル%の濃度範囲
内であると規定しているが、かかる濃度範囲の根拠は後
述の説明において明らかにする。
As described above, the protective film 3 contains iron oxide or iron element in magnesium oxide as a base material. In particular, in the protective film 3 according to the first embodiment, the concentration of the iron oxide is specified to be in the range of 0.1 mol% to 20 mol%, but the basis of the concentration range will be described later. Clarify in the description.

【0026】他方、背面パネル22に関しては、ガラス
基板9の前面パネル21側の表面上にX電極10及びY
電極と直交する方向にアドレス電極8がストライプ状に
形成されており、アドレス電極8とガラス基板9の表面
を全面的に覆うように誘電体からなる下地層7(以下
「誘電体層7」とも呼ぶ)が形成されている。更に、同
図1に示すように、下地層7上にはPDPの発光色を分
離するためのストライプ状の隔壁6がアドレス電極8と
平行に形成されており、発光セル20内の隔壁6の側壁
面及び下地層7の表面を覆うように蛍光体層5が形成さ
れている。フルカラー表示のAC型PDPの場合には、
蛍光体層5として赤色発光用,緑色発光用,青色発光用
の蛍光体が用いられる。
On the other hand, regarding the rear panel 22, the X electrodes 10 and the Y electrodes 10 are formed on the surface of the glass substrate 9 on the front panel 21 side.
An address electrode 8 is formed in a stripe shape in a direction perpendicular to the electrode, and a base layer 7 made of a dielectric (hereinafter, also referred to as a “dielectric layer 7”) covers the entire surface of the address electrode 8 and the glass substrate 9. Call) is formed. Further, as shown in FIG. 1, a stripe-shaped partition 6 for separating the emission color of the PDP is formed on the base layer 7 in parallel with the address electrode 8. Phosphor layer 5 is formed so as to cover the side wall surface and the surface of base layer 7. In case of AC type PDP with full color display,
As the phosphor layer 5, phosphors for red light emission, green light emission, and blue light emission are used.

【0027】そして、前面パネル21と背面パネル22
とは、平行かつ隔壁6の頂上部が前面パネル21の保護
膜3に当接するように配置されて、両パネルの周辺部
(図示せず)において、低融点ガラス等のシール材(図
示せず)により封着されている。これら前面パネル2
1、背面パネル22及びシール材により形成される放電
空間23には、放電ガス4として例えばキセノンとネオ
ンとの混合ガスが封入されている。
The front panel 21 and the rear panel 22
Is arranged so that the top of the partition 6 is in contact with the protective film 3 of the front panel 21 in a parallel manner, and a sealing material (not shown) such as a low-melting glass is provided at the peripheral portions (not shown) of both panels. ). These front panels 2
1, a discharge space 23 formed by the back panel 22 and the sealing material is filled with, for example, a mixed gas of xenon and neon as the discharge gas 4.

【0028】かかるAC型PDPの画像表示は以下のよ
うに駆動して実施される。
The image display of the AC type PDP is performed by driving as follows.

【0029】まず、表示させる発光セル20のアドレス
電極8とX電極10との間にのみ選択的に書き込み放電
パルスを印加して、放電を発生させる。この放電によ
り、当該表示させる発光セル20内の保護膜3上には電
荷(壁電荷)が蓄積される。次に、X電極10とY電極
との間に維持放電パルスを印加すると、壁電荷を有する
発光セル内のX,Y電極間では放電が起こり、この放電
によって発生した紫外線が蛍光体5を励起することによ
り当該発光セル20が発光する。他方、壁電荷が形成さ
れていない発光セル20では、上記の維持放電パルスの
印加時であっても、発光セル20ないしは放電空間23
に印加される電圧が実質的な放電開始電圧を超えないの
で、放電は発生せず、従って発光は生じない。
First, a write discharge pulse is selectively applied only between the address electrode 8 and the X electrode 10 of the light emitting cell 20 to be displayed to generate a discharge. Due to this discharge, charges (wall charges) are accumulated on the protective film 3 in the light emitting cell 20 to be displayed. Next, when a sustain discharge pulse is applied between the X electrode 10 and the Y electrode, a discharge occurs between the X and Y electrodes in the light emitting cell having wall charges, and the ultraviolet light generated by the discharge excites the phosphor 5. Then, the light emitting cell 20 emits light. On the other hand, in the light emitting cell 20 where no wall charge is formed, even when the above-described sustain discharge pulse is applied, the light emitting cell 20 or the discharge space 23 is not used.
Does not exceed the substantial firing voltage, no discharge occurs and therefore no light emission occurs.

【0030】(保護膜材料)本願発明者らは、保護膜3
(図1参照)の材料の選定・評価にあたり、図1に示す
発光セル20の構造を有する評価用AC型PDP(以下
「評価用PDP」とも呼ぶ)を作製した。
(Protective film material)
In selecting and evaluating the material (see FIG. 1), an evaluation AC-type PDP (hereinafter also referred to as “evaluation PDP”) having the structure of the light emitting cell 20 shown in FIG. 1 was produced.

【0031】この評価用PDPの前面パネル21は、縦
8cm,横10cmのガラス基板1の上記表面上に、透
明導電膜から成りそれぞれの幅が300μm,ギャップ
間隔(X電極10とY電極との間隙)が70μmのX電
極10及びY電極(一対の電極)を24対有する。そし
て、このX電極10,Y電極を全面的に被覆する誘電体
層2として約30μmの厚みの低融点ガラスを形成した
後に、誘電体層2上には保護膜3を既述の成膜方法によ
り形成した。特に、本評価用PDPとして、酸化マグネ
シウム中の酸化鉄の濃度(添加量と捉えても良い)を0
モル%〜25モル%の範囲内で変化させた保護膜(後述
の図2中の保護膜材料(a)〜(h)参照)を有するP
DPを8種類作製した。
The front panel 21 of this evaluation PDP is formed of a transparent conductive film on the above-mentioned surface of the glass substrate 1 having a length of 8 cm and a width of 10 cm, each having a width of 300 μm and a gap interval (between the X electrode 10 and the Y electrode). It has 24 pairs of X electrodes 10 and Y electrodes (a pair of electrodes) each having a gap of 70 μm. After forming a low-melting glass having a thickness of about 30 μm as the dielectric layer 2 covering the entire surface of the X electrode 10 and the Y electrode, a protective film 3 is formed on the dielectric layer 2 by the above-described film forming method. Formed. In particular, as the PDP for this evaluation, the concentration of iron oxide in magnesium oxide (which may be regarded as the amount of addition) is 0%.
P having a protective film (see protective film materials (a) to (h) in FIG. 2 described later) changed within a range of 25 mol% to 25 mol%.
Eight DPs were produced.

【0032】他方、背面パネル22は、縦8cm,横1
0cmのガラス基板9上に、銀から成るアドレス電極8
を形成し、その上に下地層(誘電体層)7を形成した。
下地層7上には幅60μm,高さ130μm,ピッチ4
00μmの隔壁6を形成し、蛍光体層5として赤色発光
用,緑色発光用,青色発光用の蛍光体を発光セル20内
の隔壁6の側壁面及び下地層7の表面上に塗り分けた。
On the other hand, the back panel 22 has a length of 8 cm and a width of 1 cm.
Address electrodes 8 made of silver on a glass substrate 9 of 0 cm
Was formed, and an underlayer (dielectric layer) 7 was formed thereon.
On the underlayer 7, a width of 60 μm, a height of 130 μm, and a pitch of 4
A barrier 6 having a thickness of 00 μm was formed, and phosphors for red light emission, green light emission, and blue light emission were separately applied as phosphor layers 5 on the side wall surface of the partition 6 in the light emitting cell 20 and on the surface of the base layer 7.

【0033】そして、前面パネル21と背面パネル22
とをその周辺部で封着し、その内部空間(放電空間2
3)内を排気した後に、5%のキセノンを混合したネオ
ンガスを500Torrで封入した。なお、このパネル
の表示面積は縦3cm,横5cmである。
The front panel 21 and the rear panel 22
Are sealed at the periphery thereof, and the inner space (discharge space 2)
3) After evacuating the inside, neon gas mixed with 5% xenon was sealed at 500 Torr. The display area of this panel is 3 cm long and 5 cm wide.

【0034】さて、図2は、酸化鉄の濃度を変えた保護
膜(a)〜(h)を有する上述の8種類の評価用PDP
について測定した放電開始電圧Vf及び放電維持電圧V
smの結果を示す図である。放電開始電圧Vf及び放電
維持電圧Vsmの測定は、評価用PDPのX電極10,
Y電極間に、周波数5.2kHz,パルス幅64μse
cのパルス電圧を、その電圧値を変化させて印加するこ
とにより行った。また、図2中の放電開始電圧Vf及び
放電維持電圧Vsmの値は全発光セルでの平均値を示
す。なお、保護膜(a)は保護膜(b)〜(h)との比
較のための従来の保護膜なので、以下「従来の保護膜
(a)」とも呼ぶ。
FIG. 2 shows the above-described eight types of evaluation PDPs having protective films (a) to (h) with different concentrations of iron oxide.
Firing voltage Vf and discharge sustaining voltage V measured for
It is a figure showing a result of sm. The measurement of the discharge starting voltage Vf and the discharge sustaining voltage Vsm is performed by using the X electrode 10 of the evaluation PDP,
5.2 kHz frequency, 64 μs pulse width between Y electrodes
The measurement was performed by applying the pulse voltage of c while changing the voltage value. Further, the values of the discharge start voltage Vf and the discharge sustaining voltage Vsm in FIG. 2 indicate average values in all the light emitting cells. Since the protective film (a) is a conventional protective film for comparison with the protective films (b) to (h), it is also referred to as “conventional protective film (a)” below.

【0035】図2に示すように、8種類の評価用PDP
の内で保護膜(c)〜(g)を有する評価用PDPのそ
れぞれは、従来の保護膜(a)を有する評価用PDPと
比較して、放電開始電圧Vfと放電維持電圧Vsmとが
共に低減している。これは、保護膜(c)〜(g)の二
次電子放出率が従来の保護膜(a)よりも改善・向上さ
れた結果によるものである。ここで、かかる効果につい
て説明を加える。
As shown in FIG. 2, eight types of evaluation PDPs
Each of the evaluation PDPs having the protective films (c) to (g) has a lower discharge start voltage Vf and a lower discharge sustaining voltage Vsm as compared with the conventional evaluation PDP having the protective film (a). Has been reduced. This is due to the result that the secondary electron emission rate of the protective films (c) to (g) was improved and improved as compared with the conventional protective film (a). Here, such an effect will be described.

【0036】保護膜(c)〜(g)では、イオン結晶で
ある酸化マグネシウム中のマグネシウムイオンの一部が
鉄イオンに置換される。この鉄イオンの価電子の数はマ
グネシウムのそれよりも多いので、かかる余分の電子は
結晶中を自由に動くことができる。つまり、酸化マグネ
シウム中の鉄イオン(鉄元素)はドナーとして作用し、
酸化マグネシウムのエネルギーギャップ間にドナー準位
を形成する。
In the protective films (c) to (g), part of magnesium ions in magnesium oxide, which is an ionic crystal, is replaced with iron ions. Since the number of valence electrons in this iron ion is greater than that in magnesium, such extra electrons are free to move through the crystal. In other words, iron ions (elements of iron) in magnesium oxide act as donors,
A donor level is formed between energy gaps of magnesium oxide.

【0037】従って、これらの保護膜(c)〜(g)に
おいて、プラズマ中のガスイオンがかかる保護膜の表面
に近づくと、上記のドナー準位に存在する電子あるいは
価電子帯の電子が当該イオンの基底状態に落ち、この時
に発生するエネルギーをドナー準位の(他の)電子が貰
って真空準位に飛び出すことによって、当該保護膜から
の二次電子放出が起こる。このため、本保護膜(c)〜
(g)によれば、従来の保護膜(a)と比較して二次電
子の放出が容易となる、つまり、高い二次電子放出率を
得ることができる。同時に高い二次電子放出率に起因し
て、保護膜(c)〜(g)を有する評価用PDPの上記
の放電開始電圧Vfと放電維持電圧Vsmとが低減され
る。
Therefore, in these protective films (c) to (g), when the gas ions in the plasma approach the surface of the protective film, the electrons existing in the donor level or the electrons in the valence band become the electrons. The ions fall to the ground state, and the energy generated at this time is transferred to the vacuum level by receiving (other) electrons at the donor level, whereby secondary electrons are emitted from the protective film. Therefore, the protective film (c) to
According to (g), emission of secondary electrons becomes easier as compared with the conventional protective film (a), that is, a high secondary electron emission rate can be obtained. At the same time, due to the high secondary electron emission rate, the above-described discharge starting voltage Vf and discharge sustaining voltage Vsm of the evaluation PDP having the protective films (c) to (g) are reduced.

【0038】他方、図2に示すように、酸化鉄の濃度が
0.05モル%である保護膜(b)及び25モル%であ
る保護膜(h)では、放電開始電圧Vf又は放電維持電
圧Vsmの低減が見られない、あるいは小さい。この原
因として、酸化鉄の濃度が0.1モル%よりも低い濃度
範囲の場合には、酸化鉄が酸化マグネシウムの結晶格子
に与える擾乱が小さいので、二次電子放出率の十分な改
善がなされないためであると考えられる。逆に、酸化鉄
の濃度が20モル%を越える濃度範囲の場合には、酸化
マグネシウムの結晶格子のくずれが大きくなり過ぎて、
鉄元素に起因する自由な価電子の動きが阻害されてしま
うので、二次電子放出量が減少するものと考える。
On the other hand, as shown in FIG. 2, in the protective film (b) in which the concentration of iron oxide is 0.05 mol% and the protective film (h) in which the concentration is 25 mol%, the discharge starting voltage Vf or the discharge sustaining voltage Vsm is not reduced or small. The reason for this is that when the concentration of iron oxide is less than 0.1 mol%, the disturbance of the iron oxide on the crystal lattice of magnesium oxide is small, so that the secondary electron emission rate cannot be sufficiently improved. It is thought that it is not done. On the other hand, when the concentration of iron oxide is in a concentration range exceeding 20 mol%, the crystal lattice of magnesium oxide is excessively deformed.
It is considered that the movement of free valence electrons caused by the iron element is hindered, so that the amount of secondary electron emission decreases.

【0039】従って、図2に示す測定結果並びに上述の
考察から、本実施の形態1に係るAC型PDPの保護膜
3(図1参照)として、酸化マグネシウム中の酸化鉄の
濃度は0.1モル%乃至20モル%の濃度範囲内が最適
であるとの結論に達する。
Therefore, from the measurement results shown in FIG. 2 and the above considerations, the concentration of iron oxide in magnesium oxide was 0.1% as the protective film 3 (see FIG. 1) of the AC PDP according to the first embodiment. It is concluded that a concentration in the range of mol% to 20 mol% is optimal.

【0040】更に、保護膜(a)〜(h)の結晶状態を
X線回折法により評価したところ、酸化鉄の濃度が0.
1モル%〜20モル%の濃度範囲にある保護膜(c)〜
(g)では、各保護膜のガラス基板1(図1参照)に平
行な面の結晶配向は(111)面が主であり、且つ、保
護膜中の酸化マグネシウム結晶の格子間隔は酸化鉄の濃
度に依存して変化することが分かった。このとき、酸化
マグネシウム結晶の格子間隔が酸化鉄の濃度に依存して
変化することから、酸化鉄は酸化マグネシウム中に固溶
していることが確認できる。これに対して、酸化マグネ
シウム中に固溶することなく、単に酸化マグネシウム中
に混合された状態の酸化鉄では、上述の効果を得ること
ができない。従って、高い二次電子放出率の達成ないし
は放電開始電圧Vf又は放電維持電圧Vsmの低減のた
めには、酸化マグネシウムの結晶格子のマグネシウムイ
オン(元素)が鉄イオン(元素)で置換されなければな
らず、つまり、酸化マグネシウムと酸化鉄とが固溶して
いる必要がある。
Further, when the crystal states of the protective films (a) to (h) were evaluated by an X-ray diffraction method, it was found that the concentration of iron oxide was 0.1%.
Protective film (c) in a concentration range of 1 mol% to 20 mol%
In (g), the crystal orientation of a plane parallel to the glass substrate 1 (see FIG. 1) of each protective film is mainly a (111) plane, and the lattice spacing of magnesium oxide crystals in the protective film is iron oxide. It was found to change depending on the concentration. At this time, since the lattice spacing of the magnesium oxide crystal changes depending on the iron oxide concentration, it can be confirmed that the iron oxide is dissolved in the magnesium oxide. On the other hand, the above-mentioned effects cannot be obtained with iron oxide simply mixed in magnesium oxide without being dissolved in magnesium oxide. Therefore, in order to achieve a high secondary electron emission rate or reduce the firing voltage Vf or the sustaining voltage Vsm, magnesium ions (elements) in the crystal lattice of magnesium oxide must be replaced with iron ions (elements). That is, it is necessary that magnesium oxide and iron oxide are in a solid solution.

【0041】この点に関して、保護膜3の材料である既
述のペレットは、塩基性炭酸マグネシウム五水和物と酸
化鉄とを加圧成型した後に、大気中で1400゜Cの温
度で焼成されているので、かかるペレットにおいて酸化
マグネシウムと酸化鉄とが予め固溶した状態にある。従
って、このペレットを電子ビーム蒸着法の蒸着源として
用いることにより、膜中の酸化マグネシウムと酸化鉄と
が固溶した状態の保護膜3(図1参照)を形成すること
ができ、しかも、保護膜3中に添加された金属元素によ
る擾乱を均一にすることができる。
In this regard, the above-mentioned pellets, which are the material of the protective film 3, are formed by pressure molding of basic magnesium carbonate pentahydrate and iron oxide, and then fired at a temperature of 1400 ° C. in the atmosphere. Therefore, in such pellets, magnesium oxide and iron oxide are in a state of solid solution in advance. Therefore, by using this pellet as an evaporation source in the electron beam evaporation method, the protective film 3 (see FIG. 1) in a state where magnesium oxide and iron oxide in the film are dissolved can be formed. The disturbance caused by the metal element added in the film 3 can be made uniform.

【0042】ここで、AC型PDPの保護膜中に金属酸
化物を添加する技術として、特開昭52−11606
7号公報に開示される先行技術がある。先行技術によ
れば、PDPの動作電圧の低減化を図るために、保護膜
中にアルカリ土類又は希土類元素を添加するという技術
が提案されてはいるが、母材としてストロンチウム(S
r)化合物を用いる点で、本実施の形態1に係る保護膜
3とは相違する。
Here, as a technique for adding a metal oxide to the protective film of an AC type PDP, Japanese Patent Application Laid-Open No. 52-11606 discloses a technique.
There is a prior art disclosed in Japanese Unexamined Patent Publication No. 7-107. According to the prior art, a technique of adding an alkaline earth element or a rare earth element into a protective film has been proposed in order to reduce the operating voltage of a PDP, but strontium (S) is used as a base material.
r) is different from the protective film 3 according to the first embodiment in that a compound is used.

【0043】特に、本実施の形態1に係る保護膜3は、
その成膜後に真空中(10-3〜10-6Torr程度)あ
るいは還元性雰囲気中で350゜C〜500゜Cの加熱
処理を施すことによって、二次電子放出率の更なる改善
・向上を図っている。この加熱処理による保護膜3の表
面のミクロな構造の変化は定かでないが、かかる効果は
成膜後の表面原子が再配列をすることによる、いわゆる
活性化の作用に起因するものと考えられる。
In particular, the protective film 3 according to the first embodiment
By performing a heat treatment at 350 ° C. to 500 ° C. in a vacuum (about 10 −3 to 10 −6 Torr) or in a reducing atmosphere after the film formation, the secondary electron emission rate can be further improved and improved. I'm trying. Although the change in the microstructure of the surface of the protective film 3 due to this heat treatment is not clear, it is considered that such an effect is caused by the so-called activation effect due to rearrangement of the surface atoms after film formation.

【0044】このように、本実施の形態1に係るAC型
PDPによれば、二次電子放出率の高い保護膜3を備え
るので、放電のちらつきや不点灯を抑制・除去し、安定
な放電を得ることができる。更に、放電開始電圧Vfな
いしは放電維持電圧Vsmの低減化が図られているので
印加電圧のマージンを増大することができ、かかる点か
らも放電のちらつきや不点灯の無い安定した放電を起こ
すことができるという効果が得られる。
As described above, according to the AC type PDP according to the first embodiment, since the protective film 3 having a high secondary electron emission rate is provided, flickering and non-lighting of discharge are suppressed / removed, and stable discharge is achieved. Can be obtained. Further, since the discharge starting voltage Vf or the discharge sustaining voltage Vsm is reduced, the margin of the applied voltage can be increased, and from this point, a stable discharge without flickering or non-lighting of the discharge can be caused. The effect that it can be obtained is obtained.

【0045】なお、保護膜材料の原料(出発材料)とし
て塩基性炭酸マグネシウム・5水和物と酸化鉄とを選択
したが、これらの物質にとらわれるものではない。例え
ば、塩基性炭酸マグネシウム・5水和物の代わりに、酸
化マグネシウム,水酸化マグネシウム,蓚酸マグネシウ
ム等を使用しても良く、ペレット焼成時の熱処理(大気
中で1400゜C〜1600゜C)によって、酸化マグ
ネシウムに変化しうる原料であれば良い。また、酸化鉄
の代わりに、蓚酸鉄等を使用しても良い。
Although the basic magnesium carbonate pentahydrate and the iron oxide were selected as the raw materials (starting materials) of the protective film material, they are not limited to these substances. For example, instead of basic magnesium carbonate pentahydrate, magnesium oxide, magnesium hydroxide, magnesium oxalate, or the like may be used, and heat treatment (1400 ° C. to 1600 ° C. in the air) during pellet firing. Any material can be used as long as it can be changed into magnesium oxide. Further, iron oxalate or the like may be used instead of iron oxide.

【0046】なお、保護膜3に関して、酸化マグネシウ
ム中の酸化鉄の濃度が0.1モル%乃至20モル%の濃
度範囲であり、且つ、両者が固溶した状態に成り得る限
り、電子ビーム蒸着法において別々の蒸着源を用いて保
護膜3を成膜しても良く、また、電子ビーム蒸着法以外
の成膜方法により保護膜3を形成しても良い。
As long as the concentration of iron oxide in the magnesium oxide is in the range of 0.1 mol% to 20 mol% and the protective film 3 can be in a solid solution state, electron beam evaporation is performed. In the method, the protective film 3 may be formed using different evaporation sources, or the protective film 3 may be formed by a film forming method other than the electron beam evaporation method.

【0047】以上の説明では、図1に示す面放電型のA
C型PDPについて述べたが、本実施の形態1に係る技
術的思想は、放電空間に面し、電極を被覆する誘電体上
に形成された保護膜を備えるPDPであれば、例えば対
向放電型AC型PDPについても適用できる。また、例
えば図1の構造のAC型PDPにおいて保護膜3の機能
から考えれば、誘電体層2を省略した構造のPDPにも
適用できる。
In the above description, the surface discharge type A shown in FIG.
Although the C-type PDP has been described, the technical idea according to the first embodiment is that a PDP having a protective film facing a discharge space and formed on a dielectric covering an electrode is, for example, a counter discharge type. The present invention is also applicable to an AC type PDP. Further, for example, in consideration of the function of the protective film 3 in the AC type PDP having the structure shown in FIG.

【0048】さて、以上の説明では保護膜3として酸化
鉄が固溶している酸化マグネシウムの場合について述べ
たが、酸化マグネシウム中において結晶格子のマグネシ
ウムの一部を置換しうる元素であれば上記酸化鉄に代え
て、その酸化状態での価数が3価、4価又は5価のいず
れかである金属酸化物をも用いることができ、上述の効
果を得ることができる。具体的には、セリウム、アルミ
ニウム、ジルコニウム、ハフニウム、バナジウム、ニオ
ブ、タンタル、クロム、モリブデン、タングステン、マ
ンガン、コバルト、ニッケル、ネオジム、サマリウム、
ユウロピウム、ガドリウム又はジスプロシウムのいずれ
かの酸化物が適用可能である。
In the above description, a case has been described in which the protective film 3 is made of magnesium oxide in which iron oxide is dissolved as a solid solution. Instead of iron oxide, a metal oxide whose valence in the oxidation state is trivalent, tetravalent, or pentavalent can also be used, and the above-described effects can be obtained. Specifically, cerium, aluminum, zirconium, hafnium, vanadium, niobium, tantalum, chromium, molybdenum, tungsten, manganese, cobalt, nickel, neodymium, samarium,
Any oxide of europium, gadolinium or dysprosium is applicable.

【0049】図3は、酸化マグネシウムを母材とし、こ
れらの金属酸化物が固溶した保護膜を有するAC型PD
Pの放電開始電圧Vf及び放電維持電圧Vsmの測定結
果を示す図である。同図3によれば、いずれの金属酸化
物を添加した場合においても、従来の保護膜(a)(図
2参照)よりも両電圧Vf,Vsmを低減することがで
きる、即ち、保護膜の二次電子放出率を改善・向上する
ことができる。このとき、かかる金属元素(イオン)が
酸化マグネシウムのバンドギャップ中にドナー準位を形
成するという作用から、上記の金属酸化物についても、
酸化鉄の場合と同様に0.1モル%乃至20モル%の濃
度範囲が最適である。
FIG. 3 shows an AC type PD having magnesium oxide as a base material and a protective film in which these metal oxides are dissolved.
It is a figure showing the measurement result of discharge starting voltage Vf and discharge sustaining voltage Vsm of P. According to FIG. 3, both the voltages Vf and Vsm can be reduced as compared with the conventional protective film (a) (see FIG. 2) regardless of which metal oxide is added. The secondary electron emission rate can be improved and improved. At this time, the metal element (ion) forms a donor level in the band gap of magnesium oxide.
As in the case of iron oxide, a concentration range of 0.1 mol% to 20 mol% is optimal.

【0050】また、酸化鉄を含めた上記の金属酸化物の
内の少なくとも1種の金属酸化物を含むことにより、上
述の効果を発揮できることは言うまでもない。
It is needless to say that the above effects can be exhibited by including at least one kind of the above metal oxides including iron oxide.

【0051】[0051]

【発明の効果】(1)請求項1に係る発明によれば、A
C型PDPの保護膜は酸化マグネシウムと酸化状態の価
数が3価、4価又は5価のいずれかである金属元素の酸
化物とが固溶して成るので、酸化マグネシウム中のマグ
ネシウム元素(イオン)が上記金属元素(イオン)に置
換される。しかも、かかる金属元素はその酸化状態での
価数が3価、4価又は5価のいずれかであり、その価電
子の数はマグネシウム元素の価電子よりも多いので、上
記金属酸化物は酸化マグネシウム中でドナーとして作用
し、この余分の電子は酸化マグネシウムのエネルギーギ
ャップ中にドナー準位を形成する。このドナー準位にあ
る電子は価電子帯にある電子よりも真空準位へ放出され
やすいので、当該保護膜の二次電子放出量は、上記ドナ
ー準位の電子の数の分だけ、従来の酸化マグネシウムの
みの保護膜よりも多い。従って、本発明に係るAC型P
DPは二次電子放出率の高い保護膜を備えるので、放電
のちらつきや不点灯を抑制・除去し、安定な放電を得る
ことができる。
(1) According to the first aspect of the present invention, A
Since the protective film of the C-type PDP is formed by solid solution of magnesium oxide and an oxide of a metal element whose valence in the oxidation state is trivalent, tetravalent or pentavalent, the magnesium element in the magnesium oxide ( Ion) is replaced with the above-mentioned metal element (ion). In addition, such a metal element has a valence of one of trivalent, tetravalent, and pentavalent in the oxidation state, and the number of valence electrons is larger than that of the magnesium element. Acting as a donor in magnesium, this extra electron forms a donor level in the energy gap of magnesium oxide. Since electrons in the donor level are more likely to be emitted to the vacuum level than electrons in the valence band, the secondary electron emission of the protective film is reduced by the number of electrons in the donor level. More than a protective film made of only magnesium oxide. Therefore, the AC type P according to the present invention
Since the DP includes a protective film having a high secondary electron emission rate, flickering and non-lighting of discharge can be suppressed or eliminated, and a stable discharge can be obtained.

【0052】更に、本発明によれば、上記の金属酸化物
の酸化マグネシウム中における濃度は0.1モル%乃至
20モル%の濃度範囲内であるので、AC型PDPの放
電開始電圧ないしは放電維持電圧を低減することができ
る。従って、印加電圧のマージンを増大することができ
るので、放電のちらつきや不点灯の無い安定した放電を
起こすことができる。
Further, according to the present invention, the concentration of the above-mentioned metal oxide in the magnesium oxide is within the range of 0.1 mol% to 20 mol%. Voltage can be reduced. Therefore, since the margin of the applied voltage can be increased, a stable discharge without flickering or non-lighting of the discharge can be generated.

【0053】(2)請求項2に係る発明によれば、保護
膜はAC型PDPの基板上に形成された後に、真空中あ
るいは還元性雰囲気中で以て350゜C乃至500゜C
の温度範囲内の温度で少なくとも30分の加熱処理が施
されて成るので、その表面が再構成される。従って、当
該保護膜の二次電子放出率は一層高いものとなり、上記
(1)の効果を確実に発揮しうるAC型PDPを得るこ
とができる。
(2) According to the second aspect of the present invention, after the protective film is formed on the substrate of the AC type PDP, the protective film is formed at 350 ° C. to 500 ° C. in a vacuum or in a reducing atmosphere.
The heat treatment is performed at a temperature within the above temperature range for at least 30 minutes, so that the surface is reconstructed. Therefore, the secondary electron emission rate of the protective film is further increased, and an AC-type PDP capable of reliably exhibiting the effect (1) can be obtained.

【0054】(3)請求項3に係る発明によれば、上記
(1)又は(2)と同様の効果を得ることができる。
(3) According to the third aspect of the invention, the same effect as the above (1) or (2) can be obtained.

【0055】(4)請求項4に係る発明によれば、AC
型PDP用基板はその表面上に電極、誘電体及び保護膜
が順次に形成されており、上記保護膜は酸化マグネシウ
ムと酸化状態の価数が3価、4価又は5価のいずれかで
ある金属元素の酸化物とが固溶して成り、当該金属酸化
物の濃度は0.1モル%乃至20モル%の濃度範囲内で
あるので、当該AC型PDP用基板を備えることによっ
て上記(1)と同様の効果を発揮するAC型PDPを得
ることができる。
(4) According to the invention of claim 4, AC
An electrode, a dielectric, and a protective film are sequentially formed on the surface of the type PDP substrate, and the protective film has a valence of trivalent, tetravalent, or pentavalent with magnesium oxide. Since the oxide of the metal element is formed as a solid solution and the concentration of the metal oxide is within the range of 0.1 mol% to 20 mol%, the above-mentioned (1) is provided by providing the AC type PDP substrate. ), An AC-type PDP exhibiting the same effects as in (1) can be obtained.

【0056】(5)請求項5に係る発明によれば、AC
型PDPの保護膜材料は、マグネシウムの化合物と酸化
状態の価数が3価、4価又は5価のいずれかである金属
元素の化合物とが所定の割合で混合されて加圧成型され
た後に、大気中で1400゜C乃至1600゜Cの温度
範囲内の温度で加熱されて形成されるので、添加した金
属化合物中の金属元素(ないしは、その酸化物)が酸化
マグネシウムに固溶する。従って、当該保護膜材料を蒸
着源として用いることにより、固溶した均一な膜質の保
護膜を形成することができ、しかも、保護膜中の金属元
素による擾乱を均一にすることができる。
(5) According to the fifth aspect of the present invention, AC
The protective film material of the type PDP is obtained by mixing a magnesium compound and a metal element compound whose valence in the oxidation state is one of trivalent, tetravalent or pentavalent at a predetermined ratio and then pressing and molding the mixture. Since it is formed by heating at a temperature within the temperature range of 1400 ° C. to 1600 ° C. in the atmosphere, the metal element (or its oxide) in the added metal compound is dissolved in magnesium oxide. Therefore, by using the protective film material as an evaporation source, it is possible to form a solid solution and a protective film of uniform film quality, and furthermore, it is possible to make the disturbance by the metal element in the protective film uniform.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 実施の形態1に係るAC型PDPの発光セル
の構造を示す縦断面図である。
FIG. 1 is a longitudinal sectional view showing a structure of a light emitting cell of an AC PDP according to a first embodiment.

【図2】 実施の形態1に係るAC型PDPの保護膜の
種類と放電開始電圧(Vf)及び放電維持電圧(Vs
m)との関係を示す図である。
FIG. 2 shows the type of the protective film of the AC type PDP according to the first embodiment, the discharge starting voltage (Vf), and the discharge sustaining voltage (Vs).
FIG. 7 is a diagram showing a relationship with m).

【図3】 実施の形態1に係るAC型PDPの保護膜の
種類と放電開始電圧(Vf)及び放電維持電圧(Vs
m)との関係を示す図である。
FIG. 3 shows the type of the protective film of the AC PDP according to the first embodiment, the discharge starting voltage (Vf), and the discharge sustaining voltage (Vs).
FIG. 7 is a diagram showing a relationship with m).

【符号の説明】[Explanation of symbols]

1 ガラス基板、2 誘電層、3 保護膜、4 放電ガ
ス、5 蛍光体、6隔壁、7 下地層(誘電体層)、8
アドレス電極、9 ガラス基板、10 X電極、20
発光セル、21 前面パネル、22 背面パネル、2
3 放電空間。
Reference Signs List 1 glass substrate, 2 dielectric layer, 3 protective film, 4 discharge gas, 5 phosphor, 6 partition, 7 underlayer (dielectric layer), 8
Address electrode, 9 glass substrate, 10 X electrode, 20
Light emitting cell, 21 front panel, 22 rear panel, 2
3 Discharge space.

フロントページの続き (72)発明者 沢田 隆夫 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内(72) Inventor Takao Sawada 2-3-2 Marunouchi, Chiyoda-ku, Tokyo Mitsubishi Electric Corporation

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 放電空間に面し、電極を被覆する誘電体
上に形成された保護膜を備える交流型プラズマディスプ
レイパネルであって、 前記保護膜は、酸化マグネシウムと酸化状態の価数が3
価、4価又は5価のいずれかである金属元素の酸化物と
が固溶して成り、 前記金属酸化物の濃度は0.1モル%乃至20モル%の
濃度範囲内であることを特徴とする、交流型プラズマデ
ィスプレイパネル。
1. An alternating-current plasma display panel comprising a protective film facing a discharge space and formed on a dielectric covering an electrode, wherein the protective film has a valence of 3 with magnesium oxide.
And a solid solution of an oxide of a metal element which is monovalent, tetravalent or pentavalent, and the concentration of the metal oxide is within a range of 0.1 mol% to 20 mol%. An AC type plasma display panel.
【請求項2】 請求項1に記載の交流型プラズマディス
プレイパネルであって、 前記保護膜は、前記交流型プラズマディスプレイパネル
の基板上に形成された後に、真空中あるいは還元性雰囲
気中で以て350゜C乃至500゜Cの温度範囲内の温
度で少なくとも30分の加熱処理が施されて成ることを
特徴とする、交流型プラズマディスプレイパネル。
2. The AC plasma display panel according to claim 1, wherein the protective film is formed on a substrate of the AC plasma display panel, and then formed in a vacuum or a reducing atmosphere. An AC-type plasma display panel, wherein a heat treatment is performed at a temperature within a temperature range of 350 ° C. to 500 ° C. for at least 30 minutes.
【請求項3】 請求項1又は2に記載の交流型プラズマ
ディスプレイパネルであって、 前記金属酸化物は、アルミニウム,ジルコニウム,ハフ
ニウム,バナジウム,ニオブ,タンタル,クロム,モリ
ブデン,タングステン,マンガン,鉄,コバルト,ニッ
ケル,セリウム,ネオジム,サマリウム,ユウロピウ
ム,ガドリウム又はジスプロシウムのいずれかの酸化物
の内の少なくとも1種を含むことを特徴とする、交流型
プラズマディスプレイパネル。
3. The AC plasma display panel according to claim 1, wherein the metal oxide is aluminum, zirconium, hafnium, vanadium, niobium, tantalum, chromium, molybdenum, tungsten, manganese, iron, An AC-type plasma display panel comprising at least one of oxides of cobalt, nickel, cerium, neodymium, samarium, europium, gadolinium and dysprosium.
【請求項4】 基板の表面上に電極、誘電体及び保護膜
が順次に形成された交流型プラズマディスプレイパネル
用基板において、 前記保護膜は、酸化マグネシウムと酸化状態の価数が3
価、4価又は5価のいずれかである金属元素の酸化物と
が固溶して成り、 前記金属酸化物の濃度は0.1モル%乃至20モル%の
濃度範囲内であることを特徴とする、交流型プラズマデ
ィスプレイパネル用基板。
4. An AC plasma display panel substrate in which an electrode, a dielectric, and a protective film are sequentially formed on a surface of the substrate, wherein the protective film has magnesium oxide and a valence of 3 in an oxidized state.
And a solid solution of an oxide of a metal element which is monovalent, tetravalent or pentavalent, and the concentration of the metal oxide is within a range of 0.1 mol% to 20 mol%. Substrate for an AC type plasma display panel.
【請求項5】 交流型プラズマディスプレイパネルの保
護膜材料であって、 マグネシウムの化合物と酸化状態の価数が3価、4価又
は5価のいずれかである金属元素の化合物とが所定の割
合で混合されて加圧成型された後に、大気中で1400
゜C乃至1600゜Cの温度範囲内の温度で加熱されて
形成されることを特徴とする、交流型プラズマディスプ
レイパネル用保護膜材料。
5. A protective film material for an AC type plasma display panel, wherein a magnesium compound and a metal element compound having a valence of 3, 4, or 5 in an oxidation state are present in a predetermined ratio. , And press-molded.
A protective film material for an AC type plasma display panel, which is formed by being heated at a temperature in a temperature range of ゜ C to 1600 ° C.
JP10145831A 1998-05-27 1998-05-27 Ac plasma display panel, substrate for it and protective film material for it Pending JPH11339665A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10145831A JPH11339665A (en) 1998-05-27 1998-05-27 Ac plasma display panel, substrate for it and protective film material for it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10145831A JPH11339665A (en) 1998-05-27 1998-05-27 Ac plasma display panel, substrate for it and protective film material for it

Publications (1)

Publication Number Publication Date
JPH11339665A true JPH11339665A (en) 1999-12-10

Family

ID=15394133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10145831A Pending JPH11339665A (en) 1998-05-27 1998-05-27 Ac plasma display panel, substrate for it and protective film material for it

Country Status (1)

Country Link
JP (1) JPH11339665A (en)

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100396758B1 (en) * 2001-02-07 2003-09-03 엘지전자 주식회사 Method for fabricating protecting layer of plasma display panel device
WO2004095496A1 (en) * 2003-04-22 2004-11-04 Matsushita Electric Industrial Co., Ltd. Plasma display panel and method for producing same
WO2005043578A1 (en) * 2003-10-30 2005-05-12 Matsushita Electric Industrial Co.,Ltd. Plasma display panel
JP2005264272A (en) * 2004-03-19 2005-09-29 Technology Seed Incubation Co Ltd Material of magnesium oxide thin film
JP2005330574A (en) * 2003-10-21 2005-12-02 Ube Material Industries Ltd Magnesium oxide vapor-deposition material
JP2005330589A (en) * 2003-10-21 2005-12-02 Ube Material Industries Ltd Method for producing magnesium oxide vapor-deposition material
WO2006049121A1 (en) * 2004-11-05 2006-05-11 Ulvac, Inc. Plasma display panel-use protection film and production method for the protection film, plasma display panel and production method therefor
JP2006260992A (en) * 2005-03-17 2006-09-28 Ube Material Industries Ltd Reforming method for magnesium oxide thin film
US7196472B2 (en) * 2003-03-03 2007-03-27 Matsushita Electric Industrial Co., Ltd. Plasma display panel, its manufacturing method, and its protective layer material
JP2007179782A (en) * 2005-12-27 2007-07-12 Ube Material Industries Ltd Front plate for ac-type plasma display panel
US7253561B2 (en) * 2003-03-04 2007-08-07 Samsung Sdi Co., Ltd. Plasma display panel including dopant elements Si and Fe
WO2007126061A1 (en) * 2006-04-28 2007-11-08 Panasonic Corporation Plasma display panel and its manufacturing method
US7372206B2 (en) 2002-08-06 2008-05-13 Fujitsu Limited Gas discharge panel substrate assembly having protective layer in contact with discharge space, and AC type gas discharge panel having the assembly
US7391156B2 (en) * 2003-09-24 2008-06-24 Matsushita Electrical Industrial Co., Ltd. Plasma display panel
US7417374B2 (en) * 2003-10-21 2008-08-26 Samsung Sdi Co., Ltd. Plasma display panel protective layer
JP2008218414A (en) * 2007-03-02 2008-09-18 Lg Electronics Inc Plasma display panel, and its manufacturing method
JP2008243706A (en) * 2007-03-28 2008-10-09 Ube Material Industries Ltd Aluminum content magnesium oxide calcination object powder
WO2008132776A1 (en) * 2007-04-25 2008-11-06 Tateho Chemical Industries Co., Ltd. Oxide luminophor
JP2009030021A (en) * 2007-06-27 2009-02-12 Tateho Chem Ind Co Ltd Illuminant and its manufacturing method
US7511428B2 (en) 2002-10-22 2009-03-31 Panasonic Corporation Plasma display panel
JP2009140611A (en) * 2007-12-03 2009-06-25 Ulvac Japan Ltd Protection film for plasma display panel and plasma display panel
JP2009217940A (en) * 2008-03-07 2009-09-24 Hitachi Ltd Plasma display device
JP2010080440A (en) * 2008-08-29 2010-04-08 Ube Material Industries Ltd Luminescent laminate
JP2010080441A (en) * 2008-08-29 2010-04-08 Ube Material Industries Ltd Luminescent laminate
WO2010070847A1 (en) 2008-12-15 2010-06-24 パナソニック株式会社 Plasma display panel
JP2010236096A (en) * 2003-10-21 2010-10-21 Ube Material Industries Ltd Magnesium oxide vapor-deposition material
US8120254B2 (en) 2008-01-15 2012-02-21 Panasonic Corporation Plasma display panel comprising sputtering prevention layer
US8120255B2 (en) 2008-03-10 2012-02-21 Panasonic Corporation Plasma display panel comprising electric charge retention property
JP2012059619A (en) * 2010-09-10 2012-03-22 Hitachi Consumer Electronics Co Ltd Protective film, plasma display panel and display device
US8162710B2 (en) 2009-08-26 2012-04-24 Panasonic Corporation Method for producing plasma display panel with a bright display and a low operating voltage
US8188661B2 (en) 2008-09-29 2012-05-29 Panasonic Corporation Plasma display panel capable of displaying a video having high brightness while requiring a low driving voltage
US8283864B2 (en) 2010-02-12 2012-10-09 Panasonic Corporation Plasma display panel with protective layer comprising crystal particles of magnesium oxide
US8294366B2 (en) 2008-12-15 2012-10-23 Panasonic Corporation Plasma display panel having a plurality of aggregated particles attached to a protective layer at a face confronting a discharge space formed between a first substrate and a second substrate
US8395320B2 (en) 2007-12-13 2013-03-12 Panasonic Corporation Plasma display panel
US8405296B2 (en) 2010-03-15 2013-03-26 Panasonic Corporation Plasma display panel
US8427053B2 (en) 2008-09-29 2013-04-23 Panasonic Corporation Plasma display panel having high luminance display and capable of being driven with low voltage
US8482190B2 (en) 2010-03-15 2013-07-09 Panasonic Corporation Plasma display panel
US8513888B2 (en) 2010-03-15 2013-08-20 Panasonic Corporation Plasma display panel
CN103943436A (en) * 2011-12-31 2014-07-23 四川虹欧显示器件有限公司 Method used for improving stability of doped MgO dielectric protective layer and plasma display screen

Cited By (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100396758B1 (en) * 2001-02-07 2003-09-03 엘지전자 주식회사 Method for fabricating protecting layer of plasma display panel device
US7372206B2 (en) 2002-08-06 2008-05-13 Fujitsu Limited Gas discharge panel substrate assembly having protective layer in contact with discharge space, and AC type gas discharge panel having the assembly
US7511428B2 (en) 2002-10-22 2009-03-31 Panasonic Corporation Plasma display panel
US7196472B2 (en) * 2003-03-03 2007-03-27 Matsushita Electric Industrial Co., Ltd. Plasma display panel, its manufacturing method, and its protective layer material
US7253561B2 (en) * 2003-03-04 2007-08-07 Samsung Sdi Co., Ltd. Plasma display panel including dopant elements Si and Fe
WO2004095496A1 (en) * 2003-04-22 2004-11-04 Matsushita Electric Industrial Co., Ltd. Plasma display panel and method for producing same
US7439675B2 (en) 2003-04-22 2008-10-21 Matsushita Electric Industrial Co., Ltd. Plasma display panel having a magnesium oxide protective film and method for producing same
US7391156B2 (en) * 2003-09-24 2008-06-24 Matsushita Electrical Industrial Co., Ltd. Plasma display panel
JP4611138B2 (en) * 2003-10-21 2011-01-12 宇部マテリアルズ株式会社 Method for producing magnesium oxide vapor deposition material
JP2010236096A (en) * 2003-10-21 2010-10-21 Ube Material Industries Ltd Magnesium oxide vapor-deposition material
JP2005330589A (en) * 2003-10-21 2005-12-02 Ube Material Industries Ltd Method for producing magnesium oxide vapor-deposition material
JP2005330574A (en) * 2003-10-21 2005-12-02 Ube Material Industries Ltd Magnesium oxide vapor-deposition material
US7417374B2 (en) * 2003-10-21 2008-08-26 Samsung Sdi Co., Ltd. Plasma display panel protective layer
JP4627652B2 (en) * 2003-10-21 2011-02-09 宇部マテリアルズ株式会社 Magnesium oxide vapor deposition material
JPWO2005043578A1 (en) * 2003-10-30 2007-05-10 松下電器産業株式会社 Plasma display panel
WO2005043578A1 (en) * 2003-10-30 2005-05-12 Matsushita Electric Industrial Co.,Ltd. Plasma display panel
JP4569927B2 (en) * 2003-10-30 2010-10-27 パナソニック株式会社 Plasma display panel
US7583026B2 (en) 2003-10-30 2009-09-01 Panasonic Corporation Plasma display panel having a protective layer preventing an increase in firing voltage
JP4674360B2 (en) * 2004-03-19 2011-04-20 テクノロジーシードインキュベーション株式会社 Magnesium oxide thin film material deposited by electron beam evaporation
JP2005264272A (en) * 2004-03-19 2005-09-29 Technology Seed Incubation Co Ltd Material of magnesium oxide thin film
WO2006049121A1 (en) * 2004-11-05 2006-05-11 Ulvac, Inc. Plasma display panel-use protection film and production method for the protection film, plasma display panel and production method therefor
US7626337B2 (en) 2004-11-05 2009-12-01 Ulvac, Inc. Protective film for plasma display panel and method for manufacturing this protective film, and plasma display panel and method for manufacturing thereof
JP4516457B2 (en) * 2005-03-17 2010-08-04 宇部マテリアルズ株式会社 Method for modifying magnesium oxide thin film
JP2006260992A (en) * 2005-03-17 2006-09-28 Ube Material Industries Ltd Reforming method for magnesium oxide thin film
JP2007179782A (en) * 2005-12-27 2007-07-12 Ube Material Industries Ltd Front plate for ac-type plasma display panel
JP4601548B2 (en) * 2005-12-27 2010-12-22 宇部マテリアルズ株式会社 Front plate for AC type plasma display panel
US8018154B2 (en) 2006-04-28 2011-09-13 Panasonic Corporation Plasma display panel and its manufacturing method
WO2007126061A1 (en) * 2006-04-28 2007-11-08 Panasonic Corporation Plasma display panel and its manufacturing method
JP2008218414A (en) * 2007-03-02 2008-09-18 Lg Electronics Inc Plasma display panel, and its manufacturing method
JP2008243706A (en) * 2007-03-28 2008-10-09 Ube Material Industries Ltd Aluminum content magnesium oxide calcination object powder
WO2008132776A1 (en) * 2007-04-25 2008-11-06 Tateho Chemical Industries Co., Ltd. Oxide luminophor
JP2008274020A (en) * 2007-04-25 2008-11-13 Tateho Chem Ind Co Ltd Oxide light emission body
JP2009030021A (en) * 2007-06-27 2009-02-12 Tateho Chem Ind Co Ltd Illuminant and its manufacturing method
JP2009140611A (en) * 2007-12-03 2009-06-25 Ulvac Japan Ltd Protection film for plasma display panel and plasma display panel
US8395320B2 (en) 2007-12-13 2013-03-12 Panasonic Corporation Plasma display panel
US8120254B2 (en) 2008-01-15 2012-02-21 Panasonic Corporation Plasma display panel comprising sputtering prevention layer
JP2009217940A (en) * 2008-03-07 2009-09-24 Hitachi Ltd Plasma display device
US8120255B2 (en) 2008-03-10 2012-02-21 Panasonic Corporation Plasma display panel comprising electric charge retention property
JP2010080440A (en) * 2008-08-29 2010-04-08 Ube Material Industries Ltd Luminescent laminate
JP2010080441A (en) * 2008-08-29 2010-04-08 Ube Material Industries Ltd Luminescent laminate
US8188661B2 (en) 2008-09-29 2012-05-29 Panasonic Corporation Plasma display panel capable of displaying a video having high brightness while requiring a low driving voltage
US8427053B2 (en) 2008-09-29 2013-04-23 Panasonic Corporation Plasma display panel having high luminance display and capable of being driven with low voltage
US8183777B2 (en) 2008-12-15 2012-05-22 Panasonic Corporation Low power consumption plasma display panel
WO2010070847A1 (en) 2008-12-15 2010-06-24 パナソニック株式会社 Plasma display panel
US8294366B2 (en) 2008-12-15 2012-10-23 Panasonic Corporation Plasma display panel having a plurality of aggregated particles attached to a protective layer at a face confronting a discharge space formed between a first substrate and a second substrate
US8162710B2 (en) 2009-08-26 2012-04-24 Panasonic Corporation Method for producing plasma display panel with a bright display and a low operating voltage
US8283864B2 (en) 2010-02-12 2012-10-09 Panasonic Corporation Plasma display panel with protective layer comprising crystal particles of magnesium oxide
US8405296B2 (en) 2010-03-15 2013-03-26 Panasonic Corporation Plasma display panel
US8482190B2 (en) 2010-03-15 2013-07-09 Panasonic Corporation Plasma display panel
US8513888B2 (en) 2010-03-15 2013-08-20 Panasonic Corporation Plasma display panel
JP2012059619A (en) * 2010-09-10 2012-03-22 Hitachi Consumer Electronics Co Ltd Protective film, plasma display panel and display device
CN103943436A (en) * 2011-12-31 2014-07-23 四川虹欧显示器件有限公司 Method used for improving stability of doped MgO dielectric protective layer and plasma display screen

Similar Documents

Publication Publication Date Title
JPH11339665A (en) Ac plasma display panel, substrate for it and protective film material for it
JP4129288B2 (en) Plasma display panel and manufacturing method thereof
US20070262715A1 (en) Plasma display panel with low voltage material
JP2007173251A (en) Plasma display panel, and manufacturing method of the same
JP4476334B2 (en) Plasma display panel and manufacturing method thereof
JP4707685B2 (en) PDP protective film material and manufacturing method thereof
JP2010182691A (en) Plasma display panel and method of manufacturing the same
JP2008218401A (en) Protective film material, its manufacturing method, protective film, and plasma display panel
JP5602811B2 (en) Chlorine-containing magnesium oxide powder
EP1914782A2 (en) Plasma display panel
JP2000164143A (en) Alternating current type plasma display panel, alternating current type plasma display device, and substrate for alternating current type plasma display panel
US8164259B2 (en) Plasma display panel
KR100988362B1 (en) Protective materials of low firing voltage and their method of manufacturing for pdp
US20130015762A1 (en) Plasma display panel
WO2011118153A1 (en) Method of manufacture for plasma display panel
JP2009301841A (en) Plasma display panel
JP2009217940A (en) Plasma display device
JP5113912B2 (en) Plasma display panel and manufacturing method thereof
WO2007097327A1 (en) Plasma display device and method for manufacturing green phosphor material for plasma display device
JP2007323922A (en) Plasma display panel
KR100290838B1 (en) A display apparatus using gas discharge
US20080116799A1 (en) Plasma display panel
JP2007042654A (en) Plasma display panel
WO2010095343A1 (en) Plasma display panel
JP2003242889A (en) Plasma display device