JP5602811B2 - Chlorine-containing magnesium oxide powder - Google Patents

Chlorine-containing magnesium oxide powder Download PDF

Info

Publication number
JP5602811B2
JP5602811B2 JP2012209850A JP2012209850A JP5602811B2 JP 5602811 B2 JP5602811 B2 JP 5602811B2 JP 2012209850 A JP2012209850 A JP 2012209850A JP 2012209850 A JP2012209850 A JP 2012209850A JP 5602811 B2 JP5602811 B2 JP 5602811B2
Authority
JP
Japan
Prior art keywords
chlorine
magnesium oxide
powder
mass
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012209850A
Other languages
Japanese (ja)
Other versions
JP2013047176A (en
Inventor
裕三 加藤
明 植木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Material Industries Ltd
Original Assignee
Ube Material Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Material Industries Ltd filed Critical Ube Material Industries Ltd
Priority to JP2012209850A priority Critical patent/JP5602811B2/en
Publication of JP2013047176A publication Critical patent/JP2013047176A/en
Application granted granted Critical
Publication of JP5602811B2 publication Critical patent/JP5602811B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F5/00Compounds of magnesium
    • C01F5/02Magnesia
    • C01F5/06Magnesia by thermal decomposition of magnesium compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/20Constructional details
    • H01J11/34Vessels, containers or parts thereof, e.g. substrates
    • H01J11/40Layers for protecting or enhancing the electron emission, e.g. MgO layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J17/00Gas-filled discharge tubes with solid cathode
    • H01J17/38Cold-cathode tubes
    • H01J17/48Cold-cathode tubes with more than one cathode or anode, e.g. sequence-discharge tube, counting tube, dekatron
    • H01J17/49Display panels, e.g. with crossed electrodes, e.g. making use of direct current

Description

本発明は、塩素を含有する酸化マグネシウム粉末に関する。   The present invention relates to a magnesium oxide powder containing chlorine.

交流型プラズマディスプレイパネル(以下、AC型PDPともいう)は、一般に、画像表示面となる前面板と、放電ガスが充填された放電空間を挟んで対向配置された背面板とからなる。前面板は、前面ガラス基板、前面ガラス基板の上に形成された一対の放電電極、放電電極を被覆するように形成された誘電体層、そして誘電体層の表面に形成された誘電体保護層からなる。背面板は、背面ガラス基板、背面ガラス基板の上に形成されたアドレス電極、背面ガラス基板とアドレス電極とを被覆するように形成された、放電空間を区画するための隔壁、そして隔壁の表面に形成された赤、緑、青の蛍光体層からなる。   An AC type plasma display panel (hereinafter also referred to as AC type PDP) is generally composed of a front plate serving as an image display surface and a back plate disposed so as to face each other across a discharge space filled with a discharge gas. The front plate includes a front glass substrate, a pair of discharge electrodes formed on the front glass substrate, a dielectric layer formed so as to cover the discharge electrodes, and a dielectric protective layer formed on the surface of the dielectric layer Consists of. The back plate has a back glass substrate, address electrodes formed on the back glass substrate, barrier ribs formed to cover the back glass substrate and the address electrodes, and partition walls for partitioning the discharge space. It consists of the formed red, green and blue phosphor layers.

放電ガスとしては、一般にXe(キセノン)とNe(ネオン)との混合ガスが利用されている。この混合ガスでは、Xeが放電ガスであり、Neはバッファガスである。
誘電体保護層の形成材料には、AC型PDPの作動電圧を低減し、かつ放電空間に生成したプラズマから誘電体層を保護するために、二次電子放出係数が高く、耐スパッタ性に優れる酸化マグネシウムが広く利用されている。
As the discharge gas, a mixed gas of Xe (xenon) and Ne (neon) is generally used. In this mixed gas, Xe is a discharge gas and Ne is a buffer gas.
The material for forming the dielectric protective layer has a high secondary electron emission coefficient and excellent sputter resistance in order to reduce the operating voltage of the AC type PDP and protect the dielectric layer from the plasma generated in the discharge space. Magnesium oxide is widely used.

従来より、AC型PDPにおいては、発光特性の向上を目的として、誘電体保護層の放電空間側の表面に、放電ガスにより生成する紫外光によって励起されて、波長230〜250nmの間にピーク波長を有する紫外光を放出する紫外光放出層を設けて、放電ガスから放出される紫外光と、紫外光放出層から放出される紫外光とにより蛍光体層の蛍光体を励起されることにより、蛍光体層の発光効率を向上させることが検討されている。   Conventionally, in the AC type PDP, for the purpose of improving the light emission characteristics, the surface of the dielectric protective layer on the discharge space side is excited by the ultraviolet light generated by the discharge gas and has a peak wavelength between 230 and 250 nm. By providing an ultraviolet light emitting layer that emits ultraviolet light having an ultraviolet light emitted from the discharge gas and an ultraviolet light emitted from the ultraviolet light emitting layer, the phosphor of the phosphor layer is excited, It has been studied to improve the luminous efficiency of the phosphor layer.

例えば、特許文献1には、マグネシウムが加熱されて発生される蒸気が気相酸化されることによって生成された、BET法によって測定した平均粒子径が500オングストローム以上、好ましくは2000オングストローム以上の気相法酸化マグネシウム単結晶体により形成された紫外光放出層を、誘電体保護層の放電空間側の表面に形成したAC型PDPが開示されている。   For example, Patent Document 1 discloses that a vapor phase generated by vapor-phase oxidation of vapor generated by heating magnesium and having an average particle diameter measured by the BET method of 500 angstroms or more, preferably 2000 angstroms or more. There is disclosed an AC type PDP in which an ultraviolet light emitting layer formed of a method magnesium oxide single crystal is formed on the surface of the dielectric protective layer on the discharge space side.

特開2006−59786号公報JP 2006-59786 A

本発明の目的は、AC型PDPなどのガス放電発光装置の誘電体保護層の上に形成する、Xeガスのガス放電により生成した紫外光により励起されると、高い効率で波長250nm付近の紫外光を放出する酸化マグネシウム粉末を提供することにある。   An object of the present invention is to form an ultraviolet light having a wavelength of about 250 nm with high efficiency when excited by ultraviolet light generated by gas discharge of Xe gas formed on a dielectric protective layer of a gas discharge light emitting device such as an AC type PDP. It is to provide a magnesium oxide powder that emits light.

本発明者は、純度が99.95質量%以上で、BET比表面積が5〜150m2/gの
範囲にある高純度の酸化マグネシウム粉末又は焼成によって該酸化マグネシウム粉末を生成するマグネシウム化合物粉末(但し、塩化マグネシウム粉末を除く)を塩素源の存在下、もしくは塩素含有気体の雰囲気下に、850℃以上の温度で焼成することによって、塩素を0.005〜10質量%の範囲にて含有する、塩素を除いた総量中の酸化マグネシウム純度が99.8質量%以上で、かつBET比表面積が0.1〜30m2/gの範囲にあ
る塩素含有酸化マグネシウム粉末を製造することができ、かつ該塩素含有酸化マグネシウム粉末がXeガスの放電ガスにより生成した紫外光に励起されると、高い効率で波長250nm付近の紫外光を放出することを見出して、本発明を完成した。
The inventor of the present invention is a high-purity magnesium oxide powder having a purity of 99.95% by mass or more and a BET specific surface area in the range of 5 to 150 m 2 / g or a magnesium compound powder that produces the magnesium oxide powder by firing (provided that In addition, chlorine is contained in a range of 0.005 to 10% by mass by firing at a temperature of 850 ° C. or higher in the presence of a chlorine source or in an atmosphere of a chlorine-containing gas. Chlorine-containing magnesium oxide powder having a purity of magnesium oxide in the total amount excluding chlorine of 99.8% by mass or more and a BET specific surface area of 0.1 to 30 m 2 / g can be produced, and When the chlorine-containing magnesium oxide powder is excited by ultraviolet light generated by the discharge gas of Xe gas, it emits ultraviolet light with a wavelength of around 250 nm with high efficiency. I found a door, and have completed the present invention.

従って、本発明は、塩素を0.005〜10質量%の範囲にて含有する、塩素を除いた総量中の酸化マグネシウム純度が99.8質量%以上で、かつBET比表面積が0.1〜30m2/gの範囲にある塩素含有酸化マグネシウム粉末にある。 Therefore, in the present invention, the purity of magnesium oxide in the total amount excluding chlorine, containing chlorine in the range of 0.005 to 10% by mass, is 99.8% by mass or more, and the BET specific surface area is 0.1 to 10%. The chlorine-containing magnesium oxide powder is in the range of 30 m 2 / g.

本発明の塩素含有酸化マグネシウム粉末の好ましい態様は次の通りである。
(1)塩素含有量が0.01〜10質量%の範囲にある。
(2)酸化マグネシウム純度が99.9質量%以上である。
(3)BET比表面積が0.2〜12m2/gの範囲にある。
(4)交流型プラズマディスプレイパネルの誘電体保護層の放電空間側の表面に形成される紫外光放出層の製造用である。
Preferred embodiments of the chlorine-containing magnesium oxide powder of the present invention are as follows.
(1) The chlorine content is in the range of 0.01 to 10% by mass.
(2) Magnesium oxide purity is 99.9% by mass or more.
(3) The BET specific surface area is in the range of 0.2 to 12 m 2 / g.
(4) For the production of an ultraviolet light emitting layer formed on the surface on the discharge space side of the dielectric protective layer of the AC type plasma display panel.

本発明はまた、酸化マグネシウム純度が99.95質量%以上で、BET比表面積が5〜150m2/gの範囲にある酸化マグネシウム原料粉末、又は焼成によって該酸化マグ
ネシウム原料粉末を生成する、塩化マグネシウム粉末以外のマグネシウム化合物粉末を、塩素源の存在下、もしくは塩素含有気体の雰囲気下に、850℃以上の温度で焼成することを特徴とする上記本発明の塩素含有酸化マグネシウム粉末の製造方法にもある。
The present invention also provides a magnesium oxide raw material powder having a magnesium oxide purity of 99.95% by mass or more and a BET specific surface area in the range of 5 to 150 m 2 / g, or producing the magnesium oxide raw material powder by firing. A magnesium compound powder other than powder is fired at a temperature of 850 ° C. or higher in the presence of a chlorine source or in an atmosphere of a chlorine-containing gas. is there.

本発明の塩素含有酸化マグネシウム粉末の製造方法の好ましい態様は次の通りである。(1)酸化マグネシウム原料粉末又はマグネシウム化合物粉末を、純度が99.0質量%以上である塩化マグネシウム粉末の存在下にて焼成する。
(2)酸化マグネシウム原料粉末又はマグネシウム化合物粉末の焼成温度が1000〜1500℃の範囲にある。
(3)酸化マグネシウム原料粉末又はマグネシウム化合物粉末の焼成時間が10分以上である。
The preferable aspect of the manufacturing method of the chlorine containing magnesium oxide powder of this invention is as follows. (1) The magnesium oxide raw material powder or the magnesium compound powder is fired in the presence of magnesium chloride powder having a purity of 99.0% by mass or more.
(2) The firing temperature of the magnesium oxide raw material powder or the magnesium compound powder is in the range of 1000 to 1500 ° C.
(3) The firing time of the magnesium oxide raw material powder or the magnesium compound powder is 10 minutes or more.

本発明の塩素含有酸化マグネシウム粉末は、Xeガスのガス放電により生成した紫外光により励起されると波長250nm付近の紫外光を高い効率で放出する。従って、本発明の塩素含有酸化マグネシウム粉末から製造された酸化マグネシウム膜を、AC型PDPや蛍光体ランプなどのガス放電発光装置の放電空間内に配置することによって、放電空間内に放出される紫外光の光量が増加し、これによりガス放電発光装置から放出される可視光の光量が増加する。本発明の塩素含有酸化マグネシウム粉末から製造された酸化マグネシウム膜は、AC型PDPの誘電体保護層の放電空間側の表面に形成される紫外光放出層として、特に有用である。また、本発明の製造方法を用いることによって、紫外光の放出効率の高い酸化マグネシウム粉末を工業的に有利に製造することができる。   The chlorine-containing magnesium oxide powder of the present invention emits ultraviolet light having a wavelength of around 250 nm with high efficiency when excited by ultraviolet light generated by gas discharge of Xe gas. Accordingly, the magnesium oxide film manufactured from the chlorine-containing magnesium oxide powder of the present invention is disposed in the discharge space of a gas discharge light-emitting device such as an AC type PDP or a phosphor lamp, and thereby ultraviolet rays emitted into the discharge space. The amount of light increases, thereby increasing the amount of visible light emitted from the gas discharge light emitting device. The magnesium oxide film produced from the chlorine-containing magnesium oxide powder of the present invention is particularly useful as an ultraviolet light emitting layer formed on the surface of the AC type PDP dielectric protective layer on the discharge space side. Further, by using the production method of the present invention, magnesium oxide powder having a high ultraviolet light emission efficiency can be advantageously produced industrially.

本発明の塩素含有酸化マグネシウム粉末は、塩素を0.005〜10質量%の範囲にて含む。塩素量は、0.01質量%以上であることが好ましく、0.1質量%以上であることが特に好ましい。塩素含有酸化マグネシウム粉末に含まれる塩素を除いた酸化マグネシウム純度は、99.8質量%以上、好ましくは99.9質量%以上である。なお、酸化マグネシウム純度は、塩素含有酸化マグネシウム粉末の全体量を100としたときの塩素とマグネシウムと酸素とを除いた不純物元素(塩素含有酸化マグネシウム粉末の全体量に対して0.001質量%以上含まれる)の総含有量及び塩素の含有量から、下記の式より求めることができる。
酸化マグネシウム純度(質量%)=[1−不純物元素の総含有量(質量%)/{100−塩素の含有量(質量%)}]×100
The chlorine-containing magnesium oxide powder of the present invention contains chlorine in the range of 0.005 to 10% by mass. The amount of chlorine is preferably 0.01% by mass or more, and particularly preferably 0.1% by mass or more. The magnesium oxide purity excluding chlorine contained in the chlorine-containing magnesium oxide powder is 99.8% by mass or more, preferably 99.9% by mass or more. The purity of magnesium oxide is an impurity element excluding chlorine, magnesium and oxygen when the total amount of chlorine-containing magnesium oxide powder is 100 (0.001% by mass or more based on the total amount of chlorine-containing magnesium oxide powder) From the total content of (included) and the chlorine content.
Magnesium oxide purity (% by mass) = [1-total content of impurity elements (% by mass) / {100-content of chlorine (% by mass)}] × 100

本発明の塩素含有酸化マグネシウム粉末は、BET比表面積が0.1〜30m2/gの
範囲、好ましくは0.2〜12m2/gの範囲にある。
The chlorine-containing magnesium oxide powder of the present invention has a BET specific surface area of 0.1 to 30 m 2 / g, preferably 0.2 to 12 m 2 / g.

本発明の塩素含有酸化マグネシウム粉末は、酸化マグネシウム純度が99.95質量%以上で、BET比表面積が5〜150m2/gの範囲、好ましくは7〜50m2/gの範囲にある酸化マグネシウム原料粉末、又は焼成によって該酸化マグネシウム原料粉末を生成するマグネシウム化合物粉末(但し、塩化マグネシウム粉末を除く)を、塩素源の存在下、もしくは塩素含有気体の雰囲気下に、850℃以上の温度で焼成することにより製造することができる。本発明の塩素含有酸化マグネシウム粉末は、酸化マグネシウム原料粉末又はマグネシウム化合物粉末を塩素源の存在下で焼成する方法により製造することが好ましい。 The chlorine-containing magnesium oxide powder of the present invention has a magnesium oxide purity of 99.95% by mass or more and a BET specific surface area of 5 to 150 m 2 / g, preferably 7 to 50 m 2 / g. A powder or a magnesium compound powder (excluding magnesium chloride powder) that produces the magnesium oxide raw material powder by firing is fired at a temperature of 850 ° C. or higher in the presence of a chlorine source or in an atmosphere of a chlorine-containing gas. Can be manufactured. The chlorine-containing magnesium oxide powder of the present invention is preferably produced by a method of firing a magnesium oxide raw material powder or a magnesium compound powder in the presence of a chlorine source.

酸化マグネシウム原料粉末を、塩素源の存在下、もしくは塩素含有気体の雰囲気下に、850℃以上の温度で焼成すると、得られる塩素含有酸化マグネシウム粉末は、酸化マグネシウム原料粉末と比べてBET比表面積が低くなる。このため、塩素含有酸化マグネシウム粉末のBET比表面積は、酸化マグネシウム原料粉末のBET比表面積に対して、通常は1〜50%の範囲、好ましくは2〜30%の範囲になるが、本発明では前述のようにBET比表面積が0.1〜30m2/gの範囲、特に0.2〜12m2/gの範囲にあることが好ましい。 When the magnesium oxide raw material powder is fired at a temperature of 850 ° C. or higher in the presence of a chlorine source or in an atmosphere of a chlorine-containing gas, the resulting chlorine-containing magnesium oxide powder has a BET specific surface area as compared with the magnesium oxide raw material powder. Lower. For this reason, the BET specific surface area of the chlorine-containing magnesium oxide powder is usually in the range of 1 to 50%, preferably in the range of 2 to 30% with respect to the BET specific surface area of the magnesium oxide raw material powder. range BET specific surface area of 0.1~30m 2 / g as described above, it is particularly preferably from 0.2~12m 2 / g.

塩素含有酸化マグネシウム粉末の製造に用いる酸化マグネシウム原料粉末としては、気相合成酸化法により製造された酸化マグネシウム粉末であることが好ましい。気相合成酸化法とは、金属マグネシウム蒸気と酸素含有気体とを気相中にて接触させ、金属マグネシウム蒸気を酸化させて酸化マグネシウム粉末を製造する方法である。   The magnesium oxide raw material powder used for the production of the chlorine-containing magnesium oxide powder is preferably a magnesium oxide powder produced by a gas phase synthetic oxidation method. The vapor phase synthetic oxidation method is a method for producing a magnesium oxide powder by bringing a metal magnesium vapor and an oxygen-containing gas into contact with each other in the gas phase and oxidizing the metal magnesium vapor.

本発明で用いるマグネシウム化合物粉末は、850℃より低い温度での焼成によって前述のような酸化マグネシウム純度とBET比表面積とを有する酸化マグネシウム原料粉末を生成するものであることが好ましい。マグネシウム化合物粉末の例としては、水酸化マグネシウム粉末、塩基性炭酸マグネシウム粉末、硝酸マグネシウム粉末及び酢酸マグネシウム粉末を挙げることができる。マグネシウム化合物粉末の製法については特に制限はない。   The magnesium compound powder used in the present invention preferably produces a magnesium oxide raw material powder having the above-described magnesium oxide purity and BET specific surface area by firing at a temperature lower than 850 ° C. Examples of the magnesium compound powder include magnesium hydroxide powder, basic magnesium carbonate powder, magnesium nitrate powder, and magnesium acetate powder. There is no restriction | limiting in particular about the manufacturing method of magnesium compound powder.

塩素源としては、塩化マグネシウム粉末及び塩化アンモニウム粉末を挙げることができる。塩素源は、純度が99.0質量%以上であることが好ましい。塩素源は、焼成を行なう前に酸化マグネシウム原料粉末又はマグネシウム化合物粉末と均一に混合しておくことが好ましい。   Examples of the chlorine source include magnesium chloride powder and ammonium chloride powder. The chlorine source preferably has a purity of 99.0% by mass or more. The chlorine source is preferably mixed uniformly with the magnesium oxide raw material powder or the magnesium compound powder before firing.

塩素含有気体としては、塩化水素ガス、あるいは塩化アンモニウム粉末、塩化マグネシウム粉末、もしくは塩素含有有機化合物(CHCl3、CCl4等)を加熱して気化させたガスを挙げることができる。 Examples of the chlorine-containing gas include hydrogen chloride gas, or a gas obtained by heating and vaporizing ammonium chloride powder, magnesium chloride powder, or a chlorine-containing organic compound (CHCl 3 , CCl 4, etc.).

本発明において、酸化マグネシウム原料粉末又はマグネシウム化合物粉末を塩素源の存在下、もしくは塩素含有気体の雰囲気下にて焼成する際の焼成温度は850℃以上である。通常は、昇温速度100〜500℃/時間の条件で、室温から850℃以上、好ましくは900〜1500℃、特に好ましくは1000〜1500℃の温度にまで加熱し、次いで該温度で好ましくは10分以上、特に好ましくは20分〜1時間加熱焼成する。焼成後は、通常は降温速度100〜500℃/時間の条件で室温まで冷却する。   In the present invention, the firing temperature when firing the magnesium oxide raw material powder or the magnesium compound powder in the presence of a chlorine source or in an atmosphere of a chlorine-containing gas is 850 ° C. or higher. Usually, heating is performed from room temperature to a temperature of 850 ° C. or higher, preferably 900 to 1500 ° C., particularly preferably 1000 to 1500 ° C., at a temperature rising rate of 100 to 500 ° C./hour, and then at that temperature, preferably 10 More than minutes, particularly preferably baking for 20 minutes to 1 hour. After firing, it is usually cooled to room temperature at a temperature drop rate of 100 to 500 ° C./hour.

本発明の塩素含有酸化マグネシウム粉末には、放電特性向上のため、マグネシウム以外の金属を添加することができる。本発明の塩素含有酸化マグネシウム粉末に添加する金属としては、亜鉛、アルミニウム、ケイ素、カルシウム、ストロンチウム、バリウム、チタ
ン、ジルコニウム、ハフニウム、バナジウム、ニオブ、タンタル、クロム、モリブテン、タングステン、マンガン、鉄、コバルト、スカンジウム、イットリウム、ランタン、セリウム、ネオジウム、サマリウム、ユウロピウム、ガドリニウム及びジスプロシウムを挙げることができる。マグネシウム以外の金属は、例えば、酸化物、炭酸塩、硝酸塩として、本発明の塩素含有酸化マグネシウム粉末の製造の際に添加することができ、金属の添加量は、塩素含有酸化マグネシウム粉末全体に対して、0.001〜10質量%の範囲にあることが好ましく、0.01〜1質量%の範囲にあることが特に好ましい。
Metals other than magnesium can be added to the chlorine-containing magnesium oxide powder of the present invention in order to improve discharge characteristics. The metals added to the chlorine-containing magnesium oxide powder of the present invention include zinc, aluminum, silicon, calcium, strontium, barium, titanium, zirconium, hafnium, vanadium, niobium, tantalum, chromium, molybdenum, tungsten, manganese, iron, cobalt , Scandium, yttrium, lanthanum, cerium, neodymium, samarium, europium, gadolinium and dysprosium. Metals other than magnesium can be added, for example, as oxides, carbonates, and nitrates in the production of the chlorine-containing magnesium oxide powder of the present invention. The amount of metal added is based on the entire chlorine-containing magnesium oxide powder. It is preferably in the range of 0.001 to 10% by mass, and particularly preferably in the range of 0.01 to 1% by mass.

本発明の塩素含有酸化マグネシウム粉末は、スプレ法や静電塗布法などの公知の方法を用いて酸化マグネシウム膜とすることができる。   The chlorine-containing magnesium oxide powder of the present invention can be formed into a magnesium oxide film using a known method such as a spray method or an electrostatic coating method.

[実施例1]
(焼成物No.1〜No.7の製造)
気相合成酸化法により製造された酸化マグネシウム(MgO)粉末(2000A、宇部マテリアルズ(株)製、純度:99.98質量%、BET比表面積:8.7m2/g)と
塩化マグネシウム(MgCl2・6H2O)粉末(純度:99.0質量%)とを下記表1に示す量にて混合して、粉末混合物を得た。得られた粉末混合物を容量25mLのアルミナ坩堝に投入し、アルミナ坩堝に蓋をして電気炉に入れ、240℃/時間の昇温速度で炉内温度を1200℃まで上昇させ、次いで該温度で30分間加熱焼成した。その後、炉内温度を240℃/時間の降温速度で室温まで冷却した。そして、電気炉からアルミナ坩堝を取り出して、粉末混合物の焼成物No.1〜No.7を得た。
[Example 1]
(Production of fired products No. 1 to No. 7)
Magnesium oxide (MgO) powder (2000A, manufactured by Ube Materials Co., Ltd., purity: 99.98% by mass, BET specific surface area: 8.7 m 2 / g) and magnesium chloride (MgCl) 2 · 6H 2 O) powder (purity: 99.0% by mass) was mixed in the amount shown in Table 1 to obtain a powder mixture. The obtained powder mixture is put into an alumina crucible having a capacity of 25 mL, the alumina crucible is covered and placed in an electric furnace, and the furnace temperature is increased to 1200 ° C. at a temperature rising rate of 240 ° C./hour. Bake for 30 minutes. Thereafter, the furnace temperature was cooled to room temperature at a temperature lowering rate of 240 ° C./hour. Then, the alumina crucible was taken out from the electric furnace, and the powder mixture fired product No. 1-No. 7 was obtained.

表1
────────────────────────────────────────
酸化マグネシウム粉末量(g) 塩化マグネシウム粉末量(g)
────────────────────────────────────────
焼成物No.1 5.0 0
焼成物No.2 5.0 0.50
焼成物No.3 5.1 2.53
焼成物No.4 5.0 5.00
焼成物No.5 5.0 7.50
焼成物No.6 5.0 9.0
焼成物No.7 5.0 10.0
────────────────────────────────────────
Table 1
────────────────────────────────────────
Magnesium oxide powder amount (g) Magnesium chloride powder amount (g)
────────────────────────────────────────
Baked product No. 1 5.0 0
Baked product No. 2 5.0 0.50
Baked product No. 3 5.1 2.53
Baked product No. 4 5.0 5.00
Baked product No. 5 5.0 7.50
Baked product No. 6 5.0 9.0
Baked product No. 7 5.0 10.0
────────────────────────────────────────

得られた焼成物No.1〜No.7について、BET比表面積、塩素含有量、純度及び紫外光発光強度を測定した。その結果を表2に示す。なお、塩素含有量及び紫外光発光強度は以下の方法により測定した。   The obtained fired product No. 1-No. For No. 7, the BET specific surface area, chlorine content, purity, and ultraviolet light emission intensity were measured. The results are shown in Table 2. The chlorine content and ultraviolet light emission intensity were measured by the following methods.

[塩素含有量]
焼成物を水に溶解させて調製した溶液を中和し、その溶液中の塩素量をイオンクロマトグラフィーにより測定する。
[Chlorine content]
A solution prepared by dissolving the fired product in water is neutralized, and the amount of chlorine in the solution is measured by ion chromatography.

[紫外光発光強度]
焼成物にXeガスのガス放電により生成した紫外光を照射して、焼成物から放出された紫外光スペクトルを測定し、波長250nm付近(波長230〜260nmの範囲)の最大ピーク値を紫外光発光強度として求める。なお、表2の値は、焼成物No.2の紫外光発光強度を100とした相対値である。
[Ultraviolet light emission intensity]
The fired product is irradiated with ultraviolet light generated by gas discharge of Xe gas, the ultraviolet light spectrum emitted from the fired product is measured, and the maximum peak value in the vicinity of a wavelength of 250 nm (wavelength range of 230 to 260 nm) is emitted as ultraviolet light. Calculate as strength. The values in Table 2 indicate the fired product No. 2 is a relative value with the ultraviolet light emission intensity of 2.

表2
────────────────────────────────────────
BET比表面積 塩素含有量 純度 紫外光発光強度
(m2/g) (質量%) (質量%) (−)
────────────────────────────────────────
焼成物No.1 2.11 検出されず 99.9以上 発光せず
焼成物No.2 1.37 0.0025 99.9以上 100
焼成物No.3 1.42 0.0056 99.9以上 527
焼成物No.4 1.52 0.0100 99.9以上 1722
焼成物No.5 0.87 0.49 99.9以上 4867
焼成物No.6 0.52 7.10 99.9以上 5100
焼成物No.7 0.48 8.95 99.9以上 6092
────────────────────────────────────────
Table 2
────────────────────────────────────────
BET specific surface area Chlorine content Purity Ultraviolet light emission intensity
(M 2 / g) (mass%) (mass%) (−)
────────────────────────────────────────
Baked product No. 1 2.11 Not detected 99.9 or more Does not emit light. 2 1.37 0.0025 99.9 or more 100
Baked product No. 3 1.42 0.0056 99.9 or more 527
Baked product No. 4 1.52 0.0100 99.9 or more 1722
Baked product No. 5 0.87 0.49 99.9 or more 4867
Baked product No. 6 0.52 7.10 99.9 or more 5100
Baked product No. 7 0.48 8.95 99.9 or more 6092
────────────────────────────────────────

表2に示した結果から明らかなように、塩素含有量が0.005質量%を超える塩素含有酸化マグネシウム粉末は、Xeガスの放電ガスにより生成した紫外光に励起されると、高い効率で波長250nm付近の紫外光を放出することが分かる。   As is apparent from the results shown in Table 2, when the chlorine-containing magnesium oxide powder having a chlorine content exceeding 0.005 mass% is excited by ultraviolet light generated by the discharge gas of Xe gas, the wavelength is high. It can be seen that ultraviolet light near 250 nm is emitted.

Claims (10)

塩素を0.005〜10質量%の範囲にて含有する、塩素を除いた総量中の酸化マグネシウム純度が99.8質量%以上で、かつBET比表面積が0.1〜30m2/gの範囲にある塩素含有酸化マグネシウム粉末である、波長230〜260nmの範囲にピークを有する紫外光を放出する蛍光体。 Chlorine is contained in the range of 0.005 to 10% by mass, the magnesium oxide purity in the total amount excluding chlorine is 99.8% by mass or more, and the BET specific surface area is in the range of 0.1 to 30 m 2 / g. A phosphor that emits ultraviolet light having a peak in the wavelength range of 230 to 260 nm, which is a chlorine-containing magnesium oxide powder. Xeガスのガス放電により生成する紫外光により励起されると波長230〜260nmの範囲にピークを有する紫外光を放出する請求項1に記載の蛍光体。   The phosphor according to claim 1, which emits ultraviolet light having a peak in a wavelength range of 230 to 260 nm when excited by ultraviolet light generated by gas discharge of Xe gas. 塩素含有酸化マグネシウム粉末の塩素含有量が0.01〜10質量%の範囲にある請求項1に記載の蛍光体。   The phosphor according to claim 1, wherein the chlorine content of the chlorine-containing magnesium oxide powder is in the range of 0.01 to 10% by mass. 塩素含有酸化マグネシウム粉末の酸化マグネシウム純度が99.9質量%以上である請求項1に記載の蛍光体。   The phosphor according to claim 1, wherein the chlorine-containing magnesium oxide powder has a magnesium oxide purity of 99.9% by mass or more. 塩素含有酸化マグネシウム粉末のBET比表面積が0.2〜12m2/gの範囲にある請求項1に記載の蛍光体。 The phosphor according to claim 1, wherein the chlorine-containing magnesium oxide powder has a BET specific surface area in the range of 0.2 to 12 m 2 / g. 塩素を0.49〜10質量%の範囲にて含有する、塩素を除いた総量中の酸化マグネシウム純度が99.8質量%以上で、かつBET比表面積が0.1〜30m2/gの範囲にある塩素含有酸化マグネシウム粉末。 Chlorine is contained in the range of 0.49 to 10% by mass, the magnesium oxide purity in the total amount excluding chlorine is 99.8% by mass or more, and the BET specific surface area is in the range of 0.1 to 30 m 2 / g. Chlorine-containing magnesium oxide powder. 酸化マグネシウム純度が99.9質量%以上である請求項6に記載の塩素含有酸化マグネシウム粉末。   The chlorine-containing magnesium oxide powder according to claim 6, wherein the magnesium oxide purity is 99.9% by mass or more. BET比表面積が0.2〜12m2/gの範囲にある請求項6に記載の塩素含有酸化マグネシウム粉末。 The chlorine-containing magnesium oxide powder according to claim 6, wherein the BET specific surface area is in the range of 0.2 to 12 m 2 / g. 酸化マグネシウム純度が99.95質量%以上で、BET比表面積が5〜150m2/gの範囲にある酸化マグネシウム原料粉末、又は焼成によって該酸化マグネシウム原料粉末を生成する、塩化マグネシウム粉末以外のマグネシウム化合物粉末を、塩素源の存在下、もしくは塩素含有気体の雰囲気下に、蓋をした坩堝内にて850℃以上の温度で焼成することを特徴とする塩素を0.005〜10質量%の範囲にて含有する、塩素を除いた総量中の酸化マグネシウム純度が99.8質量%以上で、かつBET比表面積が0.1〜30m2/gの範囲にある塩素含有酸化マグネシウム粉末の製造方法。 Magnesium oxide raw material powder having a magnesium oxide purity of 99.95% by mass or more and a BET specific surface area of 5 to 150 m 2 / g, or a magnesium compound other than magnesium chloride powder that produces the magnesium oxide raw material powder by firing The powder is fired at a temperature of 850 ° C. or higher in a covered crucible in the presence of a chlorine source or in an atmosphere of a chlorine-containing gas, and the chlorine content is in the range of 0.005 to 10% by mass. The manufacturing method of the chlorine containing magnesium oxide powder which the magnesium oxide purity in the total quantity except a chlorine is 99.8 mass% or more and has a BET specific surface area in the range of 0.1-30 m < 2 > / g. 酸化マグネシウム原料粉末が、気相合成酸化法により製造された酸化マグネシウム粉末である請求項9に記載の製造方法。   The production method according to claim 9, wherein the magnesium oxide raw material powder is a magnesium oxide powder produced by a gas phase synthetic oxidation method.
JP2012209850A 2007-03-01 2012-09-24 Chlorine-containing magnesium oxide powder Expired - Fee Related JP5602811B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012209850A JP5602811B2 (en) 2007-03-01 2012-09-24 Chlorine-containing magnesium oxide powder

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007051627 2007-03-01
JP2007051627 2007-03-01
JP2012209850A JP5602811B2 (en) 2007-03-01 2012-09-24 Chlorine-containing magnesium oxide powder

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008049786A Division JP2008239475A (en) 2007-03-01 2008-02-29 Chlorine-containing magnesium oxide powder

Publications (2)

Publication Number Publication Date
JP2013047176A JP2013047176A (en) 2013-03-07
JP5602811B2 true JP5602811B2 (en) 2014-10-08

Family

ID=39911249

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2008049786A Pending JP2008239475A (en) 2007-03-01 2008-02-29 Chlorine-containing magnesium oxide powder
JP2012209850A Expired - Fee Related JP5602811B2 (en) 2007-03-01 2012-09-24 Chlorine-containing magnesium oxide powder

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2008049786A Pending JP2008239475A (en) 2007-03-01 2008-02-29 Chlorine-containing magnesium oxide powder

Country Status (3)

Country Link
JP (2) JP2008239475A (en)
KR (1) KR101492628B1 (en)
CN (1) CN101269826B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101388362B1 (en) * 2008-12-19 2014-04-22 우베 마테리알즈 가부시키가이샤 Fine magnesium oxide powder and preparation thereof
JP5844185B2 (en) * 2012-03-19 2016-01-13 宇部マテリアルズ株式会社 Magnesium oxide powder
JP6199881B2 (en) * 2012-10-31 2017-09-20 宇部マテリアルズ株式会社 Magnesium oxide powder

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50153798A (en) * 1974-06-01 1975-12-11
JPH06107413A (en) * 1992-09-28 1994-04-19 Shin Nippon Kagaku Kogyo Co Ltd Production of high purity magnesia clinker
JP3733599B2 (en) * 1993-08-11 2006-01-11 住友化学株式会社 Metal oxide powder and method for producing the same
JP3563269B2 (en) 1998-07-15 2004-09-08 宇部マテリアルズ株式会社 Method for producing magnesium oxide
JP4255256B2 (en) 2002-08-27 2009-04-15 宇部マテリアルズ株式会社 Magnesium oxide powder for raw material of magnesium oxide vapor deposition material
JP4541832B2 (en) * 2004-03-19 2010-09-08 パナソニック株式会社 Plasma display panel
CN1594091A (en) * 2004-06-25 2005-03-16 天津化工研究设计院 Manufacturing method of magnesia special for silicon steel
JP4873680B2 (en) * 2004-07-22 2012-02-08 独立行政法人物質・材料研究機構 Method for producing cubic magnesia powder
CN1663913A (en) * 2004-12-14 2005-09-07 北京科技大学 Method for producing magnesium using bischofite as raw material

Also Published As

Publication number Publication date
JP2008239475A (en) 2008-10-09
KR20080080445A (en) 2008-09-04
JP2013047176A (en) 2013-03-07
CN101269826B (en) 2012-08-29
KR101492628B1 (en) 2015-02-12
CN101269826A (en) 2008-09-24

Similar Documents

Publication Publication Date Title
JP4562742B2 (en) Fluorine-containing magnesium oxide powder
JPH11339665A (en) Ac plasma display panel, substrate for it and protective film material for it
JP5602811B2 (en) Chlorine-containing magnesium oxide powder
JP5230143B2 (en) Method for producing fluorinated magnesium oxide fired powder
JP5248534B2 (en) Method for producing fluorine-containing magnesium oxide powder
JP4969529B2 (en) Production material and light emitting material of ultraviolet light emitting layer
KR101573104B1 (en) Light-emitting laminate
CN103108843A (en) Fluorine-containing magnesium oxide light-emitting body and method for producing same
JP2009062267A5 (en) Production material and light emitting material of ultraviolet light emitting layer
JP2005336488A (en) Blue fluorophor for plasma display panel and method for producing the same, and plasma display panel
JP5844185B2 (en) Magnesium oxide powder
JP4833899B2 (en) Zinc-containing magnesium oxide fired powder
JP4850107B2 (en) Baked magnesium oxide powder containing aluminum oxide
JP5390305B2 (en) Luminescent laminate
JP5795158B2 (en) Lithium-containing magnesium oxide powder
JP5306946B2 (en) Luminescent laminate
JP2006206619A (en) Phosphor
JP5484833B2 (en) Phosphor powder composition
JP2010059049A (en) Material for protective film, method of manufacturing the material and pdp equipped with the protective film formed using the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140324

AA91 Notification of revocation by ex officio

Free format text: JAPANESE INTERMEDIATE CODE: A971091

Effective date: 20140408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140418

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140820

R150 Certificate of patent or registration of utility model

Ref document number: 5602811

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees