JP2008243706A - Aluminum content magnesium oxide calcination object powder - Google Patents

Aluminum content magnesium oxide calcination object powder Download PDF

Info

Publication number
JP2008243706A
JP2008243706A JP2007085120A JP2007085120A JP2008243706A JP 2008243706 A JP2008243706 A JP 2008243706A JP 2007085120 A JP2007085120 A JP 2007085120A JP 2007085120 A JP2007085120 A JP 2007085120A JP 2008243706 A JP2008243706 A JP 2008243706A
Authority
JP
Japan
Prior art keywords
powder
magnesium oxide
aluminum
ultraviolet light
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007085120A
Other languages
Japanese (ja)
Other versions
JP4850107B2 (en
JP2008243706A5 (en
Inventor
Yuzo Kato
裕三 加藤
Akira Ueki
明 植木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Material Industries Ltd
Original Assignee
Ube Material Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Material Industries Ltd filed Critical Ube Material Industries Ltd
Priority to JP2007085120A priority Critical patent/JP4850107B2/en
Priority to KR1020080028439A priority patent/KR101421300B1/en
Priority to CN2008100963386A priority patent/CN101544474B/en
Publication of JP2008243706A publication Critical patent/JP2008243706A/en
Publication of JP2008243706A5 publication Critical patent/JP2008243706A5/ja
Application granted granted Critical
Publication of JP4850107B2 publication Critical patent/JP4850107B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F5/00Compounds of magnesium
    • C01F5/02Magnesia
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/20Constructional details
    • H01J11/34Vessels, containers or parts thereof, e.g. substrates

Abstract

<P>PROBLEM TO BE SOLVED: To provide magnesium oxide powder in which ultraviolet rays having the peak wavelength in the vicinity of 250 nm is emitted with high efficiency when excited by the ultraviolet rays formed by gas discharge of Xe gas. <P>SOLUTION: This is aluminum containing magnesium oxide calcined powder in which a powder mixture of gamma-type aluminum oxide powder and powder of a magnesium oxide source is calcined and the aluminum content is in a range of 2-38 mass%. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、アルミニウムを含有する酸化マグネシウム焼成物粉末に関する。   The present invention relates to a magnesium oxide fired powder containing aluminum.

交流型プラズマディスプレイパネル(以下、AC型PDPともいう)は、一般に、画像表示面となる前面板と、放電ガスが充填された放電空間を挟んで対向配置された背面板とからなる。前面板は、前面ガラス基板、前面ガラスの上に形成された一対の放電電極、放電電極を被覆するように形成された誘電体層、そして誘電体層の表面に形成された誘電体保護層からなる。背面板は、背面ガラス基板、ガラス基板の上に形成されたアドレス電極、ガラス基板とアドレス電極とを被覆するように形成された、放電空間を区画するための隔壁、そして隔壁の表面に形成された赤、緑、青の蛍光体層からなる。   An AC type plasma display panel (hereinafter also referred to as AC type PDP) is generally composed of a front plate serving as an image display surface and a back plate disposed so as to face each other across a discharge space filled with a discharge gas. The front plate includes a front glass substrate, a pair of discharge electrodes formed on the front glass, a dielectric layer formed to cover the discharge electrodes, and a dielectric protective layer formed on the surface of the dielectric layer. Become. The back plate is formed on the back glass substrate, the address electrodes formed on the glass substrate, the barrier ribs for partitioning the discharge space formed to cover the glass substrate and the address electrodes, and the barrier rib surfaces. It consists of red, green and blue phosphor layers.

放電ガスとしては、一般にXe(キセノン)とNe(ネオン)との混合ガスが利用されている。この混合ガスでは、Xeが放電ガスであり、Neはバッファガスである。
誘電体保護層の形成材料には、AC型PDPの作動電圧を低減し、かつ放電空間に生成したプラズマから誘電体層を保護するために、二次電子放出係数が高く、耐スパッタ性に優れる酸化マグネシウムが広く利用されている。
As the discharge gas, a mixed gas of Xe (xenon) and Ne (neon) is generally used. In this mixed gas, Xe is a discharge gas and Ne is a buffer gas.
The material for forming the dielectric protective layer has a high secondary electron emission coefficient and excellent sputter resistance in order to reduce the operating voltage of the AC type PDP and protect the dielectric layer from the plasma generated in the discharge space. Magnesium oxide is widely used.

従来より、AC型PDPにおいては、発光特性の向上を目的として、誘電体保護層の放電空間側の表面に、放電ガスにより生成する紫外光によって励起されて、蛍光体層の蛍光体を励起し得る波長の紫外光を放出する紫外光放出層を設けて、放電ガスから放出される紫外光と、紫外光放出層から放出される紫外光とにより蛍光体層の蛍光体を励起させることにより、蛍光体層の発光効率を向上させることが検討されている。   Conventionally, in the AC type PDP, for the purpose of improving the light emission characteristics, the phosphor of the phosphor layer is excited on the surface of the dielectric protective layer on the discharge space side by the ultraviolet light generated by the discharge gas. By providing an ultraviolet light emitting layer that emits ultraviolet light of a wavelength to be obtained, by exciting the phosphor in the phosphor layer with ultraviolet light emitted from the discharge gas and ultraviolet light emitted from the ultraviolet light emitting layer, It has been studied to improve the luminous efficiency of the phosphor layer.

例えば、特許文献1には、マグネシウムが加熱されて発生される蒸気が気相酸化されることによって生成した、BET法によって測定した平均粒子径が500オングストローム以上、好ましくは2000オングストローム以上の気相法酸化マグネシウム単結晶体からなる紫外光放出層を、誘電体保護層の放電空間側の表面に形成したAC型PDPが開示されている。そして、この紫外光放出層は230〜250nmの範囲にピーク波長を有する紫外光を放出し、その波長の紫外光により蛍光体が励起されて発光することにより、PDPの輝度が増加することが開示されている。   For example, Patent Document 1 discloses a vapor phase method in which vapor generated by heating magnesium is vapor-phase oxidized, and an average particle size measured by the BET method is 500 angstroms or more, preferably 2000 angstroms or more. There is disclosed an AC type PDP in which an ultraviolet light emitting layer made of a magnesium oxide single crystal is formed on the surface of the dielectric protective layer on the discharge space side. This ultraviolet light emitting layer emits ultraviolet light having a peak wavelength in the range of 230 to 250 nm, and the phosphor is excited by the ultraviolet light of that wavelength to emit light, thereby increasing the brightness of the PDP. Has been.

一方、特許文献2には、酸化マグネシウムと酸化アルミニウムとを混合・混練して調製した分散溶液を用いて製造したPDPの誘電体層保護層(酸化マグネシウム膜)が開示されている。この特許文献2には、酸化アルミニウムの添加効果として、放電開始電圧が低減する旨の記載がある。但し、この特許文献2には、酸化アルミニウムの結晶構造についての記載はなく、また得られた酸化マグネシウム薄膜が、PDPの放電ガスにて生成した紫外光により励起されることにより、紫外光を発光する旨の記載はない。
特開2006−59786号公報 特開2006−173129号公報
On the other hand, Patent Document 2 discloses a PDP dielectric layer protective layer (magnesium oxide film) manufactured using a dispersion prepared by mixing and kneading magnesium oxide and aluminum oxide. Patent Document 2 describes that the discharge start voltage is reduced as an effect of adding aluminum oxide. However, this Patent Document 2 does not describe the crystal structure of aluminum oxide, and the obtained magnesium oxide thin film emits ultraviolet light when excited by ultraviolet light generated by the PDP discharge gas. There is no statement to do so.
JP 2006-59786 A JP 2006-173129 A

本発明の目的は、AC型PDPなどのガス放電発光装置の誘電体保護層の上に形成する紫外光放出層の材料として有用な、Xeガスのガス放電により生成した紫外光により励起されると、波長250nm付近にピーク波長を有する紫外光を高い効率で放出する酸化マグネシウム粉末を提供することにある。   The object of the present invention is to be excited by ultraviolet light generated by gas discharge of Xe gas, which is useful as a material for an ultraviolet light emitting layer formed on a dielectric protective layer of a gas discharge light emitting device such as an AC type PDP. Another object of the present invention is to provide a magnesium oxide powder that emits ultraviolet light having a peak wavelength around 250 nm with high efficiency.

本発明者は、γ型酸化アルミニウム粉末と酸化マグネシウム源粉末とを焼成後のアルミニウム含有量が2〜38質量%となるように混合して、好ましくは850℃以上の温度で、特に10分以上焼成することにより得られたアルミニウム含有酸化マグネシウム焼成物粉末は、Xeガスのガス放電により生成した紫外光に励起されて波長250nm付近(波長230〜260nmの範囲)にピーク波長を有する紫外光を高い効率で放出することを見出し、本発明を完成した。   The inventor mixed the γ-type aluminum oxide powder and the magnesium oxide source powder so that the aluminum content after firing was 2 to 38% by mass, preferably at a temperature of 850 ° C. or more, particularly 10 minutes or more. The aluminum-containing sintered magnesium oxide powder obtained by firing is highly excited by ultraviolet light generated by gas discharge of Xe gas and has high ultraviolet light having a peak wavelength in the vicinity of a wavelength of 250 nm (wavelength range of 230 to 260 nm). The present invention has been completed by finding efficient release.

本発明は、γ型酸化アルミニウム粉末と酸化マグネシウム源粉末の粉末混合物を焼成して得られたアルミニウム含有量が2〜38質量%の範囲にあるアルミニウム含有酸化マグネシウム焼成物粉末にある。   The present invention resides in an aluminum-containing magnesium oxide fired powder obtained by firing a powder mixture of a γ-type aluminum oxide powder and a magnesium oxide source powder and having an aluminum content in the range of 2 to 38% by mass.

本発明のアルミニウム含有酸化マグネシウム焼成物粉末の好ましい態様は、次の通りである。
(1)Xeガスのガス放電により生成した紫外光に励起されて波長230〜260nmの範囲にピーク波長を有する紫外光を放出する。
(2)粉末混合物の焼成温度が850℃以上である。
(3)アルミニウム含有量が5〜35質量%の範囲にある。
(4)交流型プラズマディスプレイパネルの誘電体保護層の放電空間側の表面に形成される紫外光放出層の製造用である。
The preferable aspect of the aluminum-containing magnesium oxide fired powder of the present invention is as follows.
(1) It is excited by ultraviolet light generated by gas discharge of Xe gas and emits ultraviolet light having a peak wavelength in the wavelength range of 230 to 260 nm.
(2) The firing temperature of the powder mixture is 850 ° C. or higher.
(3) Aluminum content exists in the range of 5-35 mass%.
(4) For the production of an ultraviolet light emitting layer formed on the surface on the discharge space side of the dielectric protective layer of the AC type plasma display panel.

本発明はまた、上記本発明のアルミニウム含有酸化マグネシウム焼成物粉末から製造された酸化マグネシウム膜にもある。   The present invention also resides in a magnesium oxide film produced from the aluminum-containing sintered magnesium oxide powder of the present invention.

本発明はまた、上記本発明のアルミニウム含有酸化マグネシウム焼成物粉末から製造された、交流型プラズマディスプレイパネルの誘電体保護層の放電空間側の表面に形成される紫外光放出層にもある。   The present invention also resides in an ultraviolet light emitting layer formed on the surface of the dielectric protective layer of the AC type plasma display panel on the discharge space side, which is produced from the aluminum-containing sintered magnesium oxide powder of the present invention.

本発明のアルミニウム含有酸化マグネシウム焼成物粉末は、Xeガスのガス放電により生成した紫外光に励起されて波長250nm付近(波長230〜260nmの範囲)にピーク波長を有する紫外光を高い効率で放出する。このため、本発明のアルミニウム含有酸化マグネシウム焼成物粉末から製造された酸化マグネシウム膜を、AC型PDPや蛍光体ランプ等のガス放電発光装置の放電空間内に配置することにより、放電空間内に放出される紫外光の光量を増加させることができ、ガス放電発光装置から放出される可視光の量を増加させることが可能になる。本発明のアルミニウム含有酸化マグネシウム焼成物粉末から製造された酸化マグネシウム膜は、AC型PDPのガス誘電体保護層の表面に形成される紫外光放出層として、特に有用である。   The aluminum-containing magnesium oxide fired powder of the present invention is excited by ultraviolet light generated by gas discharge of Xe gas and emits ultraviolet light having a peak wavelength around 250 nm (wavelength range of 230 to 260 nm) with high efficiency. . For this reason, the magnesium oxide film manufactured from the aluminum-containing magnesium oxide fired powder of the present invention is disposed in the discharge space of a gas discharge light-emitting device such as an AC type PDP or a phosphor lamp, thereby being released into the discharge space. The amount of ultraviolet light emitted can be increased, and the amount of visible light emitted from the gas discharge light emitting device can be increased. The magnesium oxide film produced from the aluminum-containing magnesium oxide fired powder of the present invention is particularly useful as an ultraviolet light emitting layer formed on the surface of the gas dielectric protective layer of the AC type PDP.

本発明のアルミニウム含有酸化マグネシウム焼成物粉末は、アルミニウムを2〜38質量%の範囲、特に好ましくは5〜35質量%の範囲にて含有する。本発明のアルミニウム含有酸化マグネシウム焼成物粉末は、BET比表面積が0.1〜30m2/gの範囲にあることが好ましく、0.2〜12m2/gの範囲にあることが特に好ましい。 The aluminum-containing magnesium oxide fired powder of the present invention contains aluminum in the range of 2 to 38% by mass, particularly preferably in the range of 5 to 35% by mass. Aluminum-containing magnesium oxide calcined powder of the present invention preferably has BET specific surface area in the range of 0.1~30m 2 / g, and particularly preferably in the range of 0.2~12m 2 / g.

本発明のアルミニウム含有酸化マグネシウム焼成物粉末は、γ型酸化アルミニウム粉末と酸化マグネシウム源粉末とを混合して、粉末混合物を得て、次いで該粉末混合物を焼成することにより得ることができる。粉末混合物の焼成温度は、好ましくは850℃以上、より好ましくは900〜1500℃、更に好ましくは1000〜1500℃の範囲である。焼成時間は、好ましくは10分以上、より好ましくは10分〜2時間、更に好ましくは20分〜2時間の範囲である。粉末混合物の焼成は、例えば、常圧下、昇温速度100〜500℃/時間の条件で、上記の焼成温度にまで昇温し、次いで上記の焼成時間焼成した後、降温速度100〜500℃/時間の条件で、室温まで冷却することにより行なうことができる。焼成雰囲気は大気下であればよい。   The aluminum-containing magnesium oxide fired powder of the present invention can be obtained by mixing a γ-type aluminum oxide powder and a magnesium oxide source powder to obtain a powder mixture, and then firing the powder mixture. The firing temperature of the powder mixture is preferably 850 ° C. or higher, more preferably 900-1500 ° C., and still more preferably 1000-1500 ° C. The firing time is preferably 10 minutes or more, more preferably 10 minutes to 2 hours, and still more preferably 20 minutes to 2 hours. For example, the powder mixture is baked under the conditions of normal pressure and a temperature increase rate of 100 to 500 ° C./hour. It can carry out by cooling to room temperature on condition of time. The firing atmosphere may be in the air.

酸化マグネシウム源粉末としては、酸化マグネシウム粉末、及び加熱により酸化マグネシウム粉末に転化するマグネシウム化合物粉末を用いることができる。加熱により酸化マグネシウム粉末に転化するマグネシウム化合物粉末の例としては、水酸化マグネシウム粉末、塩基性炭酸マグネシウム粉末、硝酸マグネシウム粉末及び酢酸マグネシウム粉末が挙げられる。酸化マグネシウム源粉末は、酸化マグネシウム粉末であることが好ましく、酸化マグネシウム粉末としては、気相合成酸化法により製造された酸化マグネシウム粉末であることが好ましい。気相合成酸化法とは、金属マグネシウム蒸気と酸素含有気体とを気相で接触させて、金属マグネシウムを酸化して酸化マグネシウム粉末を製造する方法である。   As the magnesium oxide source powder, magnesium oxide powder and magnesium compound powder that is converted to magnesium oxide powder by heating can be used. Examples of the magnesium compound powder that is converted to magnesium oxide powder by heating include magnesium hydroxide powder, basic magnesium carbonate powder, magnesium nitrate powder, and magnesium acetate powder. The magnesium oxide source powder is preferably a magnesium oxide powder, and the magnesium oxide powder is preferably a magnesium oxide powder produced by a gas phase synthetic oxidation method. The gas phase synthetic oxidation method is a method of producing magnesium oxide powder by contacting metal magnesium vapor and an oxygen-containing gas in a gas phase to oxidize the metal magnesium.

酸化マグネシウム源粉末の純度は、99.95質量%以上であることが好ましい。酸化マグネシウム源粉末は、BET比表面積が5〜150m2/g、特に7〜50m2/gの範囲にあることが好ましい。なお、酸化マグネシウム源粉末の粒子径は、本発明の効果を損なわない限り特に制限されない。 The purity of the magnesium oxide source powder is preferably 99.95% by mass or more. The magnesium oxide source powder preferably has a BET specific surface area of 5 to 150 m 2 / g, particularly 7 to 50 m 2 / g. The particle diameter of the magnesium oxide source powder is not particularly limited as long as the effects of the present invention are not impaired.

γ型酸化アルミニウム粉末の純度は99.0質量%以上であることが好ましい。γ型酸化アルミニウム粉末の粒子径は、本発明の効果を損なわない限り特に制限されない。   The purity of the γ-type aluminum oxide powder is preferably 99.0% by mass or more. The particle diameter of the γ-type aluminum oxide powder is not particularly limited as long as the effects of the present invention are not impaired.

本発明のアルミニウム含有酸化マグネシウム焼成物粉末は、Xeガスのガス放電により生成した紫外光に励起されて波長250nm付近の紫外光(230〜260nmの範囲にピーク波長を有する紫外光)を高い効率で放出する。また、AC型PDPや蛍光体ランプ等のガス放電発光装置に使用される蛍光体材料は、前記特許文献1に記載されているように波長250nm付近の紫外光に励起されて可視光を放出することが知られている。このため、本発明のアルミニウム含有酸化マグネシウム焼成物粉末から製造された酸化マグネシウム膜を、AC型PDPや蛍光体ランプ等のXeガスを放電ガスに用いたガス放電発光装置の放電空間内、特に誘電体保護層の放電空間側の表面に配置すると、Xeガスのガス放電により放電空間内に放出される紫外光の光量を増加させることができ、その結果、ガス放電発光装置から放出される可視光の量を増加させることが可能になる。従って、本発明のアルミニウム含有酸化マグネシウム焼成物粉末は、AC型PDPの誘電体保護層の放電空間側の表面に形成される紫外光放出層の製造用として特に有用である。   The aluminum-containing magnesium oxide fired powder of the present invention is excited by ultraviolet light generated by gas discharge of Xe gas and emits ultraviolet light having a wavelength near 250 nm (ultraviolet light having a peak wavelength in the range of 230 to 260 nm) with high efficiency. discharge. Further, as described in Patent Document 1, phosphor materials used in gas discharge light emitting devices such as AC type PDPs and phosphor lamps emit visible light when excited by ultraviolet light having a wavelength of around 250 nm. It is known. For this reason, the magnesium oxide film produced from the aluminum-containing magnesium oxide fired powder of the present invention is used in the discharge space of a gas discharge light-emitting device using Xe gas such as an AC type PDP or a phosphor lamp as a discharge gas, particularly a dielectric When arranged on the surface of the body protection layer on the discharge space side, the amount of ultraviolet light emitted into the discharge space by the gas discharge of Xe gas can be increased, and as a result, visible light emitted from the gas discharge light-emitting device The amount of can be increased. Therefore, the aluminum-containing magnesium oxide fired powder of the present invention is particularly useful for producing an ultraviolet light emitting layer formed on the surface of the AC type PDP dielectric protective layer on the discharge space side.

なお、本発明のアルミニウム含有酸化マグネシウム焼成物粉末は、スプレー法や静電塗布法などの公知の方法を用いることにより酸化マグネシウム膜とすることができ、その粒子径は本発明の効果を損なわない範囲であれば特に制限されない。   The aluminum-containing magnesium oxide fired powder of the present invention can be formed into a magnesium oxide film by using a known method such as a spray method or an electrostatic coating method, and the particle size does not impair the effects of the present invention. If it is a range, it will not restrict | limit in particular.

[実施例1]
(焼成物No.1〜No.8の製造)
気相合成酸化法により製造された酸化マグネシウム粉末(2000A、宇部マテリアルズ(株)製、純度:99.98質量%、BET比表面積:8.7m2/g)とγ型酸化アルミニウム粉末(純度:99.998質量%、BET比表面積:61.4m2/g)とを下記表1に示す配合量にて混合して、粉末混合物を得た。得られた粉末混合物を容量25mLのアルミナ坩堝に投入し、アルミナ坩堝に蓋をして電気炉に入れ、240℃/時間の昇温速度で炉内温度を1200℃まで上昇させ、次いで該温度で30分間加熱焼成した。その後、炉内温度を240℃/時間の降温速度で室温まで冷却した。そして、電気炉からアルミナ坩堝を取り出して、下記表1に示すアルミニウム含有量でBET比表面積を有する焼成物粉末(焼成物No.1〜No.8)を得た。なお、アルミニウム含有量は焼成物粉末を塩酸に溶解させて調製した溶液中のアルミニウム量をICP発光分析により測定して求めた。
[Example 1]
(Production of fired products No. 1 to No. 8)
Magnesium oxide powder (2000A, manufactured by Ube Materials Co., Ltd., purity: 99.98% by mass, BET specific surface area: 8.7 m 2 / g) and γ-type aluminum oxide powder (purity) : 99.998 mass%, BET specific surface area: 61.4 m 2 / g) were mixed in the blending amounts shown in Table 1 below to obtain a powder mixture. The obtained powder mixture is put into an alumina crucible having a capacity of 25 mL, the alumina crucible is covered and placed in an electric furnace, and the furnace temperature is increased to 1200 ° C. at a temperature rising rate of 240 ° C./hour. Bake for 30 minutes. Thereafter, the furnace temperature was cooled to room temperature at a temperature lowering rate of 240 ° C./hour. And the alumina crucible was taken out from the electric furnace, and the baked product powder (baked product No.1-No.8) which has a BET specific surface area with the aluminum content shown in following Table 1 was obtained. The aluminum content was determined by measuring the amount of aluminum in a solution prepared by dissolving the fired powder in hydrochloric acid by ICP emission analysis.

表1
────────────────────────────────────────
配合量 焼成物
───────────────── ───────────────
酸化マグネシ γ型酸化アルミ アルミニウム BET比表面積
ウム粉末(g) ニウム粉末(g) 含有量(質量%)(m2/g)
────────────────────────────────────────
焼成物No.1 5.0 0.126 1.30 3.64
焼成物No.2 5.0 0.317 3.15 3.14
焼成物No.3 5.0 0.633 5.95 3.31
焼成物No.4 5.0 1.582 12.7 3.34
焼成物No.5 4.0 2.531 20.5 4.16
焼成物No.6 2.5 3.164 29.6 5.59
焼成物No.7 2.0 5.062 37.9 未測定
焼成物No.8 1.5 4.746 40.2 6.99
────────────────────────────────────────
Table 1
────────────────────────────────────────
Compounding amount
───────────────── ───────────────
Magnesium oxide γ-type aluminum oxide Aluminum BET specific surface area
Um powder (g) Ni powder (g) Content (% by mass) (m 2 / g)
────────────────────────────────────────
Baked product No. 1 5.0 0.126 1.30 3.64
Baked product No. 2 5.0 0.317 3.15 3.14
Baked product No. 3 5.0 0.633 5.95 3.31
Baked product No. 4 5.0 1.582 12.7 3.34
Baked product No. 5 4.0 2.531 20.5 4.16
Baked product No. 6 2.5 3.164 29.6 5.59
Baked product No. 7 2.0 5.062 37.9 Unmeasured Firing product No. 7 8 1.5 4.746 40.2 6.99
────────────────────────────────────────

[比較例1]
(焼成物No.9〜No.13の製造)
γ型酸化アルミニウム粉末の代わりにα型酸化アルミニウム粉末(純度:99.99質量%、BET比表面積:14.5m2/g)を下記表2に示す配合量にて酸化マグネシウム粉末と混合した以外は、実施例1と同様にして、下記表2に示すアルミニウム含有量の焼成物粉末(焼成物No.9〜No.13)を得た。
[Comparative Example 1]
(Manufacture of fired products No. 9 to No. 13)
Instead of γ-type aluminum oxide powder, α-type aluminum oxide powder (purity: 99.99 mass%, BET specific surface area: 14.5 m 2 / g) was mixed with magnesium oxide powder in the blending amounts shown in Table 2 below. Obtained the baked material powder (baked product No. 9-No. 13) of the aluminum content shown in following Table 2 like Example 1. FIG.

表2
────────────────────────────────────────
配合量
──────────────────── 焼成物中の
酸化マグネシウム α型酸化アルミニウム アルミニウム
粉末(g) 粉末(g) 含有量(質量%)
────────────────────────────────────────
焼成物No.9 5.0 0.127 1.30
焼成物No.10 5.0 0.600 5.94
焼成物No.11 4.0 2.531 20.5
焼成物No.12 1.5 4.746 40.2
焼成物No.13 0.1 5.062 51.9
────────────────────────────────────────
Table 2
────────────────────────────────────────
Blending amount
────────────────────
Magnesium oxide α-type aluminum oxide Aluminum
Powder (g) Powder (g) Content (% by mass)
────────────────────────────────────────
Baked product No. 9 5.0 0.127 1.30
Baked product No. 10 5.0 0.600 5.94
Baked product No. 11 4.0 2.531 20.5
Baked product No. 12 1.5 4.746 40.2
Baked product No. 13 0.1 5.062 51.9
────────────────────────────────────────

[評価]
実施例1及び比較例1にて製造した焼成物粉末(焼成物No.1〜No.13)の紫外光発光強度を以下の方法により測定した。
[Evaluation]
The ultraviolet light emission intensity | strength of the baked product powder (baked product No.1-No.13) manufactured in Example 1 and Comparative Example 1 was measured with the following method.

[紫外光発光強度]
焼成物粉末にXeガスのガス放電により生成した紫外光を照射して、焼成物粉末から放出された紫外光スペクトルを測定し、波長250nm付近(波長230〜260nmの範囲)の最大ピーク値を紫外光発光強度として求める。
[Ultraviolet light emission intensity]
The fired powder is irradiated with ultraviolet light generated by gas discharge of Xe gas, the ultraviolet light spectrum emitted from the fired powder is measured, and the maximum peak value in the vicinity of a wavelength of 250 nm (wavelength range of 230 to 260 nm) is measured with ultraviolet light. Obtained as light emission intensity.

図1に、焼成物No.1〜No.12のアルミニウム含有量と紫外光発光強度との関係を示す。なお、図1に示した紫外光発光強度は、焼成物No.13の紫外光発光強度を100とした相対値である。
図1に示した紫外光発光強度の結果から明らかなように、アルミニウム源にγ型酸化アルミニウム粉末を用いて製造した焼成物粉末のうち、アルミニウム含有量が2〜38質量%の範囲にある焼成物粉末は、アルミニウム源にα型酸化アルミニウム粉末を用いて製造した焼成物粉末と比べて紫外光の発光強度が高いことが分かる。
In FIG. 1-No. 12 shows the relationship between the aluminum content of 12 and the ultraviolet light emission intensity. The ultraviolet light emission intensity shown in FIG. This is a relative value with the ultraviolet light emission intensity of 13 as 100.
As is clear from the results of the ultraviolet light emission intensity shown in FIG. 1, among the fired powders manufactured using γ-type aluminum oxide powder as the aluminum source, the aluminum content is in the range of 2 to 38% by mass. It can be seen that the product powder has higher ultraviolet light emission intensity than the fired product powder produced using the α-type aluminum oxide powder as the aluminum source.

[比較例2]
実施例1で使用した酸化マグネシウム粉末を、γ型酸化アルミニウム粉末を添加せずに実施例1と同様にして焼成した。得られた焼成物について、Xeガスのガス放電により生成した紫外光を照射したところ、紫外光の発光は見られなかった。
[Comparative Example 2]
The magnesium oxide powder used in Example 1 was fired in the same manner as in Example 1 without adding the γ-type aluminum oxide powder. When the obtained fired product was irradiated with ultraviolet light generated by gas discharge of Xe gas, emission of ultraviolet light was not observed.

実施例1及び比較例1にて製造した焼成物粉末のアルミニウム含有量と紫外光発光強度の関係を示す図である。It is a figure which shows the relationship between the aluminum content of the baked material powder manufactured in Example 1 and Comparative Example 1, and ultraviolet light emission intensity.

Claims (7)

γ型酸化アルミニウム粉末と酸化マグネシウム源粉末との粉末混合物を焼成して得られたアルミニウム含有量が2〜38質量%の範囲にあるアルミニウム含有酸化マグネシウム焼成物粉末。   An aluminum-containing magnesium oxide fired powder having an aluminum content in the range of 2 to 38% by mass obtained by firing a powder mixture of γ-type aluminum oxide powder and magnesium oxide source powder. Xeガスのガス放電により生成した紫外光に励起されて波長230〜260nmの範囲にピーク波長を有する紫外光を放出する請求項1に記載のアルミニウム含有酸化マグネシウム焼成物粉末。   The aluminum-containing sintered magnesium oxide powder according to claim 1, which is excited by ultraviolet light generated by gas discharge of Xe gas and emits ultraviolet light having a peak wavelength in a wavelength range of 230 to 260 nm. 粉末混合物の焼成温度が850℃以上である請求項1に記載のアルミニウム含有酸化マグネシウム焼成物粉末。   The aluminum-containing magnesium oxide fired powder according to claim 1, wherein a firing temperature of the powder mixture is 850 ° C or higher. アルミニウム含有量が5〜35質量%の範囲にある請求項1に記載のアルミニウム含有酸化マグネシウム焼成物粉末。   The aluminum-containing magnesium oxide fired powder according to claim 1, wherein the aluminum content is in the range of 5 to 35 mass%. 交流型プラズマディスプレイパネルの誘電体保護層の放電空間側の表面に形成される紫外光放出層の製造用である請求項1乃至3のうちのいずれかの項に記載のアルミニウム含有酸化マグネシウム焼成物粉末。   The aluminum-containing magnesium oxide fired product according to any one of claims 1 to 3, which is used for producing an ultraviolet light emitting layer formed on a surface on the discharge space side of a dielectric protective layer of an AC type plasma display panel. Powder. 請求項1乃至3のうちのいずれかの項に記載のアルミニウム含有酸化マグネシウム焼成物粉末から製造された酸化マグネシウム膜。   The magnesium oxide film manufactured from the aluminum containing magnesium oxide baked material powder of any one of Claims 1 thru | or 3. 請求項1乃至3のうちのいずれかの項に記載のアルミニウム含有酸化マグネシウム焼成物粉末から製造された、交流型プラズマディスプレイパネルの誘電体保護層の放電空間側の表面に形成される紫外光放出層。   Ultraviolet light emission formed on the surface of the dielectric protective layer of the AC type plasma display panel on the discharge space side, manufactured from the aluminum-containing sintered magnesium oxide powder according to any one of claims 1 to 3. layer.
JP2007085120A 2007-03-28 2007-03-28 Baked magnesium oxide powder containing aluminum oxide Expired - Fee Related JP4850107B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007085120A JP4850107B2 (en) 2007-03-28 2007-03-28 Baked magnesium oxide powder containing aluminum oxide
KR1020080028439A KR101421300B1 (en) 2007-03-28 2008-03-27 Fired aluminum-containing magnesium oxide powder
CN2008100963386A CN101544474B (en) 2007-03-28 2008-03-28 Aluminum content magnesium oxide calcination object powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007085120A JP4850107B2 (en) 2007-03-28 2007-03-28 Baked magnesium oxide powder containing aluminum oxide

Publications (3)

Publication Number Publication Date
JP2008243706A true JP2008243706A (en) 2008-10-09
JP2008243706A5 JP2008243706A5 (en) 2009-10-08
JP4850107B2 JP4850107B2 (en) 2012-01-11

Family

ID=39914777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007085120A Expired - Fee Related JP4850107B2 (en) 2007-03-28 2007-03-28 Baked magnesium oxide powder containing aluminum oxide

Country Status (3)

Country Link
JP (1) JP4850107B2 (en)
KR (1) KR101421300B1 (en)
CN (1) CN101544474B (en)

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5339281A (en) * 1976-09-22 1978-04-11 Toyoda Chuo Kenkyusho Kk Manufacture of carriers
JPS5767074A (en) * 1980-10-15 1982-04-23 Shin Nihon Kagaku Kogyo Kk Manufacture of high density spherical body containing spinel as major ingredient
JPS63307107A (en) * 1987-06-09 1988-12-14 Asahi Glass Co Ltd Highly heat conductive magnesia based powder
JPH0288420A (en) * 1988-09-27 1990-03-28 Shin Nippon Kagaku Kogyo Co Ltd Production of spinel clinker
JPH0714516A (en) * 1993-06-23 1995-01-17 Central Glass Co Ltd Plasma display panel
JPH11278828A (en) * 1998-03-30 1999-10-12 C I Kasei Co Ltd Fine particles of gamma-alumina-magnesia multiple oxide and its production
JPH11339665A (en) * 1998-05-27 1999-12-10 Mitsubishi Electric Corp Ac plasma display panel, substrate for it and protective film material for it
JP2001076629A (en) * 1999-09-07 2001-03-23 Matsushita Electric Ind Co Ltd Gas discharge panel, and manufacture thereof
JP2005149743A (en) * 2003-11-11 2005-06-09 Pioneer Plasma Display Corp Material for forming protection film of plasma display panel, plasma display panel, and plasma display device
JP2005285437A (en) * 2004-03-29 2005-10-13 Fujitsu Ltd Gas discharge tube and display device
JP2005350765A (en) * 2004-05-13 2005-12-22 Mitsubishi Materials Corp MgO VAPOR DEPOSITION MATERIAL
JP2006059786A (en) * 2004-03-19 2006-03-02 Pioneer Electronic Corp Plasma display panel
JP2007128891A (en) * 2005-11-01 2007-05-24 Lg Electronics Inc Plasma display panel and its manufacturing method
JP2008162825A (en) * 2006-12-27 2008-07-17 Kao Corp Spherical ceramic particles
JP2008218414A (en) * 2007-03-02 2008-09-18 Lg Electronics Inc Plasma display panel, and its manufacturing method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19944202A1 (en) * 1999-09-15 2001-03-22 Philips Corp Intellectual Pty Plasma screen with UV light reflecting front panel coating
KR100997068B1 (en) * 2003-10-21 2010-11-30 우베 마테리알즈 가부시키가이샤 Magnesium oxide for vapor deposition
KR100705289B1 (en) * 2004-12-16 2007-04-10 엘지전자 주식회사 Protect layer manufacture method of plasma display panel and composition thereof

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5339281A (en) * 1976-09-22 1978-04-11 Toyoda Chuo Kenkyusho Kk Manufacture of carriers
JPS5767074A (en) * 1980-10-15 1982-04-23 Shin Nihon Kagaku Kogyo Kk Manufacture of high density spherical body containing spinel as major ingredient
JPS63307107A (en) * 1987-06-09 1988-12-14 Asahi Glass Co Ltd Highly heat conductive magnesia based powder
JPH0288420A (en) * 1988-09-27 1990-03-28 Shin Nippon Kagaku Kogyo Co Ltd Production of spinel clinker
JPH0714516A (en) * 1993-06-23 1995-01-17 Central Glass Co Ltd Plasma display panel
JPH11278828A (en) * 1998-03-30 1999-10-12 C I Kasei Co Ltd Fine particles of gamma-alumina-magnesia multiple oxide and its production
JPH11339665A (en) * 1998-05-27 1999-12-10 Mitsubishi Electric Corp Ac plasma display panel, substrate for it and protective film material for it
JP2001076629A (en) * 1999-09-07 2001-03-23 Matsushita Electric Ind Co Ltd Gas discharge panel, and manufacture thereof
JP2005149743A (en) * 2003-11-11 2005-06-09 Pioneer Plasma Display Corp Material for forming protection film of plasma display panel, plasma display panel, and plasma display device
JP2006059786A (en) * 2004-03-19 2006-03-02 Pioneer Electronic Corp Plasma display panel
JP2005285437A (en) * 2004-03-29 2005-10-13 Fujitsu Ltd Gas discharge tube and display device
JP2005350765A (en) * 2004-05-13 2005-12-22 Mitsubishi Materials Corp MgO VAPOR DEPOSITION MATERIAL
JP2007128891A (en) * 2005-11-01 2007-05-24 Lg Electronics Inc Plasma display panel and its manufacturing method
JP2008162825A (en) * 2006-12-27 2008-07-17 Kao Corp Spherical ceramic particles
JP2008218414A (en) * 2007-03-02 2008-09-18 Lg Electronics Inc Plasma display panel, and its manufacturing method

Also Published As

Publication number Publication date
JP4850107B2 (en) 2012-01-11
CN101544474A (en) 2009-09-30
KR101421300B1 (en) 2014-07-18
KR20080088464A (en) 2008-10-02
CN101544474B (en) 2012-06-27

Similar Documents

Publication Publication Date Title
JP4562742B2 (en) Fluorine-containing magnesium oxide powder
JP5230143B2 (en) Method for producing fluorinated magnesium oxide fired powder
JP4969529B2 (en) Production material and light emitting material of ultraviolet light emitting layer
TWI541326B (en) Magnesium oxide containing phosphor and its manufacturing method
JP5248534B2 (en) Method for producing fluorine-containing magnesium oxide powder
KR101573104B1 (en) Light-emitting laminate
JP2009062267A5 (en) Production material and light emitting material of ultraviolet light emitting layer
JP5602811B2 (en) Chlorine-containing magnesium oxide powder
JP3941471B2 (en) Method for producing aluminate phosphor
JP4850107B2 (en) Baked magnesium oxide powder containing aluminum oxide
JP4833899B2 (en) Zinc-containing magnesium oxide fired powder
JP2005336488A (en) Blue fluorophor for plasma display panel and method for producing the same, and plasma display panel
JP2008050390A (en) Vacuum ultraviolet excitation aluminate phosphor and vacuum ultraviolet excitation light emitting device using the same
JP2007217510A (en) Blue light-emitting phosphor
JP2009155546A (en) Blue light-emitting phosphor particle
JP5844185B2 (en) Magnesium oxide powder
JP5390305B2 (en) Luminescent laminate
JP5766454B2 (en) Blue light emitting phosphor
JP2004026922A (en) Fluorescent substance for vacuum ultraviolet light excitation light emission element
JP2004002513A (en) Phosphor for vacuum ultraviolet-excitable light emitting element
JP2003193047A (en) Phosphor for compact type fluorescent lamp and compact type fluorescent lamp using the same
JP2011116974A (en) Blue light-emitting phosphor and light-emitting device
JP2002088355A (en) Method for producing aluminate fluorescent substance

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090824

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110715

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111004

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111018

R150 Certificate of patent or registration of utility model

Ref document number: 4850107

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141028

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees