JP3941471B2 - Method for producing aluminate phosphor - Google Patents

Method for producing aluminate phosphor Download PDF

Info

Publication number
JP3941471B2
JP3941471B2 JP2001351227A JP2001351227A JP3941471B2 JP 3941471 B2 JP3941471 B2 JP 3941471B2 JP 2001351227 A JP2001351227 A JP 2001351227A JP 2001351227 A JP2001351227 A JP 2001351227A JP 3941471 B2 JP3941471 B2 JP 3941471B2
Authority
JP
Japan
Prior art keywords
compound
aluminate phosphor
peak
phosphor
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001351227A
Other languages
Japanese (ja)
Other versions
JP2003147352A (en
Inventor
慶司 大野
知人 吉井
進 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2001351227A priority Critical patent/JP3941471B2/en
Publication of JP2003147352A publication Critical patent/JP2003147352A/en
Application granted granted Critical
Publication of JP3941471B2 publication Critical patent/JP3941471B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、アルミン酸塩蛍光体に関する。特に、プラズマディスプレイパネル(以下「PDP」という。)および希ガスランプなどの真空紫外線励起発光素子に好適なアルミン酸塩蛍光体に関する。
【0002】
【従来の技術】
アルミン酸塩蛍光体は、PDPや希ガスランプ等の真空紫外線励発光素子、蛍光灯、夜光表示物用蓄光体に用いられている。
例えば、特開平8−115673号公報には単相のアルミン酸塩蛍光体BaMgAl1017:Euが開示されており、このアルミン酸塩蛍光体は、水銀蒸気中における放電による紫外線を可視光に変換するので、蛍光灯用に用いられている。また、BaMgAl1017:Euは200nm以下の短い波長の紫外線である真空紫外線によっても励起され、PDPや希ガスランプ等の真空紫外線励起発光素子用としても用いられている。しかしながら、PDPや希ガスランプ等の真空紫外線励発光素子、蛍光灯、夜光表示物等の製造工程には、空気等の酸化雰囲気中で加熱する工程が含まれている場合があり、単相のBaMgAl1017:Euからなるアルミン酸塩蛍光体は、前記加熱工程により輝度が低下し、高い輝度を示さないという問題があった。
【0003】
【発明が解決しようとする課題】
本発明の目的は、空気等の酸化雰囲気中における加熱後も高い輝度を示すアルミン酸塩蛍光体およびその製造方法を提供することにある。
【0004】
【課題を解決するための手段】
本発明者らは、かかる状況下、上記の課題を解決すべく、アルミン酸塩蛍光体BaMgAl1017:Euについて鋭意検討した結果、アルミン酸塩蛍光体のX線回折を測定した場合に、BaMgAl1017と同じ結晶構造(ただし、Baの一部はCaおよび/またはSrに置換することができ、またBaの一部は付活剤のEuに置換されている)に同定されるピーク以外に、BaAl24と同じ結晶構造(ただし、Baの一部はCaおよび/またはSrに置換することができ、またBaの一部は付活剤のEuに置換されている)に同定されるピークが検出される場合に、このアルミン酸塩蛍光体は高い輝度を示すことがあることを見出した。そして、理由は明らかではないが、前記BaAl24と同じ結晶構造に同定されるピークの大きさと、空気等の酸化雰囲気中における加熱後のアルミン酸塩蛍光体の輝度に関係があり、前記BaAl24に同定されるピークの大きさの指標としてBaMgAl1017の(114)面に同定されるピークの積分強度S0とBaAl24の(202)面に同定されるピークの積分強度Sの強度比S/S0を選んだ場合、S/S0が0.01以上0.3以下の範囲であると、アルミン酸塩蛍光体は空気等の酸化雰囲気中の加熱後も高い輝度を示すことを見出した。
さらに本発明者らは、前記アルミン酸塩蛍光体の製造方法についても鋭意検討し、バリウム化合物、カルシウム化合物、ストロンチウム化合物、マグネシウム化合物、ユーロピウム化合物およびアルミニウム化合物を原料とし、これらの原料を所定の組成となるように配合して焼成するアルミン酸塩蛍光体の製造方法において、金属元素の比率が、組成式(Ba1-a1 ab-cEucMgAl1017(ただし、M1はCaおよび/またはSrであり、aは0以上0.5以下、bは1.03以上1.13以下、cは0.01以上0.3以下である。)と同じ比率となるようにバリウム化合物、カルシウム化合物、ストロンチウム化合物、ユーロピウム化合物、マグネシウム化合物およびアルミニウム化合物を配合した場合に、本発明のアルミン酸塩蛍光体が得られることを見出し、本発明を完成させるに至った。
【0005】
すなわち本発明は、X線回折の測定結果において、BaMgAl1017と同じ結晶構造の(114)面に同定されるピークの積分強度S0と、BaAl24と同じ結晶構造の(202)面に同定されるピークの積分強度Sとの強度比S/S0が、0.01以上0.3以下であるピークを示すアルミン酸塩蛍光体を提供する。また本発明は、上記記載のアルミン酸塩蛍光体を用いてなる真空紫外線励起発光素子を提供する。さらに本発明は、金属元素の比率が、組成式(Ba1-a1 ab-cEucMgAl1017(ただし、M1はCaおよび/またはSrであり、aは0以上0.5以下、bは1.03以上1.13以下、cは0.01以上0.3以下である。)と同じ比率となるようにバリウム化合物、カルシウム化合物、ストロンチウム化合物、ユーロピウム化合物、マグネシウム化合物およびアルミニウム化合物を配合して焼成する上記アルミン酸塩蛍光体の製造方法を提供する。
【0006】
【発明の実施の形態】
以下に本発明について詳しく説明する。
本発明の蛍光体は、X線回折の測定結果において、BaMgAl1017と同じ結晶構造の(114)面に同定されるピークの積分強度S0と、BaAl24と同じ結晶構造の(202)面に同定されるピークの積分強度Sとの強度比S/S0が、0.01以上0.3以下であるアルミン酸塩蛍光体である。S/S0の値が0.01より小さいかまたは0.3より大きい場合には、空気等の酸化雰囲気中での加熱後に高い輝度を示さないことがある。
本発明の蛍光体は、X線回折によりBaMgAl1017と同じ結晶構造に同定されるピークとBaAl24と同じ結晶構造に同定されるピークが検出されるので、BaMgAl1017と同じ結晶構造の化合物とBaAl24と同じ結晶構造の化合物が含まれる。BaMgAl1017と同じ結晶構造を有する化合物としては、BaMgAl1017のBaがCaおよび/またはSrにより置換されてもよい化合物にEuが付活された化合物であり、組成式Ba1-d-e2 dEueMgAl1017(ただし、M2はCaおよび/またはSr)により表され、dが0以上0.5以下でeが0.01以上0.3以下である化合物が好ましい。また、BaAl24と同じ結晶構造を有する化合物としては、BaAl24のBaがCaおよび/またはSrにより置換された化合物にEuが付活されてもよい化合物であり、組成式Ba1-f-g3 fEugAl24(ただし、M3はCaおよび/またはSr)により表され、fが0以上0.5以下でgが0.01以上0.3以下である化合物が好ましい。
【0007】
本発明の蛍光体は特に真空紫外線励起により高い輝度の青色の発光を示し、空気等の酸化雰囲気中における加熱後も真空紫外線励起により高い輝度を示すので、真空紫外線励起発光素子用に好適である。
【0008】
本発明の蛍光体の製造方法は特に限定されるものではなく、一般的には、バリウム化合物、カルシウム化合物、ストロンチウム化合物、マグネシウム化合物、ユーロピウム化合物およびアルミニウム化合物を原料とし、これらの原料を所定の組成となるように配合して焼成することにより製造できる。
【0009】
ただし、X線回折におけるピークの積分強度比S/S0と、(BaAl24と同じ結晶構造を有する化合物)/(BaMgAl1017と同じ結晶構造を有する化合物)の存在比とは必ずしも一致せず、焼成中のBaおよびMgの蒸発により配合した組成と得られた粉末の組成が異なることもあることから、目標とするS/S0の値から原料の配合の比率を算出することは困難である。そこで本発明者らが検討した結果、金属元素の比率が、組成式(Ba1-a1 ab-cEucMgAl1017(ただし、M1はCaおよび/またはSrであり、aは0以上0.5以下、bは1.03以上1.13以下、cは0.01以上0.3以下である。)と同じ比率となるようにバリウム化合物、カルシウム化合物、ストロンチウム化合物、ユーロピウム化合物、マグネシウム化合物およびアルミニウム化合物を配合した場合に、本発明のアルミン酸塩蛍光体が得られる。
【0010】
aが0.5より大きい場合、bが1.03未満であるか1.13より大きい場合またはcが0.01未満であるか0.3より大きい場合は、空気等の酸化雰囲気中における焼成後は高い輝度が得られないことがある。
【0011】
本発明の製造方法において、アルミニウム源となる原料としては、高純度(純度99.9%以上)のアルミナ(結晶形はαアルミナでも遷移アルミナでもよい)、高純度(純度99%以上)の水酸化アルミニウム、硝酸アルミニウムまたはハロゲン化アルミニウムなどを用いることができる。
【0012】
バリウム源となる原料としては、高純度(純度99%以上)の水酸化バリウム、炭酸バリウム、硝酸バリウム、ハロゲン化バリウム、シュウ酸バリウムなど、高温で分解し酸化バリウムになりうるものかまたは高純度(純度99%以上)の酸化バリウムが使用できる。
【0013】
カルシウム源となる原料としては、高純度(純度99%以上)の水酸化カルシウム、炭酸カルシウム、硝酸カルシウム、ハロゲン化カルシウム、シュウ酸カルシウムなど、高温で分解し酸化カルシウムになりうるものかまたは高純度(純度99%以上)の酸化カルシウムが使用できる。
【0014】
ストロンチウム源となる原料としては、高純度(純度99%以上)の水酸化ストロンチウム、炭酸ストロンチウム、硝酸ストロンチウム、ハロゲン化ストロンチウム、シュウ酸ストロンチウムなど、高温で分解し酸化ストロンチウムになりうるものかまたは高純度(純度99%以上)の酸化ストロンチウムが使用できる。
【0015】
マグネシウム源となる原料としては、高純度(純度99%以上)の水酸化マグネシウム、炭酸マグネシウム、硝酸マグネシウム、ハロゲン化マグネシウム、シュウ酸マグネシウム、塩基性炭酸マグネシウムなど、高温で分解し酸化マグネシウムになりうるものかまたは高純度(純度99%以上)の酸化マグネシウムが使用できる。
【0016】
ユーロピウム源となる原料としては、高純度(純度99%以上)の水酸化ユーロピウム、炭酸ユーロピウム、硝酸ユーロピウム、ハロゲン化ユーロピウム、シュウ酸ユーロピウムなど高温で分解し酸化ユーロピウムとなりうるものかまたは高純度(純度99%以上)の酸化ユーロピウムが使用できる。
【0017】
原料を所定の組成となるように秤量し、ボールミル、V型混合機または攪拌装置等の工業的に通常用いられる装置により混合した後、900℃以上1600℃以下の温度範囲で1時間〜50時間保持して焼成する方法により、本発明の蛍光体を得ることができる。
【0018】
このときの焼成雰囲気としては、Euを2価とするために、例えば窒素やアルゴン等の不活性気体に水素を0.1〜10体積%含ませた組成の弱還元性の雰囲気が好ましい。また大気雰囲気下で焼成した後、弱還元性の雰囲気で再度焼成することもできる。また、反応を促進するために、フラックスを添加することもできる。蛍光体の結晶性を高めるために、必要に応じて再度焼成することもできる。なお、原料として水酸化物、炭酸塩、硝酸塩、ハロゲン化物、シュウ酸塩など高温で分解し酸化物になりうるものを使用した場合、本焼成の前に、600℃以上800℃以下温度範囲で予備焼成を行い一部または全部を酸化物とすることもできる。
【0019】
以上の方法にて得られた蛍光体の粉末を、ボールミル、振動ミル、ジェットミル等の工業的に通常用いられる装置を用いて粉砕することができる。さらに、必要に応じて洗浄あるいは分級することもできる。
【0020】
本発明のアルミン酸塩蛍光体は、真空紫外線による励起において高い輝度を示し、さらに、酸化雰囲気中における加熱後も真空紫外線励起により高い輝度を示すので、特にPDPおよび希ガスランプなどの真空紫外線励起発光素子用に好適である。
【0021】
本発明の蛍光体を用いるPDPは、例えば特開平10−195428号公報に開示されているような公知の方法によって作製することができる。青色、緑色、赤色のそれぞれの真空紫外線励起発光素子用蛍光体を、例えば、セルロース系化合物、ポリビニルアルコールのような高分子化合物からなるバインダーおよび有機溶媒と混合し、蛍光体ペーストを調製する。背面基板の内面の、隔壁で仕切られ、アドレス電極を備えた直線状の基板表面と隔壁面に、該ペーストをスクリーン印刷などの方法によって塗布し、500℃程度の温度で焼成してバインダー等を焼却して除去し、それぞれの蛍光体層を形成させる。これに、蛍光体層と直交する方向の透明電極およびバス電極を備え、内面に誘電体層と保護層を設けた表面ガラス基板を重ねて接着し、内部を排気して低圧のXeやNe等の希ガスを封入し、多数の放電空間を形成させることにより、PDPを作製することができる。希ガスランプは放電空間数が少なく、場合によっては蛍光体の色の数が少ない場合のPDPと同様の構造であり、前記と同様にして作製することができる。本発明の蛍光体を用いてなるPDPや希ガスランプなどの真空紫外線励起発光素子は、製造工程における空気等の酸化雰囲気中の加熱後も青色蛍光体が高い輝度を示すので、高い輝度を示す。
【0022】
なお、本発明の蛍光体は真空紫外域以外の紫外線、X線および電子線などによっても励起可能であり、真空紫外域以外の紫外線、X線および電子線を励起源とした素子にも用いることができる。
【0023】
【実施例】
次に、本発明を実施例によりさらに詳しく説明するが、本発明はこれらの実施例に限定されるものではない。
なお、各試料のX線回折図形のピークの積分強度は以下のようにして求めた。X線回折測定装置として、リガク製のRADII−C型を用い、X線源:CuKα、管電圧50kV、管電流30mA、発散スリット(DS)=1°、散乱スリット(SS)=1°、受光スリット(RS)=0.3mm、走査速度0.1°/分、走査ステップ=0.02°とし、測定角度範囲をピークにより特定の角度を設定し、低角側θaから高角側θbの範囲内で行った。具体的にはBaAl24の(202)面ではθa=27.9°、θb=28.9°、BaMgAl1017の(114)面ではθa=35.1°,θb=36.1°として行った。ピークの面積に比例する積算値が得られるので、それぞれからバックグラウンドを差し引いて、ピーク積分強度とした。得られたX線回折のチャートにおける角度θa、θbに対応するの2点を結ぶ直線から下の部分をバックグラウンドとした。
【0024】
比較例1
水酸化アルミニウムと炭酸バリウムと塩基性炭酸マグネシウム5水和物と酸化ユーロピウムとをモル比でAl:Ba:Mg:Eu=10.00:0.855:1.00:0.10となるよう、すなわち組成式Ba0.955-0.10Eu0.10MgAl1017と同じ比率となるように秤量し、ボールミルで4時間混合し、混合粉末を得た。得られた混合粉末をアルミナボートに入れ、アルゴン98体積%−水素2体積%からなる還元雰囲気中において、1450℃で2時間保持して焼成し、その後室温まで徐冷して粉末を得た(試料C)。得られた粉末を大気雰囲気下500℃で熱劣化させた。熱劣化後の粉末を真空槽内に設置し、6.7Pa(5×10-2torr)以下の真空に保持し、エキシマ146nmランプ(ウシオ電機株式会社製H0012型)を用いて真空紫外線を照射したところ、青色の発光を示した。この比較例1の試料Cの輝度を100とし、以下の実施例および比較例における輝度の基準とした。
【0025】
試料Cについて、X線回折測定を行い、BaMgAl1017に同定されるピークのうちの(114)面のピーク積分強度S0と、BaAl24に同定されるピークのうちの(202)面のピーク積分強度Sとの強度比S/S0を求めたところ、0.000であった。
【0026】
実施例1
水酸化アルミニウムと炭酸バリウムと塩基性炭酸マグネシウム5水和物と酸化ユーロピウムをモル比でAl:Ba:Mg:Eu=10.00:0.945:1.00:0.10となるよう、すなわち組成式Ba1.045-0.10Eu0.10MgAl1017と同じ比率となるように秤量し、ボールミルで4時間攪拌混合後、混合粉末を回収した。得られた混合粉末をアルミナボート上で、アルゴンと水素との混合ガス(水素を2体積%含有)の還元雰囲気中において、1450℃で2時間保持して焼成し、その後室温まで徐冷して粉末(試料1)を得た。
試料1を大気雰囲気下500℃で熱劣化させた。熱劣化後の粉末を真空槽内に設置し、6.7Pa(5×10-2torr)以下の真空に保持し、エキシマ146nmランプ(ウシオ電機株式会社製H0012型)を用いて真空紫外線を照射したところ、青色の発光を示し、比較例1の試料Cの輝度を100としたときの輝度は121.6であった。
【0027】
試料1について、X線回折測定を行い、BaMgAl1017に同定されるピークのうち(114)面のピーク積分強度S0と、BaAl24に同定されるピークのうちの(202)面のピーク積分強度Sとの強度比S/S0を求めたところ、0.024であった。
【0028】
実施例2
モル比をAl:Ba:Mg:Eu=10:0.99:1.00:0.10、すなわち組成式Ba1.09-0.10Eu0.10MgAl1017と同じ比率となるようにした以外は実施例1と同様にして粉末(試料2)を得た。試料2を大気雰囲気下500℃で熱劣化させた。熱劣化後の粉末を真空槽内に設置し、6.7Pa(5×10-2torr)以下の真空に保持し、エキシマ146nmランプ(ウシオ電機株式会社製H0012型)を用いて真空紫外線を照射したところ、青色の発光を示し、輝度は比較例1の試料Cの輝度を100としたとき、120.6であった。
【0029】
500℃の加熱前の試料2について、X線回折測定を行い、BaMgAl1017に同定されるピークのうちの(114)面のピーク積分強度S0と、BaAl24に同定されるピークのうちの(202)面のピーク積分強度Sとの強度比S/S0を求めたところ、0.211であった。
【0030】
比較例2
モル比をAl:Ba:Mg:Eu=10.00:1.04:1.00:0.10、すなわち組成式Ba1.14-0.10Eu0.10MgAl1017と同じ比率となるようにした以外は実施例1と同様にして粉末(試料D)を得た。試料Dを大気雰囲気下500℃で加熱した。加熱後の粉末を真空槽内に設置し、6.7Pa(5×10-2torr)以下の真空に保持し、エキシマ146nmランプ(ウシオ電機株式会社製H0012型)を用いて真空紫外線を照射したところ、青色の発光を示し、輝度は105.6であった。
【0031】
試料Dについて、X線回折測定を行い、BaMgAl1017に同定されるピークのうちの(114)面のピーク積分強度S0と、BaAl24に同定されるピークのうちの(202)面のピーク積分強度Sとの強度比S/S0を求めたところ、0.319であった。
【0032】
【発明の効果】
本発明のアルミン酸塩蛍光体は、酸化雰囲気中での加熱後においても高い輝度を示し、特に真空紫外線励起により高い輝度を示すので、PDPや希ガスランプなどの真空紫外線励起発光素子用に好適であり、高い発光輝度を有する真空紫外線励起発光素子が実現できるので、工業的に極めて有用である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an aluminate phosphor. In particular, the present invention relates to an aluminate phosphor suitable for a vacuum ultraviolet light-excited light emitting device such as a plasma display panel (hereinafter referred to as “PDP”) and a rare gas lamp.
[0002]
[Prior art]
Aluminate phosphors are used in vacuum ultraviolet-excited light emitting elements such as PDPs and rare gas lamps, fluorescent lamps, and phosphorescents for night-light display objects.
For example, Japanese Patent Application Laid-Open No. 8-115673 discloses a single-phase aluminate phosphor BaMgAl 10 O 17 : Eu, and this aluminate phosphor makes ultraviolet light generated by discharge in mercury vapor visible light. Because it converts, it is used for fluorescent lamps. BaMgAl 10 O 17 : Eu is also excited by vacuum ultraviolet light, which is ultraviolet light having a short wavelength of 200 nm or less, and is also used for vacuum ultraviolet light-excited light emitting devices such as PDPs and rare gas lamps. However, the manufacturing process of vacuum ultraviolet light-excited light emitting elements such as PDP and rare gas lamps, fluorescent lamps, and night-light displays may include a process of heating in an oxidizing atmosphere such as air. The aluminate phosphor made of BaMgAl 10 O 17 : Eu has a problem that the luminance is lowered by the heating process and does not show high luminance.
[0003]
[Problems to be solved by the invention]
The objective of this invention is providing the aluminate fluorescent substance which shows a high brightness | luminance after heating in oxidizing atmospheres, such as air, and its manufacturing method.
[0004]
[Means for Solving the Problems]
Under such circumstances, the present inventors have made extensive studies on the aluminate phosphor BaMgAl 10 O 17 : Eu in order to solve the above problems. As a result, when the X-ray diffraction of the aluminate phosphor is measured, Peaks identified in the same crystal structure as BaMgAl 10 O 17 (wherein part of Ba can be replaced by Ca and / or Sr, and part of Ba is replaced by activator Eu) In addition, the same crystal structure as that of BaAl 2 O 4 (however, part of Ba can be replaced by Ca and / or Sr, and part of Ba is replaced by Eu as an activator) It has been found that the aluminate phosphor may exhibit high brightness when detected peaks are detected. And although the reason is not clear, there is a relationship between the peak size identified in the same crystal structure as the BaAl 2 O 4 and the brightness of the aluminate phosphor after heating in an oxidizing atmosphere such as air, as an indicator of the magnitude of the peaks identified in BaAl 2 O 4 of BaMgAl 10 O 17 (114) peak is identified surface integrated intensity S 0 and BaAl of 2 O 4 (202) of the peak identified on surface When the intensity ratio S / S 0 of the integrated intensity S is selected, if the S / S 0 is in the range of 0.01 or more and 0.3 or less, the aluminate phosphor will remain after being heated in an oxidizing atmosphere such as air. It was found to show high brightness.
Furthermore, the present inventors have also intensively studied a method for producing the aluminate phosphor, using barium compounds, calcium compounds, strontium compounds, magnesium compounds, europium compounds and aluminum compounds as raw materials, and these raw materials have a predetermined composition. In the method for producing an aluminate phosphor that is blended and fired so that the ratio of metal elements is as follows , the ratio of the metal element is the composition formula (Ba 1-a M 1 a ) bc Eu c MgAl 10 O 17 (where M 1 is Ca And / or Sr, a is 0 or more and 0.5 or less, b is 1.03 or more and 1.13 or less, and c is 0.01 or more and 0.3 or less.) , Calcium compound, strontium compound, europium compound, magnesium compound and aluminum compound, It found that phosphors can be obtained, and have completed the present invention.
[0005]
That is, according to the present invention, in the measurement result of X-ray diffraction, the integrated intensity S 0 of the peak identified on the (114) plane of the same crystal structure as BaMgAl 10 O 17 and (202) of the same crystal structure as BaAl 2 O 4 are obtained. Provided is an aluminate phosphor exhibiting a peak having an intensity ratio S / S 0 with an integrated intensity S of a peak identified on a surface of 0.01 or more and 0.3 or less. The present invention also provides a vacuum ultraviolet light-excited light emitting device using the aluminate phosphor described above. Further, in the present invention, the ratio of the metal element is such that the composition formula (Ba 1-a M 1 a ) bc Eu c MgAl 10 O 17 (where M 1 is Ca and / or Sr, and a is 0 or more and 0.5 In the following, b is 1.03 or more and 1.13 or less, and c is 0.01 or more and 0.3 or less.) Barium compound, calcium compound, strontium compound, europium compound, magnesium compound and aluminum Provided is a method for producing the aluminate phosphor, which comprises compounding and firing.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
The present invention is described in detail below.
The phosphor of the present invention has an integrated intensity S 0 of a peak identified on the (114) plane of the same crystal structure as that of BaMgAl 10 O 17 in the measurement result of X-ray diffraction and a crystal structure of the same as that of BaAl 2 O 4 ( 202) An aluminate phosphor having an intensity ratio S / S 0 with respect to an integrated intensity S of a peak identified on the surface of 0.01 to 0.3. When the value of S / S 0 is smaller than 0.01 or larger than 0.3, high luminance may not be exhibited after heating in an oxidizing atmosphere such as air.
In the phosphor of the present invention, a peak identified in the same crystal structure as BaMgAl 10 O 17 and a peak identified in the same crystal structure as BaAl 2 O 4 are detected by X-ray diffraction, so that the same as BaMgAl 10 O 17 is detected. A compound having a crystal structure and a compound having the same crystal structure as BaAl 2 O 4 are included. Examples of the compound having the same crystal structure as BaMgAl 10 O 17, a compound Ba is Eu is activated to a compound which may be substituted by Ca and / or Sr of BaMgAl 10 O 17, formula Ba 1-de A compound represented by M 2 d Eu e MgAl 10 O 17 (where M 2 is Ca and / or Sr) and d is 0 or more and 0.5 or less and e is 0.01 or more and 0.3 or less is preferable. Furthermore, BaAl Examples of the compound having the same crystal structure as 2 O 4, a Ba is Ca and / or Eu may compound be activated to compounds substituted by Sr of BaAl 2 O 4, the composition formula Ba 1 -fg M 3 f Eu g Al 2 O 4 (wherein M 3 is Ca and / or Sr), and f is 0 or more and 0.5 or less, and g is 0.01 or more and 0.3 or less. preferable.
[0007]
The phosphor of the present invention is particularly suitable for a vacuum ultraviolet light-excited light emitting element because it exhibits a high-luminance blue light emission when excited by vacuum ultraviolet light and exhibits a high luminance by vacuum ultraviolet light excitation even after heating in an oxidizing atmosphere such as air. .
[0008]
The method for producing the phosphor of the present invention is not particularly limited. Generally, barium compounds, calcium compounds, strontium compounds, magnesium compounds, europium compounds, and aluminum compounds are used as raw materials, and these raw materials are used in a predetermined composition. It can manufacture by mix | blending so that it may become, and baking.
[0009]
However, the integrated intensity ratio S / S 0 of the peak in X-ray diffraction and the abundance ratio of (compound having the same crystal structure as BaAl 2 O 4 ) / (compound having the same crystal structure as BaMgAl 10 O 17 ) are not necessarily Since the composition of the powders obtained by evaporation of Ba and Mg during firing does not match, and the composition of the obtained powder may be different, calculate the blending ratio of raw materials from the target S / S 0 value. It is difficult. Therefore, as a result of the study by the present inventors, the ratio of the metal element is such that the composition formula (Ba 1-a M 1 a ) bc Eu c MgAl 10 O 17 (where M 1 is Ca and / or Sr, and a is 0 to 0.5, b is 1.03 to 1.13, and c is 0.01 to 0.3.) Barium compound, calcium compound, strontium compound, europium compound When the magnesium compound and the aluminum compound are blended, the aluminate phosphor of the present invention is obtained.
[0010]
When a is greater than 0.5, b is less than 1.03 or greater than 1.13, or c is less than 0.01 or greater than 0.3, firing in an oxidizing atmosphere such as air After that, high brightness may not be obtained.
[0011]
In the production method of the present invention, high purity (purity: 99.9% or higher) alumina (crystal form may be α alumina or transition alumina), high purity (purity: 99% or higher) water Aluminum oxide, aluminum nitrate, aluminum halide, or the like can be used.
[0012]
The raw material used as the barium source is high purity (99% or higher purity) barium hydroxide, barium carbonate, barium nitrate, barium halide, barium oxalate, etc., which can be decomposed into barium oxide at high temperature or high purity. Barium oxide (purity 99% or more) can be used.
[0013]
The raw material used as a calcium source is high purity (purity 99% or more) calcium hydroxide, calcium carbonate, calcium nitrate, calcium halide, calcium oxalate, etc., which can decompose at high temperatures to become calcium oxide or high purity. Calcium oxide (purity 99% or more) can be used.
[0014]
The raw material used as the source of strontium is high purity (99% or more purity) strontium hydroxide, carbonate, strontium nitrate, strontium halide, strontium oxalate, etc. Strontium oxide (purity 99% or more) can be used.
[0015]
As a raw material to be a magnesium source, high purity (purity 99% or more) magnesium hydroxide, magnesium carbonate, magnesium nitrate, magnesium halide, magnesium oxalate, basic magnesium carbonate, etc. can be decomposed at high temperature to become magnesium oxide. A magnesium oxide having a high purity (purity 99% or more) can be used.
[0016]
The raw materials that can be used as a source of europium include high-purity (99% or higher purity) europium hydroxide, europium carbonate, europium nitrate, europium halide, europium oxalate, etc. that can be decomposed into high-purity (purity) 99% or more) of europium oxide can be used.
[0017]
The raw materials are weighed so as to have a predetermined composition and mixed by a device generally used industrially such as a ball mill, a V-type mixer or a stirring device, and then in a temperature range of 900 ° C. to 1600 ° C. for 1 hour to 50 hours. The phosphor of the present invention can be obtained by the method of holding and firing.
[0018]
The firing atmosphere at this time is preferably a weakly reducing atmosphere having a composition in which 0.1 to 10% by volume of hydrogen is contained in an inert gas such as nitrogen or argon in order to make Eu bivalent. In addition, after firing in an air atmosphere, firing can be performed again in a weakly reducing atmosphere. Moreover, in order to accelerate | stimulate reaction, a flux can also be added. In order to increase the crystallinity of the phosphor, it can be fired again as necessary. In addition, when materials that can be decomposed into oxides at high temperatures such as hydroxide, carbonate, nitrate, halide, oxalate, etc. are used as raw materials in the temperature range of 600 ° C. or more and 800 ° C. or less before the main firing. Pre-baking can be performed to make part or all of the oxide.
[0019]
The phosphor powder obtained by the above method can be pulverized using an industrially used apparatus such as a ball mill, a vibration mill, or a jet mill. Further, it can be washed or classified as required.
[0020]
The aluminate phosphor of the present invention exhibits high luminance when excited by vacuum ultraviolet light, and further exhibits high luminance by vacuum ultraviolet light excitation even after heating in an oxidizing atmosphere, so that it is particularly excited by vacuum ultraviolet light such as PDP and rare gas lamps. Suitable for light-emitting elements.
[0021]
A PDP using the phosphor of the present invention can be produced by a known method as disclosed in, for example, JP-A-10-195428. Blue, green, and red phosphors for vacuum ultraviolet light-excited light emitting devices are mixed with, for example, a binder made of a polymer compound such as a cellulose compound and polyvinyl alcohol, and an organic solvent to prepare a phosphor paste. The paste is applied to the linear substrate surface and the partition surface of the inner surface of the back substrate, which are partitioned by partition walls, and provided with address electrodes, by a method such as screen printing, and baked at a temperature of about 500 ° C. It is removed by incineration to form each phosphor layer. This is provided with a transparent electrode and a bus electrode in a direction orthogonal to the phosphor layer, and a surface glass substrate provided with a dielectric layer and a protective layer on the inner surface is laminated and bonded, and the inside is evacuated to low pressure Xe, Ne, etc. PDP can be manufactured by enclosing a rare gas and forming a large number of discharge spaces. The rare gas lamp has the same structure as the PDP when the number of discharge spaces is small and the number of phosphor colors is small in some cases, and can be manufactured in the same manner as described above. Vacuum ultraviolet-excited light emitting devices such as PDPs and rare gas lamps using the phosphor of the present invention show high luminance because the blue phosphor exhibits high luminance even after heating in an oxidizing atmosphere such as air in the manufacturing process. .
[0022]
The phosphor of the present invention can be excited by ultraviolet rays other than the vacuum ultraviolet region, X-rays, and electron beams, and is also used for an element using ultraviolet rays, X-rays, and electron beams other than the vacuum ultraviolet region as excitation sources. Can do.
[0023]
【Example】
EXAMPLES Next, although an Example demonstrates this invention further in detail, this invention is not limited to these Examples.
In addition, the integrated intensity | strength of the peak of the X-ray diffraction pattern of each sample was calculated | required as follows. The RADII-C type manufactured by Rigaku is used as the X-ray diffraction measurement apparatus, the X-ray source: CuKα, tube voltage 50 kV, tube current 30 mA, divergence slit (DS) = 1 °, scattering slit (SS) = 1 °, light reception Slit (RS) = 0.3 mm, scanning speed 0.1 ° / min, scanning step = 0.02 °, a specific angle is set by the peak of the measurement angle range, and the range from the low angle side θa to the high angle side θb Went in. Specifically, θa = 27.9 ° and θb = 28.9 ° in the (202) plane of BaAl 2 O 4 , and θa = 35.1 °, θb = 36.1 in the (114) plane of BaMgAl 10 O 17. Was done as °. Since an integrated value proportional to the area of the peak is obtained, the background is subtracted from each to obtain the peak integrated intensity. In the obtained X-ray diffraction chart, the portion below the straight line connecting the two points corresponding to the angles θa and θb was defined as the background.
[0024]
Comparative Example 1
Aluminum hydroxide, barium carbonate, basic magnesium carbonate pentahydrate and europium oxide in a molar ratio of Al: Ba: Mg: Eu = 10.00: 0.855: 1.00: 0.10 That weighed so as to have the same ratio as the composition formula Ba 0.955-0.10 Eu 0.10 MgAl 10 O 17 , and mixed for 4 hours by a ball mill to obtain a mixed powder. The obtained mixed powder was put into an alumina boat, fired by holding at 1450 ° C. for 2 hours in a reducing atmosphere composed of 98% by volume of argon and 2% by volume of hydrogen, and then gradually cooled to room temperature to obtain a powder ( Sample C). The obtained powder was thermally deteriorated at 500 ° C. in an air atmosphere. The heat-degraded powder is placed in a vacuum chamber, kept at a vacuum of 6.7 Pa (5 × 10 −2 torr) or less, and irradiated with ultraviolet rays using an excimer 146 nm lamp (H0012 type manufactured by USHIO INC.). As a result, blue light was emitted. The luminance of Sample C of Comparative Example 1 was set as 100, which was used as a luminance reference in the following Examples and Comparative Examples.
[0025]
Sample C is subjected to X-ray diffraction measurement. Among the peaks identified as BaMgAl 10 O 17 , the peak integrated intensity S 0 of the (114) plane and the peak identified as BaAl 2 O 4 (202) The intensity ratio S / S 0 with respect to the peak integrated intensity S of the surface was found to be 0.000.
[0026]
Example 1
Aluminum hydroxide, barium carbonate, basic magnesium carbonate pentahydrate and europium oxide in a molar ratio of Al: Ba: Mg: Eu = 10.00: 0.945: 1.00: 0.10, The composition formula Ba 1.045-0.10 Eu 0.10 MgAl 10 O 17 was weighed so as to have the same ratio and stirred and mixed with a ball mill for 4 hours, and then the mixed powder was recovered. The obtained mixed powder was baked on an alumina boat in a reducing atmosphere of a mixed gas of argon and hydrogen (containing 2% by volume of hydrogen) at 1450 ° C. for 2 hours, and then gradually cooled to room temperature. A powder (Sample 1) was obtained.
Sample 1 was thermally deteriorated at 500 ° C. in an air atmosphere. The heat-degraded powder is placed in a vacuum chamber, kept at a vacuum of 6.7 Pa (5 × 10 −2 torr) or less, and irradiated with ultraviolet rays using an excimer 146 nm lamp (H0012 type manufactured by USHIO INC.). As a result, blue light was emitted, and the luminance when the luminance of Sample C of Comparative Example 1 was 100 was 121.6.
[0027]
Sample 1 is subjected to X-ray diffraction measurement, and the peak integrated intensity S 0 of the (114) plane among the peaks identified for BaMgAl 10 O 17 and the (202) plane of the peaks identified for BaAl 2 O 4 The intensity ratio S / S 0 with respect to the peak integrated intensity S was 0.024.
[0028]
Example 2
Example except that the molar ratio was Al: Ba: Mg: Eu = 10: 0.99: 1.00: 0.10, that is, the same ratio as the composition formula Ba 1.09-0.10 Eu 0.10 MgAl 10 O 17 In the same manner as in Example 1, a powder (Sample 2) was obtained. Sample 2 was thermally degraded at 500 ° C. in an air atmosphere. The heat-degraded powder is placed in a vacuum chamber, kept at a vacuum of 6.7 Pa (5 × 10 −2 torr) or less, and irradiated with ultraviolet rays using an excimer 146 nm lamp (H0012 type manufactured by USHIO INC.). As a result, blue light was emitted, and the luminance was 120.6, assuming that the luminance of Sample C of Comparative Example 1 was 100.
[0029]
Sample 2 before heating at 500 ° C. is subjected to X-ray diffraction measurement. Among the peaks identified as BaMgAl 10 O 17 , the peak integrated intensity S 0 of the (114) plane and the peak identified as BaAl 2 O 4 Of these, the intensity ratio S / S 0 with respect to the peak integrated intensity S of the (202) plane was found to be 0.211.
[0030]
Comparative Example 2
Except that the molar ratio was Al: Ba: Mg: Eu = 10.00: 1.04: 1.00: 0.10, that is, the same ratio as the composition formula Ba 1.14-0.10 Eu 0.10 MgAl 10 O 17 A powder (sample D) was obtained in the same manner as in Example 1. Sample D was heated at 500 ° C. in an air atmosphere. The heated powder was placed in a vacuum chamber, kept at a vacuum of 6.7 Pa (5 × 10 −2 torr) or less, and irradiated with vacuum ultraviolet rays using an excimer 146 nm lamp (H0012 type manufactured by USHIO INC.). However, blue light was emitted and the luminance was 105.6.
[0031]
Sample D is subjected to X-ray diffraction measurement, and the peak integrated intensity S 0 of the (114) plane among the peaks identified for BaMgAl 10 O 17 and (202) of the peaks identified for BaAl 2 O 4 The intensity ratio S / S 0 with the peak integrated intensity S of the surface was 0.319.
[0032]
【The invention's effect】
The aluminate phosphor of the present invention exhibits high luminance even after heating in an oxidizing atmosphere, and particularly exhibits high luminance due to vacuum ultraviolet excitation, and thus is suitable for vacuum ultraviolet excitation light emitting devices such as PDPs and rare gas lamps. Since a vacuum ultraviolet ray excitation light emitting device having high emission luminance can be realized, it is extremely useful industrially.

Claims (3)

X線回折の測定結果において、BaMgAl1017と同じ結晶構造の(114)面に同定されるピークの積分強度S0と、BaAl24と同じ結晶構造の(202)面に同定されるピークの積分強度Sとの強度比S/S0が、0.01以上0.3以下であるピークを示すことを特徴とするアルミン酸塩蛍光体の製造方法であって、金属元素の比率が、組成式(Ba1-a1 ab-cEucMgAl1017(ただし、M1はCaおよび/またはSrであり、aは0以上0.5以下、bは1.03以上1.13以下、cは0.01以上0.3以下であり、 ( Ba 0.8949 Ca 0.0001 Sr 0.005 Eu 0.2 ) O・MgO・5Al 2 3 である場合を除く。)と同じ比率となるようにバリウム化合物、カルシウム化合物、ストロンチウム化合物、ユーロピウム化合物、マグネシウム化合物およびアルミニウム化合物を配合して焼成することを特徴とするアルミン酸塩蛍光体の製造方法。In the measurement result of X-ray diffraction, the integrated intensity S 0 of the peak identified on the (114) plane of the same crystal structure as that of BaMgAl 10 O 17 and the (202) plane of the same crystal structure as that of BaAl 2 O 4 are identified. A method for producing an aluminate phosphor, wherein the intensity ratio S / S 0 with respect to the integrated intensity S of the peak is 0.01 or more and 0.3 or less, wherein the ratio of the metal element is , Composition formula (Ba 1-a M 1 a ) bc Eu c MgAl 10 O 17 (where M 1 is Ca and / or Sr, a is 0 or more and 0.5 or less, b is 1.03 or more and 1. 13 or less, c is Ri der 0.01 to 0.3, barium such that the same ratio as unless it is (Ba 0.8949 Ca 0.0001 Sr 0.005 Eu 0.2) O · MgO · 5Al 2 O 3.) Compound, calcium compound, strontium compound, europium A method for producing an aluminate phosphor, comprising mixing a compound, a magnesium compound, and an aluminum compound and firing. 焼成の温度が、900℃以上1600℃以下の温度範囲である請求項1記載の製造方法。  The manufacturing method according to claim 1, wherein the firing temperature is in a temperature range of 900 ° C or higher and 1600 ° C or lower. アルミン酸塩蛍光体が、真空紫外線励起発光素子用アルミン酸塩蛍光体である請求項1または2に記載の製造方法。  The manufacturing method according to claim 1 or 2, wherein the aluminate phosphor is an aluminate phosphor for a vacuum ultraviolet ray-excited light emitting device.
JP2001351227A 2001-11-16 2001-11-16 Method for producing aluminate phosphor Expired - Fee Related JP3941471B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001351227A JP3941471B2 (en) 2001-11-16 2001-11-16 Method for producing aluminate phosphor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001351227A JP3941471B2 (en) 2001-11-16 2001-11-16 Method for producing aluminate phosphor

Publications (2)

Publication Number Publication Date
JP2003147352A JP2003147352A (en) 2003-05-21
JP3941471B2 true JP3941471B2 (en) 2007-07-04

Family

ID=19163561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001351227A Expired - Fee Related JP3941471B2 (en) 2001-11-16 2001-11-16 Method for producing aluminate phosphor

Country Status (1)

Country Link
JP (1) JP3941471B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006249120A (en) * 2005-03-08 2006-09-21 Tokyo Institute Of Technology Phosphor for electron-beam-excited light-emitting element
KR101113572B1 (en) 2007-04-18 2012-05-30 파나소닉 주식회사 Blue phosphor, light-emitting device and plasma display panel
CN101657520B (en) 2007-04-18 2013-03-13 松下电器产业株式会社 Blue phosphor, light-emitting device, and plasma display panel
KR101205088B1 (en) 2008-07-03 2012-11-26 파나소닉 주식회사 Blue phosphor and light-emitting device using the same
WO2010001623A1 (en) 2008-07-03 2010-01-07 パナソニック株式会社 Blue phosphor and light-emitting device using the same
JP5149384B2 (en) 2008-07-14 2013-02-20 信越化学工業株式会社 Method for producing long afterglow phosphor
CN102333842B (en) * 2009-02-27 2014-10-22 信越化学工业株式会社 Long-afterglow fluorescent ceramic and process for producing same
WO2011095948A1 (en) * 2010-02-08 2011-08-11 Koninklijke Philips Electronics N.V. Color adjusting arrangement

Also Published As

Publication number Publication date
JP2003147352A (en) 2003-05-21

Similar Documents

Publication Publication Date Title
JP4782447B2 (en) Phosphor
JP2003096448A (en) Fluorescent substance for vacuum ultraviolet-excited light-emitting element
JP3941471B2 (en) Method for producing aluminate phosphor
JP2009074090A (en) Phosphor for vacuum-ultraviolet ray-excited light-emitting element
US6527978B2 (en) Phosphor for vacuum ultraviolet ray-exciting light-emitting element
JP2005272831A (en) Method for producing silicate phosphor
JP4713169B2 (en) Phosphor
KR100742552B1 (en) Vacuum ultraviolet ray-excited light-emitting phosphor
JP2004300261A (en) Phosphor
JP4222099B2 (en) Phosphor for vacuum ultraviolet light-emitting device
JP4325364B2 (en) Method for manufacturing phosphor
JP4622135B2 (en) Phosphor for vacuum ultraviolet light-emitting device
JP4228628B2 (en) Phosphor for vacuum ultraviolet light-emitting device
JP2003183644A (en) Method of production for silicate fluorescent substance
JP2005060670A (en) Silicate phosphor
JP2004026922A (en) Fluorescent substance for vacuum ultraviolet light excitation light emission element
JP4016724B2 (en) Phosphor for vacuum ultraviolet light-emitting device
JP3994775B2 (en) Phosphor for vacuum ultraviolet light-excited light emitting device
JP2006206619A (en) Phosphor
JP4232559B2 (en) Phosphor for vacuum ultraviolet light-emitting device
JP4147915B2 (en) Blue phosphor for vacuum ultraviolet light-emitting device
JP2002226852A (en) Phosphor
JP2003313550A (en) Phosphor for vacuum ultraviolet ray-excited light emission element
JP2004115659A (en) Fluorescent substance for vacuum ultraviolet-excited light emitting element
JP2004059615A (en) Phosphor

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20041013

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060926

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061121

A131 Notification of reasons for refusal

Effective date: 20061226

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20070216

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070313

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070326

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100413

Year of fee payment: 3

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D05

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20100413

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D05

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20110413

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20120413

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees