JP2010078909A - Tnモード液晶表示装置 - Google Patents

Tnモード液晶表示装置 Download PDF

Info

Publication number
JP2010078909A
JP2010078909A JP2008247181A JP2008247181A JP2010078909A JP 2010078909 A JP2010078909 A JP 2010078909A JP 2008247181 A JP2008247181 A JP 2008247181A JP 2008247181 A JP2008247181 A JP 2008247181A JP 2010078909 A JP2010078909 A JP 2010078909A
Authority
JP
Japan
Prior art keywords
group
film
liquid crystal
carbon atoms
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008247181A
Other languages
English (en)
Other versions
JP5308759B2 (ja
Inventor
Akira Nakamura
亮 中村
Hiroshi Sato
佐藤  寛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2008247181A priority Critical patent/JP5308759B2/ja
Publication of JP2010078909A publication Critical patent/JP2010078909A/ja
Application granted granted Critical
Publication of JP5308759B2 publication Critical patent/JP5308759B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Polarising Elements (AREA)

Abstract

【課題】上下左右の視野角特性がバランスよく改善されたTNモード液晶表示装置の提供。
【解決手段】
少なくとも、一対の偏光子と、一対の偏光子間に配置される液晶セルと、一対の偏光子の少なくとも一方と液晶セルとの間に配置される光学補償フィルムとを有するTNモード液晶表示装置であって、前記光学補償フィルムが、式Iの光学特性を満足する第1光学異方性層、及び配向状態に固定された棒状液晶性分子を含むとともに、式IIの光学特性を満足する第2光学異方性層を少なくとも有するTNモード液晶表示装置である。Re及びRthは、それぞれ測定波長550nmであるときの面内および膜厚方向のレターデーション値(単位;nm);並びにRe[40]及びRe[−40]はそれぞれ、進相軸を回転軸として40度及び−40度に回転した時のレターデーション値を示す。
I −0.25≦Rth/Re≦0.25
II 1.5≦Re[40]/Re[−40]≦5.5
【選択図】図1

Description

本発明はTNモード液晶表示装置の視野角コントラストの改善に関する。
従来、TNモード液晶表示装置の視野角特性の改善に寄与する光学補償フィルムが種々提案されている。一例として、棒状液晶分子をハイブリッド配向又は傾斜配向させ、その状態を固定することで形成される光学異方性層を有する光学補償フィルムが種々提案されている(例えば、特許文献1及び2)。
近年、液晶表示装置を、パーソナルコンピュータ(PC)等のディスプレイとしてのみならず、大型TV用のディスプレイとして応用することが試みられ、実用化もされている。上記構成の光学補償フィルムを利用することで、TNモード液晶表示装置の視野角特性は改善されたが、大型TV用ディスプレイとして利用するためには、さらに上下左右の視野角特性がバランスよく改善されることが望まれる。
特開2002−196139号公報 特開2006−195293号公報
本発明は、上下左右の視野角特性がバランスよく改善されたTNモード液晶表示装置を提供することを課題とする。
上記課題を解決するための手段は、以下の通りである。
[1] 少なくとも、一対の偏光子と、一対の偏光子間に配置される液晶セルと、一対の偏光子の少なくとも一方と液晶セルとの間に配置される光学補償フィルムとを有するTNモード液晶表示装置であって、前記光学補償フィルムが、下記式Iの光学特性を満足する第1光学異方性層、及び配向状態に固定された棒状液晶性分子を含むとともに、下記式IIの光学特性を満足する第2光学異方性層を少なくとも有することを特徴とするTNモード液晶表示装置:
式I −0.25≦Rth/Re≦0.25
式II 1.5≦Re[40]/Re[−40]≦5.5
[式中、Re及びRthは、それぞれ測定波長550nmであるときの面内および膜厚方向のレターデーション値(単位;nm)を示す。また、Re[40]及びRe[−40]はそれぞれ、進相軸を回転軸として40度及び−40度に回転した時のレターデーション値を示す。ここでRe[40]>Re[−40]とする]。
[2] 前記第1光学異方性層が、溶液流延製膜方法にて製膜された後に、(Tg+60)℃以上(Tgは製膜フィルムのガラス転移温度)で熱処理され、熱処理と同時に及び/又は熱処理後に延伸されてなるポリマーフィルムであることを特徴とする[1]のTNモード液晶表示装置。
[3] 前記第1光学異方性層が、温度200℃以上で熱処理されてなるセルロースアシレートフィルムであることを特徴とする[1]又は[2]のTNモード液晶表示装置。
本発明によれば、上下左右の視野角特性がバランスよく改善されたTNモード液晶表示装置を提供することができる。
以下、本発明について詳細に説明する。なお、本明細書において「〜」を用いて表される数値範囲は、「〜」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
まず、本明細書で用いられる用語について、説明する。
(レターデーション、Re及びRth)
本明細書において、Re及びRthは各々、波長550nmにおける面内のレターデーション(nm)及び厚さ方向のレターデーション(nm)を表す。ReはKOBRA 21ADH又はWR(王子計測機器(株)製)において波長550nmnmの光をフィルム法線方向に入射させて測定される。
測定されるフィルム等のサンプルが1軸又は2軸の屈折率楕円体で表されるものである場合には、以下の方法によりRthは算出される。
Rthは前記Reを、面内の遅相軸(KOBRA 21ADH又はWRにより判断される)を傾斜軸(回転軸)として(遅相軸がない場合にはフィルム面内の任意の方向を回転軸とする)のフィルム法線方向に対して法線方向から片側50度まで10度ステップで各々その傾斜した方向から波長λnmの光を入射させて全部で6点測定し、その測定されたレターデーション値と平均屈折率の仮定値及び入力された膜厚値を基にKOBRA 21ADH又はWRが算出する。
上記において、法線方向から面内の遅相軸を回転軸として、ある傾斜角度にレターデーションの値がゼロとなる方向をもつフィルムの場合には、その傾斜角度より大きい傾斜角度でのレターデーション値はその符号を負に変更した後、KOBRA 21ADH又はWRが算出する。
尚、遅相軸を傾斜軸(回転軸)として(遅相軸がない場合にはフィルム面内の任意の方向を回転軸とする)、任意の傾斜した2方向からレターデーション値を測定し、その値と平均屈折率の仮定値及び入力された膜厚値を基に、以下の式(X)及び式(XI)よりRthを算出することもできる。
Figure 2010078909
注記:
上記のRe(θ)は法線方向から角度θ傾斜した方向におけるレターデーション値をあらわす。また、式中、nxは面内における遅相軸方向の屈折率を表し、nyは面内においてnxに直交する方向の屈折率を表し、nzはnx及びnyに直交する方向の屈折率を表す。dは膜厚を表す。
測定されるフィルムが1軸や2軸の屈折率楕円体で表現できないもの、いわゆる光学軸(optic axis)がないフィルムの場合には、
また、本明細書では、ここでRe[40]及びRe[−40]はそれぞれ、面内の進相軸(KOBRA 21ADH又はWRにより判断される)を傾斜軸(回転軸)として、フィルム法線方向に対して−40度及び+40度で傾斜した方向から波長550nmの光を入射させて測定したレターデーション値であり、Re[40]>Re[−40]とする。
また、本明細書において、位相差膜等の「遅相軸」は、屈折率が最大となる方向を意味する。また、「可視光領域」とは、380nm〜780nmのことをいう。さらに屈折率の測定波長は特別な記述がない限り、可視光域のλ=550nmでの値である。
また、本明細書において、位相差膜及び液晶層等の各部材の光学特性を示す数値、数値範囲、及び定性的な表現(例えば、「同等」、「等しい」等の表現)については、液晶表示装置やそれに用いられる部材について一般的に許容される誤差を含む数値、数値範囲及び性質を示していると解釈されるものとする。
本発明のTNモード液晶表示装置は、少なくとも、一対の偏光子と、一対の偏光子間に配置される液晶セルと、一対の偏光子の少なくとも一方と液晶セルとの間に配置される光学補償フィルムとを有するTNモード液晶表示装置であって、前記光学補償フィルムが、下記式Iの光学特性を満足する第1光学異方性層、及び配向状態に固定された棒状液晶性分子を含み、及び下記式IIを満足する第2光学異方性層を少なくとも有することを特徴とする。
式I −0.25≦Rth/Re≦0.25
式II 1.5≦Re[40]/Re[−40]≦5.5
前記特性を満足する第1及び第2の光学異方性層を有する光学補償フィルムは、TNモード液晶表示装置の上下左右の視野角コントラストをバランスよく改善するのに寄与する。
本発明の一実施形態は、上記光学補償フィルムを、一対の偏光子のそれぞれと液晶セルとの間に有するTNモード液晶表示装置である。以下、この実施形態のTNモード液晶表示装置について、図1を用いて説明する。
図1の液晶表示装置は、互いの吸収軸を直交して配置される一対の偏光層18及び20、一対の偏光層18及び20の間に、対向して配置される第1の基板14及び第2の基板16と、第1の基板14と前記第2の基板16との間に配置された液晶層12とを有するTNモード液晶セルLC、偏光層18及び20のそれぞれと液晶セルLCとの間に配置される第1光学異方性層22及び24、ならびに偏光層18及び20のそれぞれと液晶セルLCとの間に第2光学異方性層26及び28を有する。
液晶セルLCはTNモードの液晶セルであり、第1及び第2の基板14、16の対向面には、電極層が形成されている。また、一対の対向基板14及び16の対向面にはそれぞれ、電極層を覆って、実質的に互いに直交する方向14a及び16aに配向処理された水平配向膜が形成されている。液晶層12は、正の誘電異方性を有するネマティック液晶材料を充填してなる層であり、その液晶分子は、水平配向膜により、第1及び第2の基板14及び16の近傍における配向方向が規定され、電極層間に電界が印加されていないとき、図1中に示したように、基板14及び16間において90°程度の捩れ角で捩れ(ツイスト)配向する。一方、電極間に黒表示させる電圧が印加されると、液晶分子は、基板14及び16の面に対して垂直に立ち上がる。この状態では、液晶層中に法線方向から光が入射した場合と、斜め方向から入射した場合とでは、液晶分子の配向の違いにより、液晶層中を伝搬する光の偏光状態が異なり、その結果、視野角に依存してコントラストが低下したり、階調反転やカラーシフトが生じる。図1の液晶表示装置10では、第1光学異方性層22、24と、第2異方性層26、28との組合せにより、コントラスト等の表示特性の視野角依存性を軽減し、上下左右の視野角特性をバランスよく改善している。
液晶層12の厚さdと複屈折率Δnの積であるΔn・dは、一般的には、TNモードの場合、300〜500nm程度になり、好ましくは、380〜450nmである。
図1に示す液晶表示装置は、ノーマリホワイトモードであり、一対の偏光層18及び20(以下、上側偏光層18を第1の偏光層18、及び下側の偏光層20を第2の偏光層20という)は、図1に示す通り、それぞれの吸収軸18a及び20aを実質的に互いに直交させて配置されている。
液晶セルLCと一対の偏光層18及び20との間には、それぞれ、第1光学異方性層22、24と、第2光学異方性層26、28が配置されている。第1光学異方性層は、上記式Iを満足するものであり、例えば、複屈折ポリマーフィルムからなる。一方、第2光学異方性層は、配向状態に固定された棒状液晶性分子を含有する、塗布法などによって形成される層である。第2光学異方性層は上記式IIを満足するものであり、当該特性を満足する光学異方性層は、棒状液晶を傾斜配向状態に固定することで形成することができる。例えば、第1光学異方性層を、第2光学異方性層の支持体として、その上に、棒状液晶組成物からなる第2光学異方性層を形成し、光学補償フィルムF1及びF2を作製し、それを液晶表示装置に組み込むことができる。さらに、第1光学異方性層22、24が、ポリマーフィルムである態様では、偏光層18及び20にそれぞれ接触させて貼り合せ、その保護フィルムとしても利用することもできる。当該態様では、図1中の偏光板PL1及びPL2を製造して、それを液晶セルLCに貼合して、液晶表示装置を製造することができる。
図1に示す液晶表示装置の光学的軸関係の一例を、図2に示す。具体的には、以下の通りである。
第1の基板14の対向面に形成された配向膜のラビング方向14aは、液晶表示装置の画面の左右方向に対し、表示面側(図面上側)から見て左回りに45°回転した方向にあり、第2の基板16の対向面に形成された配向膜のラビング方向16aは、液晶表示装置の画面の左右方向に対し、観察者側(図面上側)から見て右回りに45°回転した方向にある。電圧無印加時には、配向膜界面近傍の液晶分子は、その配向処理方向に長軸方向を一致させて配向するので、表示面側から見て右回りに実質的に90°の捩れ角でツイスト配向している。
また、第1の偏光層18は、その吸収軸18aを、配向膜の配向処理方向14aと平行にして配置され、及び第2の偏光層20は、その吸収軸20aを第1の偏光子層18の吸収軸18aに対し、実質的に直交にして配置されている。即ち、吸収軸18aは、表示面側から見て左回りに45°回転した方向にあり、吸収軸20aは、表示面側から見て右回りに45°回転した方向にあり、互いに直交している。なお、吸収軸18aが、表示面側から見て右回りに45°回転した方向にあり、吸収軸20aが、表示面側から見て左回りに45°回転した方向にあり、互いに直交していても、同様の表示特性になる。
また、表示面側の光学補償フィルムF1の第2光学異方性層26の形成時に利用する配向膜(不図示)のラビング方向26aと、第1の基板14の配向膜の配向処理方向14aとが実質的に直交であり、及びバックライト側の光学補償フィルムF2の第2光学異方性層28の形成時に利用する配向膜(不図示)のラビング方向28aと、第2の基板16の配向膜の配向処理方向16aとが実質的に直交である。
また、第2光学異方性層26の面内遅相軸は、ラビング方向26aに一致するので、図2では省略したが、光学補償フィルムF1中の第1光学異方性層22の面内遅相軸22aと、第2光学異方性層26の面内遅相軸とは平行となり、同様に、光学補償フィルムF2中の第1光学異方性層24の面内遅相軸24aと、第2光学異方性層28の面内遅相軸とは平行になる。
以下、本発明のTNモード液晶表示装置に用いられる各部材について説明する。
1. 光学補償フィルム
本発明に用いる光学補償フィルムは、所定の特性を満足する第1光学異方性層と、配向状態に固定された棒状液晶分子を含有するとともに、所定の特性を満足する第2光学異方性層と、を少なくとも有する。
2. 第1光学異方性層
第1光学異方性層は、下記式Iを満足する。
式I −0.25≦Rth/Re≦0.25
好ましくは、下記式I’を満足し、
式I’−0.22≦Rth/Re≦0.22
さらに好ましくは、下記式I”を満足する。
式I”−0.20≦Rth/Re≦0.20。
また、前記光学補償フィルムを、液晶セルを中心にして、上下に各1枚ずつ配置する態様では、当該光学補償フィルムに利用される第1光学異方性層は、Re(550)が0〜275nm程度であり、及びRth(550)が−75〜75nm程度であるのが好ましく、Re(550)が10〜250nm程度であり、及びRth(550)が−55〜55nm程度であるのがより好ましい。
2.−1 第1光学異方性層の材料
上記特性を満足する限り、第1光学異方性層の材料については特に制限はない。第1光学異方性層がポリマーフィルムからなると、第2光学異方性層の支持体として利用することができ、また偏光子の保護フィルムとしても利用できるの。第1光学異方性層として利用可能なポリマーフィルムとしては、例えば、セルロースエステル、ポリエステル、ポリカーボネート、シクロオレフィンポリマー、ビニルポリマー、ポリアミドおよびポリイミド等のフィルムを挙げることができる。
これらのポリマーは単独で用いてもよいし、2種類以上のポリマーを併用してもよい。
前記セルロースアシレートとしては、セルロースを原料として生物的或いは化学的に官能基を導入して得られるエステル置換セルロース骨格を有する化合物が挙げられ、その中でもセルロースアシレートが特に好ましく、セルロースアシレートを主成分として含むフィルムを用いるのが好ましい。ここで、「主成分としてのポリマー」とは、単一のポリマーからなる場合には、そのポリマーのことを示し、複数のポリマーからなる場合には、構成するポリマーのうち、最も質量分率の高いポリマーのことを示す。
前記セルロースエステルは、セルロースと酸とのエステルである。前記エステルを構成する酸としては、有機酸が好ましく、カルボン酸がより好ましく、炭素原子数が2〜22の脂肪酸がさらに好ましく、炭素原子数が2〜4の低級脂肪酸が最も好ましい。
前記セルロースアシレートは、セルロースとカルボン酸とのエステルである。前記セルロースアシレートは、セルロースを構成するグルコース単位の2位、3位および6位に存在するヒドロキシル基の水素原子の全部または一部が、アシル基で置換されている。前記アシル基の例としては、例えば、アセチル、プロピオニル、ブチリル、イソブチリル、ピバロイル、ヘプタノイル、ヘキサノイル、オクタノイル、デカノイル、ドデカノイル、トリデカノイル、テトラデカノイル、ヘキサデカノイル、オクタデカノイル、シクロヘキサンカルボニル、オレオイル、ベンゾイル、ナフチルカルボニル、および、シンナモイルが挙げられる。前記アシル基としては、アセチル、プロピオニル、ブチリル、ドデカノイル、オクタデカノイル、ピバロイル、オレオイル、ベンゾイル、ナフチルカルボニル、シンナモイルが好ましく、アセチル、プロピオニル、ブチリルが最も好ましい。セルロースエステルは、セルロースと複数の酸とのエステルであってもよい。また、セルロースアシレートは、複数のアシル基で置換されていてもよい。
アセチル基を有するセルロースアセテートが特に好ましく、溶媒への溶解性の観点から、アセチル置換度が2.70〜2.87のセルロースアセテートがより好ましく、2.80〜2.86のセルロースアセテートがさらに好ましい。
セルロースアシレートの合成方法について、基本的な原理は、右田伸彦他、木材化学180〜190頁(共立出版、1968年)に記載されている。セルロースアシレートの代表的な合成方法としては、カルボン酸無水物−カルボン酸−硫酸触媒による液相アシル化法が挙げられる。具体的には、まず、綿花リンタや木材パルプ等のセルロース原料を適当量の酢酸などのカルボン酸で前処理した後、予め冷却したアシル化混液に投入してエステル化し、完全セルロースアシレート(2位、3位および6位のアシル置換度の合計が、ほぼ3.00)を合成する。前記アシル化混液は、一般に溶媒としてのカルボン酸、エステル化剤としてのカルボン酸無水物および触媒としての硫酸を含む。また、前記カルボン酸無水物は、これと反応するセルロースおよび系内に存在する水分の合計よりも、化学量論的に過剰量で使用することが普通である。
次いで、アシル化反応終了後に、系内に残存している過剰カルボン酸無水物の加水分解を行うために、水または含水酢酸を添加する。さらに、エステル化触媒を一部中和するために、中和剤(例えば、カルシウム、マグネシウム、鉄、アルミニウムまたは亜鉛の炭酸塩、酢酸塩、水酸化物または酸化物)を含む水溶液を添加してもよい。さらに、得られた完全セルロースアシレートを少量のアシル化反応触媒(一般には、残存する硫酸)の存在下で、20〜90℃に保つことにより鹸化熟成し、所望のアシル置換度および重合度を有するセルロースアシレートまで変化させる。所望のセルロースアシレートが得られた時点で、系内に残存している触媒を前記中和剤などを用いて完全に中和するか、或いは、前記触媒を中和することなく水若しくは希酢酸中にセルロースアシレート溶液を投入(或いは、セルロースアシレート溶液中に、水または希酢酸を投入)してセルロースアシレートを分離し、洗浄および安定化処理により目的物であるセルロースアシレートを得ることができる。
前記セルロースアシレートの重合度は、粘度平均重合度で150〜500が好ましく、200〜400がより好ましく、220〜350がさらに好ましい。前記粘度平均重合度は、宇田らの極限粘度法(宇田和夫、斉藤秀夫、繊維学会誌、第18巻第1号、105〜120頁、1962年)の記載に従って測定することができる。前記粘度平均重合度の測定方法については、特開平9−95538号公報にも記載がある。
また、低分子成分が少ないセルロースアシレートは、平均分子量(重合度)が高いが、粘度は通常のセルロースアシレートよりも低い値になる。このような低分子成分の少ないセルロースアシレートは、通常の方法で合成したセルロースアシレートから低分子成分を除去することにより得ることができる。低分子成分の除去は、セルロースアシレートを適当な有機溶媒で洗浄することにより行うことができる。また、低分子成分の少ないセルロースアシレートを合成により得ることもできる。低分子成分の少ないセルロースアシレートを合成する場合、アシル化反応における硫酸触媒量を、セルロース100質量に対して0.5〜25質量部に調整することが好ましい。前記硫酸触媒の量を前記範囲にすると、分子量分布の点でも好ましい(分子量分布の均一な)セルロースアシレートを合成することができる。
セルロースエステルの原料綿や合成方法については、発明協会公開技報(公技番号2001−1745号、2001年3月15日発行、発明協会)7〜12頁にも記載がある。
2.−2 第1光学異方性層の作製方法
前記第1光学異方性層として利用するポリマーフィルムは、ポリマーや各種添加剤を含有するポリマー溶液から溶液流延製膜方法によって作製することができる。また、ポリマーの融点、もしくはポリマーと各種添加剤との混合物の融点が、これらの分解温度よりも低くかつ後述の延伸温度よりも高い場合には、溶融製膜法によって製膜することで作製することもできる。溶融製膜法については、特開2000−352620号公報などに記載がある。
以下、第1光学異方性層として利用可能なポリマーフィルムの製造方法について、溶液流延方法を利用する態様について詳細に説明する。
前記第1光学異方性層として利用するポリマーフィルムは、例えば、ポリマーや必要に応じて各種添加剤を含有するポリマー溶液を溶液流延製膜方法等によって製膜することで作製することができる。
前記ポリマー溶液(好ましくはセルロースアシレート溶液)の主溶媒としては、該ポリマーの良溶媒である有機溶媒を好ましく用いることができる。このような有機溶媒としては、沸点が80℃以下の有機溶媒が乾燥負荷低減の観点からより好ましい。前記有機溶媒の沸点は、10〜80℃であることがさらに好ましく、20〜60℃であることが特に好ましい。また、場合により沸点が30〜45℃である有機溶媒も前記主溶媒として好適に用いることができる。
このような主溶媒としては、ハロゲン化炭化水素、エステル、ケトン、エーテル、アルコールおよび炭化水素などが挙げられ、これらは分岐構造若しくは環状構造を有していてもよい。また、前記主溶媒は、エステル、ケトン、エーテルおよびアルコールの官能基(即ち、−O−、−CO−、−COO−、−OH)のいずれかを二つ以上有していてもよい。さらに、前記エステル、ケトン、エーテルおよびアルコールの炭化水素部分における水素原子は、ハロゲン原子(特に、フッ素原子)で置換されていてもよい。なお、本発明の透明ポリマーフィルムの作製に用いられるポリマー溶液(好ましくはセルロースエステル溶液)の主溶媒とは、単一の溶媒からなる場合には、その溶媒のことを示し、複数の溶媒からなる場合には、構成する溶媒のうち、最も質量分率の高い溶媒のことを示す。
前記ハロゲン化炭化水素としては、塩素化炭化水素がより好ましく、例えば、ジクロロメタンおよびクロロホルムなどが挙げられ、ジクロロメタンがさらに好ましい。
前記エステルとしては、例えば、メチルホルメート、エチルホルメート、メチルアセテート、エチルアセテートなどが挙げられる。
前記ケトンとしては、例えば、アセトン、メチルエチルケトンなどが挙げられる。
前記エーテルとしては、例えば、ジエチルエーテル、メチル−tert−ブチルエーテル、ジイソプロピルエーテル、ジメトキシメタン、1,3−ジオキソラン、4−メチルジオキソラン、テトラヒドロフラン、メチルテトラヒドロフラン、1,4−ジオキサンなどが挙げられる。
前記アルコールとしては、例えば、メタノール、エタノール、2−プロパノールなどが挙げられる。
前記炭化水素としては、例えば、n−ペンタン、シクロヘキサン、n−ヘキサン、ベンゼン、トルエンなどが挙げられる。
これら主溶媒と併用される有機溶媒としては、ハロゲン化炭化水素、エステル、ケトン、エーテル、アルコールおよび炭化水素などが挙げられ、これらは分岐構造若しくは環状構造を有していてもよい。また、前記有機溶媒としては、エステル、ケトン、エーテルおよびアルコールの官能基(即ち、−O−、−CO−、−COO−、−OH)のいずれか二つ以上を有していてもよい。さらに、前記エステル、ケトン、エーテルおよびアルコールの炭化水素部分における水素原子は、ハロゲン原子(特に、フッ素原子)で置換されていてもよい。
前記ハロゲン化炭化水素としては、塩素化炭化水素がより好ましく、例えば、ジクロロメタンおよびクロロホルムなどが挙げられ、ジクロロメタンがさらに好ましい。
前記エステルとしては、例えば、メチルホルメート、エチルホルメート、プロピルホルメート、ペンチルホルメート、メチルアセテート、エチルアセテート、ペンチルアセテートなどが挙げられる。
前記ケトンとしては、例えば、アセトン、メチルエチルケトン、ジエチルケトン、ジイソブチルケトン、シクロペンタノン、シクロヘキサノン、メチルシクロヘキサノンなどが挙げられる。
前記エーテルとしては、例えば、ジエチルエーテル、メチル−tert−ブチルエーテル、ジイソプロピルエーテル、ジメトキシメタン、ジメトキシエタン、1,4−ジオキサン、1,3−ジオキソラン、4−メチルジオキソラン、テトラヒドロフラン、メチルテトラヒドロフラン、アニソール、フェネトールなどが挙げられる。
前記アルコールとしては、例えば、メタノール、エタノール、1−プロパノール、2−プロパノール、1−ブタノール、2−ブタノール、tert−ブタノール、1−ペンタノール、2−メチル−2−ブタノール、シクロヘキサノール、2−フルオロエタノール、2,2,2−トリフルオロエタノール、2,2,3,3−テトラフルオロ−1−プロパノールなどが挙げられる。
前記炭化水素としては、例えば、n−ペンタン、シクロヘキサン、n−ヘキサン、ベンゼン、トルエン、キシレンなどが挙げられる。
前記2種類以上の官能基を有する有機溶媒としては、例えば、2−エトキシエチルアセテート、2−メトキシエタノール、2−ブトキシエタノール、メチルアセトアセテートなどが挙げられる。
前記ポリマーフィルムを構成するポリマーがセルロースアシレートを含む場合、全溶媒中に5〜30質量%、より好ましくは7〜25質量%、さらに好ましくは10〜20質量%のアルコールを含有することがバンドからの剥離荷重低減の観点から好ましい。
また、Rth低減の観点から、本発明の透明ポリマーフィルムの作製に用いられる前記ポリマー溶液は、乾燥過程初期においてハロゲン化炭化水素とともに揮発する割合が小さく、次第に濃縮される沸点が95℃以上であり、且つ、セルロースエステルの貧溶媒である有機溶媒を1〜15質量%、より好ましくは1.5〜13質量%、さらに好ましくは2〜10質量%含有することが好ましい。
前記ポリマーフィルムの作製に用いられるポリマー溶液の溶媒として好ましく用いられる有機溶媒の組み合せの例を以下に挙げるが、本発明はこれらに限定されるものではない。なお、比率の数値は、質量部を意味する。
(1)ジクロロメタン/メタノール/エタノール/ブタノール=80/10/5/5
(2)ジクロロメタン/メタノール/エタノール/ブタノール=80/5/5/10
(3)ジクロロメタン/イソブチルアルコール=90/10
(4)ジクロロメタン/アセトン/メタノール/プロパノール=80/5/5/10
(5)ジクロロメタン/メタノール/ブタノール/シクロヘキサン=80/8/10/2(6)ジクロロメタン/メチルエチルケトン/メタノール/ブタノール=80/10/5/5
(7)ジクロロメタン/ブタノール=90/10
(8)ジクロロメタン/アセトン/メチルエチルケトン/エタノール/ブタノール=68/10/10/7/5
(9)ジクロロメタン/シクロペンタノン/メタノール/ペンタノール=80/2/15/3
(10)ジクロロメタン/メチルアセテート/エタノール/ブタノール=70/12/15/3
(11)ジクロロメタン/メチルエチルケトン/メタノール/ブタノール=80/5/5/10
(12)ジクロロメタン/メチルエチルケトン/アセトン/メタノール/ペンタノール=50/20/15/5/10
(13)ジクロロメタン/1,3−ジオキソラン/メタノール/ブタノール=70/15/5/10
(14)ジクロロメタン/ジオキサン/アセトン/メタノール/ブタノール=75/5/10/5/5
(15)ジクロロメタン/アセトン/シクロペンタノン/エタノール/イソブチルアルコール/シクロヘキサン=60/18/3/10/7/2
(16)ジクロロメタン/メチルエチルケトン/アセトン/イソブチルアルコール=70/10/10/10
(17)ジクロロメタン/アセトン/エチルアセテート/ブタノール/ヘキサン=69/10/10/10/1
(18)ジクロロメタン/メチルアセテート/メタノール/イソブチルアルコール=65/15/10/10
(19)ジクロロメタン/シクロペンタノン/エタノール/ブタノール=85/7/3/5
(20)ジクロロメタン/メタノール/ブタノール=83/15/2
(21)ジクロロメタン=100
(22)アセトン/エタノール/ブタノール=80/15/5
(23)メチルアセテート/アセトン/メタノール/ブタノール=75/10/10/5
(24)1,3−ジオキソラン=100
(25)ジクロロメタン/メタノール=85/15
(26)ジクロロメタン/メタノール=92/8
(27)ジクロロメタン/メタノール=90/10
(28)ジクロロメタン/メタノール=87/13
(29)ジクロロメタン/エタノール=90/10
また、非ハロゲン系有機溶媒を主溶媒とした場合の詳細な記載は発明協会公開技報(公技番号2001−1745、2001年3月15日発行、発明協会)に記載があり、適宜、使用することができる。
調製するポリマー溶液中のポリマー濃度は、5〜40質量%が好ましく、10〜30質量%がさらに好ましく、15〜30質量%が最も好ましい。
前記ポリマー濃度は、ポリマーを溶媒に溶解する段階で所定の濃度になるように調整することができる。また予め低濃度(例えば4〜14質量%)の溶液を調製した後に、溶媒を蒸発させる等によって濃縮してもよい。さらに、予め高濃度の溶液を調製後に、希釈してもよい。また、添加剤を添加することで、ポリマーの濃度を低下させることもできる。
前記ポリマーフィルムの作製に用いられる前記ポリマー溶液は、各調製工程において用途に応じた各種の液体または固体の添加剤を含むことができる。前記添加剤の例としては、可塑剤(好ましい添加量はポリマーに対して0.01〜10質量%程度、以下同様)、紫外線吸収剤(0.001〜1質量%程度)、平均粒子サイズが5〜3000nmである微粒子粉体(0.001〜1質量%程度)、フッ素系界面活性剤(0.001〜1質量%程度)、剥離剤(0.0001〜1質量%程度)、劣化防止剤(0.0001〜1質量%程度)、光学異方性制御剤(0.01〜10質量%程度)、赤外線吸収剤(0.001〜1質量%程度)が含まれる。
前記可塑剤や前記光学異方性制御剤は、分子量3000以下の有機化合物であり、好ましくは疎水部と親水部とを併せ持つ化合物である。これらの化合物は、ポリマー鎖間で配向することにより、レターデーション値を変化させる。さらに、これらの化合物を、セルロースアシレートと併用することで、フィルムの疎水性を向上させ、レターデーションの湿度変化を低減させることができる。また、前記紫外線吸収剤や前記赤外線吸収剤を併用することで、効果的にレターデーションの波長依存性を制御することもできる。本発明の透明ポリマーフィルムに用いられる添加剤は、いずれも乾燥過程での揮散が実質的にないものが好ましい。
レターデーションの湿度変化低減を図る観点からは、これらの添加剤の添加量は多いほうが好ましいが、添加量の増大に伴い、ポリマーフィルムのガラス転移温度(Tg)低下や、フィルムの製造工程における添加剤の揮散問題を引き起こしやすくなる。従って、本発明においてより好ましく用いられるセルロースアセテートをポリマーとして用いる場合、前記分子量3000以下の添加剤の添加量は、前記ポリマーに対し0.01〜30質量%が好ましく、2〜30質量%がより好ましく、5〜20質量%がさらに好ましい。
セルロースアシレートフィルムを用いる場合に好適に用いることのできる可塑剤については、特開2001−151901号公報に記載がある。また、赤外吸収剤については、特開2001−194522号公報に記載がある。添加剤を添加する時期は、添加剤の種類に応じて適宜決定することができる。
前記ポリマー溶液の調製は、例えば、特開昭58−127737号公報、同61−106628号公報、特開平2−276830号公報、同4−259511号公報、同5−163301号公報、同9−95544号公報、同10−45950号公報、同10−95854号公報、同11−71463号公報、同11−302388号公報、同11−322946号公報、同11−322947号公報、同11−323017号公報、特開2000−53784号公報、同2000−273184号公報、同2000−273239号公報に記載されている調製方法に準じて行うことができる。具体的には、ポリマーと溶媒とを混合攪拌し膨潤させ、場合により冷却や加熱等を実施して溶解させた後、これをろ過してポリマー溶液を得る。
前記ポリマーフィルムは、種々の溶液流延製膜方法に従い、種々の溶液流延製膜装置を用いて製造できる。具体的には、溶解機(釜)で調製されたドープ(ポリマー溶液)を、ろ過後、貯蔵釜で一旦貯蔵し、ドープに含まれている泡を脱泡して最終調製することができる。ドープは30℃に保温し、ドープ排出口から、例えば回転数によって高精度に定量送液できる加圧型定量ギヤポンプを通して加圧型ダイに送り、ドープを加圧型ダイの口金(スリット)からエンドレスに走行している流延部の金属支持体の上に均一に流延する(流延工程)。次いで、金属支持体がほぼ一周した剥離点で、生乾きのドープ膜(ウェブとも呼ぶ)を金属支持体から剥離し、続いて乾燥ゾーンへ搬送し、ロール群で搬送しながら乾燥を終了する。本発明においては、金属支持体として金属ベルトが好ましい。
このようにして乾燥の終了したフィルム中の残留溶剤量は0〜2質量%が好ましく、より好ましくは0〜1質量%である。乾燥終了後のフィルム(原反)のRthは−1000nm以上50nm未満であることが好ましく、−100〜45nmであることがより好ましく、−50〜40nmであることがさらに好ましい。また、フィルムの好ましい幅は0.5〜5mであり、より好ましくは0.7〜3mである。
このフィルムは、そのまま延伸ゾーンや熱処理ゾーンへ搬送してもよいし、フィルムを巻き取ってからオフラインで延伸や熱処理を実施してもよい。また、一旦フィルムを巻き取る場合には、好ましい巻長は300〜30000mであり、より好ましくは500〜10000mであり、さらに好ましくは1000〜7000mである。
(延伸)
第1光学異方性層に要求される特性を満足するポリマーフィルムを得るために、製膜後に延伸処理を施してもよい。
延伸処理は、例えば、出口側の周速を速くしたフィルムを搬送方向に保持する2つ以上の装置(例えば、ニップロールやサクションドラム)間で搬送方向に実施する縦延伸でもよいが、好ましくは延伸方向は搬送方向と直交方向に広げて実施する横延伸であり、例えば、フィルムの両端をテンタークリップで把持して加熱ゾーンを有する装置内で実施されるテンター延伸であることがより好ましい。延伸倍率はフィルムに要求するレターデーションに応じて適宜設定することができ、1〜500%が好ましく、3〜400%がより好ましく、5〜300%がさらに好ましく、10〜100%が特に好ましい。これらの延伸は1段で実施しても、多段で実施してもよい。なお、ここでいう「延伸倍率(%)」とは、以下の式を用いて求めたものを意味する。
延伸倍率(%)=100×{(延伸後の長さ)−(延伸前の長さ)}/延伸前の長さ
前記延伸における延伸速度は10〜10000%/分が好ましく、より好ましくは20〜1000%/分であり、さらに好ましくは30〜800%/分である。
(熱処理)
第1光学異方性層に要求される特性を満足するポリマーフィルムを製造するために、前記延伸処理に加え、製膜されたポリマーフィルムを熱処理することが好ましい。熱処理は、延伸処理の前に実施されることが好ましく、また熱処理時に同時に延伸処理を実施することもできる。熱処理後に一旦フィルムを冷却し、さらに延伸処理を行うのが好ましい。
熱処理温度は、好ましくは(Tg+60)℃以上であり、より好ましくは(Tg+60)〜(Tg+180)℃であり、さらにより好ましくは(Tg+65)〜(Tg+150)℃であり、特に好ましくは(Tg+70)〜(Tg+100)℃である。より具体的には、セルロースアシレートフィルムでは、熱処理温度は、好ましくは200℃以上であり、より好ましくは200〜280℃であり、さらに好ましくは210〜270℃であり、特に好ましくは220〜250℃である。
冷却温度は、前記熱処理温度よりも50℃以上低いことが好ましく、100〜300℃低いことがより好ましく、150〜250℃低いことがさらに好ましい。
また、前記熱処理温度と延伸温度との差は1℃以上であることが好ましく、10〜200℃がより好ましく、30〜150℃がさらに好ましく、50〜100℃が特に好ましく、延伸温度は熱処理温度より低いことが好ましい。この温度差を適切に設定することによって、Rth/Re値を前記範囲とすることができる。
なお、ここで、上記Tgは、溶液製膜された当該膜のガラス転移温度であり、DSCの測定パンに熱処理前のサンプルを20mg入れ、これを窒素気流中で10℃/分で30℃から120℃まで昇温し、15分間保持した後、30℃まで−20℃/分で冷却した。この後、再度30℃から250℃まで昇温し、ベースラインが低温側から偏奇し始める温度をフィルムのTgとする。
前記熱処理は、前記温度に保持された加熱ゾーン中にフィルムを搬送させながら実施することが好ましい。この場合、搬送方向に保持する2つ以上の装置(例えば、ニップロールやサクションドラム)間で加熱しながら行うことが好ましく、例えば、ニップロール間に加熱ゾーンを有する装置内にて実施してもよい。
また、入口側と出口側の周速に差を持たせずに実施しても持たせながら実施してもよく、周速に差を持たせる場合、フィルムの伸びは3〜500%に制御することが好ましく、5〜100%がより好ましく、10〜80%がさらに好ましく、20〜60%が特に好ましい。なお、ここでいう「フィルムの伸び(%)」とは、以下の式を用いて求めたものを意味する。
フィルムの伸び(%)=100×{(熱処理後の長さ)−(熱処理前の長さ)}/熱処理前の長さ
前記第1光学異方性層として利用するポリマーフィルムは、単層構造であることが好ましい。ここで、「単層構造」のフィルムとは、複数のフィルム材が貼り合わされているものではなく、一枚のポリマーフィルムを意味する。そして、複数のポリマー溶液から、逐次流延方式や共流延方式を用いて一枚のポリマーフィルムを製造する場合も含む。この場合、添加剤の種類や配合量、ポリマーの分子量分布やポリマーの種類等を適宜調整することによって厚み方向に分布を有するようなポリマーフィルムを得ることができる。また、それらの一枚のフィルム中に光学異方性部、防眩部、ガスバリア部、耐湿性部などの各種機能性部を有するものも含む。
(表面処理)
前記第1光学異方性層として用いるポリマーフィルムには、適宜、表面処理を行ってもよい。表面処理を行うことにより、各機能層(例えば、下塗層、バック層、光学異方性層)との接着を改善することが可能となる。前記表面処理には、グロー放電処理、紫外線照射処理、コロナ処理、火炎処理、鹸化処理(酸鹸化処理、アルカリ鹸化処理)が含まれ、特にグロー放電処理およびアルカリ鹸化処理が好ましい。ここでいう「グロー放電処理」とは、プラズマ励起性気体存在下でフィルム表面にプラズマ処理を施す処理である。これらの表面処理方法の詳細は、発明協会公開技報(公技番号2001−1745、2001年3月15日発行、発明協会)に記載があり、適宜、使用することができる。
フィルム表面と機能層との接着性を改善するため、表面処理に加えて、或いは表面処理に代えて、本発明の透明ポリマーフィルム上に下塗層(接着層)を設けることもできる。前記下塗層については、発明協会公開技報(公技番号2001−1745、2001年3月15日発行、発明協会)32頁に記載があり、これらを適宜、使用することができる。また、本発明の透明ポリマーフィルム上に設けられる機能性層については、発明協会公開技報(公技番号2001−1745、2001年3月15日発行、発明協会)32頁〜45頁に記載があり、これに記載のものを適宜、使用することができる。
3.第2光学異方性層
本発明に使用する第2光学異方性層は、配向状態に固定された棒状液晶性分子を含むとともに、下記式IIを満足する。なお、Re[40]及びRe[−40]の定義については、上記の通りである。
式II 1.5≦Re[40]/Re[−40]≦5.5
好ましくは、下記式II'を満足し、
式II’ 1.7≦Re[40]/Re[−40]≦4.5
さらに好ましくは、下記式II"を満足する。
式II” 2.0≦Re[40]/Re[−40]≦4.0
上記関係を満足する第2光学異方性層の一例では、Re[40]は150〜900nm程度(好ましくは200〜400nm程度)であり、且つRe[−40]は30〜600nm程度(50〜350nm程度)である。
3.−1 第2光学異方性層の材料
前記第2光学異方性層は、棒状液晶性化合物を含有する液晶組成物から形成することができる。上記式IIを満足する光学異方性層を形成するためには、前記液晶組成物を傾斜配向状態とし、その状態を固定して形成するのが好ましい。棒状液晶を傾斜配向状態とするために、組成物中に、配向制御剤を添加するのが好ましい。また、前記液晶組成物は、重合性であるのが好ましく、例えば、重合開始剤や重合成分(棒状液晶が重合成分であってもよい)を含有する重合性組成物であるのが好ましい。
前記第2光学異方性層の形成に利用可能な棒状液晶性化合物については、特に制限はない。棒状液晶性化合物の例には、アゾメチン類、アゾキシ類、シアノビフェニル類、シアノフェニルエステル類、安息香酸エステル類、シクロヘキサンカルボン酸フェニルエステル類、シアノフェニルシクロヘキサン類、シアノ置換フェニルピリミジン類、アルコキシ置換フェニルピリミジン類、フェニルジオキサン類、トラン類及びアルケニルシクロヘキシルベンゾニトリル類の種々の棒状液晶が含まれる。また、低分子液晶性化合物だけではなく、高分子液晶性化合物も用いることができる。棒状液晶性化合物を重合によって配向を固定することがより好ましい。液晶性化合物には活性光線や電子線、熱などによって重合や架橋反応を起こしうる部分構造を有するものが好適に用いられる。その部分構造の個数は好ましくは1〜6個、より好ましくは1〜3個である。重合性棒状液晶性化合物としては、Makromol.Chem.,190巻、2255頁(1989年)、Advanced Materials 5巻、107頁(1993年)、米国特許第4683327号明細書、同5622648号明細書、同5770107号明細書、国際公開WO95/22586号公報、同95/24455号公報、同97/00600号公報、同98/23580号公報、同98/52905号公報、特開平1−272551号公報、同6−16616号公報、同7−110469号公報、同11−80081号公報、特開2001−328973号公報、特開2004−240188号公報、特開2005−99236号公報、特開2005−99237号公報、特開2005−121827号公報、特開2002−30042号公報などに記載の化合物を用いることができる。
棒状液晶性化合物の分子は、ポリビニルアルコール等の配向膜の表面では、通常、その長軸を配向膜表面にほぼ平行にして配向する傾向があるので、長軸がある程度のチルト角で傾斜配向した状態とするために、配向制御剤を添加して、配向膜界面側及び空気界面側において液晶性化合物を配向制御してもよい。また、配向膜に、ある程度の排除体積効果、静電気的効果又は表面エネルギー効果をもたせて、傾斜配向を実現してもよい。又、空気界面側の配向制御に関しては、液晶性化合物の配向時に空気界面に偏在し、その排除体積効果、静電気的効果、又は表面エネルギー効果によって液晶性化合物を傾斜配向させる作用を及ぼす化合物を配合した液晶性組成物を、前記第2光学異方性層の作製に用いてもよい。配向膜界面側で液晶性化合物の分子を、垂直に配向させるのを促進する化合物(配向膜界面側垂直配向剤)の例には、ピリジニウム誘導体が含まれ、好適に用いられる。空気界面側で液晶性化合物の分子を垂直に配向させるのを促進する化合物(空気界面側垂直配向剤)としては、該化合物が空気界面側に偏在するのを促進する、フルオロ脂肪族基と、カルボキシル基(−COOH)、スルホ基(−SO3H)、ホスホノキシ基{−OP(=O)(OH)2}及びそれらの塩からなる群より選ばれる1種以上の親水性基とを含む化合物が好適に用いられる。又、これらの化合物を配合することによって、例えば、液晶性組成物を塗布液として調製した場合に、該塗布液の塗布性が改善され、ムラ、ハジキの発生が抑制される。以下に垂直配向剤に関して詳細に説明する。
(配向膜界面側配向剤)
前記第2光学異方性層の形成には、配向膜界面側近傍の棒状液晶性分子を垂直配向状態にするのを促進する配向剤を使用してもよい。当該配向剤の例には、下記式(I)で表されるピリジニウム誘導体(ピリジニウム塩)が含まれる。
Figure 2010078909
式(I)において、L1は2価の連結基を表し、アルキレン基と−O−、−S−、−CO−、−SO2−、−NRa−(但し、Raは炭素原子数が1〜5のアルキル基又は水素原子である)、アルケニレン基、アルキニレン基又はアリーレン基との組み合わせからなる炭素原子数が1〜20の2価の連結基であることが好ましい。アルキレン基は、直鎖であっても分岐であってもよい。
式(I)において、R1は、水素原子、無置換のアミノ基又は炭素原子数が1〜20の置換基で置換された置換アミノ基である。R1が置換アミノ基である場合、脂肪族基によって置換されていることが好ましい。脂肪族基は、例えば、アルキル基、置換アルキル基、アルケニル基、置換アルケニル基、アルキニル基及び置換アルキニル基が挙げられる。又、R1が2置換アミノ基である場合、2つの脂肪族基が互いに結合して含窒素複素環を形成してもよい。このとき形成される含窒素複素環は、5員環又は6員環であることが好ましい。R1は水素原子、無置換のアミノ基又は炭素原子数が1〜20の置換アミノ基であることが好ましく、水素原子、無置換のアミノ基又は炭素原子数が2〜12の置換アミノ基であることがより好ましく、水素原子、無置換のアミノ基又は炭素原子数が2〜8の置換アミノ基であることがさらに好ましい。R1がアミノ基である場合、ピリジニウム環の4位に置換されていることが好ましい。
式(I)において、Xはアニオンである。アニオンの例には、ハロゲン陰イオン(例えば、フッ素イオン、塩素イオン、臭素イオン、ヨウ素イオンなど)、スルホン酸イオン(例えば、メタンスルホン酸イオン、トリフルオロメタンスルホン酸イオン、メチル硫酸イオン、p−トルエンスルホン酸イオン、p−クロロベンゼンスルホン酸イオン、1,3−ベンゼンジスルホン酸イオン、1,5−ナフタレンジスルホン酸イオン、2,6−ナフタレンジスルホン酸イオンなど)、硫酸イオン、炭酸イオン、硝酸イオン、チオシアン酸イオン、過塩素酸イオン、テトラフルオロホウ酸イオン、ピクリン酸イオン、酢酸イオン、ギ酸イオン、トリフルオロ酢酸イオン、リン酸イオン(例えば、ヘキサフルオロリン酸イオン)、水酸イオンなどが挙げられる。Xは、好ましくは、ハロゲン陰イオン、スルホネートイオン、水酸イオンである。
式(I)において、Y1は5員環又は6員環を部分構造として有する炭素数1〜30の2価の連結基である。Y1に含まれる環状部分構造はシクロヘキシル環、芳香族環又は複素環であることがより好ましい。芳香族環としては、ベンゼン環、インデン環、ナフタレン環、フルオレン環、フェナントレン環、アントラセン環、ビフェニル環、及びピレン環を挙げることができる。ベンゼン環、ビフェニル環、及びナフタレン環がさらに好ましい。複素環を構成する複素原子としては、窒素原子、酸素原子及び硫黄原子が好ましく、例えば、フラン環、チオフェン環、ピロール環、ピロリン環、ピロリジン環、オキサゾール環、イソオキサゾール環、チアゾール環、イソチアゾール環、イミダゾール環、イミダゾリン環、イミダゾリジン環、ピラゾール環、ピラゾリン環、ピラゾリジン環、トリアゾール環、フラザン環、テトラゾール環、ピラン環、ジオキサン環、ジチアン環、チイン環、ピリジン環、ピペリジン環、オキサジン環、モルホリン環、チアジン環、ピリダジン環、ピリミジン環、ピラジン環、ピペラジン環及びトリアジン環などを挙げることができる。複素環は6員環であることが好ましい。Yで表される5員環又は6員環を部分構造として有する2価の連結基は置換基を有していてもよい。
式(I)において、Zは、ハロゲン置換フェニル基、ニトロ置換フェニル基、シアノ置換フェニル基、炭素原子数が1〜10のアルキル基で置換されたフェニル基、炭素原子数が2〜10のアルコキシ基で置換されたフェニル基、炭素原子数が1〜12のアルキル基、炭素原子数が2〜20のアルキニル基、炭素原子数が1〜12のアルコキシ基、炭素原子数が2〜13のアルコキシカルボニル基、炭素原子数が7〜26のアリールオキシカルボニル基、炭素原子数が7〜26のアリールカルボニルオキシ基であり、シアノ置換フェニル基、ハロゲン置換フェニル基、炭素原子数が1〜10のアルキル基で置換されたフェニル基、炭素原子数が2〜10のアルコキシ基で置換されたフェニル基、炭素原子数が7〜26のアリールオキシカルボニル基又は炭素原子数が7〜26のアリールカルボニルオキシ基であるのが好ましい。
Zは、さらに置換基を有していてもよく、置換基の例には、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子)、シアノ基、ニトロ基、炭素原子数が1〜16のアルキル基、炭素原子数が1〜16のアルケニル基、炭素原子数が1〜16のアルキニル基、炭素原子数が1〜16のハロゲン置換アルキル基、炭素原子数が1〜16のアルコキシ基、炭素原子数が2〜16のアシル基、炭素原子数が1〜16のアルキルチオ基、炭素原子数が2〜16のアシルオキシ基、炭素原子数が2〜16のアルコキシカルボニル基、カルバモイル基、炭素原子数が2〜16のアルキル置換カルバモイル基及び炭素原子数が2〜16のアシルアミノ基が含まれる。
本発明に用いられるピリジニウム化合物としては、下記式(Ia)で表されるピリジニウム化合物が好ましい。
Figure 2010078909
式(Ia)において、L3は、単結合、−O−、−O−CO−、−CO−O−、−C≡C−、−CH=CH−、−CH=N−、−N=CH−、−N=N−、−O−AL−O−、−O−AL−O−CO−、−O−AL−CO−O−、−CO−O−AL−O−、−CO−O−AL−O−CO−、−CO−O−AL−CO−O−、−O−CO−AL−O−、−O−CO−AL−O−CO−又はO−CO−AL−CO−O−である。ALは、炭素原子数が1〜10のアルキレン基である。L3は、単結合、−O−、−O−AL−O−、−O−AL−O−CO−、−O−AL−CO−O−、−CO−O−AL−O−、−CO−O−AL−O−CO−、−CO−O−AL−CO−O−、−O−CO−AL−O−、−O−CO−AL−O−CO−又はO−CO−AL−CO−O−であるのが好ましく、単結合又はO−であるのがより好ましい。
式(Ia)において、L4は、単結合、−O−、−O−CO−、−CO−O−、−C≡C−、−CH=CH−、−CH=N−、−N=CH−又はN=N−である。
式(Ia)において、R3は、水素原子、無置換アミノ基又は炭素原子数が2〜20のアルキル置換アミノ基である。R3がジアルキル置換アミノ基である場合、2つのアルキル基が互いに結合して含窒素複素環を形成してもよい。このとき形成される含窒素複素環は、5員環又は6員環が好ましい。R3は水素原子、無置換アミノ基又は炭素原子数が2〜12のジアルキル置換アミノ基がさらに好ましく、水素原子、無置換アミノ基又は炭素原子数が2〜8のジアルキル置換アミノ基が最も好ましい。R3が無置換アミノ基である場合、ピリジニウム環の4位がアミノ置換されていることが好ましい。
式(Ia)において、Y2及びY3は、それぞれ独立に、置換基を有していてもよい6員環からなる2価の基である。6員環の例は、脂肪族環、芳香族環(ベンゼン環)及び複素環が挙げられる。6員脂肪族環の例は、シクロヘキサン環、シクロヘキセン環及びシクロヘキサジエン環が挙げられる。6員複素環の例は、ピラン環、ジオキサン環、ジチアン環、チイン環、ピリジン環、ピペリジン環、オキサジン環、モルホリン環、チアジン環、ピリダジン環、ピリミジン環、ピラジン環、ピペラジン環及びトリアジン環が挙げられる。6員環に、他の6員環又は5員環が縮合していてもよい。
置換基の例は、ハロゲン原子、シアノ基、炭素原子数が1〜12のアルキル基及び炭素原子数が1〜12のアルコキシ基が挙げられる。アルキル基及びアルコキシ基は、炭素原子数が2〜12のアシル基又は炭素原子数が2〜12のアシルオキシ基で置換されていてもよい。アシル基及びアシルオキシ基の定義は、後述する。
式(Ia)において、X1はアニオンである。X1は、一価のアニオンであることが好ましい。アニオンの例には、ハロゲン陰イオン(例えば、フッ素イオン、塩素イオン、臭素イオン、ヨウ素イオン)及びスルホン酸イオン(例えば、メタンスルホン酸イオン、p−トルエンスルン酸イオン、ベンゼンスルン酸イオン)が含まれる。
式(Ia)において、Z1は水素原子、シアノ基、炭素原子数が1〜12のアルキル基又は炭素原子数が1〜12のアルコキシ基であって、アルキル基及びアルコキシ基は、それぞれ、炭素原子数が2〜12のアシル基又は炭素原子数が2〜12のアシルオキシ基で置換されていてもよい。
式(Ia)において、mは1又は2であって、mが2の場合、2つのL4及び2つのY3は、異なっていてもよい。
mが2の場合、Z1は、シアノ基、炭素原子数が1〜10のアルキル基又は炭素原子数が1〜10のアルコキシ基であることが好ましい。
mが1の場合、Z1は、炭素原子数が7〜12のアルキル基、炭素原子数が7〜12のアルコキシ基、炭素原子数が7〜12のアシル置換アルキル基、炭素原子数が7〜12のアシル置換アルコキシ基、炭素原子数が7〜12のアシルオキシ置換アルキル基又は炭素原子数が7〜12のアシルオキシ置換アルコキシ基であることが好ましい。
アシル基は−CO−R、アシルオキシ基は−O−CO−Rで表され、Rは脂肪族基(アルキル基、置換アルキル基、アルケニル基、置換アルケニル基、アルキニル基、置換アルキニル基)又は芳香族基(アリール基、置換アリール基)である。Rは、脂肪族基であることが好ましく、アルキル基又はアルケニル基であることがさらに好ましい。
式(Ia)において、pは、1〜10の整数である。Cp2pは、分岐構造を有していてもよい鎖状アルキレン基を意味する。Cp2pは、直鎖状アルキレン基であることが好ましい。又、pは1又は2であることがより好ましい。
以下に、式(I)及び/又は(Ia)で表される化合物の具体例を示す。ここで、Meはメチル基を表す。
Figure 2010078909
Figure 2010078909
Figure 2010078909
Figure 2010078909
ピリジニウム誘導体は、一般にピリジン環をアルキル化(メンシュトキン反応)して得られる。
前記液晶性組成物中における前記ピリジニウム誘導体の含有量の好ましい範囲は、その用途によって異なるが、液晶性組成物(塗布液として調製した場合は溶媒を除いた液晶性組成物)中、0.005〜8質量%であることが好ましく、0.01〜5質量%であることがより好ましい。
(空気界面側配向剤)
前記第2光学異方性層の形成には、空気界面側近傍の液晶性分子を垂直配向状態にするのを促進する配向剤を使用してもよい。当該配向剤の例には、フルオロ脂肪族基と、カルボキシル基(−COOH)、スルホ基(−SO3H)、ホスホノキシ基{−OP(=O)(OH)2}及びそれらの塩からなる群より選ばれる1種以上の親水性基とを含有するフルオロ脂肪族基含有ポリマー(以下、「フッ素系ポリマー」という)、又は一般式(III)で表される含フッ素化合物が含まれる。
まず、フッ素系ポリマーについて説明する。
本発明に使用可能なフッ素系ポリマーは、フルオロ脂肪族基と、カルボキシル基(−COOH)、スルホ基(−SO3H)、ホスホノキシ基{−OP(=O)(OH)2}及びそれらの塩からなる群より選ばれる1種以上の親水性基とを含有することを特徴とする。ポリマーの種類としては、「改訂 高分子合成の化学」(大津隆行著、発行:株式会社化学同人、1968)1〜4ページに記載があり、例えば、ポリオレフィン類、ポリエステル類、ポリアミド類、ポリイミド類、ポリウレタン類、ポリカーボネート類、ポリスルホン類、ポリカーボナート類、ポリエーテル類、ポリアセタール類、ポリケトン類、ポリフェニレンオキシド類、ポリフェニレンスルフィド類、ポリアリレート類、ポリテトラフルオロエチレン(PTFE)類、ポリビニリデンフロライド類、セルロース誘導体などが挙げられる。前記フッ素系ポリマーは、ポリオレフィン類であることが好ましい。
前記フッ素系ポリマーは、フルオロ脂肪族基を側鎖に有するポリマーである。前記フルオロ脂肪族基は、炭素数1〜12であるのが好ましく、6〜10であるのがより好ましい。脂肪族基は、鎖状であっても環状であってもよく、鎖状である場合は直鎖状であっても分岐鎖状であってもよい。中でも、直鎖状の炭素数6〜10のフルオロ脂肪族基が好ましい。フッ素原子による置換の程度については特に制限はないが、脂肪族基中の50%以上の水素原子がフッ素原子に置換されているのが好ましく、60%以上が置換されているのがより好ましい。フルオロ脂肪族基は、エステル結合、アミド結合、イミド結合、ウレタン結合、ウレア結合、エーテル結合、チオエーテル結合、芳香族環などを介してポリマー主鎖と結合した側鎖に含まれる。フルオロ脂肪族基の一つは、テロメリゼーション法(テロマー法ともいわれる)又はオリゴメリゼーション法(オリゴマー法ともいわれる)により製造されたフルオロ脂肪族化合物から導かれるものである。これらのフルオロ脂肪族化合物の製造法に関しては、例えば、「フッ素化合物の合成と機能」(監修:石川延男、発行:株式会社シーエムシー、1987)の117〜118ページや、「Chemistry of Organic Fluorine Compounds II」(Monograph 187,Ed by Milos Hudlicky and Attila E.Pavlath,American Chemical Society 1995)の747〜752ページに記載されている。テロメリゼーション法とは、ヨウ化物等の連鎖移動常数の大きいアルキルハライドをテローゲンとして、テトラフルオロエチレン等のフッ素含有ビニル化合物のラジカル重合を行い、テロマーを合成する方法である(Scheme−1に例を示した)。
Figure 2010078909
得られた、末端ヨウ素化テロマーは通常、例えば[Scheme2]のごとき適切な末端化学修飾を施され、フルオロ脂肪族化合物へと導かれる。これらの化合物は必要に応じ、さらに所望のモノマー構造へと変換され、フッ素系ポリマーの製造に使用される。
Figure 2010078909
本発明に使用可能なフッ素系ポリマーの製造に利用可能なモノマーの具体例を以下に挙げるが、本発明は以下の具体例によってなんら制限されるものではない。
Figure 2010078909
Figure 2010078909
Figure 2010078909
Figure 2010078909
Figure 2010078909
Figure 2010078909
Figure 2010078909
本発明に使用可能なフッ素系ポリマーの一態様は、フルオロ脂肪族基含有モノマー(以下、「フッ素系モノマー」ということがある)より誘導される繰り返し単位と、下記式(II)で表される親水性基を含有する繰り返し単位とを有する共重合体である。
Figure 2010078909
上記式(II)において、R1、R2及びR33はそれぞれ独立に、水素原子又は置換基を表す。Qはカルボキシル基(−COOH)もしくはその塩、スルホ基(−SO3H)もしくはその塩、又は、ホスホノキシ基{−OP(=O)(OH)2}もしくはその塩を表す。Lは下記の連結基群から選ばれる任意の基、又はそれらの2つ以上を組み合わせて形成される2価の連結基を表す。
(連結基群)
単結合、−O−、−CO−、−NRb−(Rbは水素原子、アルキル基、アリール基、又はアラルキル基を表す)、−S−、−SO2−、−P(=O)(ORf)−(Rfはアルキル基、アリール基、又はアラルキル基を表す)、アルキレン基及びアリーレン基。
式(II)中、R1、R2及びR33は、それぞれ独立に、水素原子又は下記に例示した置換基群から選ばれる置換基を表す。
(置換基群)
アルキル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜12、さらに好ましくは炭素数1〜8のアルキル基であり、例えば、メチル基、エチル基、イソプロピル基、tert−ブチル基、n−オクチル基、n−デシル基、n−ヘキサデシル基、シクロプロピル基、シクロペンチル基、シクロヘキシル基などが挙げられる)、アルケニル基(好ましくは炭素数2〜20、より好ましくは炭素数2〜12、さらに好ましくは炭素数2〜8のアルケニル基であり、例えば、ビニル基、アリール基、2−ブテニル基、3−ペンテニル基などが挙げられる)、アルキニル基(好ましくは炭素数2〜20、より好ましくは炭素数2〜12、さらに好ましくは炭素数2〜8のアルキニル基であり、例えば、プロパルギル基、3−ペンチニル基などが挙げられる)、アリール基(好ましくは炭素数6〜30、より好ましくは炭素数6〜20、さらに好ましくは炭素数6〜12のアリール基であり、例えば、フェニル基、p−メチルフェニル基、ナフチル基などが挙げられる)、アラルキル基(好ましくは炭素数7〜30、より好ましくは炭素数7〜20、さらに好ましくは炭素数7〜12のアラルキル基であり、例えば、ベンジル基、フェネチル基、3−フェニルプロピル基などが挙げられる)、置換もしくは無置換のアミノ基(好ましくは炭素数0〜20、より好ましくは炭素数0〜10、さらに好ましくは炭素数0〜6のアミノ基であり、例えば、無置換アミノ基、メチルアミノ基、ジメチルアミノ基、ジエチルアミノ基、アニリノ基などが挙げられる)、
アルコキシ基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、さらに好ましくは炭素数1〜10のアルコキシ基であり、例えば、メトキシ基、エトキシ基、ブトキシ基などが挙げられる)、アルコキシカルボニル基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、さらに好ましくは2〜10のアルコキシカルボニル基であり、例えば、メトキシカルボニル基、エトキシカルボニル基などが挙げられる)、アシルオキシ基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、さらに好ましくは2〜10のアシルオキシ基であり、例えば、アセトキシ基、ベンゾイルオキシ基などが挙げられる)、アシルアミノ基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、さらに好ましくは炭素数2〜10のアシルアミノ基であり、例えばアセチルアミノ基、ベンゾイルアミノ基などが挙げられる)、アルコキシカルボニルアミノ基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、さらに好ましくは炭素数2〜12のアルコキシカルボニルアミノ基であり、例えば、メトキシカルボニルアミノ基などが挙げられる)、アリールオキシカルボニルアミノ基(好ましくは炭素数7〜20、より好ましくは炭素数7〜16、さらに好ましくは炭素数7〜12のアリールオキシカルボニルアミノ基であり、例えば、フェニルオキシカルボニルアミノ基などが挙げられる)、スルホニルアミノ基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、さらに好ましくは炭素数1〜12のスルホニルアミノ基であり、例えば、メタンスルホニルアミノ基、ベンゼンスルホニルアミノ基などが挙げられる)、スルファモイル基(好ましくは炭素数0〜20、より好ましくは炭素数0〜16、さらに好ましくは炭素数0〜12のスルファモイル基であり、例えば、スルファモイル基、メチルスルファモイル基、ジメチルスルファモイル基、フェニルスルファモイル基などが挙げられる)、カルバモイル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、さらに好ましくは炭素数1〜12のカルバモイル基であり、例えば、無置換のカルバモイル基、メチルカルバモイル基、ジエチルカルバモイル基、フェニルカルバモイル基などが挙げられる)、
アルキルチオ基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、さらに好ましくは炭素数1〜12のアルキルチオ基であり、例えば、メチルチオ基、エチルチオ基などが挙げられる)、アリールチオ基(好ましくは炭素数6〜20、より好ましくは炭素数6〜16、さらに好ましくは炭素数6〜12のアリールチオ基であり、例えば、フェニルチオ基などが挙げられる)、スルホニル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、さらに好ましくは炭素数1〜12のスルホニル基であり、例えば、メシル基、トシル基などが挙げられる)、スルフィニル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、さらに好ましくは炭素数1〜12のスルフィニル基であり、例えば、メタンスルフィニル基、ベンゼンスルフィニル基などが挙げられる)、ウレイド基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、さらに好ましくは炭素数1〜12のウレイド基であり、例えば、無置換のウレイド基、メチルウレイド基、フェニルウレイド基などが挙げられる)、リン酸アミド基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、さらに好ましくは炭素数1〜12のリン酸アミド基であり、例えば、ジエチルリン酸アミド基、フェニルリン酸アミド基などが挙げられる)、ヒドロキシ基、メルカプト基、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子)、シアノ基、スルホ基、カルボキシル基、ニトロ基、ヒドロキサム酸基、スルフィノ基、ヒドラジノ基、イミノ基、ヘテロ環基(好ましくは炭素数1〜30、より好ましくは1〜12のヘテロ環基であり、例えば、窒素原子、酸素原子、硫黄原子等のヘテロ原子を有するヘテロ環基であり、例えば、イミダゾリル基、ピリジル基、キノリル基、フリル基、ピペリジル基、モルホリノ基、ベンゾオキサゾリル基、ベンズイミダゾリル基、ベンズチアゾリル基などが挙げられる)、シリル基(好ましくは、炭素数3〜40、より好ましくは炭素数3〜30、さらに好ましくは、炭素数3〜24のシリル基であり、例えば、トリメチルシリル基、トリフェニルシリル基などが挙げられる)が含まれる。これらの置換基はさらにこれらの置換基によって置換されていてもよい。又、置換基を二つ以上有する場合は、同じでも異なってもよい。又、可能な場合には互いに結合して環を形成していてもよい。
1、R2及びR33はそれぞれ独立に、水素原子、アルキル基、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子等)、又は後述する−L−Qで表される基であることが好ましく、水素原子、炭素数1〜6のアルキル基、塩素原子、−L−Qで表される基であることがより好ましく、水素原子、炭素数1〜4のアルキル基であることが特に好ましく、水素原子、炭素数1〜2のアルキル基であることが最も好ましい。該アルキル基の具体例としては、メチル基、エチル基、n−プロピル基、n−ブチル基、sec−ブチル基等が挙げられる。該アルキル基は、適当な置換基を有していてもよい。該置換基としては、ハロゲン原子、アリール基、ヘテロ環基、アルコキシル基、アリールオキシ基、アルキルチオ基、アリールチオ基、アシル基、ヒドロキシル基、アシルオキシ基、アミノ基、アルコキシカルボニル基、アシルアミノ基、オキシカルボニル基、カルバモイル基、スルホニル基、スルファモイル基、スルホンアミド基、スルホリル基、カルボキシル基などが挙げられる。なお、アルキル基の炭素数は、置換基の炭素原子を含まない。以下、他の基の炭素数についても同様である。
Lは、上記連結基群から選ばれる2価の連結基、又はそれらの2つ以上を組み合わせて形成される2価の連結基を表す。上記連結基群中、−NRb−のRbは、水素原子、アルキル基、アリール基又はアラルキル基を表し、好ましくは水素原子又はアルキル基である。又、−PO(ORf)−のRfはアルキル基、アリール基又はアラルキル基を表し、好ましくはアルキル基である。Rb及びRfがアルキル基、アリール基又はアラルキル基を表す場合の炭素数は「置換基群」で説明したものと同じである。Lとしては、単結合、−O−、−CO−、−NRb−、−S−、−SO2−、アルキレン基又はアリーレン基を含むことが好ましく、−CO−、−O−、−NRb−、アルキレン基又はアリーレン基を含んでいることが特に好ましい。Lがアルキレン基を含む場合、アルキレン基の炭素数は好ましくは1〜10、より好ましくは1〜8、さらに好ましくは1〜6である。特に好ましいアルキレン基の具体例として、メチレン基、エチレン基、トリメチレン基、テトラブチレン基、ヘキサメチレン基等が挙げられる。Lが、アリーレン基を含む場合、アリーレン基の炭素数は、好ましくは6〜24、より好ましくは6〜18、さらに好ましくは6〜12である。特に好ましいアリーレン基の具体例として、フェニレン基、ナフタレン基等が挙げられる。Lが、アルキレン基とアリーレン基を組み合わせて得られる2価の連結基(即ちアラルキレン基)を含む場合、アラルキレン基の炭素数は、好ましくは7〜34、より好ましくは7〜26、さらに好ましくは7〜16である。特に好ましいアラルキレン基の具体例として、フェニレンメチレン基、フェニレンエチレン基、メチレンフェニレン基等が挙げられる。Lとして挙げられた基は、適当な置換基を有していてもよい。このような置換基としては先にR1、R2、R33における置換基として挙げた置換基と同様なものを挙げることができる。
以下にLの具体的構造を例示する。
Figure 2010078909
Figure 2010078909
前記式(II)中、Qはカルボキシル基、カルボキシル基の塩(例えば、リチウム塩、ナトリウム塩、カリウム塩、アンモニウム塩(例えばアンモニウム、テトラメチルアンモニウム、トリメチル−2−ヒドロキシエチルアンモニウム、テトラブチルアンモニウム、トリメチルベンジルアンモニウム、ジメチルフェニルアンモニウムなど)、ピリジニウム塩など)、スルホ基、スルホ基の塩(塩を形成するカチオンの例は上記カルボキシル基に記載のものと同じ)、ホスホノキシ基、ホスホノキシ基の塩(塩を形成するカチオンの例は上記カルボキシル基に記載のものと同じ)を表す。より好ましくはカルボキシル基、スルホ基、ホスホ基であり、特に好ましいのはカルボキシル基又はスルホ基である。
前記フッ素系ポリマーは、前記式(II)で表される繰り返し単位を1種含んでいてもよいし、2種以上含んでいてもよい。又、前記フッ素系ポリマーは、上記各繰り返し単位以外の他の繰り返し単位を1種又は2種以上有していてもよい。前記他の繰り返し単位については特に制限されず、通常のラジカル重合反応可能なモノマーから誘導される繰り返し単位が好ましい例として挙げられる。以下、他の繰り返し単位を誘導するモノマーの具体例を挙げる。前記フッ素系ポリマーは、下記モノマー群から選ばれる1種又は2種以上のモノマーから誘導される繰り返し単位を含有していてもよい。
モノマー群
(1)アルケン類
エチレン、プロピレン、1−ブテン、イソブテン、1−ヘキセン、1−ドデセン、1−オクタデセン、1−エイコセン、ヘキサフルオロプロペン、フッ化ビニリデン、クロロトリフルオロエチレン、3,3,3−トリフルオロプロピレン、テトラフルオロエチレン、塩化ビニル、塩化ビニリデンなど;
(2)ジエン類
1,3−ブタジエン、イソプレン、1,3−ペンタジエン、2−エチル−1,3−ブタジエン、2−n−プロピル−1,3−ブタジエン、2,3−ジメチル−1,3−ブタジエン、2−メチル−1,3−ペンタジエン、1−フェニル−1,3−ブタジエン、1−α−ナフチル−1,3−ブタジエン、1−β−ナフチル−1,3−ブタジエン、2−クロロ−1,3−ブタジエン、1−ブロモ−1,3−ブタジエン、1−クロロブタジエン、2−フルオロ−1,3−ブタジエン、2,3−ジクロロ−1,3−ブタジエン、1,1,2−トリクロロ−1,3−ブタジエン及び2−シアノ−1,3−ブタジエン、1,4−ジビニルシクロヘキサンなど;
(3)α,β−不飽和カルボン酸の誘導体
(3a)アルキルアクリレート類
メチルアクリレート、エチルアクリレート、n−プロピルアクリレート、イソプロピルアクリレート、n−ブチルアクリレート、イソブチルアクリレート、sec−ブチルアクリレート、tert−ブチルアクリレート、アミルアクリレート、n−ヘキシルアクリレート、シクロヘキシルアクリレート、2−エチルへキシルアクリレート、n−オクチルアクリレート、tert−オクチルアクリレート、ドデシルアクリレート、フェニルアクリレート、ベンジルアクリレート、2−クロロエチルアクリレート、2−ブロモエチルアクリレート、4−クロロブチルアクリレート、2−シアノエチルアクリレート、2−アセトキシエチルアクリレート、メトキシベンジルアクリレート、2−クロロシクロヘキシルアクリレート、フルフリルアクリレート、テトラヒドロフルフリルアクリレート、2−メトキシエチルアクリレート、ω−メトキシポリエチレングリコールアクリレート(ポリオキシエチレンの付加モル数:n=2ないし100のもの)、3−メトキシブチルアクリレート、2−エトキシエチルアクリレート、2−ブトキシエチルアクリレート、2−(2−ブトキシエトキシ)エチルアクリレート、1−ブロモ−2−メトキシエチルアクリレート、1,1−ジクロロ−2−エトキシエチルアクリレート、グリシジルアクリレートなど);
(3b)アルキルメタクリレート類
メチルメタクリレート、エチルメタクリレート、n−プロピルメタクリレート、イソプロピルメタクリレート、n−ブチルメタクリレート、イソブチルメタクリレート、sec−ブチルメタクリレート、tert−ブチルメタクリレート、アミルメタクリレート、n−ヘキシルメタクリレート、シクロヘキシルメタクリレート、2−エチルヘキシルメタクリレート、n−オクチルメタクリレート、ステアリルメタクリレート、ベンジルメタクリレート、フェニルメタクリレート、アリルメタクリレート、フルフリルメタクリレート、テトラヒドロフルフリルメタクリレート、クレジルメタクリレート、ナフチルメタクリレート、2−メトキシエチルメタクリレート、3−メトキシブチルメタクリレート、ω−メトキシポリエチレングリコールメタクリレート(ポリオキシエチレンの付加モル数:n=2ないし100のもの)、2−アセトキシエチルメタクリレート、2−エトキシエチルメタクリレート、2−ブトキシエチルメタクリレート、2−(2−ブトキシエトキシ)エチルメタクリレート、グリシジルメタクリレート、3−トリメトキシシリルプロピルメタクリレート、アリルメタクリレート、2−イソシアナトエチルメタクリレートなど;
(3c)不飽和多価カルボン酸のジエステル類
マレイン酸ジメチル、マレイン酸ジブチル、イタコン酸ジメチル、タコン酸ジブチル、クロトン酸ジブチル、クロトン酸ジヘキシル、フマル酸ジエチル、フマル酸ジメチルなど;
(3d)α、β−不飽和カルボン酸のアミド類
N,N−ジメチルアクリルアミド、N,N−ジエチルアクリルアミド、N−n−プロピルアクリルアミド、N−tertブチルアクリルアミド、N−tertオクチルメタクリルアミド、N−シクロヘキシルアクリルアミド、N−フェニルアクリルアミド、N−(2−アセトアセトキシエチル)アクリルアミド、N−ベンジルアクリルアミド、N−アクリロイルモルフォリン、ジアセトンアクリルアミド、N−メチルマレイミドなど;
(4)不飽和ニトリル類
アクリロニトリル、メタクリロニトリルなど;
(5)スチレン及びその誘導体
スチレン、ビニルトルエン、エチルスチレン、p−tertブチルスチレン、p−ビニル安息香酸メチル、α−メチルスチレン、p−クロロメチルスチレン、ビニルナフタレン、p−メトキシスチレン、p−ヒドロキシメチルスチレン、p−アセトキシスチレンなど;
(6)ビニルエステル類
酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、イソ酪酸ビニル、安息香酸ビニル、サリチル酸ビニル、クロロ酢酸ビニル、メトキシ酢酸ビニル、フェニル酢酸ビニルなど;
(7)ビニルエーテル類
メチルビニルエーテル、エチルビニルエーテル、n−プロピルビニルエーテル、イソプロピルビニルエーテル、n−ブチルビニルエーテル、イソブチルビニルエーテル、tert−ブチルビニルエーテル、n−ペンチルビニルエーテル、n−ヘキシルビニルエーテル、n−オクチルビニルエーテル、n−ドデシルビニルエーテル、n−エイコシルビニルエーテル、2−エチルヘキシルビニルエーテル、シクロヘキシルビニルエーテル、フルオロブチルビニルエーテル、フルオロブトキシエチルビニルエーテルなど;及び
(8)その他の重合性単量体
N−ビニルピロリドン、メチルビニルケトン、フェニルビニルケトン、メトキシエチルビニルケトン、2−ビニルオキサゾリン、2−イソプロペニルオキサゾリンなど。
前記フッ素系ポリマー中、フルオロ脂肪族基含有モノマーの量は、該ポリマーの構成モノマー総量の5質量%以上であるのが好ましく、10質量%以上であるのがより好ましく、30質量%以上であるのがさらに好ましい。前記フッ素系ポリマーにおいて、前記式(II)で表される繰り返し単位の量は、該フッ素ポリマーの構成モノマー総量の0.5質量%以上であるのが好ましく、1〜20質量%であるのがより好ましく、1〜10質量%であるのがさらに好ましい。上記の質量百分率は使用するモノマーの分子量により好ましい範囲の数値が変動し易いため、ポリマーの単位質量当たりの官能基モル数で表す方が、式(II)で表される繰り返し単位の含有量を正確に規定できる。該表記を用いた場合、前記フッ素系ポリマー中に含有される親水性基(式(II)中のQ)の好ましい量は、0.1mmol/g〜10mmol/gであり、より好ましい量は0.2mmol/g〜8mmol/gである。
前記フッ素系ポリマーの質量平均分子量は1,000,000以下が好ましく、500,000以下がより好ましく、100,000以下がさらに好ましい。質量平均分子量は、ゲルパーミエーションクロマトグラフィ(GPC)を用いて、ポリスチレン(PS)換算の値として測定可能である。
前記フッ素系ポリマーの重合方法は、特に限定されるものではないが、例えば、ビニル基を利用したカチオン重合やラジカル重合、又は、アニオン重合等の重合方法を採ることができ、これらの中ではラジカル重合が汎用に利用できる点で特に好ましい。ラジカル重合の重合開始剤としては、ラジカル熱重合開始剤や、ラジカル光重合開始剤等の公知の化合物を使用することができるが、特に、ラジカル熱重合開始剤を使用することが好ましい。ここで、ラジカル熱重合開始剤は、分解温度以上に加熱することにより、ラジカルを発生させる化合物である。このようなラジカル熱重合開始剤としては、例えば、ジアシルパーオキサイド(アセチルパーオキサイド、ベンゾイルパーオキサイド等)、ケトンパーオキサイド(メチルエチルケトンパーオキサイド、シクロヘキサノンパーオキサイド等)、ハイドロパーオキサイド(過酸化水素、tert−ブチルハイドロパーオキサイド、クメンハイドロパーオキサイド等)、ジアルキルパーオキサイド(ジ−tert−ブチルパーオキサイド、ジクミルパーオキサイド、ジラウロイルパーオキサイド等)、パーオキシエステル類(tert−ブチルパーオキシアセテート、tert−ブチルパーオキシピバレート等)、アゾ系化合物(アゾビスイソブチロニトリル、アゾビスイソバレロニトリル等)、過硫酸塩類(過硫酸アンモニウム、過硫酸ナトリウム、過硫酸カリウム等)が挙げられる。このようなラジカル熱重合開始剤は、1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。
ラジカル重合方法は、特に制限されるものでなく、乳化重合法、懸濁重合法、塊状重合法、溶液重合法等を採ることが可能である。典型的なラジカル重合方法である溶液重合についてさらに具体的に説明する。他の重合方法についても概要は同等であり、その詳細は例えば「高分子科学実験法」高分子学会編(東京化学同人、1981年)等に記載されている。
溶液重合を行うためには有機溶媒を使用する。これらの有機溶媒は本発明の目的、効果を損なわない範囲で任意に選択可能である。これらの有機溶媒は通常、大気圧下での沸点が50〜200℃の範囲内の値を有する有機化合物であり、各構成成分を均一に溶解させる有機化合物が好ましい。好ましい有機溶媒の例を示すと、イソプロパノール、ブタノール等のアルコール類;ジブチルエーテル、エチレングリコールジメチルエーテル、テトラヒドロフラン、ジオキサン等のエーテル類;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類;酢酸エチル、酢酸ブチル、酢酸アミル、γ−ブチロラクトン等のエステル類;ベンゼン、トルエン、キシレン等の芳香族炭化水素類;が挙げられる。なお、これらの有機溶媒は、1種単独又は2種以上を組み合わせて用いることが可能である。さらに、モノマーや生成するポリマーの溶解性の観点から上記有機溶媒に水を併用した水混合有機溶媒も適用可能である。
又、溶液重合条件も特に制限されるものではないが、例えば、50〜200℃の温度範囲内で、10分〜30時間加熱することが好ましい。さらに、発生したラジカルが失活しないように、溶液重合中はもちろんのこと、溶液重合開始前にも、不活性ガスパージを行うことが好ましい。不活性ガスとしては通常窒素ガスが好適に用いられる。
前記フッ素系ポリマーを好ましい分子量範囲で得るためには、連鎖移動剤を用いたラジカル重合法が特に有効である。連鎖移動剤としてはメルカプタン類(例えば、オクチルメルカプタン、デシルメルカプタン、ドデシルメルカプタン、tert−ドデシルメルカプタン、オクタデシルメルカプタン、チオフェノール、p−ノニルチオフェノール等)、ポリハロゲン化アルキル類(例えば、四塩化炭素、クロロホルム、1,1,1−トリクロロエタン、1,1,1−トリブロモオクタンなど)、低活性モノマー類(α−メチルスチレン、α−メチルスチレンダイマー等)のいずれも用いることができるが、好ましくは炭素数4〜16のメルカプタン類である。これらの連鎖移動剤の使用量は、連鎖移動剤の活性やモノマーの組み合わせ、重合条件などにより著しく影響され精密な制御が必要であるが、使用するモノマーの全モル数に対して好ましくは0.01モル%〜50モル%程度であり、より好ましくは0.05モル%〜30モル%、さらに好ましくは0.08モル%〜25モル%である。これらの連鎖移動剤は、重合過程において重合度を制御するべき対象のモノマーと同時に系内に存在させればよく、その添加方法については特に問わない。モノマーに溶解して添加してもよいし、モノマーと別途に添加することも可能である。
なお、前記フッ素系ポリマーは、液晶性化合物の配向状態を固定化するために置換基として重合性基を有するものも好ましい。
以下に、フッ素系ポリマーとして本発明に好ましく用いられる具体例を示すが、本発明はこれらの具体例によってなんら限定されるものではない。ここで式中の数値(a、b、c、d等の数値)は、それぞれ各モノマーの組成比を示す質量百分率であり、MwはGPCにより測定されたPEO換算の質量平均分子量である。
Figure 2010078909
Figure 2010078909
Figure 2010078909
Figure 2010078909
Figure 2010078909
前記フッ素系ポリマーは、公知慣用の方法で製造することができる。例えば先にあげたフッ素系モノマー、水素結合性基を有するモノマー等を含む有機溶媒中に、汎用のラジカル重合開始剤を添加し、重合させることにより製造できる。又、場合によりその他の付加重合性不飽和化合物を、さらに添加して上記と同じ方法にて製造することができる。各モノマーの重合性に応じ、反応容器にモノマーと開始剤を滴下しながら重合する滴下重合法なども、均一な組成のポリマーを得るために有効である。
前記液晶性組成物(塗布液として調製した場合は、溶媒を除いた液晶性組成物)中における前記フッ素系ポリマーの含有量の好ましい範囲は、その用途によって異なるが、液晶性組成物(塗布液である場合は溶媒を除いた組成物)中、0.005〜8質量%であるのが好ましく、0.01〜5質量%であるのがより好ましく、0.05〜1質量%であるのがさらに好ましい。前記フッ素系ポリマーの添加量が0.005質量%未満では効果が不十分であり、又8質量%より多くなると、塗膜の乾燥が十分に行われなくなったり、光学フィルムとしての性能(例えばレタデーションの均一性等)に悪影響を及ぼす。
次に、同様に空気界面側配向剤として使用可能な、式(III)で表される含フッ素化合物について説明する。
式(III)
(R0mo−L0−(W)no
式中、R0はアルキル基、末端にCF3基を有するアルキル基、又は末端にCF2H基を有するアルキル基を表し、moは1以上の整数を表す。複数個のR0は同一でも異なっていてもよいが、少なくとも一つは末端にCF3基又はCF2H基を有するアルキル基を表す。L0は(mo+no)価の連結基を表し、Wはカルボキシル基(−COOH)もしくはその塩、スルホ基(−SO3H)もしくはその塩、又はホスホノキシ{−OP(=O)(OH)2}もしくはその塩を表し、noは1以上の整数を表す。
式(III)中、R0は含フッ素化合物の疎水性基として機能する。R0で表されるアルキル基は置換もしくは無置換のアルキル基であり、直鎖状であっても分岐鎖状であってもよく、好ましくは炭素数1〜20のアルキル基であり、更に好ましくは4〜16のアルキル基であり、特に好ましくは6〜16のアルキル基である。該置換基としては後述の置換基群Dとして例示する置換基のいずれかを適用できる。
0で表される末端にCF3基を有するアルキル基は、好ましくは炭素数1〜20であり、より好ましくは4〜16であり、さらに好ましくは4〜8である。前記末端にCF3基を有するアルキル基は、アルキル基に含まれる水素原子の一部又は全部がフッ素原子で置換されたアルキル基である。アルキル基中の水素原子の50%以上がフッ素原子で置換されているのが好ましく、60%以上が置換されているのがより好ましく、70%以上を置換されているのが特に好ましい。残りの水素原子は、さらに後述の置換基群Dとして例示された置換基によって置換されていてもよい。R0で表される末端にCF2H基を有するアルキル基は、好ましくは炭素数1〜20であり、より好ましくは4〜16であり、さらに好ましくは4〜8である。前記末端にCF2H基を有するアルキル基は、アルキル基に含まれる水素原子の一部又は全部がフッ素原子で置換されたアルキル基である。アルキル基中の水素原子の50%以上がフッ素原子で置換されていることが好ましく、60%以上が置換されていることがより好ましく、70%以上を置換されていることがさらに好ましい。残りの水素原子は、さらに後述の置換基群Dとして例示する置換基によって置換されていてもよい。R0で表される末端にCF3基を有するアルキル基、又は末端にCF2H基を有するアルキル基の例を以下に示す。
R1:n−C817
R2:n−C613
R3:n−C49
R4:n−C817−(CH22
R5:n−C613−(CH22
R6:n−C49−(CH22
R7:H−(CF28
R8:H−(CF26
R9:H−(CF24
R10:H−(CF28−(CH2)−
R11:H−(CF26−(CH2)−
R12:H−(CF24−(CH2)−
式(III)において、L0で表される(mo+no)価の連結基は、アルキレン基、アルケニレン基、芳香族基、ヘテロ環基、−CO−、−NRd−(Rdは炭素原子数が1〜5のアルキル基又は水素原子)、−O−、−S−、−SO−、−SO2−からなる群より選ばれる基を少なくとも2つ組み合わせた連結基であることが好ましい。
式(III)において、Wはカルボキシル基(−COOH)もしくはその塩、スルホ基(−SO3H)もしくはその塩、又はホスホノキシ基{−OP(=O)(OH)2}もしくはその塩を表す。Wの好ましい範囲は、式(II)におけるQと同一である。
前記式 (III)で表される含フッ素化合物の中でも、下記式(III)−a又は式(III)−bで表される化合物が好ましい。
Figure 2010078909
式(III)−a中、R4及びR5は各々アルキル基、末端にCF3基を有するアルキル基、又は末端にCF2H基を有するアルキル基を表すが、R4及びR5が同時にアルキル基であることはない。W1及びW2は各々水素原子、カルボキシル基(−COOH)もしくはその塩、スルホ基(−SO3H)もしくはその塩、ホスホノキシ{−OP(=O)(OH)2}もしくはその塩、又は置換基としてカルボキシル基、スルホ基もしくはホスホノキシ基を有する、アルキル基、アルコキシ基もしくはアルキルアミノ基を表すが、W1及びW2が同時に水素原子であることはない。
式(III)−b
(R6−L2−)m2(Ar1)−W3
式(III)−b中、R6はアルキル基、末端にCF3基を有するアルキル基、又は末端にCF2H基を有するアルキル基を表し、m2は1以上の整数を表し、複数個のR6は同一でも異なっていてもよいが、少なくとも一つは末端にCF3基又はCF2H基を有するアルキル基を表す。L2は、アルキレン基、芳香族基、−CO−、−NR’−(R’は炭素原子数が1〜5のアルキル基又は水素原子)、−O−、−S−、−SO−、−SO2−及びそれらの組み合わせからなる群より選ばれる2価の連結基を表し、複数個のL2は同一でも異なっていてもよい。Ar1は芳香族炭化水素環又は芳香族ヘテロ環を表し、W3はカルボキシル基(−COOH)もしくはその塩、スルホ基(−SO3H)もしくはその塩、ホスホノキシ基{−OP(=O)(OH)2}もしくはその塩、又は置換基としてカルボキシル基、スルホ基もしくはホスホノキシ基を有する、アルキル基、アルコキシ基もしくはアルキルアミノ基を表す。
まず、前記式(III)−aについて説明する。
4及びR5は前記式(III)におけるR0と同義であり、その好ましい範囲も同一である。W1及びW2で表されるカルボキシル基(−COOH)もしくはその塩、スルホ基(−SO3H)もしくはその塩、ホスホノキシ基{−OP(=O)(OH)2}もしくはその塩は前記式(III)におけるWと同義でありその好ましい範囲も同一である。W1及びW2で表される置換基としてカルボキシル基、スルホ基、ホスホノキシ基を有するアルキル基は、直鎖状であっても分岐鎖状であってもよく、好ましくは炭素数1〜20のアルキル基であり、更に好ましくは1〜8のアルキル基であり、特に好ましくは1〜3のアルキル基である。前記置換基としてカルボキシル基、スルホ基、ホスホノキシ基を有するアルキル基は、少なくとも一つのカルボキシル基、スルホ基、又はホスホノキシ基を有していればよく、カルボキシル基、スルホ基、ホスホノキシ基としては、前記式(III)中のWが表すカルボキシル基、スルホ基、ホスホノキシ基と同義であり好ましい範囲も同一である。前記置換基としてカルボキシル基、スルホ基、ホスホノキシ基を有するアルキル基は、これ以外の置換基によって置換されていてもよく、該置換基としては後述の置換基群Dとして例示する置換基のいずれかを適用できる。W1及びW2で表される置換基としてカルボキシル基、スルホ基、ホスホノキシ基を有するアルコキシ基は、直鎖状であっても分岐鎖状であってもよく、好ましくは炭素数1〜20のアルコキシ基であり、更に好ましくは1〜8のアルコキシ基であり、特に好ましくは1〜4のアルコキシ基である。前記置換基としてカルボキシル基、スルホ基、ホスホノキシ基を有するアルコキシ基は、少なくとも一つのカルボキシル基、スルホ基、又はホスホノキシ基を有していればよく、カルボキシル基、スルホ基、ホスホノキシ基としては、前記式(III)中のWが表すカルボキシル基、スルホ基、ホスホノキシ基と同義であり好ましい範囲も同一である。前記カルボキシル基、スルホ基、ホスホノキシ基を有するアルコキシ基は、これ以外の置換基によって置換されていてもよく、該置換基としては後述の置換基群Dとして例示する置換基のいずれかを適用できる。W1及びW2で表される置換基としてカルボキシル基、スルホ基、ホスホノキシ基を有するアルキルアミノ基は、直鎖状であっても分岐鎖状であってもよく、好ましくは炭素数1〜20のアルキルアミノ基であり、より好ましくは1〜8のアルキルアミノ基であり、さらに好ましくは1〜4のアルキルアミノ基である。前記カルボキシル基、スルホ基、ホスホノキシ基を有するアルキルアミノ基は、少なくとも一つのカルボキシル基、スルホ基、又はホスホノキシ基を有していればよく、カルボキシル基、スルホ基、ホスホノキシ基としては、前記式(III)中のWが表すカルボキシル基、スルホ基、ホスホノキシ基と同義であり好ましい範囲も同一である。前記カルボキシル基、スルホ基、ホスホノキシ基を有するアルキルアミノ基は、これ以外の置換基によって置換されていてもよく、該置換基としては後述の置換基群Dとして例示する置換基のいずれかを適用できる。
1及びW2は、特に好ましくはそれぞれ水素原子又は(CH2nSO3M(nは0又は1を表す。)である。Mはカチオンを表すが、分子内で荷電が0になる場合は、Mはなくてもよい。Mで表されるカチオンとしては、例えばプロトニウムイオン、アルカリ金属イオン(リチウムイオン、ナトリウムイオン、カリウムイオンなど)、アルカリ土類金属イオン(バリウムイオン、カルシウムイオンなど)、アンモニウムイオンなどが好ましく適用される。このうち、特に好ましくはプロトニウムイオン、リチウムイオン、ナトリウムイオン、カリウムイオン、アンモニウムイオンである。
次に、前記式(III)−bについて説明する。
6は前記式(III)−bにおけるR0と同義であり、その好ましい範囲も同一である。L2は、好ましくは炭素数1〜12のアルキレン基、炭素数6〜12の芳香族基、−CO−、−NR−、−O−、−S−、−SO−、−SO2−及びそれらの組み合わせからなる総炭素数0〜40の連結基を表し、より好ましくは炭素数1〜8のアルキレン基、フェニル基、−CO−、−NR−、−O−、−S−、−SO2−及びそれらの組み合わせからなる総炭素数0〜20の連結基を表す。Ar1は、好ましくは炭素数6〜12の芳香族炭化水素環を表し、より好ましくはベンゼン環又はナフタレン環を表す。W3で表されるカルボキシル基(−COOH)もしくはその塩、スルホ基(−SO3H)もしくはその塩、ホスホノキシ基{−OP(=O)(OH)2}もしくはその塩、又は置換基としてカルボキシル基、スルホ基もしくはホスホノキシ基を有するアルキル基、アルコキシ基、又はアルキルアミノ基は、前記式(III)−aにおけるW1及びW2で表されるカルボキシル基(−COOH)もしくはその塩、スルホ基(−SO3H)もしくはその塩、ホスホノキシ{−OP(=O)(OH)2}もしくはその塩、又は置換基としてカルボキシル基、スルホ基もしくはホスホノキシ基を有するアルキル基、アルコキシ基、又はアルキルアミノ基と同義でありその好ましい範囲も同一である。
3は、好ましくはカルボキシル基(−COOH)もしくはその塩、スルホ基(−SO3H)もしくはその塩、又は置換基としてカルボキシル基(−COOH)もしくはその塩又はスルホ基(−SO3H)もしくはその塩を有するアルキルアミノ基であり、特に好ましくはSO3M又はCO2Mである。Mはカチオンを表すが、分子内で荷電が0になる場合は、Mはなくてもよい。Mで表されるカチオンとしては、例えばプロトニウムイオン、アルカリ金属イオン(リチウムイオン、ナトリウムイオン、カリウムイオンなど)、アルカリ土類金属イオン(バリウムイオン、カルシウムイオンなど)、アンモニウムイオンなどが好ましく適用される。このうち、特に好ましくはプロトニウムイオン、リチウムイオン、ナトリウムイオン、カリウムイオン、アンモニウムイオンである。
本明細書において、置換基群Dには、アルキル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜12、特に好ましくは炭素数1〜8のアルキル基であり、例えば、メチル基、エチル基、イソプロピル基、tert−ブチル基、n−オクチル基、n−デシル基、n−ヘキサデシル基、シクロプロピル基、シクロペンチル基、シクロヘキシル基などが挙げられる)、アルケニル基(好ましくは炭素数2〜20、より好ましくは炭素数2〜12、さらに好ましくは炭素数2〜8のアルケニル基であり、例えば、ビニル基、アリル基、2−ブテニル基、3−ペンテニル基などが挙げられる)、アルキニル基(好ましくは炭素数2〜20、より好ましくは炭素数2〜12、さらに好ましくは炭素数2〜8のアルキニル基であり、例えば、プロパルギル基、3−ペンチニル基などが挙げられる)、アリール基(好ましくは炭素数6〜30、より好ましくは炭素数6〜20、さらに好ましくは炭素数6〜12のアリール基であり、例えば、フェニル基、p−メチルフェニル基、ナフチル基などが挙げられる)、置換もしくは無置換のアミノ基(好ましくは炭素数0〜20、より好ましくは炭素数0〜10、さらに好ましくは炭素数0〜6のアミノ基であり、例えば、無置換アミノ基、メチルアミノ基、ジメチルアミノ基、ジエチルアミノ基、ジベンジルアミノ基などが挙げられる)、
アルコキシ基(好ましくは炭素数1〜20、より好ましくは炭素数1〜12、さらに好ましくは炭素数1〜8のアルコキシ基であり、例えば、メトキシ基、エトキシ基、ブトキシ基などが挙げられる)、アリールオキシ基(好ましくは炭素数6〜20、より好ましくは炭素数6〜16、さらに好ましくは炭素数6〜12のアリールオキシ基であり、例えば、フェニルオキシ基、2−ナフチルオキシ基などが挙げられる)、アシル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、さらに好ましくは炭素数1〜12のアシル基であり、例えば、アセチル基、ベンゾイル基、ホルミル基、ピバロイル基などが挙げられる)、アルコキシカルボニル基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、さらに好ましくは炭素数2〜12のアルコキシカルボニル基であり、例えば、メトキシカルボニル基、エトキシカルボニル基などが挙げられる)、アリールオキシカルボニル基(好ましくは炭素数7〜20、より好ましくは炭素数7〜16、さらに好ましくは炭素数7〜10のアリールオキシカルボニル基であり、例えば、フェニルオキシカルボニル基などが挙げられる)、アシルオキシ基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、さらに好ましくは炭素数2〜10のアシルオキシ基であり、例えば、アセトキシ基、ベンゾイルオキシ基などが挙げられる)。
アシルアミノ基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、さらに好ましくは炭素数2〜10のアシルアミノ基であり、例えばアセチルアミノ基、ベンゾイルアミノ基などが挙げられる)、アルコキシカルボニルアミノ基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、さらに好ましくは炭素数2〜12のアルコキシカルボニルアミノ基であり、例えば、メトキシカルボニルアミノ基などが挙げられる)、アリールオキシカルボニルアミノ基(好ましくは炭素数7〜20、より好ましくは炭素数7〜16、さらに好ましくは炭素数7〜12のアリールオキシカルボニルアミノ基であり、例えば、フェニルオキシカルボニルアミノ基などが挙げられる)、スルホニルアミノ基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、さらに好ましくは炭素数1〜12のスルホニルアミノ基であり、例えば、メタンスルホニルアミノ基、ベンゼンスルホニルアミノ基などが挙げられる)、スルファモイル基(好ましくは炭素数0〜20、より好ましくは炭素数0〜16、さらに好ましくは炭素数0〜12のスルファモイル基であり、例えば、スルファモイル基、メチルスルファモイル基、ジメチルスルファモイル基、フェニルスルファモイル基などが挙げられる)、カルバモイル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、さらに好ましくは炭素数1〜12のカルバモイル基であり、例えば、無置換のカルバモイル基、メチルカルバモイル基、ジエチルカルバモイル基、フェニルカルバモイル基などが挙げられる)、
アルキルチオ基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、さらに好ましくは炭素数1〜12のアルキルチオ基であり、例えば、メチルチオ基、エチルチオ基などが挙げられる)、アリールチオ基(好ましくは炭素数6〜20、より好ましくは炭素数6〜16、さらに好ましくは炭素数6〜12のアリールチオ基であり、例えば、フェニルチオ基などが挙げられる)、スルホニル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、さらに好ましくは炭素数1〜12のスルホニル基であり、例えば、メシル基、トシル基などが挙げられる)、スルフィニル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、さらに好ましくは炭素数1〜12のスルフィニル基であり、例えば、メタンスルフィニル基、ベンゼンスルフィニル基などが挙げられる)、ウレイド基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、さらに好ましくは炭素数1〜12のウレイド基であり、例えば、無置換のウレイド基、メチルウレイド基、フェニルウレイド基などが挙げられる)、リン酸アミド基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、さらに好ましくは炭素数1〜12のリン酸アミド基であり、例えば、ジエチルリン酸アミド基、フェニルリン酸アミド基などが挙げられる)、ヒドロキシ基、メルカプト基、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子)、シアノ基、スルホ基、カルボキシル基、ニトロ基、ヒドロキサム酸基、スルフィノ基、ヒドラジノ基、イミノ基、ヘテロ環基(好ましくは炭素数1〜30、より好ましくは1〜12のヘテロ環基であり、例えば、窒素原子、酸素原子、硫黄原子等のヘテロ原子を有するヘテロ環基であり、例えば、イミダゾリル基、ピリジル基、キノリル基、フリル基、ピペリジル基、モルホリノ基、ベンゾオキサゾリル基、ベンズイミダゾリル基、ベンズチアゾリル基などが挙げられる)、シリル基(好ましくは、炭素数3〜40、より好ましくは炭素数3〜30、さらに好ましくは、炭素数3〜24のシリル基であり、例えば、トリメチルシリル基、トリフェニルシリル基などが挙げられる)が含まれる。これらの置換基はさらにこれらの置換基によって置換されていてもよい。又、置換基が二つ以上有する場合は、同じでも異なってもよい。又、可能な場合には互いに結合して環を形成していてもよい。
なお、前記含フッ素化合物は、液晶性化合物の配向状態を固定化するために置換基として重合性基を有するものも好ましい。
本発明に使用可能な式(III)にて表される含フッ素化合物の具体例を以下に示すが、本発明に用いられる含フッ素化合物はこれらに限定されるものではない。
Figure 2010078909
Figure 2010078909
Figure 2010078909
Figure 2010078909
Figure 2010078909
前記液晶性組成物中における前記含フッ素化合物の含有量の好ましい範囲は、その用途によって異なるが、前記液晶性組成物(塗布液である場合は溶媒を除いた組成物)中、0.005〜8質量%であるのが好ましく、0.01〜5質量%であるのがより好ましく、0.05〜1質量%であるのがさらに好ましい。
(重合性開始剤)
所望の配向状態(例えば、棒状液晶性化合物の場合は垂直配向)に配向させた液晶性化合物の分子を、その配向状態を維持して固定するのが好ましい。固定化は、液晶性化合物に導入した重合性基(P)の重合反応により実施することが好ましい。重合反応には、熱重合開始剤を用いる熱重合反応と光重合開始剤を用いる光重合反応とが含まれる。光重合反応が好ましい。光重合開始剤の例には、α−カルボニル化合物(米国特許2367661号、同2367670号の各明細書記載)、アシロインエーテル(米国特許2448828号明細書記載)、α−炭化水素置換芳香族アシロイン化合物(米国特許2722512号明細書記載)、多核キノン化合物(米国特許3046127号、同2951758号の各明細書記載)、トリアリールイミダゾールダイマーとp−アミノフェニルケトンとの組み合わせ(米国特許3549367号明細書記載)、アクリジン及びフェナジン化合物(特開昭60−105667号公報、米国特許4239850号明細書記載)及びオキサジアゾール化合物(米国特許4212970号明細書記載)が含まれる。
光重合開始剤の使用量は、塗布液の固形分の0.01〜20質量%であることが好ましく、0.5〜5質量%であることがさらに好ましい。
(他の添加剤)
上記の液晶性化合物と共に、可塑剤、界面活性剤、重合性モノマー等を併用して、塗工膜の均一性、膜の強度、液晶性化合物の配向性等を向上させることができる。これらの素材は液晶性化合物と相溶性を有し、配向を阻害しないことが好ましい。
重合性モノマーとしては、ラジカル重合性若しくはカチオン重合性の化合物が挙げられる。好ましくは、多官能性ラジカル重合性モノマーであり、上記の重合性基含有の液晶化合物と共重合性のものが好ましい。例えば、特開2002−296423号公報明細書中の段落番号[0018]〜[0020]記載のものが挙げられる。上記化合物の添加量は、円盤状液晶性分子に対して一般に1〜50質量%の範囲にあり、5〜30質量%の範囲にあることが好ましい。
界面活性剤としては、従来公知の化合物が挙げられるが、特にフッ素系化合物が好ましい。具体的には、例えば特開2001−330725号公報中の段落番号[0028]〜[0056]記載の化合物、特開2005−62673号公報(特願2003−295212号明細書)中の段落番号[0069]〜[0126]記載の化合物が挙げられる。
液晶性化合物とともに使用するポリマーは、塗布液を増粘できることが好ましい。ポリマーの例としては、セルロースエステルを挙げることができる。セルロースエステルの好ましい例としては、特開2000−155216号公報明細書中の段落番号[0178]記載のものが挙げられる。液晶性化合物の配向を阻害しないように、上記ポリマーの添加量は、液晶性分子に対して0.1〜10質量%の範囲にあることが好ましく、0.1〜8質量%の範囲にあることがより好ましい。
3.−2 第2光学異方性層の形成方法
前記第2光学異方性層は、例えば、棒状液晶性化合物、及び所望により添加される重合開始剤、配向制御剤等の添加剤を、溶媒に溶解及び/又は分散させて調製した塗布液を、表面に塗布することで形成することができる。例えば、第1光学異方性層として使用されるポリマーフィルムの表面に配向膜を形成し、該配向膜表面に前記塗布液を塗布して形成するのが好ましい。塗布液の調製に使用する溶媒としては、有機溶媒が好ましく用いられる。有機溶媒の例には、アミド(例、N,N−ジメチルホルムアミド)、スルホキシド(例、ジメチルスルホキシド)、ヘテロ環化合物(例、ピリジン)、炭化水素(例、ベンゼン、ヘキサン)、アルキルハライド(例、クロロホルム、ジクロロメタン)、エステル(例、酢酸メチル、酢酸ブチル)、ケトン(例、アセトン、メチルエチルケトン)、エーテル(例、テトラヒドロフラン、1,2−ジメトキシエタン)が含まれる。アルキルハライド及びケトンが好ましい。二種類以上の有機溶媒を併用してもよい。
塗布液の塗布は、種々の方法(例、ワイヤーバーコーティング法、押し出しコーティング法、ダイレクトグラビアコーティング法、リバースグラビアコーティング法、ダイコーティング法)により実施できる。中でも、前記光学異方性層を形成する際は、ワイヤーバーコーティング法を利用して塗布するのが好ましく、ワイヤーバーの回転数は下記式を満たすことが好ましい。
0.6<(W×(R+2r)×π)/V<1.4
[W:ワイヤーバーの回転数(rpm)、R:バーの芯の直径(m)、r:ワイヤーの直径(m)、V:支持体の搬送速度(m/min)]
(W×(R+2r)×π)/Vの範囲は、0.7〜1.3であることがより好ましく、0.8〜1.2であることがさらに好ましい。
前記第2光学異方性層の形成にはダイコーティング法が好ましく用いられ、特に、スライドコーター又はスロットダイコーターを利用した塗布方法が好ましい。例えば、特開2004−290775号公報、特開2004−290776号公報、特開2004−358296号公報、特開2005−13989号公報等に記載の塗布方法を用いることができる。
次に、上記の通り、前記組成物の塗布液を表面に塗布した後、棒状液晶性化合物の分子を配向状態(好ましくは傾斜配向状態)にし、分子をその配向状態に固定して光学異方性層を形成する。配向させる温度は、用いる液晶性化合物の転移温度、所望の配向状態等を考慮して、決定することができる。固定化は、液晶性分子や、組成物中に所望により添加される重合性モノマーの重合反応又は架橋反応により実施されるのが好ましい。重合のための光照射は、紫外線を用いることが好ましい。照射エネルギーは、20mJ/cm2〜50J/cm2であることが好ましく、100〜800mJ/cm2であることがさらに好ましい。光重合反応を促進するため、加熱条件下で光照射を実施してもよい。
形成される光学異方性層の厚さは、0.1〜10μmであることが好ましく、0.5〜5μmであることがさらに好ましく、1〜5μmであることがよりさらに好ましい。
4. 配向膜
本発明に使用する光学補償フィルムは、前記第2光学異方性層の形成に利用される配向膜を有していてもよい。配向膜は、有機化合物(好ましくはポリマー)のラビング処理、無機化合物の斜方蒸着、マイクログルーブを有する層の形成、あるいはラングミュア・ブロジェット法(LB膜)による有機化合物(例、ω−トリコサン酸、ジオクタデシルメチルアンモニウムクロライド、ステアリル酸メチル)の累積のような手段で設けることができる。さらに、電場の付与、磁場の付与あるいは光照射により、配向機能が生じる配向膜も知られている。
配向膜は、ポリマーのラビング処理により形成することが好ましい。
ポリマーの例には、例えば特開平8−338913号公報明細書中段落番号[0022]記載のメタクリレート系共重合体、スチレン系共重合体、ポリオレフィン、ポリビニルアルコール及び変性ポリビニルアルコール、ポリ(N−メチロールアクリルアミド)、ポリエステル、ポリイミド、酢酸ビニル共重合体、カルボキシメチルセルロース、ポリカーボネート等が含まれる。シランカップリング剤をポリマーとして用いることができる。水溶性ポリマー(例、ポリ(N−メチロールアクリルアミド)、カルボキシメチルセルロース、ゼラチン、ポリビニルアルコール、変性ポリビニルアルコール)が好ましく、ゼラチン、ポリビニルアルコール及び変性ポリビニルアルコールがさらに好ましく、ポリビニルアルコール及び変性ポリビニルアルコールが最も好ましい。
ポリビニルアルコールの鹸化度は、70〜100%が好ましく、80〜100%がさらに好ましい。ポリビニルアルコールの重合度は100〜5000であることが好ましい。
本発明の光学補償フィルムの作製に用いられる配向膜は、架橋性官能基(例、二重結合)を有する側鎖を主鎖に結合させるか、あるいは、液晶性分子を配向させる機能を有する架橋性官能基を側鎖に導入することが好ましい。配向膜に使用されるポリマーは、それ自体架橋可能なポリマーあるいは架橋剤により架橋されるポリマーのいずれも使用することができ、これらの組み合わせを複数使用することができる。
架橋性官能基を有する側鎖を配向膜ポリマーの主鎖に結合させるか、あるいは、液晶性分子を配向させる機能を有する側鎖に架橋性官能基を導入すると、配向膜のポリマーと光学異方性層に含まれる多官能モノマーとを共重合させることができる。その結果、多官能モノマーと多官能モノマーとの間だけではなく、配向膜ポリマーと配向膜ポリマーとの間、そして多官能モノマーと配向膜ポリマーとの間も共有結合で強固に結合される。従って、架橋性官能基を配向膜ポリマーに導入することで、光学補償フィルムの強度を著しく改善することができる。
配向膜ポリマーの架橋性官能基は、多官能モノマーと同様に、重合性基を含むことが好ましい。具体的には、例えば特開2000−155216号公報明細書中段落番号[0080]〜[0100]記載のもの等が挙げられる。
配向膜ポリマーは、上記の架橋性官能基とは別に、架橋剤を用いて架橋させることもできる。架橋剤としては、アルデヒド、N−メチロール化合物、ジオキサン誘導体、カルボキシル基を活性化することにより作用する化合物、活性ビニル化合物、活性ハロゲン化合物、イソオキサゾール及びジアルデヒド澱粉が含まれる。二種類以上の架橋剤を併用してもよい。具体的には、例えば特開2002−62426号公報明細書中の段落番号[0023]〜[0024]記載の化合物等が挙げられる。反応活性の高いアルデヒド、特にグルタルアルデヒドが好ましい。
架橋剤の添加量は、ポリマーに対して0.1〜20質量%が好ましく、0.5〜15質量%がさらに好ましい。配向膜に残存する未反応の架橋剤の量は、1.0質量%以下であることが好ましく、0.5質量%以下であることがさらに好ましい。このように調節することで、配向膜を液晶表示装置に長期使用、或は高温高湿の雰囲気下に長期間放置しても、レチキュレーション発生のない充分な耐久性が得られる。
配向膜は、基本的に、配向膜形成材料である上記ポリマー、架橋剤及び添加剤を含む溶液を、表面に塗布した後、加熱乾燥(架橋させ)し、ラビング処理することにより形成することができる。架橋反応は、前記のように、透明支持体上に塗布した後、任意の時期に行なってよい。ポリビニルアルコールのような水溶性ポリマーを配向膜形成材料として用いる場合には、塗布液は消泡作用のある有機溶媒(例、メタノール)と水の混合溶媒とすることが好ましい。その比率は質量比で水:メタノールが0:100〜99:1が好ましく、0:100〜91:9であることがさらに好ましい。これにより、泡の発生が抑えられ、配向膜、更には第2光学異方層の層表面の欠陥が著しく減少する。
配向膜を形成する際に利用可能な塗布方法は、スピンコーティング法、ディップコーティング法、カーテンコーティング法、エクストルージョンコーティング法、ロッドコーティング法又はロールコーティング法が好ましい。特にロッドコーティング法が好ましい。又、乾燥後の膜厚は0.1〜10μmが好ましい。加熱乾燥は、20℃〜110℃で行なうことができる。充分な架橋を形成するためには60℃〜100℃が好ましく、特に80℃〜100℃が好ましい。乾燥時間は1分〜36時間で行なうことができるが、好ましくは1分〜30分である。pHも、使用する架橋剤に最適な値に設定することが好ましく、グルタルアルデヒドを使用した場合は、pH4.5〜5.5で、特に5が好ましい。
配向膜は、例えば、第1光学異方性層として利用されるポリマーフィルム上に形成される。配向膜は、上記のようにポリマー層を架橋した後、表面をラビング処理することにより得ることができる。
前記ラビング処理は、LCDの液晶配向処理工程として広く採用されている処理方法を適用することができる。即ち、配向膜の表面を、紙やガーゼ、フェルト、ゴムあるいはナイロン、ポリエステル繊維などを用いて一定方向に擦ることにより、配向を得る方法を用いることができる。一般的には、長さ及び太さが均一な繊維を平均的に植毛した布などを用いて数回程度ラビングを行うことにより実施される。
配向膜のラビング処理面に前記組成物を塗布して、液晶性化合物の分子を配向させる。その後、必要に応じて、配向膜ポリマーと第2光学異方性層に含まれる多官能モノマーとを反応させるか、あるいは、架橋剤を用いて配向膜ポリマーを架橋させることで、前記光学異方性層を形成することができる。
配向膜の膜厚は、0.1〜10μmの範囲とするのが好ましい。
5. 偏光板
本発明のTN型液晶表示装置には、前記光学補償フィルムと偏光子と一体化した偏光板(図1中では、偏光板PL1及びPL2)を組み込むことができる。前記偏光板の一例は、偏光子である直線偏光膜とその両面をそれぞれ保護する二枚の保護フィルムとを有し、一方の保護フィルムが、前記光学補償フィルムである偏光板である。前記光学補償フィルムが、第1光学異方性層としてポリマーフィルムを有する態様では、当該ポリマーフィルムの表面を、偏光膜の表面に貼合するのが好ましい。また、当該態様では、第1光学異方性層として用いられるポリマーフィルムの、偏光膜との貼合面が、表面処理により親水化されているのが好ましい。例えば、グロー放電処理、コロナ放電処理、または、アルカリ鹸化処理などを施すことが好ましい。特に、セルロースアシレートフィルムは、アルカリ鹸化処理により親水化するのが好ましい。
また、前記偏光膜としては、例えば、ポリビニルアルコールフィルムを沃素溶液中に浸漬して延伸したもの等を用いることができる。ポリビニルアルコールフィルムを沃素溶液中に浸漬して延伸した偏光膜を用いる場合、接着剤を用いて偏光膜の両面に本発明の透明ポリマーフィルムの表面処理面を直接貼り合わせることができる。本発明の製造方法においては、このように前記透明ポリマーフィルムが偏光膜と直接貼合されていることが好ましい。前記接着剤としては、ポリビニルアルコールまたはポリビニルアセタール(例、ポリビニルブチラール)の水溶液や、ビニル系ポリマー(例、ポリブチルアクリレート)のラテックスを用いることができる。特に好ましい接着剤は、完全鹸化ポリビニルアルコールの水溶液である。
前記偏光膜の反対側表面に配置される保護フィルムの材料については、特に制限はない。第1光学異方性層として使用可能なポリフィルムの例と同様である。また、外側表面に配置される保護フィルムには、透明ハードコート層、防眩層、反射防止層などを設けることができ、特に液晶表示装置の表示側最表面の偏光板保護フィルムには当該機能層を有するポリマーフィルムを用いるのが好ましい。
以下に実施例を挙げて本発明をさらに具体的に説明する。以下の実施例に示す材料、試薬、物質量とその割合、操作等は本発明の趣旨から逸脱しない限り適宜変更することができる。従って、本発明の範囲は以下の具体例に制限されるものではない。
1. 第1光学異方性層用セルロースアセテートフィルムの作製
1.−1 セルロースアセテートフィルムA−1〜A−3の作製(実施例用)
(ポリマー溶液の調製)
1)ポリマーA
実施例1〜3では、ポリマー溶液の調製に、以下の特性のポリマーAを用いた。
置換度が2.85のセルロースアセテートの粉体をポリマーAとして用いた。ポリマーAの粘度平均重合度は300、6位のアセチル基置換度は0.89、アセトン抽出分は7質量%、質量平均分子量/数平均分子量比は2.3、含水率は0.2質量%、6質量%ジクロロメタン溶液中の粘度は305mPa・s、残存酢酸量は0.1質量%以下、Ca含有量は65ppm、Mg含有量は26ppm、鉄含有量は0.8ppm、硫酸イオン含有量は18ppm、イエローインデックスは1.9、遊離酢酸量は47ppmであった。粉体の平均粒子径は1.5mm、標準偏差は0.5mmであった。
また、ポリマーAは120℃に加熱して乾燥し、含水率を0.5質量%以下とした後、20質量部を使用した。
なお、上記特性は、以下の方法で求めた値である。
[置換度]
セルロースアシレートのアシル置換度は、Carbohydr.Res.273(1995)83-91(手塚他)に記載の方法で13C−NMRにより求めた。
[重合度]
製造したセルロースアシレートを絶対乾燥した後、約0.2gを精秤し、ジクロロメタン:エタノール=9:1(質量比)の混合溶剤100mLに溶解した。これをオストワルド粘度計にて25℃で落下秒数を測定し、重合度DPを以下の式により求めた。
ηrel=T/T0
[η]=ln(ηrel)/C
DP=[η]/Km
[式中、Tは測定試料の落下秒数、T0は溶剤単独の落下秒数、lnは自然対数、Cは濃度(g/L)、Kmは6×10-4である。]
2)溶媒
実施例1〜3で使用したポリマー溶液の調製には、下記混合溶媒を使用した。なお、溶媒の含水率は、いずれも0.2質量%以下であった。
ジクロロメタン/メタノール/ブタノール(83/15/2質量部)
3)添加剤
実施例1〜3で使用したポリマー溶液には、二酸化ケイ素微粒子(粒子サイズ20nm、モース硬度 約7)(0.08質量部)を添加した。
4)ポリマー溶液の調製
攪拌羽根を有し外周を冷却水が循環する400リットルのステンレス製溶解タンクに、前記組成の溶媒および添加剤を投入して撹拌、分散させながら、ポリマーAを徐々に添加した。投入完了後、室温にて2時間撹拌し、3時間膨潤させた後に再度撹拌を実施し、ポリマー溶液を得た。
なお、攪拌には、15m/sec(剪断応力5×104kgf/m/sec2〔4.9×105N/m/sec2〕)の周速で攪拌するディゾルバータイプの偏芯攪拌軸および中心軸にアンカー翼を有して周速1m/sec(剪断応力1×104kgf/m/sec2〔9.8×104N/m/sec2〕)で攪拌する攪拌軸を用いた。膨潤は、高速攪拌軸を停止し、アンカー翼を有する攪拌軸の周速を0.5m/secとして実施した。
膨潤した溶液をタンクから、ジャケット付配管で50℃まで加熱し、さらに2MPaの加圧化で90℃まで加熱し、完全溶解した。加熱時間は15分であった。この際、高温にさらされるフィルター、ハウジング、および配管はハステロイ合金製で耐食性の優れたものを利用し保温加熱用の熱媒を流通させるジャケットを有する物を使用した。
次に36℃まで温度を下げ、ポリマー溶液を得た。
5)ろ過
得られたポリマー溶液を、絶対濾過精度10μmの濾紙(#63、東洋濾紙(株)製)で濾過し、さらに絶対濾過精度2.5μmの金属焼結フィルター(FH025、ポール社製)にて濾過してポリマー溶液を得た。
(フィルムの作製)
調製したポリマー溶液を30℃に加温し、流延ギーサー(特開平11−314233号公報に記載)を通して15℃に設定したバンド長60mの鏡面ステンレス支持体上に流延した。流延スピードは50m/分、塗布幅は200cmとした。流延部全体の空間温度は、15℃に設定した。そして、流延部の終点部から50cm手前で、流延して回転してきたポリマーフィルムをバンドから剥ぎ取り、45℃の乾燥風を送風した。次に110℃で5分、さらに140℃で10分乾燥して、セルロースアセテートの製膜フィルムを得た。
得られた製膜フィルムの特性を表1に示す。
(熱処理)
得られた製膜フィルムを、2つのニップロール間に加熱ゾーンを有する装置を用いて、表1に記載の条件で各々熱処理を実施した。具体的には、縦横比(ニップロール間の距離/ベース幅)は3.3となるように調整し、加熱ゾーンは表1記載の温度とし、2つのニップロールを通過した後、フィルムを表1記載の温度までそれぞれ冷却した。また、フィルムの伸びは、フィルムの搬送方向と直交する方向に一定間隔の標線を入れ、その間隔を熱処理前後で計測し、下記式から求めた。
フィルムの伸び(%)=100×(熱処理後の標線の間隔−熱処理前の標線の間隔)/熱処理前の標線の間隔
(延伸)
続いて、熱処理後のフィルムの両端をテンタークリップで把持した後、加熱ゾーン内で搬送方向と直交する方向に延伸した。加熱ゾーンは表1記載の温度とし、延伸倍率は、フィルムの搬送方向と平行な方向に一定間隔の標線を入れ、その間隔を延伸前後で計測し、下記式から求めた。
延伸倍率(%)=100×(延伸後の標線の間隔−延伸前の標線の間隔)/延伸前の標線の間隔
(透明ポリマーフィルムの評価)
得られたセルロースアセテートフィルムA−1〜A−3の各々について、各特性を求め、結果を下記表1に示した。なお、セルロースアセテートフィルムA−1については、冷却後のRthは、インラインで評価したものである。
延伸後のセルロースアセテートフィルムA−1〜A−3のそれぞれのReの遅相軸は、フィルムの搬送方向と直交する方向に観測された。また、前述の方法に基づいて評価したReおよびRthのばらつき(5点の測定値のばらつき)は、全てのサンプルでReは±1nm以内、Rthは±2nm以内であった。
1.−2 第1光学異方性層用セルロースアセテートフィルムA−4の作製(実施例用)
市販のフジタック(TD80UF;富士フイルム(株)製)を準備した。このフィルムを、ロール延伸機を用いて搬送方向を固定したまま、熱処理した。ロール延伸機のロールは表面を鏡面処理した誘導発熱ジャケットロールを用い、各ロールの温度は個別に調整できるようにした。熱処理ゾーンはケーシングで覆い表1に記載の温度とした。熱処理部の前のロールは徐々に表1に記載の熱処理温度に加熱できるように設定した。縦横比は3.3となるようにロール間距離を調整し、適宜、熱処理ゾーン前後のロールの周速を変化させることにより延伸倍率を設定し、延伸速度は延伸間距離に対して10%/分とした。延伸後は冷却して巻き取った。延伸倍率および膜厚は表1に記載した。
この様にして、セルロースアセテートフィルムA−4を作製した。
得られたセルロースアセテートフィルムの特性をそれぞれ求め、以下の表1に示した。 なお、セルロースアセテートフィルムA−4では、フィルムのReの遅相軸はフィルムの幅方向に観測された。また、セルロースアセテートフィルムの、ReおよびRthのばらつきは、Reは±2nm以内、Rthは±5nm以内であり、遅相軸の向きの変動幅は2°未満であった。
1.−3 セルロースアセテートフィルムA−5の作製(比較例用)
下記の組成のセルロースアセテート溶液を作製し、内層用および表面層用のドープをそれぞれ調製した。
────────────────────────────────────
組成物 内層用ドープ 表面層用ドープ
────────────────────────────────────
セルロースアセテート(酢化度60.0) 100質量部 100質量部
トリフェニルホスフェート 7.8質量部 7.8質量部
ビフェニルジフェニルホスフェート 3.9質量部 3.9質量部
下記のレターデーション上昇剤 3.0質量部 3.0質量部
メチレンクロリド 450質量部 481質量部
メタノール 39質量部 42質量部
────────────────────────────────────
Figure 2010078909
次に得られたドープを50℃にて、表面層用ドープを絶対濾過精度0.0025の濾紙(FH025、ポール社製)にて濾過した。同様にして、内層用ドープも絶対濾過精度0.01mmの濾紙(#63、東洋濾紙(株)製)にて濾過した。
これらのドープを三層共流延ダイを用い、内層用ドープが内側に、表面層用ドープが両外側になるように配置して金属支持体上に同時に吐出させて重層流延(共流延)した。このとき、乾燥後の内層の膜厚が96μm、表面層が各12μmになるように設定して流延した。70℃で3分、120℃で5分乾燥した後、支持体からフィルムを剥ぎ取り、テンター延伸機を用いて、25%延伸した後、130℃、30分で段階的に乾燥して溶剤を蒸発させ、セルロースアセテートフィルムを得た。残留溶剤量は0.5%であった。
この様にして、セルロースアセテートフィルムA−5を作製した。このフィルムの各特性を求め、下記表1に示した。
1.−4 セルロースアセテートフィルムA−6の作製(比較例用)
(セルロースアセテート溶液の調製)
下記の組成物をミキシングタンクに投入し、攪拌して各成分を溶解し、セルロースアセテート溶液Dを調製した。
(セルロースアセテート溶液D組成)
アシル置換度2.86のセルロースアセテート 100.0質量部
メチレンクロライド(第1溶媒) 402.0質量部
メタノール(第2溶媒) 60.0質量部
(マット剤微粒子溶液の調製)
平均粒径16nmのシリカ粒子(AEROSIL R972、日本アエロジル(株)製)を20質量部、メタノール80質量部を30分間よく攪拌混合してシリカ粒子分散液とした。この分散液を下記の組成物とともに分散機に投入し、さらに30分以上攪拌して各成分を溶解し、マット剤微粒子溶液を調製した。
(マット剤微粒子溶液組成)
平均粒径16nmのシリカ粒子分散液 10.0質量部
メチレンクロライド(第1溶媒) 76.3質量部
メタノール(第2溶媒) 3.4質量部
セルロースアセテート溶液D 10.3質量部
(添加剤溶液の調製)
下記の組成物をミキシングタンクに投入し、加熱しながら攪拌して、各成分を溶解し、セルロースアセテート溶液を調製した。
(添加剤溶液組成)
光学的異方性を低下させる化合物A−19 49.3質量部
波長分散調整剤UV−102 7.6質量部
メチレンクロライド(第1溶媒) 58.4質量部
メタノール(第2溶媒) 8.7質量部
セルロースアセテート溶液D 12.8質量部
Figure 2010078909
(セルロースアセテートフィルムA−6の作製)
上記セルロースアセテート溶液Dを94.6質量部、マット剤溶液を1.3質量部、添加剤溶液4.1質量部それぞれを濾過後に混合し、バンド流延機を用いて流延した。上記組成で光学的異方性を低下させる化合物および波長分散調整剤のセルロースアセテートに対する質量比はそれぞれ12%、1.8%であった。残留溶剤量30%でフィルムをバンドから剥離し、140℃で40分間乾燥させセルロースアセテートフィルムを製造した。得られたセルロースアセテートフィルムの残留溶剤量は0.2%であり、膜厚は80μmであった。なお、延伸処理は、下記表に示す条件で行った。
この様にして、セルロースアセテートフィルムA−6を作製した。このフィルムの各特性を求め、下記表1に示した。
1.−5 セルロースアセテートフィルムA−7の作製(比較例用)
比較例2のセルロースアセテートフィルムA−6の作製において、添加剤溶液の組成を下記組成に代えて調製した以外は、比較例2と同様にして、セルロースアセテートフィルムA−7を作製した。
(添加剤溶液組成)
BDP(可塑剤ビフェニルジフェニルホスフェート) 49.3質量部
波長分散調整剤UV−3 3.8質量部
波長分散調整剤UV−7 3.8質量部
メチレンクロライド(第1溶媒) 58.4質量部
メタノール(第2溶媒) 8.7質量部
セルロースアセテート溶液D 12.8質量部
Figure 2010078909
得られたセルロースアシレートフィルムA−7の残留溶剤量は0.2%であり、膜厚は80μmであった。この様にして、セルロースアセテートフィルムA−6を作製した。このフィルムの各特性を求め、下記表1に示した。
Figure 2010078909
2. 光学補償フィルムの作製
上記で作製した各セルロースアセテートフィルムに、以下の方法で配向膜、及び第2光学異方性層を形成して、光学補償フィルムをそれぞれ作製した。
2.−1 配向膜の形成
上記作製した各セルロースアセテートフィルムの片面に鹸化処理を施した。
その鹸化処理面に、下記の組成の配向膜塗布液を塗布、乾燥し、配向膜を形成した。その後、配向膜表面にラビング処理を施した。
配向膜塗布液の組成
――――――――――――――――――――――――――
下記の変性ポリビニルアルコール 10質量部
水 371質量部
メタノール 119質量部
グルタルアルデヒド 0.5質量部
――――――――――――――――――――――――――
Figure 2010078909
2.−2 第2光学異方性層B−1の形成
セルロースアシレートフィルムA−1、及びA−5〜A−7については、それぞれ、形成した配向膜のラビング処理面に、下記の組成の塗布液をバーコーターを用いて連続的に塗布、乾燥、及び加熱(配向熟成)し、さらに紫外線を照射して、厚さ1.6μmの光学異方性層を形成した。
棒状液晶化合物を含む塗布液(S1)の組成
――――――――――――――――――――――――――――――――――――
下記の棒状液晶性化合物(I) 100質量部
光重合開始剤(イルガキュアー907、チバガイギー社製) 3質量部
増感剤(カヤキュアーDETX、日本化薬(株)製) 1質量部
下記のフッ素系ポリマー 0.1質量部
下記のピリジニム塩 0.3質量部
メチルエチルケトン 172質量部
――――――――――――――――――――――――――――――――――――
Figure 2010078909
Figure 2010078909
Figure 2010078909
2.−3 第2光学異方性層B−2の形成
光学異方性層B−1の形成に用いた塗布液の組成中、ピリジニム塩 0.3質量部を0.4質量部に代えて、塗布液を調製した。当該塗布液を、セルロースアシレートフィルムA−2上に形成された配向膜のラビング処理面に塗布したが、但し、塗布量を代えて、下記表に示す厚みの光学異方性層を形成した。それ以外は、第2光学異方性層B−1と同様にして、第2光学異方性層B−2を形成した。
2.−4 第2光学異方性層B−3の形成
セルロースアシレートフィルムA−3の表面に形成した配向膜のラビング処理面に、光学異方性層B−1の形成に用いたのと同一の組成の光学異方性層用塗布液を塗布したが、但し、塗布量を代えて、下記表に示す厚みの光学異方性層B−3を形成した。それ以外は、第2光学異方性層B−1と同様にして形成した。
2.−5 第2光学異方性層B−4の形成
光学異方性層B−1の形成に用いた塗布液の組成中、ピリジニム塩 0.3質量部を0.4質量部に代えて、塗布液を調製した。当該塗布液を、セルロースアシレートフィルムA−4上に形成された配向膜のラビング処理面に塗布したが、但し、塗布量を代えて、下記表に示す厚みの光学異方性層を形成した。それ以外は、第2光学異方性層B−1と同様にして、第2光学異方性層B−4を形成した。
上記の方法で、各セルロースアセテートフィルム表面上に形成した第2光学異方性層B−1〜B−4のそれぞれについて、Re[40]、Re[−40]、Re[40]/Re[−40]をそれぞれ求めた。結果を下記表に示す。
Figure 2010078909
3. 偏光板の作製
延伸したポリビニルアルコールフィルムにヨウ素を吸着させて、偏光膜を作製した。偏光膜の片面と、作製した各光学補償フィルム(光学補償フィルム1〜7)の第1光学異方性層面とを、ポリビニルアルコール系接着剤を用いて、貼り付けた。偏光膜の反対側の面に、厚さ100μmのトリアセチルセルロースフィルム(フジタック、富士フイルム(株)製)を透明保護膜として、ポリビニルアルコール系接着剤を用いて貼り付けた。このようにして、偏光板1〜7をそれぞれ作製した。
4. TNモード液晶表示装置の作製と評価
4.−1 作製
上記偏光板1〜7をそれぞれ2枚ずつ準備した。
市販の液晶モニター(acer製、AL2216、TNモード)から液晶表示パネルを取り外し、該液晶表示パネルから偏光板を液晶セルから剥がし、代わりに、上記で作製した偏光板(偏光板1〜7)のいずれか1種の2枚を、液晶セルの上下基板の表面にそれぞれ貼り合わせ、液晶テレビを組み立て直した。光学的軸の向きは、図1及び図2に示す通りとした。
4.−2 視野角特性の評価
作製した液晶表示装置について、測定機(EZ−Contrast 160D、ELDIM社製)を用いて、上下左右の極角60における、視野角コントラスト(CR)を測定した。その結果を下記表に示す。
Figure 2010078909
上記表に示す結果より、本発明の実施例の光学補償フィルムを用いたTNモード液晶表示装置は、上下左右の視野角CRがいずれも良好であり、バランスよく視野角特性が改善されていることが理解できる。
本発明のTNモード液晶表示装置の一例の構成を示す断面模式図である。 本発明のTNモード液晶表示装置の一例の各部材の光学的軸の関係を示す模式図である。
符号の説明
10 液晶表示装置
12 液晶層
14、16 セル基板
14a、16a 基板内面に施されたラビング処理方向
18、20 偏光層
18a、20a 偏光層の吸収軸
22、24 第1光学異方性層
22a、24a 第1光学異方性層の面内遅相軸
26、28 第2光学異方性層
26a、28a 第2光学異方性層の面内遅相軸
LC 液晶セル
F1、F2 光学補償フィルム
PL1、PL2 偏光板

Claims (3)

  1. 少なくとも、一対の偏光子と、一対の偏光子間に配置される液晶セルと、一対の偏光子の少なくとも一方と液晶セルとの間に配置される光学補償フィルムとを有するTNモード液晶表示装置であって、前記光学補償フィルムが、下記式Iの光学特性を満足する第1光学異方性層、及び配向状態に固定された棒状液晶性分子を含むとともに、下記式IIの光学特性を満足する第2光学異方性層を少なくとも有することを特徴とするTNモード液晶表示装置:
    式I −0.25≦Rth/Re≦0.25
    式II 1.5≦Re[40]/Re[−40]≦5.5
    [式中、Re及びRthは、それぞれ測定波長550nmであるときの面内および膜厚方向のレターデーション値(単位;nm)を示す。また、Re[40]及びRe[−40]はそれぞれ、進相軸を回転軸として40度及び−40度に回転した時のレターデーション値を示す。ここでRe[40]>Re[−40]とする]。
  2. 前記第1光学異方性層が、溶液流延製膜方法にて製膜された後に、(Tg+60)℃以上(Tgは製膜フィルムのガラス転移温度)で熱処理され、熱処理と同時に及び/又は熱処理後に延伸されてなるポリマーフィルムであることを特徴とする請求項1に記載のTNモード液晶表示装置。
  3. 前記第1光学異方性層が、温度200℃以上で熱処理されてなるセルロースアシレートフィルムであることを特徴とする請求項1又は2に記載のTNモード液晶表示装置。
JP2008247181A 2008-09-26 2008-09-26 Tnモード液晶表示装置 Expired - Fee Related JP5308759B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008247181A JP5308759B2 (ja) 2008-09-26 2008-09-26 Tnモード液晶表示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008247181A JP5308759B2 (ja) 2008-09-26 2008-09-26 Tnモード液晶表示装置

Publications (2)

Publication Number Publication Date
JP2010078909A true JP2010078909A (ja) 2010-04-08
JP5308759B2 JP5308759B2 (ja) 2013-10-09

Family

ID=42209438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008247181A Expired - Fee Related JP5308759B2 (ja) 2008-09-26 2008-09-26 Tnモード液晶表示装置

Country Status (1)

Country Link
JP (1) JP5308759B2 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002236216A (ja) * 2000-07-21 2002-08-23 Konica Corp 光学補償フィルム、それを用いた偏光板及び液晶表示装置
JP2003248121A (ja) * 2001-12-20 2003-09-05 Fuji Photo Film Co Ltd 偏光板およびそれを用いた液晶表示装置
JP2005037904A (ja) * 2003-06-24 2005-02-10 Fuji Photo Film Co Ltd 光学補償シート、その製造方法、それを用いた偏光板及び液晶表示装置
JP2006259500A (ja) * 2005-03-18 2006-09-28 Fuji Photo Film Co Ltd 液晶表示装置
JP2007086755A (ja) * 2005-08-22 2007-04-05 Fujifilm Corp 透明ポリマーフィルムおよびその製造方法、並びに、それを用いた位相差フィルム、偏光板および液晶表示装置
JP2007176164A (ja) * 2005-11-30 2007-07-12 Fujifilm Corp 透明ポリマーフィルムおよびその製造方法、並びに、それを用いた光学補償フィルム、積層フィルムおよび液晶表示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002236216A (ja) * 2000-07-21 2002-08-23 Konica Corp 光学補償フィルム、それを用いた偏光板及び液晶表示装置
JP2003248121A (ja) * 2001-12-20 2003-09-05 Fuji Photo Film Co Ltd 偏光板およびそれを用いた液晶表示装置
JP2005037904A (ja) * 2003-06-24 2005-02-10 Fuji Photo Film Co Ltd 光学補償シート、その製造方法、それを用いた偏光板及び液晶表示装置
JP2006259500A (ja) * 2005-03-18 2006-09-28 Fuji Photo Film Co Ltd 液晶表示装置
JP2007086755A (ja) * 2005-08-22 2007-04-05 Fujifilm Corp 透明ポリマーフィルムおよびその製造方法、並びに、それを用いた位相差フィルム、偏光板および液晶表示装置
JP2007176164A (ja) * 2005-11-30 2007-07-12 Fujifilm Corp 透明ポリマーフィルムおよびその製造方法、並びに、それを用いた光学補償フィルム、積層フィルムおよび液晶表示装置

Also Published As

Publication number Publication date
JP5308759B2 (ja) 2013-10-09

Similar Documents

Publication Publication Date Title
US7318951B2 (en) Retardation film, producing process thereof and liquid crystal display utilizing the same
JP4501691B2 (ja) セルロースアシレートフィルムの製造方法
JPWO2002046809A1 (ja) セルロースエステルフイルム、配向膜および液晶性分子の配向を固定化した光学異方性層を有する光学補償シート
JP2007279083A (ja) 光学補償フィルム、偏光板及び液晶表示装置
JP2006124639A (ja) 高分子膜、液晶配向膜、位相差板及び液晶表示装置
JP2007108732A (ja) 偏光板及び液晶表示装置
JP2007155972A (ja) 光学補償フィルム、偏光板及び液晶表示装置
JP4619249B2 (ja) 光学異方性体、偏光板及び液晶表示装置
JP2007093864A (ja) 位相差板、偏光板および液晶表示装置
JP2007101678A (ja) 偏光板及びそれを用いた液晶表示装置
JP2006276817A (ja) 位相差板、偏光板および液晶表示装置
KR20120048548A (ko) 셀룰로오스 아실레이트 필름, 광학 보상 필름, 편광 필름 및 액정표시장치
JP2007206207A (ja) 光学フィルム、偏光板及び液晶表示装置
JP4444844B2 (ja) 位相差膜および液晶表示装置
JP2006259129A (ja) 光学補償シートおよびこれを用いた液晶表示装置、光学補償シートの製造方法
JP2006267183A (ja) 光学補償シート、その製造方法、ならびにそれを用いた偏光板及び液晶表示装置
JP2007206205A (ja) 光学フィルム、偏光板及び液晶表示装置
JP5308759B2 (ja) Tnモード液晶表示装置
JP2009288259A (ja) 光学補償フィルム、偏光板及び液晶表示装置
JP4756832B2 (ja) 組成物、それを用いた光学補償シートおよび液晶表示装置
JP5525330B2 (ja) 捩れ配向モード液晶表示装置
JP2006113500A (ja) 光学補償シートおよび液晶表示装置
JP2009139859A (ja) 光学補償フィルムの製造方法、光学補償フィルム、偏光板および液晶表示装置
JP2007178680A (ja) 光学補償フィルム、偏光板及び液晶表示装置
JP2009265295A (ja) 位相差フィルム、偏光板および液晶表示装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120814

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121030

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121228

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130418

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130625

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130701

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5308759

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees